1
|
De Rossi L, Rocchetti G, Lucini L, Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses-A Narrative Review. Antioxidants (Basel) 2025; 14:200. [PMID: 40002386 DOI: 10.3390/antiox14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Polyphenols (PPs) are recognized as bioactive compounds and antimicrobial agents, playing a critical role in enhancing food safety, preservation, and extending shelf life. The antimicrobial effectiveness of PPs has different molecular and biological reasons, predominantly linked to their hydroxyl groups and electron delocalization, which interact with microbial cell membranes, proteins, and organelles. These interactions may reduce the efficiency of metabolic pathways, cause destructive damage to the cell membrane, or they may harm the proteins and nucleic acids of the foodborne bacteria. Moreover, PPs exhibit a distinctive ability to form complexes with metal ions, further amplifying their antimicrobial activity. This narrative review explores the complex and multifaceted interactions between PPs and foodborne pathogens, underlying the correlation of their chemical structures and mechanisms of action. Such insights shed light on the potential of PPs as innovative natural preservatives within food systems, presenting an eco-friendly and sustainable alternative to synthetic additives.
Collapse
Affiliation(s)
- Luca De Rossi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy
| |
Collapse
|
2
|
Vinchira-Villarraga D, Dhaouadi S, Milenkovic V, Wei J, Grace ER, Hinton KG, Webster AJ, Vadillo-Dieguez A, Powell SE, Korotania N, Castellanos L, Ramos FA, Harrison RJ, Rabiey M, Jackson RW. Metabolic profiling and antibacterial activity of tree wood extracts obtained under variable extraction conditions. Metabolomics 2024; 21:13. [PMID: 39729149 DOI: 10.1007/s11306-024-02215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Tree bacterial diseases are a threat in forestry due to their increasing incidence and severity. Understanding tree defence mechanisms requires evaluating metabolic changes arising during infection. Metabolite extraction affects the chemical diversity of the samples and, therefore, the biological relevance of the data. Metabolite extraction has been standardized for several biological models. However, little information is available regarding how it influences wood extract's chemical diversity. OBJECTIVES This study aimed to develop a methodological approach to obtain extracts from different tree species with the highest reproducibility and chemical diversity possible, to ensure proper coverage of the trees' metabolome. METHODS A full factorial design was used to evaluate the effect of solvent type, extraction temperature and number of extraction cycles on the metabolic profile, chemical diversity and antibacterial activity of four tree species. RESULTS Solvent, temperature and their interaction significantly affected the extracts' chemical diversity, while the number of extraction cycles positively correlated with yield and antibacterial activity. Although 60% of the features were recovered in all the tested conditions, differences in the presence and abundance of specific chemical classes per tree were observed, including organooxygen compounds, prenol lipids, carboxylic acids, and flavonoids. CONCLUSIONS Each tree species has a unique metabolic profile, which means that no single protocol is universally effective. Extraction at 50 °C for three cycles using 80% methanol or chloroform/methanol/water showed the best results and is suggested for studying wood metabolome. These observations highlight the need to tailor extraction protocols to each tree species to ensure comprehensive metabolome coverage for metabolic profiling.
Collapse
Affiliation(s)
- Diana Vinchira-Villarraga
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Sabrine Dhaouadi
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vanja Milenkovic
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jiaqi Wei
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emily R Grace
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katherine G Hinton
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Amy J Webster
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrea Vadillo-Dieguez
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie E Powell
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Naina Korotania
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Leonardo Castellanos
- Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia - Sede Bogotá, Carrera 30# 45-03, Bogotá, D.C, 111321, Colombia
| | - Freddy A Ramos
- Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia - Sede Bogotá, Carrera 30# 45-03, Bogotá, D.C, 111321, Colombia
| | - Richard J Harrison
- Plant Sciences Group, Wageningen University & Research, Wageningen, 6700AA, The Netherlands
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK.
| | - Robert W Jackson
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Wu W, Mis Solval K, Chen J. Ellagitannin content and anti-enterohemorrhagic Escherichia coli activity of aqueous extracts derived from commercial pomegranate products. Heliyon 2024; 10:e29700. [PMID: 38660237 PMCID: PMC11040112 DOI: 10.1016/j.heliyon.2024.e29700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
This study compared the efficacy of aqueous extracts of commercially available pomegranate peel products and a juice powder in inhibiting the growth of two enterohemorrhagic Escherichia coli strains. Cell suspension of each E. coli strain (5 Log CFU/ml) was added into tryptic soy broth amended with 9 or 23% of each extract prepared with two different methods. After treatment for 5, 10, and 24 h at 25 °C, surviving E. coli cells were enumerated on tryptic soy agar to determine cell population reduction compared to the controls. The concentrations of six different ellagitannins and titratable activity in each treatment system were determined and correlated to E. coli cell population reduction. The extracts from three powdered pomegranate peels caused a significantly greater (p ≤ 0.05) reduction in E. coli population than the extract from the whole peel and juice powder. The higher dose of extracts resulted in a greater cell population reduction than the lower dose. The level of E. coli population reduction correlated positively with the total ellagitannins content (R2 0.67-0.98) and the titratable acidity (R2 0.69-0.98) in the treatment systems. The study suggests that pomegranate peels are promising natural additives or preservatives to control pathogens like EHEC.
Collapse
Affiliation(s)
- Weifan Wu
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| | - Kevin Mis Solval
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| |
Collapse
|
4
|
Coones RT, Karonen M, Green RJ, Frazier R. Interactions of Galloylated Polyphenols with a Simple Gram-Negative Bacterial Membrane Lipid Model. MEMBRANES 2024; 14:47. [PMID: 38392674 PMCID: PMC10890094 DOI: 10.3390/membranes14020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Differential scanning calorimetry (DSC) was used to explore the interactions of isolated polyphenolic compounds, including (-)-epigallocatechin gallate ((-)-EGCg), tellimagrandins I and II (Tel-I and Tel-II), and 1,2,3,4,6-penta-O-galloyl-d-glucose (PGG), with a model Gram-negative bacterial membrane with a view to investigating their antimicrobial properties. The model membranes comprised 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), fabricated to mimic the domain formation observed in natural membranes, as well as ideally mixed lipid vesicles for the interaction with (-)-EGCg. Polyphenols induced changes in lipid mixing/de-mixing depending on the method of vesicle preparation, as was clearly evidenced by alterations in the lipid transition temperatures. There was a distinct affinity of the polyphenols for the DPPG lipid component, which was attributed to the electrostatic interactions between the polyphenolic galloyl moieties and the lipid headgroups. These interactions were found to operate through either the stabilization of the lipid headgroups by the polyphenols or the insertion of the polyphenols into the membrane itself. Structural attributes of the polyphenols, including the number of galloyl groups, the hydrophobicity quantified by partition coefficients (logP), and structural flexibility, exhibited a correlation with the temperature transitions observed in the DSC measurements. This study furthers our understanding of the intricate interplay between the structural features of polyphenolic compounds and their interactions with model bacterial membrane vesicles towards the exploitation of polyphenols as antimicrobials.
Collapse
Affiliation(s)
- Ryan T Coones
- School of Chemistry, Food and Pharmacy, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Rebecca J Green
- School of Chemistry, Food and Pharmacy, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK
| | - Richard Frazier
- School of Chemistry, Food and Pharmacy, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK
| |
Collapse
|
5
|
Bie S, Mo Q, Shi C, Yuan H, Li C, Wu T, Li W, Yu H. Interactions of plumbagin with five common antibiotics against Staphylococcus aureus in vitro. PLoS One 2024; 19:e0297493. [PMID: 38277418 PMCID: PMC10817181 DOI: 10.1371/journal.pone.0297493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/06/2024] [Indexed: 01/28/2024] Open
Abstract
Staphylococcus aureus is the main culprit, causing a variety of severe clinical infections. At the same time, clinics are also facing the severe situation of antibiotic resistance. Therefore, effective strategies to address this problem may include expanding the antimicrobial spectrum by exploring alternative sources of drugs or delaying the development of antibiotic resistance through combination therapy so that existing antibiotics can continue to be used. Plumbagin (PLU) is a phytochemical that exhibits antibacterial activity. In the present study, we investigated the in vitro antibacterial activity of PLU. We selected five antibiotics with different mechanisms and inhibitory activities against S. aureus to explore their interaction with the combination of PLU. The interaction of combinations was evaluated by the Bliss independent model and visualized through response surface analysis. PLU exhibited potent antibacterial activity, with half maximal inhibitory concentration (IC50) and minimum inhibitory concentration (MIC) values against S. aureus of 1.73 μg/mL and 4 μg/mL, respectively. Synergism was observed when PLU was combined with nitrofurantoin (NIT), ciprofloxacin (CPR), mecillinam (MEC), and chloramphenicol (CHL). The indifference of the trimethoprim (TMP)-PLU pairing was demonstrated across the entire dose-response matrix, but significant synergy was observed within a specific dose region. In addition, no antagonistic interactions were indicated. Overall, PLU is not only a promising antimicrobial agent but also has the potential to enhance the growth-inhibitory activity of some antibiotics against S. aureus, and the use of the interaction landscape, along with the dose-response matrix, for analyzing and quantifying combination results represents an improved approach to comprehending antibacterial combinations.
Collapse
Affiliation(s)
- Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Qiuyue Mo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Chen Shi
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hui Yuan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Chunshuang Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Tong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Dah-Nouvlessounon D, Chokki M, Hoteyi IMS, Fassinou F, Ranga F, Fetea F, Diaconeasa Z, Vodnar D, Furdui B, Baba-Moussa F, Dinica RM, Suharoschi R, Baba-Moussa L. Pharmacological Property and Cytotoxic Effect Showing Antiproliferative Potency in Human Melanoma Cell Lines (A375) of Combretum racemosum P. Beauv. Leaf and Root Extracts Used in Benin. Antioxidants (Basel) 2023; 13:31. [PMID: 38247456 PMCID: PMC10812713 DOI: 10.3390/antiox13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Combretum racemosum, a plant from the Combretaceae family, is traditionally used in Benin for various health problems. However, scientific research on Beninese samples of this plant is limited. The aim of this study was to identify and assess the bioactive compounds in the plant's leaves and roots. Initial screening involved analyzing powders derived from these parts for total polyphenols, flavonoids, and both condensed and hydrolyzable tannins. The polyphenolic compounds were analyzed using HPLC-DAD-ESI-MS. To evaluate the plant's antimicrobial properties, the agar diffusion method was employed, while FRAP and DPPH assays were used to determine its antioxidant capacity. For anti-inflammatory activity, the study utilized tests for in vitro protein denaturation inhibition and in vivo acute edema induced by carrageenan. Additionally, an antiproliferative assay was conducted using the human melanoma cell line A375. The analysis revealed the presence of significant polyphenolic compounds in both the leaf and root extracts of C. racemosum. Notably, compounds like Pedunculagin, Vescalagin, Casuarictin, and Digalloyl-glucoside were abundant in the leaves, with Vescalagin being especially predominant in the roots. The study also found that the dichloromethane extracts from the leaves and roots exhibited bactericidal effects on a substantial percentage of meat-isolated strains. Moreover, the antioxidant activities of these extracts were confirmed through FRAP and DPPH methods. Interestingly, the dichloromethane root extract showed strong activity in inhibiting thermal albumin denaturation, while the water-ethanol leaf extract demonstrated significant edema inhibition. Finally, the study observed that C. racemosum extracts reduced cell viability in a dose-dependent manner, with leaf extracts showing more pronounced antiproliferative effects than root extracts. These findings highlight the potential of C. racemosum leaves and roots as sources of compounds with diverse and significant biological activities. In conclusion, C. racemosum's leaves and roots exhibit promising biological activities, highlighting their potential medicinal value.
Collapse
Affiliation(s)
- Durand Dah-Nouvlessounon
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05BP1604, Benin (I.M.S.H.); (F.F.)
- Department of Chemistry, Physics and Environment, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania;
| | - Michaelle Chokki
- Laboratoire de Microbiologie et de Technologie Alimentaire, FAST, Université d’Abomey-Calavi, 01BP: 526 ISBA-Champ de Foire, Cotonou 01BP526, Benin; (M.C.); (F.B.-M.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania (D.V.); (R.S.)
| | - Ismaël M. S. Hoteyi
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05BP1604, Benin (I.M.S.H.); (F.F.)
| | - Fidèle Fassinou
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05BP1604, Benin (I.M.S.H.); (F.F.)
| | - Floricuta Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania (D.V.); (R.S.)
| | - Florinela Fetea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania (D.V.); (R.S.)
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania (D.V.); (R.S.)
| | - Dan Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania (D.V.); (R.S.)
| | - Bianca Furdui
- Department of Chemistry, Physics and Environment, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania;
| | - Farid Baba-Moussa
- Laboratoire de Microbiologie et de Technologie Alimentaire, FAST, Université d’Abomey-Calavi, 01BP: 526 ISBA-Champ de Foire, Cotonou 01BP526, Benin; (M.C.); (F.B.-M.)
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania;
| | - Ramona Suharoschi
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania (D.V.); (R.S.)
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05BP1604, Benin (I.M.S.H.); (F.F.)
| |
Collapse
|
7
|
Dreger M, Adamczak A, Foksowicz-Flaczyk J. Antibacterial and Antimycotic Activity of Epilobium angustifolium L. Extracts: A Review. Pharmaceuticals (Basel) 2023; 16:1419. [PMID: 37895890 PMCID: PMC10609845 DOI: 10.3390/ph16101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this work was to provide an overview of available information on the antibacterial and antifungal properties of Epilobium angustifolium extracts. A literature search of Scopus, PubMed/Medline, and Google Scholar for peer-reviewed articles published between January 2000 and June 2023 was undertaken. A total of 23 studies were eligible for inclusion in this review. Significant variation of antimicrobial activity depending on the tested species and strains, type of extract solvent, or plant organs utilized for the extract preparation was found. E. angustifolium extracts were active against both Gram-positive and Gram-negative bacteria and showed antimycotic effects against the fungi of Microsporum canis and Trichophyton tonsurans and the dermatophytes Arthroderma spp. Greater susceptibility of Gram-positive than Gram-negative bacteria to fireweed extracts was found. A strong antibacterial effect was recorded for Staphylococcus aureus, Bacillus cereus, Micrococcus luteus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii including multi-drug resistant strains. E. angustifolium extract might find practical application as an antimicrobial in wound healing, components of cosmetic products for human and animals, or as food preservatives.
Collapse
Affiliation(s)
- Mariola Dreger
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Artur Adamczak
- Department of Breeding and Botany of Useful Plants, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland;
| | - Joanna Foksowicz-Flaczyk
- Department of Bioproducts Engineering, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| |
Collapse
|
8
|
Suominen E, Savila S, Sillanpää M, Damlin P, Karonen M. Affinity of Tannins to Cellulose: A Chromatographic Tool for Revealing Structure-Activity Patterns. Molecules 2023; 28:5370. [PMID: 37513244 PMCID: PMC10384774 DOI: 10.3390/molecules28145370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Food, feed and beverage processing brings tannins into contact with macromolecules, such as proteins and polysaccharides, leading to different chemical and physical interactions. The interactions of tannins with proteins are well known but less is known about the affinity of tannins to polysaccharides. We used bacterial cellulose from nata de coco as a model compound to investigate how tannins and cellulose interact by adsorption measurements using UPLC-DAD. We also explored how the structure of tannins influences these interactions. The model tannins included nine individual structurally different hydrolysable tannins (HTs) and eight well-defined proanthocyanidin (PA) fractions with different monomeric units, mean degree of polymerization and both A- and B-type linkages. Tannins were found to have both strong and weak interactions with bacterial cellulose, depending on the exact structure of the tannin. For HTs, the main structural features affecting the interactions were the structural flexibility of the HT molecule and the number of free galloyl groups. For PAs, prodelphinidins were found to have a higher affinity to cellulose than procyanidins. Similarly to HTs, the presence of free galloyl groups in galloylated PAs and the flexibility of the PA molecule led to a stronger interaction. Adsorption measurements by UPLC-DAD proved to be a sensitive and rapid tool to evaluate the affinity of tannins to cellulose.
Collapse
Affiliation(s)
- Essi Suominen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Santeri Savila
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Mimosa Sillanpää
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Pia Damlin
- Materials Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
9
|
Sillanpää M, Engström MT, Tähtinen P, Green RJ, Käpylä J, Näreaho A, Karonen M. Tannins Can Have Direct Interactions with Anthelmintics: Investigations by Isothermal Titration Calorimetry. Molecules 2023; 28:5261. [PMID: 37446937 DOI: 10.3390/molecules28135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Plant tannins are known for their anthelmintic and antiparasitic activities and have been increasingly studied to battle the ever-growing problem of anthelmintic resistance. While tannins have been shown to exhibit these activities on their own, one approach would be to use them as complementary nutrients alongside commercial anthelmintics. So far, research on the interactions between tannins and anthelmintics is limited, and few studies have reported both synergistic and antagonistic effects depending on the type of tannin and the method used. These interactions could either strengthen or weaken the efficacy of commercial anthelmintics, especially if tannin-rich diets are combined with anthelmintics used as oral drenches. To study these interactions, a series of hydrolysable tannins (HTs) was selected, and their direct interactions with thiabendazole (TBZ) were evaluated by isothermal titration calorimetry (ITC), which allowed the detection of the exothermic interaction but also the roles and significances of different structural features of HTs in these interactions. Our results show that HTs can have a direct interaction with the benzimidazole anthelmintic TBZ and that the interaction is strengthened by increasing the number of free galloyl groups and the overall molecular flexibility of HTs.
Collapse
Affiliation(s)
- Mimosa Sillanpää
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Marica T Engström
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Petri Tähtinen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Rebecca J Green
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG6 6AP, UK
| | - Jarmo Käpylä
- Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Anu Näreaho
- Department of Veterinary Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Maarit Karonen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
10
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
11
|
Gut microbial modulation by culinary herbs and spices. Food Chem 2023; 409:135286. [PMID: 36599291 DOI: 10.1016/j.foodchem.2022.135286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Culinary herbs and spices have previously been recognised for their potential impact on health through antioxidant and antimicrobial properties. They may also be promotors of positive microbial modulation by stimulating beneficial gut bacteria during fermentation, increasing the production of short chain fatty acids and thereby exhibiting a prebiotic effect. In the present paper, current literature around herb and spice consumption, gut microbiota modulation and prospective health benefits were reviewed. Herb and spice consumption can positively modulate gut microbes and possibly play an important role in inflammation related afflictions such as obesity. Current literature indicates that few human studies have been conducted to confirm the impact of herb and spice consumption on gut microbiota in connection with prospective health outcomes and inconsistencies in conclusions therefore remain.
Collapse
|
12
|
Štumpf S, Hostnik G, Langerholc T, Pintarič M, Kolenc Z, Bren U. The Influence of Chestnut Extract and Its Components on Antibacterial Activity against Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:2043. [PMID: 37653960 PMCID: PMC10221632 DOI: 10.3390/plants12102043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
Increasing antimicrobial resistance has caused a great interest in natural products as alternatives or potentiators of antibiotics. The objective of this study was to isolate individual tannins from crude chestnut extract as well as to determine the influence of both crude extracts (tannic acid extract, chestnut extract) and individual pure tannins (gallic acid, vescalin, vescalagin, castalin, castalagin) on the growth of Gram-positive Staphylococcus aureus bacteria. Their antibacterial activity was monitored by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as well as the duration of the lag phase, growth rate and generation time. The effect of growth medium strength on the MIC of different tannins was also investigated. Bacterial growth was followed spectrophotometrically, and MIC values were determined by the microdilution method. The MIC values of various isolated compounds allowed us to determine the bioactive compounds and their contribution to antimicrobial activity. It was found that MIC values increase with increasing growth medium strength and that the lag phase lengthens with increasing tannin concentrations, while the growth rates decrease. Comparing the results of the two studies, the antimicrobial activity of tannins against S. aureus was not as pronounced as in the case of E. coli, which may indicate that a different mechanism of action is responsible for the antimicrobial effects of tannins on Gram-positive than on Gram-negative bacteria, or that a different mechanism is more pronounced.
Collapse
Grants
- J1-2471, P2-0046, L2-3175, J4-4633, J1-4398, L2-4430, J3-4498, J7-4638, J1-4414, J3-4497, P2-0438, I0-E015 Slovenian Research Agency
Collapse
Affiliation(s)
- Sara Štumpf
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Gregor Hostnik
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Zala Kolenc
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska 7, 2000 Maribor, Slovenia
| |
Collapse
|
13
|
Das G, Nath R, Das Talukdar A, Ağagündüz D, Yilmaz B, Capasso R, Shin HS, Patra JK. Major Bioactive Compounds from Java Plum Seeds: An Investigation of Its Extraction Procedures and Clinical Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1214. [PMID: 36986906 PMCID: PMC10057433 DOI: 10.3390/plants12061214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Java plum is widely recognized as a plant with valuable medicinal properties, originating from Indonesia and India and distributed globally in the tropic and sub-tropic regions of the world. The plant is rich in alkaloids, flavonoids, phenyl propanoids, terpenes, tannins, and lipids. The phytoconstituents of the plant seeds possess various vital pharmacological activities and clinical effects including their antidiabetic potential. The bioactive phytoconstituents of Java plum seeds include jambosine, gallic acid, quercetin, β-sitosterol, ferulic acid, guaiacol, resorcinol, p-coumaric acid, corilagin, ellagic acid, catechin, epicatechin, tannic acid, 4,6 hexahydroxydiphenoyl glucose, 3,6-hexahydroxy diphenoylglucose, 1-galloylglucose, and 3-galloylglucose. Considering all the potential beneficial effects of the major bioactive compounds present in the Jamun seeds, in the current investigation, the specific clinical effects and the mechanism of action for the major bioactive compounds along with the extraction procedures are discussed.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Birsen Yilmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, Telangana, India
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
14
|
Wu M, Jiang Y, Wang J, Luo T, Yi Y, Wang H, Wang L. The Effect and Mechanism of Corilagin from Euryale Ferox Salisb Shell on LPS-Induced Inflammation in Raw264.7 Cells. Foods 2023; 12:foods12050979. [PMID: 36900496 PMCID: PMC10000429 DOI: 10.3390/foods12050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
(1) Background: Euryale ferox Salisb is a large aquatic plant of the water lily family and an edible economic crop with medicinal value. The annual output of Euryale ferox Salisb shell in China is higher than 1000 tons, often as waste or used as fuel, resulting in waste of resources and environmental pollution. We isolated and identified the corilagin monomer from Euryale ferox Salisb shell and discovered its potential anti-inflammatory effects. This study aimed to investigate the anti-inflammatory effect of corilagin isolated from Euryale ferox Salisb shell. (2) Methods: We predict the anti-inflammatory mechanism by pharmacology. LPS was added to 264.7 cell medium to induce an inflammatory state, and the safe action range of corilagin was screened using CCK-8. The Griess method was used to determine NO content. The presence of TNF-α, IL-6, IL-1β, and IL-10 was determined by ELISA to evaluate the effect of corilagin on the secretion of inflammatory factors, while that of reactive oxygen species was detected by flow cytometry. The gene expression levels of TNF-α, IL-6, COX-2, and iNOS were determined using qRT-PCR. qRT-PCR and Western blot were used to detect the mRNA and expression of target genes in the network pharmacologic prediction pathway. (3) Results: Network pharmacology analysis revealed that the anti-inflammatory effect of corilagin may be related to MAPK and TOLL-like receptor signaling pathways. The results demonstrated the presence of an anti-inflammatory effect, as indicated by the reduction in the level of NO, TNF-α, IL-6, IL-1β, IL-10, and ROS in Raw264.7 cells induced by LPS. The results suggest that corilagin reduced the expression of TNF-α, IL-6, COX-2, and iNOS genes in Raw264.7 cells induced by LPS. The downregulation of the phosphorylation of IκB-α protein related to the toll-like receptor signaling pathway and upregulation of the phosphorylation of key proteins in the MAPK signaling pathway, P65 and JNK, resulted in reduced tolerance toward lipopolysaccharide, allowing for the exertion of the immune response. (4) Conclusions: The results demonstrate the significant anti-inflammatory effect of corilagin from Euryale ferox Salisb shell. This compound regulates the tolerance state of macrophages toward lipopolysaccharide through the NF-κB signaling pathway and plays an immunoregulatory role. The compound also regulates the expression of iNOS through the MAPK signaling pathway, thereby alleviating the cell damage caused by excessive NO release.
Collapse
Affiliation(s)
- Minrui Wu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuhan Jiang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junnan Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ting Luo
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Limei Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence:
| |
Collapse
|
15
|
Silén H, Salih EYA, Mgbeahuruike EE, Fyhrqvist P. Ethnopharmacology, Antimicrobial Potency, and Phytochemistry of African Combretum and Pteleopsis Species (Combretaceae): A Review. Antibiotics (Basel) 2023; 12:264. [PMID: 36830175 PMCID: PMC9951921 DOI: 10.3390/antibiotics12020264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Bacterial and fungal resistance to antibiotics is of growing global concern. Plants such as the African Combretum and Pteleopsis species, which are used in traditional medicine for the treatment of infections, could be good sources for antimicrobial extracts, drug scaffolds, and/or antibiotic adjuvants. In African countries, plant species are often used in combinations as traditional remedies. It is suggested that the plant species enhance the effects of each other in these combination treatments. Thus, the multi-species-containing herbal medications could have a good antimicrobial potency. In addition, plant extracts and compounds are known to potentiate the effects of antibiotics. The objective of this review is to compile the information on the botany, ethnopharmacology, ethnobotany, and appearance in herbal markets of African species of the genera Combretum and Pteleopsis. With this ethnobotanical information as a background, this review summarizes the information on the phytochemistry and antimicrobial potency of the extracts and their active compounds, as well as their combination effects with conventional antibiotics. The databases used for the literature search were Scopus, Elsevier, EBSCOhost, PubMed, Google Scholar, and SciFinder. In summary, a number of Combretum and Pteleopsis species were reported to display significant in vitro antibacterial and antifungal efficacy. Tannins, terpenes, flavonoids, stilbenes, and alkaloids-some of them with good antimicrobial potential-are known from species of the genera Combretum and Pteleopsis. Among the most potent antimicrobial compounds are arjunglucoside I (MIC 1.9 µg/mL) and imberbic acid (MIC 1.56 µg/mL), found in both genera and in some Combretum species, respectively. The in vitro antimicrobial properties of the extracts and compounds of many Combretum and Pteleopsis species support their traditional medicinal uses.
Collapse
Affiliation(s)
| | | | | | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Villanueva X, Zhen L, Ares JN, Vackier T, Lange H, Crestini C, Steenackers HP. Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front Microbiol 2023; 13:987164. [PMID: 36687646 PMCID: PMC9853077 DOI: 10.3389/fmicb.2022.987164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background Tannins have demonstrated antibacterial and antibiofilm activity, but there are still unknown aspects on how the chemical properties of tannins affect their biological properties. We are interested in understanding how to modulate the antibiofilm activity of tannins and in delineating the relationship between chemical determinants and antibiofilm activity. Materials and methods The effect of five different naturally acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was determined in the Calgary biofilm device. Results Most of the unmodified tannins exhibited specific antibiofilm activity against the assayed bacteria. The chemical modifications were found to alter the antibiofilm activity level and spectrum of the tannins. A positive charge introduced by derivatization with higher amounts of ammonium groups shifted the anti-biofilm spectrum toward Gram-negative bacteria, and derivatization with lower amounts of ammonium groups and acidifying derivatization shifted the spectrum toward Gram-positive bacteria. Furthermore, the quantity of phenolic OH-groups per molecule was found to have a weak impact on the anti-biofilm activity of the tannins. Conclusion We were able to modulate the antibiofilm activity of several tannins by specific chemical modifications, providing a first approach for fine tuning of their activity and antibacterial spectrum.
Collapse
Affiliation(s)
- Xabier Villanueva
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Lili Zhen
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Rome, Italy,CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy
| | - José Nunez Ares
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Heverlee, Belgium
| | - Thijs Vackier
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Heiko Lange
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Claudia Crestini
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Hans P. Steenackers
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium,*Correspondence: Hans P. Steenackers,
| |
Collapse
|
17
|
Olchowik-Grabarek E, Sękowski S, Kwiatek A, Płaczkiewicz J, Abdulladjanova N, Shlyonsky V, Swiecicka I, Zamaraeva M. The Structural Changes in the Membranes of Staphylococcus aureus Caused by Hydrolysable Tannins Witness Their Antibacterial Activity. MEMBRANES 2022; 12:1124. [PMID: 36363679 PMCID: PMC9698758 DOI: 10.3390/membranes12111124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Polyphenols, including tannins, are phytochemicals with pronounced antimicrobial properties. We studied the activity of two hydrolysable tannins, (i) gallotannin-1,2,3,4,5-penta-O-galloyl-β-D-glucose (PGG) and (ii) ellagitannin-1,2-di-O-galloyl-4,6-valoneoyl-β-D-glucose (dGVG), applied alone and in combination with antibiotics against Staphylococcus aureus strain 8324-4. We also evaluated the effect of these tannins on bacterial membrane integrity and fluidity and studied their interaction with membrane proteins and lipids. A correlation between the antimicrobial activity of the tannins and their membranotropic action depending on the tannin molecular structure has been demonstrated. We found that the antibacterial activity of PGG was stronger than dGVG, which can be associated with its larger flexibility, dipole moment, and hydrophobicity. In addition, we also noted the membrane effects of the tannins observed as an increase in the size of released bacterial membrane vesicles.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Jagoda Płaczkiewicz
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Izabela Swiecicka
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| |
Collapse
|
18
|
Condensed and Hydrolyzable Tannins for Reducing Methane and Nitrous Oxide Emissions in Dairy Manure-A Laboratory Incubation Study. Animals (Basel) 2022; 12:ani12202876. [PMID: 36290258 PMCID: PMC9598578 DOI: 10.3390/ani12202876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
The objectives of this study were to (1) examine the effects of plant condensed (CT) and hydrolyzable tannin (HT) extracts on CH4 and N2O emissions; (2) identify the reactions responsible for manure-derived GHG emissions, and (3) examine accompanying microbial community changes in fresh dairy manure. Five treatments were applied in triplicate to the freshly collected dairy manure, including 4% CT, 8% CT, 4% HT, 8% HT (V/V), and control (no tannin addition). Fresh dairy manure was placed into 710 mL glass incubation chambers. In vitro composted dairy manure samples were collected at 0, 24, 48, and 336 h after the start of incubation. Fluxes of N2O and CH4 were measured for 5-min/h for 14 d at a constant ambient incubation temperature of 39 °C. The addition of quebracho CT significantly decreased the CH4 flux rates compared to the tannin-free controls (215.9 mg/m2/h), with peaks of 75.6 and 89.6 mg/m2/h for 4 and 8% CT inclusion rates, respectively. Furthermore, CT significantly reduced cumulative CH4 emission by 68.2 and 57.3% at 4 and 8% CT addition, respectively. The HT treatments failed to affect CH4 reduction. However, both CT and HT reduced (p < 0.001) cumulative and flux rates of N2O emissions. The decrease in CH4 flux with CT was associated with a reduction in the abundance of Bacteroidetes and Proteobacteria.
Collapse
|
19
|
Engström MT, Virtanen V, Salminen JP. Influence of the Hydrolyzable Tannin Structure on the Characteristics of Insoluble Hydrolyzable Tannin-Protein Complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13036-13048. [PMID: 35708502 PMCID: PMC9585579 DOI: 10.1021/acs.jafc.2c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precipitation of bovine serum albumin (BSA) by 21 hydrolyzable tannins (HTs) and the characteristics of the insoluble complexes were studied stoichiometrically by ultra-performance liquid chromatography. With regard to HT monomers, the protein precipitation and the characteristic of the formed precipitates were unique for each studied HT and depended upon the functional groups present in the structures. The monomeric units comprising the oligomers formed the functional units important for the protein precipitation capacity, and small structural differences among the monomer units were less important than the overall oligomer size and flexibility. In addition, the greater tendency of certain HTs to form insoluble complexes when mixed with BSA was partially linked to the higher self-association and consequent stronger cooperative binding of these HTs with BSA.
Collapse
|
20
|
Xu L, Zhong XL, Xi ZC, Li Y, Xu HX. Medicinal plants and natural compounds against acyclovir-resistant HSV infections. Front Microbiol 2022; 13:1025605. [PMID: 36299732 PMCID: PMC9589345 DOI: 10.3389/fmicb.2022.1025605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Herpes simplex virus (HSV), an alphaherpesvirus, is highly prevalent in the human population and is known to cause oral and genital herpes and various complications. Represented by acyclovir (ACV), nucleoside analogs have been the main clinical treatment against HSV infection thus far. However, due to prolonged and excessive use, HSV has developed ACV-resistant strains. Therefore, effective treatment against ACV-resistant HSV strains is urgently needed. In this review, we summarized the plant extracts and natural compounds that inhibited ACV-resistant HSV infection and their mechanism of action.
Collapse
Affiliation(s)
- Lin Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xuan-Lei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhi-Chao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- *Correspondence: Yang Li,
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong-Xi Xu,
| |
Collapse
|
21
|
Torgbo S, Rugthaworn P, Sukatta U, Sukyai P. Biological Characterization and Quantification of Rambutan ( Nephelium lappaceum L.) Peel Extract as a Potential Source of Valuable Minerals and Ellagitannins for Industrial Applications. ACS OMEGA 2022; 7:34647-34656. [PMID: 36188307 PMCID: PMC9521024 DOI: 10.1021/acsomega.2c04646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This study extracted ellagitannins from rambutan peel using the Soxhlet technique. The extract was further partitioned and fractionated to get extract rich in ellagitannin and geraniin, respectively. The partitioning of the extract significantly increased total phenolic content (TPC) by 36.3% and its biological properties. Mineral elements such as Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, and Zn were identified in both peel and extract. Ellagitannins such as geraniin and corilagin with metabolites (gallic acid and ellagic acid) were identified as the major compounds. Analysis of antioxidant activities shows that the ellagitannin rich extract is as powerful as vitamin C. Geraniin was the main contributor to the free radical scavenging activity. The study also revealed that extract with a fraction rich in geraniin has antioxidant activity equivalent to commercial geraniin (1.56 ± 0.11 Trolox equivalent g/g). It also showed low cytotoxicity on fibroblast L929 cells, moderate tyrosinase activity, and good efficacy against Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes strains. Successive fractionation of the extract is a promising technique to produce geraniin rich fractions with enhanced antioxidant property. Rambutan peel, as a natural product, is a good source of mineral elements and biologically active compounds for pharmaceutical, nutraceutical, and cosmetic formulations.
Collapse
Affiliation(s)
- Selorm Torgbo
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prapassorn Rugthaworn
- Kasetsart
Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University,
Chatuchak, Bangkok 10900, Thailand
| | - Udomlak Sukatta
- Kasetsart
Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University,
Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University
Institute for Advanced Studies, Kasetsart
University, 50 Ngamwongwan
Road, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
22
|
Tak Y, Kaur M, Jain MC, Samota MK, Meena NK, Kaur G, Kumar R, Sharma D, Lorenzo JM, Amarowicz R. Jamun Seed: A Review on Bioactive Constituents, Nutritional Value and Health Benefits. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
The Therapeutic Relevance of Urolithins, Intestinal Metabolites of Ellagitannin-Rich Food: A Systematic Review of In Vivo Studies. Nutrients 2022; 14:nu14173494. [PMID: 36079752 PMCID: PMC9460125 DOI: 10.3390/nu14173494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/09/2022] Open
Abstract
The therapeutic effects of food rich in ellagitannins have been established to stem from its microbial metabolite, urolithin. Over the past decade, there has been a growing trend in urolithin research pertaining to its pharmacological properties. The purpose of this systematic review is to collate and synthesise all available data on urolithin’s therapeutic ability, to highlight its potential as a pharmaceutical agent, and prospective direction on future research. Methods: This systematic review was written based on the PRISMA guideline and was conducted across Ovid via Embase, Ovid MEDLINE, Cochrane Central Register for Controlled Trials, and Web of Science Core Collection. Results: A total of 41 animal studies were included in this systematic review based on the appropriate keyword. The included studies highlighted the neuroprotective, anti-metabolic disorder activity, nephroprotective, myocardial protective, anti-inflammatory, and musculoskeletal protection of urolithin A, B, and its synthetic analogue methylated urolithin A. The Sirt1, AMPK, and PI3K/AKT/mTOR signalling pathways were reported to be involved in the initiation of autophagy and mitochondrial biogenesis by urolithin A. Conclusions: This review methodically discusses the therapeutic prospects of urolithins and provides scientific justification for the potential development of urolithin A as a potent natural mitophagy inducer for anti-ageing purposes.
Collapse
|
24
|
Karonen M. Insights into Polyphenol-Lipid Interactions: Chemical Methods, Molecular Aspects and Their Effects on Membrane Structures. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141809. [PMID: 35890443 PMCID: PMC9317924 DOI: 10.3390/plants11141809] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 05/12/2023]
Abstract
Plant polyphenols have many potential applications, for example, in the fields of chemical ecology and human and animal health and nutrition. These biological benefits are related to their bioavailability, bioaccessibility and interactions with other biomolecules, such as proteins, lipids, fibers and amino acids. Polyphenol-protein interactions are well-studied, but less is known about their interactions with lipids and cell membranes. However, the affinity of polyphenols for lipid bilayers partially determines their biological activity and is also important from the usability perspective. The polyphenol-lipid interactions can be studied with several chemical tools including, among others, partition coefficient measurements, calorimetric methods, spectroscopic techniques and molecular dynamics simulation. Polyphenols can variably interact with and penetrate lipid bilayers depending on the structures and concentrations of the polyphenols, the compositions of the lipids and the ambient conditions and factors. Polyphenol penetrating the lipid bilayer can perturb and cause changes in its structure and biophysical properties. The current studies have used structurally different polyphenols, diverse model lipids and various measuring techniques. This approach provides detailed information on polyphenol-lipid interactions, but there is much variability, and the results may even be contradictory, for example, in relation to the locations and orientations of the polyphenols in the lipid bilayers. Nevertheless, by using well-characterized model polyphenols and lipids systematically and combining the results obtained with several techniques within a study, it is possible to create a good overall picture of these fascinating interactions.
Collapse
Affiliation(s)
- Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
25
|
Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents. Food Sci Biotechnol 2022; 31:985-997. [PMID: 35873378 PMCID: PMC9300781 DOI: 10.1007/s10068-022-01058-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. Food-derived polyphenols with such antibacterial activity are natural preservatives and can be used as an alternative to synthetic preservatives that can cause side effects, such as allergies, asthma, skin irritation, and cancer. Studies have reported that polyphenols have positive effects, such as decreasing harmful bacteria and increasing beneficial bacteria in the human gut microbiota. Polyphenols can also be used as natural antibacterial agents in food packaging system in the form of emitting sachets, absorbent pads, and edible coatings. We summarized the antibacterial activities, mechanisms and applications of polyphenols as antibacterial agents against foodborne bacteria.
Collapse
|
26
|
Susanti D, Haris MS, Taher M, Khotib J. Natural Products-Based Metallic Nanoparticles as Antimicrobial Agents. Front Pharmacol 2022; 13:895616. [PMID: 35721199 PMCID: PMC9205242 DOI: 10.3389/fphar.2022.895616] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Natural products offer a wide range of bioactivity including antimicrobial properties. There are many reports showing the antimicrobial activities of phytochem icals from plants. However, the bioactivity is limited due to multidrug resistant properties of the microorganism and different composition of cell membrane. The antibacterial activity of the natural products is different toward Gram-negative and Gram-positive bacteria. These phenomena are caused by improper physicochemical conditions of the substance which hinder the phytochemical bioactivity against the broad range of bacteria. One of the strategies to improve the antimicrobial action is by biogenic synthesis via redox balance of the antimicrobial active substance with metal to form nanosized materials or nanoparticles (NPs). Antibiotic resistance is not relevant to NPs because the action of NPs is via direct contact with bacterial cell walls without the need of penetration into microbial cells. The NPs that have shown their effectiveness in preventing or overcoming biofilm formation such as silver-based nanoparticles (AgNPs), gold-based nanoparticles (AuNPs), platinum-based nanoparticles (PtNPs) and Zinc oxide-based nanoparticles (ZnONPs). Due to its considerably simple synthesis procedure has encouraged researchers to explore antimicrobial potency of metallic nanoparticles. Those metallic nanoparticles remarkably express synergistic effects against the microorganisms tested by affecting bacterial redox balance, thus disrupting their homeostasis. In this paper, we discuss the type of metallic nanoparticle which have been used to improve the antimicrobial activity of plant extract/constituents, preparation or synthesis process and characterisation of the plant-based metallic nanoparticles.
Collapse
Affiliation(s)
- Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia.,IKOP Pharma Sdn Bhd, Jalan Sultan Ahmad Shah, Kuantan, Malaysia.,Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia.,Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
27
|
Arbain D, Sinaga LMR, Taher M, Susanti D, Zakaria ZA, Khotib J. Traditional Uses, Phytochemistry and Biological Activities of Alocasia Species: A Systematic Review. Front Pharmacol 2022; 13:849704. [PMID: 35685633 PMCID: PMC9170998 DOI: 10.3389/fphar.2022.849704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The genus Alocasia (Schott) G. Don consists of 113 species distributed across Asia, Southeast Asia, and Australia. Alocasia plants grow in tropical and subtropical forests with humid lowlands. Featuring their large green heart-shaped or arrow-shaped ear leaves and occasionally red-orange fruit, they are very popular ornamental plants and are widely used as traditional medicines to treat various diseases such as jaundice, snake bite, boils, and diabetes. This manuscript critically analysed the distribution, traditional uses, and phytochemical contents of 96 species of Alocasia. The numerous biological activities of Alocasia species were also presented, which include anti-cancer, antidiabetic and antihyperglycaemic, antioxidant, antidiarrhoea, antimicrobial and antifungal, antiparasitic (antiprotozoal and anthelminthic), antinociceptive and anti-inflammatory, brine shrimp lethality, hepatoprotective, anti-hemagglutinin, anti-constipation and diuretic, and radioprotective activities as well as acute toxicity studies. Research articles were acquired by the accessing three scientific databases comprising PubMed, Scopus, and Google Scholar. For this review, specific information was obtained using the general search term "Alocasia", followed by the "plant species names" and "phytochemical" or "bioactivity" or "pharmacological activity". The accepted authority of the plant species was referred from theplantlist.org. Scientific studies have revealed that the genus is mainly scattered throughout Asia. It has broad traditional benefits, which have been associated with various biological properties such as cytotoxic, antihyperglycaemic, antimicrobial, and anti-inflammatory. Alocasia species exhibit diverse biological activities that are very useful for medical treatment. The genus Alocasia was reported to be able to produce a strong and high-quality anti-cancer compound, namely alocasgenoside B, although information on this compound is currently limited. Therefore, it is strongly recommended to further explore the relevant use of natural compounds present in the genus Alocasia, particularly as an anti-cancer agent. With only a few Alocasia species that have been scientifically studied so far, more attention and effort is required to establish the link between traditional uses, active compounds, and pharmacological activities of various species of this genus.
Collapse
Affiliation(s)
- Dayar Arbain
- Faculty of Pharmacy, Universitas 17 Agustus 1945, Jakarta, Indonesia
| | | | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
- Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
28
|
Virtanen V, Green RJ, Karonen M. Interactions between Hydrolysable Tannins and Lipid Vesicles from Escherichia coli with Isothermal Titration Calorimetry. Molecules 2022; 27:molecules27103204. [PMID: 35630681 PMCID: PMC9146631 DOI: 10.3390/molecules27103204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Isothermal titration calorimetry (ITC) was used to study the interactions between hydrolysable tannins (HTs) and lipid vesicles prepared from a phospholipid extract of Escherichia coli (E. coli). A group of 24 structurally different HTs was selected, and structural differences affecting their affinities to interact with lipid vesicles in aqueous buffered media were identified. In general, the interactions between HTs and lipid vesicles were exothermic in nature, and ITC as a technique functioned well in the screening of HTs for their affinity for lipids. Most notably, the galloyl moiety, the structural flexibility of the entire tannin structure, the hydrophobicity of the tannin, and higher molecular weight were observed to be important for the stronger interactions with the lipids. The strongest interactions with lipids were observed for rugosins D and G. It was also observed that some HTs with moderate hydrophobicities, such as geraniin, chebulagic acid, and chebulinic acid, did not have any detectable interactions with the lipid vesicles, suggesting that a hydrophobic structure alone does not guarantee an affinity for lipids.
Collapse
Affiliation(s)
- Valtteri Virtanen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Rebecca J Green
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG6 6AP, UK
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
29
|
Use of hyphenated analytical techniques to identify the bioactive constituents of Gunnera perpensa L., a South African medicinal plant, which potently inhibit SARS-CoV-2 spike glycoprotein-host ACE2 binding. Anal Bioanal Chem 2022; 414:3971-3985. [PMID: 35419694 PMCID: PMC9007697 DOI: 10.1007/s00216-022-04041-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
SARS-CoV-2, the causative agent of COVID-19, continues to cause global morbidity and mortality despite the increasing availability of vaccines. Alongside vaccines, antivirals are urgently needed to combat SARS-CoV-2 infection and spread, particularly in resource-limited regions which lack access to existing therapeutics. Small molecules isolated from medicinal plants may be able to block cellular entry by SARS-CoV-2 by antagonising the interaction of the viral spike glycoprotein receptor-binding domain (RBD) with the host angiotensin-converting enzyme II (ACE2) receptor. As the medicinal plant Gunnera perpensa L. is being used by some South African traditional healers for SARS-CoV-2/COVID-19 management, we hypothesised that it may contain chemical constituents that inhibit the RBD-ACE2 interaction. Using a previously described AlphaScreen-based protein interaction assay, we show here that the DCM:MeOH extract of G. perpensa readily disrupts RBD (USA-WA1/2020)-ACE2 interactions with a half-maximal inhibition concentration (IC50) of < 0.001 µg/mL, compared to an IC50 of 0.025 µg/mL for the control neutralising antibody REGN10987. Employing hyphenated analytical techniques like UPLC-IMS-HRMS (method developed and validated as per the International Conference on Harmonization guidelines), we identified two ellagitannins, punicalin (2.12% w/w) and punicalagin (1.51% w/w), as plant constituents in the DCM:MeOH extract of G. perpensa which antagonised RBD-ACE2 binding with respective IC50s of 9 and 29 nM. This good potency makes both compounds promising leads for development of future entry-based SARS-CoV-2 antivirals. The results also highlight the advantages of combining reverse pharmacology (based on medicinal plant use) with hyphenated analytical techniques to expedite identification of urgently needed antivirals.
Collapse
|
30
|
Ljoljić Bilić V, Gašić UM, Milojković-Opsenica D, Rimac H, Vuković Rodriguez J, Vlainić J, Brlek-Gorski D, Kosalec I. Antibacterial Fractions from Erodium cicutarium Exposed—Clinical Strains of Staphylococcus aureus in Focus. Antibiotics (Basel) 2022; 11:antibiotics11040492. [PMID: 35453242 PMCID: PMC9027144 DOI: 10.3390/antibiotics11040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Followed by a buildup of its phytochemical profile, Erodium cicutarium is being subjected to antimicrobial investigation guided with its ethnobotanical use. The results of performed in vitro screening on Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans strains, show that E. cicutarium has antimicrobial activity, with a particular emphasis on clinical S. aureus strains—both the methicillin sensitive (MSSA) and the methicillin resistant (MRSA) S. aureus. Experimental design consisted of general methods (the serial microdilution broth assay and the agar well diffusion assay), as well as observing bactericidal/bacteriostatic activity through time (the “time-kill” assay), investigating the effect on cell wall integrity and biofilm formation, and modulation of bacterial hemolysis. Observed antibacterial activity from above-described methods led to further activity-guided fractionation of water and methanol extracts using bioautography coupled with UHPLC-LTQ OrbiTrap MS4. It was determined that active fractions are predominantly formed by gallic acid derivatives and flavonol glycosides. Among the most active phytochemicals, galloyl-shikimic acid was identified as the most abundant compound. These results point to a direct connection between galloyl-shikimic acid and the observed E. cicutarium antibacterial activity, and open several new research approaches for future investigation.
Collapse
Affiliation(s)
- Vanja Ljoljić Bilić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (V.L.B.); (H.R.)
| | - Uroš M. Gašić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | | | - Hrvoje Rimac
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (V.L.B.); (H.R.)
| | | | - Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Bošković Institute, 10000 Zagreb, Croatia;
| | - Diana Brlek-Gorski
- Croatian Institute of Public Health, Rockefeller Str. 7, 10000 Zagreb, Croatia;
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (V.L.B.); (H.R.)
- Correspondence: ; Tel.: +385-1639-4492
| |
Collapse
|
31
|
Braga AS, Abdelbary MMH, Kim RR, de Melo FPDSR, Saldanha LL, Dokkedal AL, Conrads G, Esteves-Oliveira M, Magalhães AC. The Effect of Toothpastes Containing Natural Extracts on Bacterial Species of a Microcosm Biofilm and on Enamel Caries Development. Antibiotics (Basel) 2022; 11:antibiotics11030414. [PMID: 35326877 PMCID: PMC8944744 DOI: 10.3390/antibiotics11030414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
This study investigated the effects of herbal toothpaste on bacterial counts and enamel demineralization. Thirty-six bovine enamel samples were exposed to a microcosm biofilm using human saliva and McBain saliva (0.2% sucrose) for 5 days at 37 °C and first incubated anaerobically, then aerobically–capnophilically. The following experimental toothpaste slurries (2 × 2 min/day) were applied: (1) Vochysia tucanorum (10 mg/g); (2) Myrcia bella (5 mg/g); (3) Matricaria chamomilla (80 mg/g); (4) Myrrha and propolis toothpaste (commercial); (5) fluoride (F) and triclosan (1450 ppm F), 0.3% triclosan and sorbitol (Colgate®, positive control); (6) placebo (negative control). The pH of the medium was measured, bacteria were analyzed using quantitative polymerase chain reaction, and enamel demineralization was quantified using transverse microradiography. The total bacterial count was reduced by toothpaste containing Myrcia bella, Matricaria chamomilla, fluoride, and triclosan (commercial) compared to the placebo. As far as assessable, Myrcia bella, Matricaria chamomilla, and Myrrha and propolis (commercial) inhibited the outgrowth of S. mutans, while Lactobacillus spp. were reduced/eliminated by all toothpastes except Vochysia tucanorum. Mineral loss and lesion depth were significantly reduced by all toothpastes (total: 1423.6 ± 115.2 vol% × μm; 57.3 ± 9.8 μm) compared to the placebo (2420.0 ± 626.0 vol% × μm; 108.9 ± 21.17 μm). Herbal toothpastes were able to reduce enamel demineralization.
Collapse
Affiliation(s)
- Aline Silva Braga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-191, Brazil; (A.S.B.); (R.R.K.)
| | - Mohamed Mostafa Hefny Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (M.M.H.A.); (G.C.)
| | - Rafaela Ricci Kim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-191, Brazil; (A.S.B.); (R.R.K.)
| | - Fernanda Pereira de Souza Rosa de Melo
- Department of Biological Sciences, School of Science, The São Paulo State University (UNESP), Bauru 17033-360, Brazil; (F.P.d.S.R.d.M.); (L.L.S.); (A.L.D.)
| | - Luiz Leonardo Saldanha
- Department of Biological Sciences, School of Science, The São Paulo State University (UNESP), Bauru 17033-360, Brazil; (F.P.d.S.R.d.M.); (L.L.S.); (A.L.D.)
| | - Anne Lígia Dokkedal
- Department of Biological Sciences, School of Science, The São Paulo State University (UNESP), Bauru 17033-360, Brazil; (F.P.d.S.R.d.M.); (L.L.S.); (A.L.D.)
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (M.M.H.A.); (G.C.)
| | - Marcella Esteves-Oliveira
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, 3010 Bern, Switzerland
- Correspondence: (M.E.-O.); (A.C.M.)
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-191, Brazil; (A.S.B.); (R.R.K.)
- Correspondence: (M.E.-O.); (A.C.M.)
| |
Collapse
|
32
|
Abstract
Tannins are an interesting class of polyphenols, characterized, in almost all cases, by a different degree of polymerization, which, inevitably, markedly influences their bioavailability, as well as biochemical and pharmacological activities. They have been used for the process of tanning to transform hides into leather, from which their name derives. For several time, they have not been accurately evaluated, but now researchers have started to unravel their potential, highlighting anti-inflammatory, antimicrobial, antioxidant and anticancer activities, as well as their involvement in cardiovascular, neuroprotective and in general metabolic diseases prevention. The mechanisms underlying their activity are often complex, but the main targets of their action (such as key enzymes modulation, activation of metabolic pathways and changes in the metabolic fluxes) are highlighted in this review, without losing sight of their toxicity. This aspect still needs further and better-designed study to be thoroughly understood and allow a more conscious use of tannins for human health.
Collapse
|
33
|
Sharifi-Rad J, Quispe C, Castillo CMS, Caroca R, Lazo-Vélez MA, Antonyak H, Polishchuk A, Lysiuk R, Oliinyk P, De Masi L, Bontempo P, Martorell M, Daştan SD, Rigano D, Wink M, Cho WC. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3848084. [PMID: 35237379 PMCID: PMC8885183 DOI: 10.1155/2022/3848084] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | | | - Rodrigo Caroca
- Biotechnology and Genetic Engineering Group, Science and Technology Faculty, Universidad del Azuay, Av. 24 de Mayo 7-77, Cuenca, Ecuador
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | - Marco A. Lazo-Vélez
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | | | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and Bioresources (IBBR), Via Università 133, 80055 Portici, Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Rigano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49 80131 Naples, Italy
| | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, INF 329, D-69120 Heidelberg, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
34
|
Design, Characterization, and Antimicrobial Evaluation of Copper Nanoparticles Utilizing Tamarixinin a Ellagitannin from Galls of Tamarix aphylla. Pharmaceuticals (Basel) 2022; 15:ph15020216. [PMID: 35215329 PMCID: PMC8874630 DOI: 10.3390/ph15020216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
The application of plant extracts or plant-derived compounds in the green synthesis of metal nanoparticles (NPs) was researched. Determining the exact metabolite implicated in the formation of NPs would necessitate comprehensive investigations. Copper nanoparticles (CuNPs) are gaining a lot of attention because of their unique properties and effectiveness against a wide range of bacteria and fungi, as well as their potential for usage in catalytic, optical, electrical, and microelectronics applications. In the course of this study, we aimed to formulate CuNPs utilizing pure tamarixinin A (TA) ellagitannin isolated from Tamarix aphylla galls. The main particle size of the formed CuNPs was 44 ± 1.7 nm with zeta potential equal to −23.7 mV, which emphasize the stability of the CuNPs. The X-ray diffraction spectroscopy showed a typical centered cubic crystalline structure phase of copper. Scanning electron microscopy images were found to be relatively spherical and homogeneous in shape. The antimicrobial properties of TA, as well as its mediated CuNPs, have been evaluated through well diffusion assays against four bacterial, Bacillus subtilis NCTC 10400, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853, and two fungal, Candida albicans and Aspergillus flavus, strains. The distinctive antimicrobial activities were noted against the fungal strains and the Gram-negative bacterial strains P. aeruginosa ATCC 27853, and E. coli ATCC 25922. In conclusion, CuNPs mediated by TA can be applied for combating a wide range of bacterial and fungal species especially C. albicans, Asp. flavus, and P. aeruginosa in a variety of fields.
Collapse
|
35
|
Isolation, characterization, bio-accessibility and cytotoxic effect of ellagitannins purified from peels of Punica granatum Indian var. Bhagwa. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Gesek J, Jakimiuk K, Atanasov AG, Tomczyk M. Sanguiins-Promising Molecules with Broad Biological Potential. Int J Mol Sci 2021; 22:12972. [PMID: 34884795 PMCID: PMC8657505 DOI: 10.3390/ijms222312972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Compounds of natural origin, an infinite treasure of bioactive chemical entities, persist as an inexhaustible resource for discovering new medicines. In this review, we summarize the naturally occurring ellagitannins, sanguiins, which are bioactive constituents of various traditional medicinal plants, especially from the Rosaceae family. In-depth studies of sanguiin H-6 as an antimicrobial, antiviral, anticancer, anti-inflammatory, and osteoclastogenesis inhibitory agent have led to potent drug candidates. In addition, recently, virtual screening studies have suggested that sanguiin H-6 might increase resistance toward SARS-CoV-2 in the early stages of infection. Further experimental investigations on ADMET (absorption, distribution, metabolism, excretion, and toxicity) supplemented with molecular docking and molecular dynamics simulation are still needed to fully understand sanguiins' mechanism of action. In sum, sanguiins appear to be promising compounds for additional studies, especially for their application in therapies for a multitude of common and debilitating ailments.
Collapse
Affiliation(s)
- Jakub Gesek
- Student’s Scientific Association, Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland;
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland;
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland;
| |
Collapse
|
37
|
Hydrolyzable tannins (ellagitannins), flavonoids, pentacyclic triterpenes and their glycosides in antimycobacterial extracts of the ethnopharmacologically selected Sudanese medicinal plant Combretum hartmannianum Schweinf. Biomed Pharmacother 2021; 144:112264. [PMID: 34624680 DOI: 10.1016/j.biopha.2021.112264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
In Sudanese traditional medicine, decoctions, macerations, and tonics of the stem and root of Combretum hartmannianum are used for the treatment of persistent cough, a symptom that could be related to tuberculosis (TB). To verify these traditional uses, extracts from the stem wood, stem bark, and roots of C. hartmannianum were screened for their growth inhibitory effects against Mycobacterium smegmatis ATCC 14468. Methanol Soxhlet and ethyl acetate extracts of the root gave the strongest effects (MIC 312.5 and 625 µg/ml, respectively). HPLC-UV/DAD and UHPLC/QTOF-MS analysis of the ethyl acetate extract of the root led to the detection of 54 compounds, of which most were polyphenols and many characterized for the first time in C. hartmannianum. Among the major compounds were terflavin B and its two isomers, castalagin, corilagin, tellimagrandin I and its derivative, (S)-flavogallonic acid dilactone, punicalagin, and methyl-ellagic acid xylopyranoside. In addition, di-, tri- and tetra-galloyl glucose, combregenin, terminolic acid, cordifoliside D, luteolin, and quercetin-3-O-galactoside-7-O-rhamnoside-(2→1)-O-β-D-arabinopyranoside were characterized. Luteolin gave better growth inhibition against M. smegmatis (MIC 250 µg/ml) than corilagin, ellagic acid, and gallic acid (MIC 500-1000 µg/ml). Our study justifies the use of C. hartmannianum in Sudanese folk medicine against prolonged cough that could be related to TB infection. This study demonstrates that C. hartmannianum should be explored further for new anti-TB drug scaffolds and antibiotic adjuvants.
Collapse
|
38
|
Bittner Fialová S, Rendeková K, Mučaji P, Nagy M, Slobodníková L. Antibacterial Activity of Medicinal Plants and Their Constituents in the Context of Skin and Wound Infections, Considering European Legislation and Folk Medicine-A Review. Int J Mol Sci 2021; 22:ijms221910746. [PMID: 34639087 PMCID: PMC8509446 DOI: 10.3390/ijms221910746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial infections of skin and wounds may seriously decrease the quality of life and even cause death in some patients. One of the largest concerns in their treatment is the growing antimicrobial resistance of bacterial infectious agents and the spread of resistant strains not only in the hospitals but also in the community. This trend encourages researchers to seek for new effective and safe therapeutical agents. The pharmaceutical industry, focusing mainly on libraries of synthetic compounds as a drug discovery source, is often failing in the battle with bacteria. In contrast, many of the natural compounds, and/or the whole and complex plants extracts, are effective in this field, inactivating the resistant bacterial strains or decreasing their virulence. Natural products act comprehensively; many of them have not only antibacterial, but also anti-inflammatory effects and may support tissue regeneration and wound healing. The European legislative is in the field of natural products medicinal use formed by European Medicines Agency (EMA), based on the scientific work of its Committee on Herbal Medicinal Products (HMPC). HMPC establishes EU monographs covering the therapeutic uses and safe conditions for herbal substances and preparations, mostly based on folk medicine, but including data from scientific research. In this review, the medicinal plants and their active constituents recommended by EMA for skin disorders are discussed in terms of their antibacterial effect. The source of information about these plant products in the review is represented by research articles listed in scientific databases (Science Direct, PubMed, Scopus, Web of Science, etc.) published in recent years.
Collapse
Affiliation(s)
- Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
- Correspondence: ; Tel.: +421-250-117-206
| | - Katarína Rendeková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Lívia Slobodníková
- Institute of Microbiology, Faculty of Medicine and the University Hospital in Bratislava, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| |
Collapse
|
39
|
The Kinetics of Two-Step Ellagitannin Extraction from the By-products of Selected Processed Fruits of the family Rosaceae. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThe paper presents the kinetics of two-step ellagitannin (ET) extraction with an aqueous acetone solution from two technological types of pomace from selected berry fruits of the Rosaceae family. ETs were identified and quantified using HPLC–MS and HPLC–DAD. The results revealed the extraction kinetics of total ETs, their high and low molecular weight fractions (≤ 1569 Da and > 1569 Da), and individual ETs characteristic of the examined fruits. ET extraction proceeded at a faster rate in the first step, regardless of the tested pomace. For all pomace variants, the mean extraction half time t1/2 was 48 min in the first step and 70 min in the second step. The fruit species and the technological type of pomace were not found to exert a definite effect on the kinetics of ET extraction. Statistical analysis demonstrated that the molecular weight of ETs did not influence the kinetics of their extraction, either. It was shown that the technological type of pomace had a significant impact on the extraction rate of both low molecular weight (LMW) and high molecular weight (HMW) ETs in the first extraction step, with the mean t1/2 being 44 min for pomace from juice production and 63 min for pomace from puree production.
Collapse
|
40
|
Mattila P, Pap N, Järvenpää E, Kahala M, Mäkinen S. Underutilized Northern plant sources and technological aspects for recovering their polyphenols. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:125-169. [PMID: 34507641 DOI: 10.1016/bs.afnr.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumers worldwide are increasingly interested in the authenticity and naturalness of products. At the same time, the food, agricultural and forest industries generate large quantities of sidestreams that are not effectively utilized. However, these raw materials are rich and inexpensive sources of bioactive compounds such as polyphenols. The exploitation of these raw materials increases income for producers and processors, while reducing transportation and waste management costs. Many Northern sidestreams and other underutilized raw materials are good sources of polyphenols. These include berry, apple, vegetable, softwood, and rapeseed sidestreams, as well as underutilized algae species. Berry sidestreams are especially good sources of various phenolic compounds. This chapter presents the properties of these raw materials, providing an overview of the techniques for refining these materials into functional polyphenol-rich ingredients. The focus is on economically and environmentally sound technologies suitable for the pre-treatment of the raw materials, the modification and recovery of the polyphenols, as well as the formulation and stabilization of the ingredients. For example, sprouting, fermentation, and enzyme technologies, as well as various traditional and novel extraction methods are discussed. Regarding the extraction technologies, this chapter focuses on safe and green technologies that do not use organic solvents. In addition, formulation and stabilization that aim to protect isolated polyphenols during storage and extend shelflife are reviewed. The formulated polyphenol-rich ingredients produced from underutilized renewable resources could be used as sustainable, active ingredients--for example, in food and nutraceutical industries.
Collapse
Affiliation(s)
- Pirjo Mattila
- Natural Resources Institute Finland (Luke), Turku, Finland.
| | - Nora Pap
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Eila Järvenpää
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Minna Kahala
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Sari Mäkinen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
41
|
Milala J, Piekarska-Radzik L, Sójka M, Klewicki R, Matysiak B, Klewicka E. Rosa spp. Extracts as a Factor That Limits the Growth of Staphylococcus spp. Bacteria, a Food Contaminant. Molecules 2021; 26:4590. [PMID: 34361741 PMCID: PMC8347484 DOI: 10.3390/molecules26154590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
Due to their richness of bioactive substances, rose hips are a valuable raw material for obtaining extracts with potential antimicrobial activity. The aim of the study was to determine the antagonistic potential of whole pseudo-fruit and flesh extracts of three Rosa sp. varieties against Staphylococcus spp. bacteria isolated as food contaminants. The biological material in this study consisted of seven strains of bacteria from the genus Staphylococcus. Two strains-Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis DSMZ 3270-were used as reference strains. The other five strains were food-derived isolates-S. epidermidis A5, S. xylosus M5, S. haemolyticus M6, S. capitis KR6, and S. warneri KR2A. The material was the pseudo-fruits of Rosa canina, Rosa pomifera Karpatia, and Rosa rugosa. The polyphenols were extracted from the fleshy part and the whole pseudo-fruit for all rose varieties. The tested preparations differed significantly in their polyphenol composition. The sum of polyphenols ranged from 28 862 to 35 358 mg/100 g of lyophilisate. The main groups of polyphenols found in the preparations were flavanols and ellagitannins. All of the tested extracts inhibited the growth of staphylococci at a concentration of 500 mg/mL. Rosa rugosa fruit extract showed the strongest antimicrobial properties among the studied extracts. For all the strains, the growth inhibition had a diameter of 20.3-29.0 mm. Moreover, six out of the seven tested strains showed the highest inhibition with the use of this extract. The MIC of rose extracts was in the range of 3.125-500 mg/mL and was strictly dependent on the bacterial species, the species of the rose, and the part of the fruit from which the extract was obtained. Correlations were assessed between the main groups of polyphenols in the extracts and their inhibition of bacterial growth. In the case of pseudo-fruit extracts, the inhibitory effect on bacterial growth positively correlated with the content of ellagitannins, and this effect was observed for almost all the tested strains. The results presented herein follow the current trend of minimising the use of chemical preservatives in food; from this point of view, rose extracts are very promising.
Collapse
Affiliation(s)
- Joanna Milala
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland; (M.S.); (R.K.)
| | - Lidia Piekarska-Radzik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, ul. Wólczańska 171/173, 90-924 Łódź, Poland;
| | - Michał Sójka
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland; (M.S.); (R.K.)
| | - Robert Klewicki
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland; (M.S.); (R.K.)
| | - Bożena Matysiak
- The National Institute of Horticultural Research, Department of Applied Biology, 96-100 Skierniewice, Poland;
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, ul. Wólczańska 171/173, 90-924 Łódź, Poland;
| |
Collapse
|
42
|
Tian Y, Yang B. Phenolic compounds in Nordic berry species and their application as potential natural food preservatives. Crit Rev Food Sci Nutr 2021; 63:345-377. [PMID: 34251918 DOI: 10.1080/10408398.2021.1946673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing demand for natural food preservatives is raised by consumers. For Nordic berry species, abundance of phenolic compounds and potent activities of anti-oxidation and anti-bacteria enables a great potential as food preservatives. This review provides a systematic examination of current literature on phenolic profiles, anti-oxidative and anti-bacterial activities of various extracts of Nordic berry species, as well as the impact of various structure features of phenolics on the bioactivities. Special attention is placed on exploitation of leaves of berry species and pomaces after juice-pressing as side-streams of berry production and processing. The current progress and challenges in application of Nordic berry species as food preservatives are discussed. To fully explore the potential application of Nordic berry species in food industry and especially to valorize the side-streams of berry cultivation (leaves) and juice-pressing industry (pomaces), it is crucial to obtain extracts and fractions with targeted phenolic composition, which have high food preserving efficacy and minimal impact on sensory qualities of food products.
Collapse
Affiliation(s)
- Ye Tian
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| |
Collapse
|
43
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Fructo-Oligosaccharides and Pectins Enhance Beneficial Effects of Raspberry Polyphenols in Rats with Nonalcoholic Fatty Liver. Nutrients 2021; 13:nu13030833. [PMID: 33802455 PMCID: PMC8001257 DOI: 10.3390/nu13030833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, nonalcoholic fatty liver disorders have become one of the most common liver pathologies; therefore, it is necessary to investigate the dietary compounds that may support the regulation of liver metabolism and related inflammatory processes. The present study examines the effect of raspberry polyphenolic extract (RE) combined with fructo-oligosaccharides (FOSs) or pectins (PECs) on caecal microbial fermentation, liver lipid metabolism and inflammation in rats with fatty liver induced by an obesogenic diet. The combination of RE with FOSs or PECs reduced the production of short-chain fatty acids in the caecum. RE combined with FOSs exerted the most favourable effects on liver lipid metabolism by decreasing liver fat, cholesterol, triglyceride content and hepatic steatosis. RE and FOSs reduced lobular and portal inflammatory cell infiltration and IL-6 plasma levels. These effects might be related to a decrease in the hepatic expressions of PPARγ and ANGPTL4. In conclusion, PECs and FOSs enhanced the effects of RE against disorders related to nonalcoholic fatty liver; however, the most effective dietary treatment in the regulation of liver lipid metabolism and inflammation caused by an obesogenic diet was the combination of RE with FOSs.
Collapse
|
45
|
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel) 2021; 10:188. [PMID: 33525629 PMCID: PMC7911950 DOI: 10.3390/antiox10020188] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols' impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole "microbiota" and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).
Collapse
Affiliation(s)
| | | | | | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (M.M.); (I.D.); (T.T.)
| |
Collapse
|
46
|
Ellagitannin-Lipid Interaction by HR-MAS NMR Spectroscopy. Molecules 2021; 26:molecules26020373. [PMID: 33445813 PMCID: PMC7828275 DOI: 10.3390/molecules26020373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
Ellagitannins have antimicrobial activity, which might be related to their interactions with membrane lipids. We studied the interactions of 12 different ellagitannins and pentagalloylglucose with a lipid extract of Escherichia coli by high-resolution magic angle spinning NMR spectroscopy. The nuclear Overhauser effect was utilized to measure the cross relaxation rates between ellagitannin and lipid protons. The shifting of lipid signals in 1H NMR spectra of ellagitannin–lipid mixture due to ring current effect was also observed. The ellagitannins that showed interaction with lipids had clear structural similarities. All ellagitannins that had interactions with lipids had glucopyranose cores. In addition to the central polyol, the most important structural feature affecting the interaction seemed to be the structural flexibility of the ellagitannin. Even dimeric and trimeric ellagitannins could penetrate to the lipid bilayers if their structures were flexible with free galloyl and hexahydroxydiphenoyl groups.
Collapse
|