1
|
Planinšek Parfant T, Roškar R. A comprehensive approach for N-nitrosamine determination in pharmaceuticals using a novel HILIC-based solid phase extraction and LC-HRMS. Talanta 2025; 282:126752. [PMID: 39341057 DOI: 10.1016/j.talanta.2024.126752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
N-nitrosamines (NAs) are potentially highly carcinogenic compounds that have recently been detected in traces in various drug products (DPs). Due to the different physicochemical properties of NAs and active pharmaceutical ingredients (APIs), there is a lack of appropriate analytical methods for simultaneously determining multiple NAs in various DPs. To overcome these limitations, a versatile and innovative analytical approach was developed using a unique sample clean-up procedure by solid phase extraction based on hydrophilic interaction chromatography, which retains high amounts of APIs and polar excipients while allowing NAs of interest to pass through. The samples were analyzed by liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry. The proposed highly sensitive, selective, and robust method was successfully validated, resulting in excellent linearity (R2 > 0.999), accuracy (85-115 %), and precision (RSD <10 %) with adequate recoveries (>80 %), achieving limits of quantitation of at least 42.5 % of regulatory limits. Furthermore, robustness was confirmed for ten DPs (recoveries >80 % and RSD <15 % for all NAs), including those containing up to three APIs. The analytical approach was utilized to examine 26 commercially available and expired DPs. Three NAs (N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, and N-nitroso-di-n-butylamine) were detected, only NDMA exceeded the limits in expired DPs by up to 32-fold. It was found that special care should be taken when handling samples as NDMA content can be decreased by almost 50 % if samples are not prepared immediately. The approach was tested on 59 different APIs and was confirmed as reliable tool for routine monitoring of 15 NAs in various DPs. Due to its flexibility, the method can be further adapted to the specific API of interest or extended to the newly emerging NA drug substance-related impurities to ensure the safety of DPs and thereby mitigate potential health risks.
Collapse
Affiliation(s)
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Sadutto D, Picó Y. Validation of LC-MS/MS method for opioid monitoring in Valencia City wastewater: Assessment of synthetic wastewater as potential aid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174382. [PMID: 38955278 DOI: 10.1016/j.scitotenv.2024.174382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
In this study, a comprehensive and sensitive method for the simultaneous detection of 17 opioids (OPs) and their human metabolites in wastewater using high-performance liquid chromatography coupled to tandem mass spectrometry was validated. The chromatographic separations of opioids were carried out on a Kinetex® Biphenyl column (1.7 μm, 100 Å, 50 × 2.1 mm). A synthetic wastewater approach was used for recovery studies to mimic a contaminant-free matrix. Two solid-phase extraction (SPE) sorbents (hydrophilic-lipophilic balance and mixed mode with the previous phase and a weak cationic exchange) were studied to optimize sample treatment and obtain higher recoveries. The mixed mode was chosen because the recoveries of 17 target analytes at three spiked concentrations (25, 50, and 100 ng mL-1) were > 80 % for 75 % of the analytes in a simulated wastewater. The intra- and inter-day relative standard deviations (RSDs) were between ±1 % and ±20 %. The method limits of quantification ranged from 5 to 25 ng L-1, the only exceptions being heroin (275 ng L-1) and morphine-3β-glucuronide (250 ng L-1). Suppression/enhancement is comparable between the synthetic and the influent wastewater. The analytical method was applied to the OPs analysis in twenty-one influent samples collected from the treatment plants treating the wastewater of Valencia City (Spain). Twelve OPs were detected with total daily concentrations ranging from 1 ng L-1 to 2135 ng L-1. The widespread presence of these compounds in water suggests potential widespread exposure, highlighting the need for increased environmental awareness. Furthermore, the estimated daily intake results raise concerns about opioid use as a potential future health and social issue.
Collapse
Affiliation(s)
- Daniele Sadutto
- Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161 Rome, Italy.
| | - Yolanda Picó
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Research Center on Desertification (CIDE), CSIC-UV-GV, Moncada-Naquera Road km 4.5, 46113 Moncada, Valencia, Spain
| |
Collapse
|
3
|
Kravos A, Prosen H. Exploration of novel solid-phase extraction modes for analysis of multiclass emerging contaminants. Anal Chim Acta 2024; 1319:342955. [PMID: 39122271 DOI: 10.1016/j.aca.2024.342955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/18/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
Solid-phase extraction (SPE) has gained an essential role in environmental analytical chemistry. Classic off-line SPE coupled with LC-MS/MS systems creates powerful analytical procedures for ultratrace analysis of contaminants of emerging concern (CECs) in water. But, being associated with tedious work and large consumption of materials, alternative SPE modes are becoming interesting. As so, the study focuses on development, evaluation, and overall comparison of established and novel SPE modes. Off-line SPE, dispersive micro SPE (DMSPE), and 'fast' single-pump on-line SPE were explored, using commercially available sorbents. Their efficiency was evaluated on their performance in water analysis of 20 multiclass CECs. Hydrophilic-lipophilic sorbent and mixture of C18/C8 sorbents were the best choice for off-line and DMSPE, respectively. All optimized SPE modes coupled with UHPLC-MS/MS reached environmentally-relevant limits of detection (LODs 0.1-12 ng L-1), acceptable repeatability (<20 % RSD), and exhibited less than ±30 % matrix effects in real river water sample. Among all, on-line SPE showed a potential to fully replace the well-established off-line SPE and even improve analytical performance. This was due to the best repeatability (<10 % RSD), automatization, simplicity, the highest multiplexing capacity, as well as comparable LODs of <2 ng L-1. DMSPE is, on the other hand, the most innovative and could be seen as a quick and green alternative to off-line SPE for determination of semi-to-nonpolar CECs, but within sub-10 ng L-1 range. Overall, the study shows workflow for the exploration of important and promising sample pretreatment techniques in water analysis. Comparison of the developed three SPE-UHPLC-MS/MS methods suggests that alternative SPE modes can compete with the well-established off-line SPE and can even improve the analysis quality if properly applied.
Collapse
Affiliation(s)
- Aleksander Kravos
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Helena Prosen
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
4
|
Alqarni AM. Analytical Methods for the Determination of Pharmaceuticals and Personal Care Products in Solid and Liquid Environmental Matrices: A Review. Molecules 2024; 29:3900. [PMID: 39202981 PMCID: PMC11357415 DOI: 10.3390/molecules29163900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Among the various compounds regarded as emerging contaminants (ECs), pharmaceuticals and personal care products (PPCPs) are of particular concern. Their continuous release into the environment has a negative global impact on human life. This review summarizes the sources, occurrence, persistence, consequences of exposure, and toxicity of PPCPs, and evaluates the various analytical methods used in the identification and quantification of PPCPs in a variety of solid and liquid environmental matrices. The current techniques of choice for the analysis of PPCPs are state-of-the-art liquid chromatography coupled to mass spectrometry (LC-MS) or tandem mass spectrometry (LC-MS2). However, the complexity of the environmental matrices and the trace levels of micropollutants necessitate the use of advanced sample treatments before these instrumental analyses. Solid-phase extraction (SPE) with different sorbents is now the predominant method used for the extraction of PPCPs from environmental samples. This review also addresses the ongoing analytical method challenges, including sample clean-up and matrix effects, focusing on the occurrence, sample preparation, and analytical methods presently available for the determination of environmental residues of PPCPs. Continuous development of innovative analytical methods is essential for overcoming existing limitations and ensuring the consistency and diversity of analytical methods used in investigations of environmental multi-class compounds.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
5
|
Plewa S, Pietkiewicz D, Kokot ZJ, Matysiak J. A Review of Wastewater-Based Epidemiology Studies for the Assessment of Over-the-Counter Medicines Used as Recreational Drugs: The Example of Dextromethorphan. Med Sci Monit 2024; 30:e944120. [PMID: 38902914 PMCID: PMC11305112 DOI: 10.12659/msm.944120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 06/22/2024] Open
Abstract
The 'recreational use' of selected over-the-counter (OTC) medicines is an unofficial activity. The traditional surveys assessing the use of drugs are affected by the bias of underreporting and are thus unreliable. The development of analytical techniques helps to monitor the substances at trace levels, such as in wastewater, and might be applied to estimate the consumption of an analyte of interest and ensure additional, evidence-based information complementary to population surveys. We reviewed studies focused on evaluating the estimated consumption of drugs as a reliable and unbiased source of evidence-based information (called wastewater-based epidemiology, WBE) to monitor the scale of this phenomenon. We found there is a need to test not only narcotics in the environment but also medicines that may be abused or recreationally used. The reviewed studies show methods that might provide reliable information about consumption of drugs, narcotics, and OTC medications for proposing targeted, preventive actions. Moreover, as all the selected studies were based on mass spectrometry, there is a potential to include the dextromethorphan and/or related compounds as part of the screening for narcotics and OTC drugs that can be socially harmful, overused, or misused. This article reviews the analytical methods for detecting dextromethorphan and/or its transformation products in environmental water samples.
Collapse
Affiliation(s)
- Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, Poznań, Poland
| | - Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, Poznań, Poland
| | - Zenon J. Kokot
- Faculty of Health Sciences, Calisia University, Kalisz, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
6
|
Gea M, Spina F, Revello R, Fea E, Gilli G, Varese GC, Schilirò T. Estrogenic activity in wastewater treatment plants through in vitro effect-based assays: Insights into extraction phase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120412. [PMID: 38402785 DOI: 10.1016/j.jenvman.2024.120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Effluents of wastewater treatment plants can abundantly spread endocrine disrupting chemicals in the environment. To improve water quality monitoring, the use of effect-based tools that measure estrogenic activity has been suggested, however their results could be influenced by different factors. This study compared the estrogenic activity of wastewater samples extracted with two stationary phases and tested with two in vitro effect-based assays to investigate whether and how stationary phases and assays could influence biomonitoring data. During four seasonal periods, the effluents of six WWTPs located in northern Italy were sampled. After the extraction using two different stationary phases (HLB, C18), the samples (n = 72) were tested using two effect-based assays: a gene reporter luciferase assay on mammalian cells (MELN) and yeast estrogen screen assay (YES). The results showed that estrogenic activity of HLB extracts was significantly different from the activity of C18 extracts, suggesting that extraction phase can influence biomonitoring data. Moreover, the estrogenic activity was overall higher using gene reporter MELN assay than using YES assay, suggesting that, due to difference in cell membrane permeability and metabolic activation, the applied cell model can affect the biomonitoring results. Finally, from the comparison between the activity of the final effluent and the environmentally safe estrogenic levels in surface waters, MELN data suggested that the activity of this effluent may pose an environmental risk, while YES data showed that it should not be considered a threat to the receiving surface waters. This study pointed out that a standardized approach is needed to assess the estrogenic activity of waters; it reported important data to select the most suitable stationary phase for samples extraction (samples extracted with C18 sorbent showed higher estradiol equivalent concentration values) and the most appropriate bioassay (gene reporter luciferase MELN assay was more sensitive than YES assay) to assess the environmental risk, thus protecting human health.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | - Federica Spina
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Roberta Revello
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | - Elisabetta Fea
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | | | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| |
Collapse
|
7
|
Montone CM, Giannelli Moneta B, Laganà A, Piovesana S, Taglioni E, Cavaliere C. Transformation products of antibacterial drugs in environmental water: Identification approaches based on liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2024; 238:115818. [PMID: 37944459 DOI: 10.1016/j.jpba.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In recent years, the presence of antibiotics in the aquatic environment has caused increasing concern for the possible consequences on human health and ecosystems, including the development of antibiotic-resistant bacteria. However, once antibiotics enter the environment, mainly through hospital and municipal discharges and the effluents of wastewater treatment plants, they can be subject to transformation reactions, driven by both biotic (e.g. microorganism and mammalian metabolisms) and abiotic factors (e.g. oxidation, photodegradation, and hydrolysis). The resulting transformation products (TPs) can be less or more active than their parent compounds, therefore the inclusion of TPs in monitoring programs should be mandatory. However, only the reference standards of a few known TPs are available, whereas many other TPs are still unknown, due to the high diversity of possible transformation reactions in the environment. Modern high-resolution mass spectrometry (HRMS) instrumentation is now ready to tackle this problem through suspect and untargeted screening approaches. However, for handling the large amount of data typically encountered in the analysis of environmental samples, these approaches also require suitable processing workflows and accurate tandem mass spectra interpretation. The compilation of a suspect list containing the possible monoisotopic masses of TPs retrieved from the literature and/or from laboratory simulated degradation experiments showed unique advantages. However, the employment of in silico prediction tools could improve the identification reliability. In this review, the most recent strategies relying on liquid chromatography-HRMS for the analysis of environmental TPs of the main antibiotic classes were examined, whereas TPs formed during water treatments or disinfection were not included.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
8
|
Royano S, de la Torre A, Navarro I, Martínez MÁ. Pharmaceutically active compounds (PhACs) in surface water: Occurrence, trends and risk assessment in the Tagus River Basin (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167422. [PMID: 37774880 DOI: 10.1016/j.scitotenv.2023.167422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
In this study, the presence of 23 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, anti-inflammatories, psychiatric and cardiovascular drugs, antifungals and metabolites was investigated in surface waters. A total of 89 samples were collected during 3 years (2020, 2021 and 2022) from a European representative river basin (Tagus, Spain). To elucidate PhAC potential sources, sampling points located in areas with low, median and high anthropogenic influence were selected. The analytical method based on solid phase extraction (SPE) followed by UHPLC-MS/MS analysis was validated meeting SANTE/2020/12830 and SANTE/12682/2019 performance criteria. PhACs were quantified above limits of quantification (LOQs) in 96 % of water samples, being the antihypertensives valsartan (648 ng/L, 87 % quantification frequency) and irbesartan (390 ng/L, 75 %) and the antidepressant o-desmethylvenlafaxine (495 ng/L, 76 %) the predominant pollutants. The rest of the target PhACs showed median concentrations between 4 and 172 ng/L with quantification frequencies ranging from 35 to 75 %. ∑PhAC concentrations did not show temporal or seasonal trends. However, valsartan and naproxen presented lower levels in drier (spring and summer) compared to the wetter. Source identification revealed a clear anthropogenic origin since concentrations obtained in highly populated areas were statistically higher (p < 0.01) than those quantified in sparsely populated ones. This finding was also confirmed by calculating PhACs mass flow rates, which ranged between 1.4 and 235 kg/y. Finally, data generated were used to estimate the potential risk to the aquatic ecosystem for three trophic levels (phototrophic, invertebrate and vertebrate organisms). Risk quotient ratios (RQs) were calculated for all PhACs at the median (P50) and worst-case (max) scenarios. Up to 7 PhACs (acetaminophen, carbamazepine, gemfibrozil, ibuprofen, irbesartan, ketoprofen and venlafaxine) showed high risk for the highest trophic level (fish) in >45 % of investigated locations.
Collapse
Affiliation(s)
- Silvia Royano
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain; International Doctoral School of the UNED (EIDUNED), National University of Distance Education (UNED), Madrid, Spain
| | - Adrián de la Torre
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain.
| | - Irene Navarro
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - María Ángeles Martínez
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| |
Collapse
|
9
|
Ivankovic K, Jambrosic K, Mikac I, Kapetanovic D, Ahel M, Terzic S. Multiclass determination of drug residues in water and fish for bioaccumulation potential assessment. Talanta 2023; 264:124762. [PMID: 37276678 DOI: 10.1016/j.talanta.2023.124762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
In this work, a wide-scope liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of environmental levels of multiclass drugs and their metabolites in water and fish samples was developed. The method allowed the reliable determination of 44 drugs, covering a rather wide range of chemistries and physicochemical characteristics. In order to obtain a reliable and robust analytical protocol, different combinations of extraction and cleanup techniques were systematically examined. Aqueous samples were extracted using a simple Oasis HLB SPE enrichment protocol with pH-optimized sample percolation (pH 3). The extraction of cryo-homogenized biota samples was performed using double extraction with MeOH basified with 0.5% NH3, which allowed high extraction recoveries for all target analytes. The problem of the coextracted lipid matrix, which is known to be the key obstacle for reliable biota analysis, was systematically examined in a series of model cleanup experiments. A combination of cryo-precipitation, filtration, and HLB SPE cleanup was proposed as a protocol, which allowed reliable and robust analysis of all target compounds at low ng/g levels. At the final conditions, the method which was validated at three concentration levels showed high extraction recoveries (68-97%), acceptable matrix effects (12 to -32%), accuracies (81-129%), and reproducibilities (3-32%) for all analytes. The developed method was used to determine drug concentrations in river water and in feral freshwater fish, including whole fish and muscle tissue, from the Sava River (Croatia), in order to estimate their corresponding bioaccumulation potential. With respect to bioaccumulation potential in whole fish and fish muscle, the most relevant drugs were lisinopril, sertraline, terbinafine, torsemide, diazepam, desloratadine, and loratadine with estimated bioaccumulation factors ranging from 20 to 838 and from 1 to 431, respectively.
Collapse
Affiliation(s)
- Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Iva Mikac
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Damir Kapetanovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
10
|
Montone CM, Giannelli Moneta B, Aita SE, Capriotti AL, Cerrato A, Laganà A, Marchetti A, Piovesana S, Villano M, Cavaliere C. Biotic transformation products of sulfonamides in environmental water samples: High-resolution mass spectrometry-based tentative identification by a suspect screening approach. J Pharm Biomed Anal 2023; 227:115292. [PMID: 36804291 DOI: 10.1016/j.jpba.2023.115292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment is mainly due to their release from the effluents of the wastewater treatment plants (WWTPs), which are unable to completely remove them and their transformation products (TPs). Sulfonamides (SAs) are a synthetic antibacterial class used for the treatment of both human and animal infections; they have often been reported in surface water, thus contributing to the antibiotic resistance emergency. Monitoring SA TPs should be important as well because they could still exert some pharmaceutical activity; however, many TPs are still unknown since several transformation processes are possible (e. g. human and animal metabolism, WWTP activities, environmental factors etc.). In this work, three of the most used SAs, i.e., sulfamethoxazole (SMX), sulfapyridine (SPY), and sulfadiazine (SDZ), were incubated for 20 days in a batch reactor with activated sludge under controlled conditions. Then, the water sample was extracted and analyzed by ultra-high performance liquid chromatography-high resolution mass spectrometry in the data dependent acquisition (DDA) mode. Starting from the literature data, the possible transformation pathways were studied, and for each SA, a list of TPs was hypothesized and used for the identification. The raw data files were processed with Compound Discoverer, and 44 TPs (18, 13, and 13 TPs for SMX, SPY, and SDZ, respectively), including multiple TPs, were manually validated. To overcome the limitation of the DDA, the identified TPs were used in an inclusion list to analyze WWTP samples by a suspect screening approach. In this way, 4 SMX TPs and 5 SPY TPs were tentatively identified together with their parent compounds. Among these TPs, 5 of 9 were acetylated forms, in agreement with previous literature reporting that acetylation is the predominant SA transformation.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| | | | - Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| | - Angela Marchetti
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
11
|
Alatawi H, Hogan A, Albalawi I, Alsefri S, Moore E. Efficient determination of non-steroidal anti-inflammatory drugs by micellar electrokinetic chromatography in wastewater. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1402-1409. [PMID: 36683551 DOI: 10.1039/d2ay01807a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, non-steroidal anti-inflammatory drugs (NSAIDs) have been increasingly used in humans and animals. Despite being effective against a wide variety of diseases, they pose a threat to aquatic environments. In the current work, a highly efficient, selective, and sensitive micellar electrokinetic chromatography (MEKC) method was developed for the determination of five NSAIDs in environmental water samples. The optimal separation BGE was 15 mM borate buffer (pH 9), 90 mM SDS, and 10% methanol at a separation voltage of 15 kV and a hydrodynamic injection of 10 mbar for 5 s. The results presented in this study provide a higher number of theoretical plates N > 780 000 with excellent RSDs of 0.1-1.5% and great sensitivity (3-15 μg L-1) for NSAIDs. To validate this method, the solid phase extraction method was optimized using two different cartridges (C18 and Oasis HLB); the results showed excellent recoveries (73-111.6%) for all the analytes in wastewater samples.
Collapse
Affiliation(s)
- Hanan Alatawi
- School of Chemistry, University College Cork, Cork, Ireland.
| | - Anna Hogan
- School of Chemistry, University College Cork, Cork, Ireland.
| | | | - Samia Alsefri
- School of Chemistry, University College Cork, Cork, Ireland.
| | - Eric Moore
- School of Chemistry, University College Cork, Cork, Ireland.
- Tyndall National Institute, Cork, Ireland
| |
Collapse
|
12
|
Analyzes of β-lactam antibiotics by direct injection of environmental water samples into a functionalized graphene oxide-silica packed capillary extraction column online coupled to liquid chromatography tandem mass spectrometry. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
13
|
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8881. [PMID: 36556687 PMCID: PMC9786183 DOI: 10.3390/ma15248881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
14
|
Dolatabadi R, Mohammadi A, Walker RB. A novel 3D printed device with conductive elements for electromembrane extraction combined with HPLC and UV detector. J Sep Sci 2022; 45:3187-3196. [PMID: 35762108 DOI: 10.1002/jssc.202200028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
This paper is focused on proposing for a new design and setup for electromembrane extraction. A new cap was designed and conductive vials of different shape were fabricated using three-dimensional printing. The new cap holds three fibers to enhance electromembrane extraction recovery. Conductive vials can simultaneously perform as electrodes therefore, there is no need to include an electrode in sample solutions. Phenobarbital and phenytoin were used as model compounds to assess the setup performance. Under optimal conditions, these analytes were extracted from the sample solution at pH = 9 to the acceptor solution at pH = 13 with a voltage of 40 V for 20 min, while 1-octanol was employed as the supported-liquid-membrane. The influence of conductive vials geometry on the recovery was examined and effects of different shapes were studied by performing numerical simulation to establish electric potential distribution. Of the vials tested with circular, triangular and floral-like cross-sections the latter exhibited the best voltage distribution. The circular vial had the highest recovery attributed to its better hydrodynamic shape, which allows rapid fluid sample transport and therefore enhanced system recovery. The extraction recovery and RSD of circular vial with three fibers was 33.0 and 7.6 for phenobarbital and 42.2 and 10.4 for phenytoin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Roshanak Dolatabadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roderick B Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, Eastern Cape, South Africa
| |
Collapse
|
15
|
Stipaničev D, Repec S, Vucić M, Lovrić M, Klobučar G. COVID-19 Lockdowns-Effect on Concentration of Pharmaceuticals and Illicit Drugs in Two Major Croatian Rivers. TOXICS 2022; 10:241. [PMID: 35622654 PMCID: PMC9143423 DOI: 10.3390/toxics10050241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023]
Abstract
In order to prevent the spread of COVID-19, contingency measures in the form of lockdowns were implemented all over the world, including in Croatia. The aim of this study was to detect if those severe, imposed restrictions of social interactions reflected on the water quality of rivers receiving wastewaters from urban areas. A total of 18 different pharmaceuticals (PhACs) and illicit drugs (IDrgs), as well as their metabolites, were measured for 16 months (January 2020-April 2021) in 12 different locations at in the Sava and Drava Rivers, Croatia, using UHPLC coupled to LCMS. This period encompassed two major Covid lockdowns (March-May 2020 and October 2020-March 2021). Several PhACs more than halved in river water mass flow during the lockdowns. The results of this study confirm that Covid lockdowns caused lower cumulative concentrations and mass flow of measured PhACs/IDrgs in the Sava and Drava Rivers. This was not influenced by the increased use of drugs for the treatment of the COVID-19, like antibiotics and steroidal anti-inflammatory drugs. The decreases in measured PhACs/IDrgs concentrations and mass flows were more pronounced during the first lockdown, which was stricter than the second.
Collapse
Affiliation(s)
- Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia; (D.S.); (S.R.)
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia; (D.S.); (S.R.)
| | - Matej Vucić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia;
| | - Mario Lovrić
- Know-Center, Inffeldgasse 13/6, A-8010 Graz, Austria
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia;
| |
Collapse
|
16
|
From monitoring to treatment, how to improve water quality: The pharmaceuticals case. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
Huidobro-López B, López-Heras I, Alonso-Alonso C, Martínez-Hernández V, Nozal L, de Bustamante I. Analytical method to monitor contaminants of emerging concern in water and soil samples from a non-conventional wastewater treatment system. J Chromatogr A 2022; 1671:463006. [PMID: 35395450 DOI: 10.1016/j.chroma.2022.463006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
Abstract
Nonconventional wastewater treatments, such as vegetation filters (VFs), are propitious systems to attenuate contaminants of emerging concern (CECs) in small municipalities. The development of standardised multiresidue and multimatrix methods suitable for measuring a reliable number of CEC in environmental samples is crucial for monitoring infiltrating concentrations and for ensuring these systems' treatment capacity. The objective of this study is to develop and validate an analytical method for the simultaneous determination of CECs, including transformation products (TPs), with diverse physico-chemical properties, in environmental samples. The optimised method is based on sample clean-up and preconcentration by solid-phase extraction (SPE), followed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). The method is able to detect and quantify 40 target CECs, including pharmaceuticals of different classes (analgesics, antibiotics, antihypertensives, lipid regulators, anticonvulsants, antidepressants, antiarrhythmics, beta-blockers, amongst others), hormones and lifestyle products with good reproducibility (variations below 23%), in different water matrices, and 28 CECs, in soil samples. Acceptable recoveries (65-120%) were obtained for most of the CECs in all the matrices. However in the soil samples, as complexity required a prior extraction treatment, the recovery of some analytes was affected, which reduced the number of target CECs. The achieved methodological quantification limits (0.05-5 ng/L and 0.04-1.1 ng/g levels for the water and the soil matrices, respectively) were reasonably low for most CECs. The proposed method was successfully applied to monitor CECs in a VF. The CECs detected at higher concentrations are some of the world's most widely used products (e.g. acetaminophen or caffeine and its main TP, paraxanthine). The results showed an almost 70% reduction in CEC concentrations during infiltration. The groundwater data indicated that the VF treatment operation did not affect the underlying aquifer (Cmax found in GW <1 µg/L).
Collapse
Affiliation(s)
- Blanca Huidobro-López
- IMDEA Water, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Geology, Geography and Environment Department, University of Alcala, A-II km 33.0, 28805 Alcalá de Henares, Madrid, Spain.
| | - Isabel López-Heras
- IMDEA Water, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | | | | | - Leonor Nozal
- IMDEA Water, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Center of Applied Chemistry and Biotechnology (CQAB), University of Alcala and General Foundation of Alcala University (FGUA), A-II km 33.0, 28871 Alcalá de Henares, Madrid, Spain
| | - Irene de Bustamante
- IMDEA Water, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Geology, Geography and Environment Department, University of Alcala, A-II km 33.0, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
18
|
Quality Control of Emerging Contaminants in Marine Aquaculture Systems by Spot Sampling-Optimized Solid Phase Extraction and Passive Sampling. SUSTAINABILITY 2022. [DOI: 10.3390/su14063452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The presence of organic pollutants such as pesticides and pharmaceuticals in the aquatic environment, and especially in regions where fish farms are installed, is a matter of major importance due to their possible risks to ecosystems and public health. The necessity of their detection leads to the development of sensitive, reliable, economical and environmentally friendly analytical methods for controlling their residue in various environmental substrates. In the present work, a solid-phase extraction method was developed, optimized and validated for the analysis of 7 pesticides and 25 pharmaceuticals in seawater using LC-HR-LTQ/Orbitrap-MS. The method was then applied in seawater samples collected from an aquaculture farm located in the Ionian Sea, Greece, in order to evaluate environmental pollution levels. None of the pesticides were detected, while paracetamol was the only pharmaceutical compound that was found (at trace levels). At the same time, passive sampling was conducted as an alternative screening technique, showing the presence of contaminants that were not detected with spot sampling. Among them, irgarol was detected and as far as pharmaceuticals is concerned, trimethoprim and sulfadiazine were found; however, all positive findings were at the very low ppt levels posing no threat to the aquatic environment.
Collapse
|
19
|
Okoye CO, Okeke ES, Okoye KC, Echude D, Andong FA, Chukwudozie KI, Okoye HU, Ezeonyejiaku CD. Occurrence and fate of pharmaceuticals, personal care products (PPCPs) and pesticides in African water systems: A need for timely intervention. Heliyon 2022; 8:e09143. [PMID: 35345397 PMCID: PMC8956874 DOI: 10.1016/j.heliyon.2022.e09143] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
The occurrence of emerging contaminants (ECs) such as pharmaceuticals, personal care products (PPCPs) and pesticides in the aquatic environment has raised serious concerns about their adverse effects on aquatic species and humans. Because of their toxicity and bioactive nature, PPCPs and pesticides have more potential to impair water systems than any other contaminants, causing several adverse effects, including antibiotic resistance, reproductive impairment, biomagnification, bioaccumulation, etc. Over 35 publications from Africa have reported on the occurrence and fate of PPCPs and pesticides in African water systems with little or no data on remediation and control. As a result, adequate intervention strategies are needed for regulating the persistence of PPCPs and pesticides in African water systems.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Ecology and Environmental Biology Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
- Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
- Corresponding author.
| | - Emmanuel Sunday Okeke
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001, Nigeria
- Department of Biochemistry, University of Nigeria, Nsukka, 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
- Corresponding author.
| | - Kingsley Chukwuebuka Okoye
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Entomology Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
| | - Daniel Echude
- Ecology and Environmental Biology Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
| | - Felix Attawal Andong
- Ecology and Environmental Biology Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
| | - Henrietta Ukamaka Okoye
- Social Policy Unit, Department of Public Administration and Local Government, University of Nigeria, Nsukka, 410001, Nigeria
| | | |
Collapse
|
20
|
A Fully Automated Online SPE-LC-MS/MS Method for the Determination of 10 Pharmaceuticals in Wastewater Samples. TOXICS 2022; 10:toxics10030103. [PMID: 35324728 PMCID: PMC8955396 DOI: 10.3390/toxics10030103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
The increasing use of pharmaceuticals, their presence in the aquatic environment, and the associated toxic effects, have raised concerns in recent years. In this work, a new multi-residue analytical method was developed and validated for the determination of 10 pharmaceuticals in wastewaters using online solid-phase extraction (online SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The compounds included in the method were antineoplastics (cabazitaxel, docetaxel, doxorubicin, etoposide, irinotecan, methotrexate, paclitaxel, and topotecan), renin inhibitors (aliskiren), and antidepressants (maprotiline). The method was developed through several experiments on four online SPE cartridges, three reversed phase chromatography columns, and four combinations of mobile phase components. Under optimal conditions, very low limits of detection (LODs) of 1.30 to 10.6 ng L−1 were obtained. The method was repeatable, with relative standard deviations (RSD, %) for intraday and interday precisions ranged from 1.6 to 7.8 and from 3.3 to 13.2, respectively. Recovery values ranged from 78.4 to 111.4%, indicating the reproducibility of the method. Matrix effects were mainly presented as signal suppression, with topotecan and doxorubicin being the two most affected compounds (31.0% signal suppression). The proposed method was successfully applied to hospital effluents, detecting methotrexate (4.7–9.3 ng L−1) and maprotiline (11.2–23.1 ng L−1). Due to the shorter overall run time of 15 min, including sample preparation, and reduced sample volume (0.9 mL), this on-line SPE-LC-MS/MS method was extremely convenient and efficient in comparison to the classical off-line SPE method. The proposed method was also highly sensitive and can be used for ultratrace quantification of the studied pharmaceuticals in wastewaters, providing useful data for effective environmental monitoring.
Collapse
|
21
|
Dos S Grignet R, Barros MGA, Panatta AAS, Bernal SPF, Ottoni JR, Passarini MRZ, da C S Gonçalves C. Medicines as an emergent contaminant: the review of microbial biodegration potential. Folia Microbiol (Praha) 2022; 67:157-174. [PMID: 34978661 DOI: 10.1007/s12223-021-00941-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Emerging environmental contaminants, such as medicine waste, are of great concern to the scientific community and to the local environmental and health departments because of their potential long-term effects and ecotoxicological risk. Besides the prolonged use of medicines for the development of modern society, the elucidation of their effect on the ecosystem is relatively recent. Medicine waste and its metabolites can, for instance, cause alterations in microbial dynamics and disturb fish behavior. Bioremediation is an efficient and eco-friendly technology that appears as a suitable alternative to conventional methods of water waste and sludge treatment and has the capacity to remove or reduce the presence of emerging contaminants. Thus, this review has the objective of compiling information on environmental contamination by common medicines and their microbial biodegradation, focusing on five therapeutic classes: analgesics, antibiotics, antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and contraceptives. Their effects in the environment will also be analyzed, as well as the possible routes of degradation by microorganisms.
Collapse
Affiliation(s)
- Rosane Dos S Grignet
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Maria G A Barros
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Andressa A S Panatta
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Suzan P F Bernal
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Julia R Ottoni
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Michel R Z Passarini
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Caroline da C S Gonçalves
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil.
| |
Collapse
|
22
|
Montone CM, Giannelli Moneta B, Aita SE, Aulenta F, Cavaliere C, Cerrato A, Fazi S, Laganà A, Paolini V, Petracchini F, Piovesana S, Capriotti AL. Untargeted analysis of contaminants in river water samples: Comparison between two different sorbents for solid-phase extraction followed by liquid chromatography-high-resolution mass spectrometry determination. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Ewuzie U, Aku NO, Nwankpa SU. An appraisal of data collection, analysis, and reporting adopted for water quality assessment: A case of Nigeria water quality research. Heliyon 2021; 7:e07950. [PMID: 34585001 PMCID: PMC8450204 DOI: 10.1016/j.heliyon.2021.e07950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
The appropriate acquisition and processing of water quality data are crucial for water resource management. As such, published articles on water quality monitoring and assessment are meant to convey essential and reliable information to water quality experts, decision-makers, researchers, students, and the public. The implication is that such information must emanate from data obtained and analysed in an up-to-date, scientifically sound manner. Thus, inappropriate data analysis and reporting techniques could yield misleading results and mar the endeavours of achieving error-free conclusions. This study utilises the findings on water quality assessment in Nigeria over the last 20 years to reveal the likely trends in water quality research regarding data collection, data analysis, and reporting for physicochemical, bacteriological parameters, and trace organics. A total of 123 Web of Science and quartile ranked (Q1-Q4) published articles involving water quality assessment in Nigeria were analysed. Results indicated shortcomings in various aspects of data analysis and reporting. Consequently, we use simulated heatmaps and graphs to illustrate preferred ways of analysing, reporting, and visualising some regularly used descriptive and inferential statistics of water quality variables. Finally, we highlight alternative approaches to the customarily applied water quality assessment methods in Nigeria and emphasise other areas of deficiency that need attention for improved water quality research.
Collapse
Affiliation(s)
- Ugochukwu Ewuzie
- Analytical/Environmental Unit, Department of Pure and Industrial Chemistry, Abia State University, Nigeria
| | - Nnaemeka O Aku
- Medical Microbiology Unit, Department of Microbiology, University of Nigeria, Nsukka, Nigeria.,Public Health Unit, Department of Community Medicine, University of Nigeria, Enugu Campus, Nigeria
| | - Stephen U Nwankpa
- College of Pharmacy, Roseman University of Health Sciences, South Jordan UT, USA
| |
Collapse
|
24
|
|
25
|
Insights into the Use of Phytoremediation Processes for the Removal of Organic Micropollutants from Water and Wastewater; A Review. WATER 2021. [DOI: 10.3390/w13152065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Greater awareness of micropollutants present in water and wastewater motivates the search for effective methods of their neutralization. Although their concentration in waters is measured in micro- and nanograms per liter, even at those levels, they may cause serious health consequences for different organisms, including harmful effects on the functioning of the endocrine system of vertebrates. Traditional methods of wastewater treatment, especially biological methods used in municipal wastewater treatment plants, are not sufficiently effective in removing these compounds, which results in their presence in natural waters. The growing interest in phytoremediation using constructed wetlands as a method of wastewater treatment or polishing indicates a need for the evaluation of this process in the context of micropollutant removal. Therefore, the present work presents a systematic review of the effectiveness in the removal of micropollutants from polluted waters by processes based on plant used. The article also analyzes issues related to the impact of micropollutants on the physiological processes of plants as well as changes in general indicators of pollution caused by contact of wastewater with plants. Additionally, it is also the first review of the literature that focuses strictly on the removal of micropollutants through the use of constructed wetlands.
Collapse
|
26
|
Emerging Contaminants in Seafront Zones. Environmental Impact and Analytical Approaches. SEPARATIONS 2021. [DOI: 10.3390/separations8070095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Some chemical substances have the potential to enter the coastal and marine environment and cause adverse effects on ecosystems, biodiversity and human health. For a large majority of them, their fate and effects are poorly understood as well as their use still unregulated. Finding effective and sustainable strategies for the identification of these emerging and/or anthropogenic contaminants that might cause polluting effects in marine environments to mitigate their adverse effects, is of utmost importance and a great challenge for managers, regulators and researchers. In this review we will evaluate the impact of emerging contaminants (ECs) on marine coastal zones namely in their ecosystems and biodiversity, highlighting the potential risks of organic pollutants, pharmaceuticals and personal care products. Emerging microextraction techniques and high-resolution analytical platforms used in isolation, identification and quantification of ECs will be also reviewed.
Collapse
|
27
|
Álvarez-Ruiz R, Picó Y, Sadutto D, Campo J. Development of multi-residue extraction procedures using QuEChERS and liquid chromatography tandem mass spectrometry for the determination of different types of organic pollutants in mussel. Anal Bioanal Chem 2021; 413:4063-4076. [PMID: 33937920 DOI: 10.1007/s00216-021-03363-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to develop multi-residue methods for the extraction of organic pollutants in mussels (Mytilus galloprovincialis), including 11 pharmaceuticals, 5 pesticides, 5 perfluoroalkyl substances (PFASs) and 2 illicit drugs. The combination of 4 different QuEChERS methods and 12 clean-ups (a total of 44 combinations) was tested. QuEChERS included acidified (AQ), non-acidified (SQ) and their miniaturized versions. The clean-ups included 6 different conventional dispersive solid phase extraction (dSPE) plus 2 enhanced matrix removal (EMR-Lipid) and 4 SPE procedures (including sorbents focused on phospholipid removal and polymer-based). After sample analysis via HPLC-MS/MS, the three methods that provided the best results were validated in terms of linearity, accuracy, precision, sensitivity and matrix effect. The methods selected were the combination of (i) SQ and EMR-Lipid, (ii) AQ and Z-sep+ bulk-based dSPE and (iii) AQ and graphitized carbon black (GCB)-based dSPE. Recoveries at two concentration levels (50 and 500 ng/g) ranged 54-124%, 59-124% and 60-127%, respectively, and limits of quantification (LOQs) were < 30 ng/g for most analytes using any of the methods. The three methods were tested in non-spiked mussel samples purchased in local markets, but organic pollutants were not detected in any sample. However, the methods probed to successfully extract a wide range of organic pollutants families in mussel samples from the market and from bioaccumulation trials.
Collapse
Affiliation(s)
- Rodrigo Álvarez-Ruiz
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Naquera Road km 4.5, 46113, Moncada, Valencia, Spain.
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Naquera Road km 4.5, 46113, Moncada, Valencia, Spain
| | - Daniele Sadutto
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Naquera Road km 4.5, 46113, Moncada, Valencia, Spain
| | - Julián Campo
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Naquera Road km 4.5, 46113, Moncada, Valencia, Spain
| |
Collapse
|
28
|
Álvarez‐Ruiz R, Picó Y, Campo J. Multi‐residue extraction to determine organic pollutants in mussel hemolymph. J Sep Sci 2021; 44:1641-1651. [DOI: 10.1002/jssc.202001211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Rodrigo Álvarez‐Ruiz
- Environmental and Food Safety Research Group (SAMA‐UV), Desertification Research Centre (CIDE) Universitat de València‐CSIC‐GV Moncada Valencia Spain
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA‐UV), Desertification Research Centre (CIDE) Universitat de València‐CSIC‐GV Moncada Valencia Spain
| | - Julián Campo
- Environmental and Food Safety Research Group (SAMA‐UV), Desertification Research Centre (CIDE) Universitat de València‐CSIC‐GV Moncada Valencia Spain
| |
Collapse
|