1
|
Chen X, Sun W, Ji S, Liu X, Hu Y, Zhou X, Zhou B, Ren J, Li B, Liang H. Citrus Polymethoxyflavones Regulate against Aging-Associated Diseases: Advances in Biological Mechanisms Responsible for Their Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39661568 DOI: 10.1021/acs.jafc.4c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
As the proportion of the aging population globally is surging year by year, age-associated diseases, including neurodegenerative, metabolic, and cardiovascular diseases, have recently attracted widespread attention of food scientists and nutritionists. Polymethoxyflavonoids (PMFs), a type of dietary flavonoids, have emerged as potential antiaging candidates owing to their diverse bioactivities, encompassing antioxidant, anti-inflammatory, neuroprotective, and metabolic regulatory effects. Herein, this comprehensive updated review has summarized and discussed the effects of PMFs on aging, and the possible mechanisms that link PMFs-mediated modulation and the prevention or treatment of various aging-related diseases have been elaborated in detail. Furthermore, the biological fate of PMFs have been discussed elaborately from their absorption, distribution, metabolism, and excretion in vivo. Special attention is given to the bioavailability-bioactivity relationship of PMFs, as PMF's biological activity is significantly hampered by poor bioavailability. Overall, all of these conclusions may help in providing a perspective for further study of PMFs on aging.
Collapse
Affiliation(s)
- Xiaojuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Weiyi Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sicheng Ji
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Liu
- Wuhan Senlan Biotechnology Co., Ltd, Wuhan 430120, China
| | - Yueqi Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyue Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jingnan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Wuhan Senlan Biotechnology Co., Ltd, Wuhan 430120, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
2
|
Van Pee T, Vanbrabant K, Rasking L, Van Eyken P, Hogervorst J, Caenepeel P, Ameloot M, Plusquin M, Nawrot TS. Translocation of black carbon particles to human intestinal tissue. EBioMedicine 2024; 110:105464. [PMID: 39580969 PMCID: PMC11625357 DOI: 10.1016/j.ebiom.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Evidence is accumulating that elevated levels of particulate air pollution, including black carbon, have been linked to gastrointestinal disorders and a lower intestinal bacterial richness and diversity. One of the hypothesized underlying mechanisms is the absorption of air pollution-related particles from the gastrointestinal tract. METHODS We visualized and quantified black carbon particles via white light generation under femtosecond-pulsed laser illumination in ileum and colon biopsies of five human patients. The biodistribution was assessed in three different layers (i.e., mucosa, submucosa, and muscularis propria). FINDINGS Black carbon particles could be identified in all three tissue layers of the ileum and colon biopsies of five participants (two men and three women; mean ± standard deviation age, 76.40 ± 7.37 years), and their carbonaceous nature was confirmed via emission fingerprinting. The median (±SD) black carbon load was borderline statistically significantly higher in the ileum compared to the colon (1.21 × 105 ± 1.68 × 104 particles/mm3 versus 9.34 × 104 ± 1.33 × 104 particles/mm3; p = 0.07) and was driven by a difference in black carbon load in the submucosa layer (p = 0.01). Regarding the three tissue layers, loads were higher in the submucosa, compared with the mucosa (ileum: +76%, p < 0.0001; colon: +70%, p = 0.0001) and muscularis propria (ileum: +88%, p < 0.0001; colon: +88%, p < 0.0001). In ileum, loads were borderline higher in the mucosa versus muscularis propria (p = 0.09). INTERPRETATION This explorative study provides real-life evidence that black carbon particles can reach the intestinal tissue and accumulate in different intestinal tissue layers. These findings support further research into how particulate air pollution directly affects gastrointestinal health. FUNDING Thessa Van Pee holds a doctoral fellowship from the Research Foundation Flanders (FWO), grant number: 11C7421N. Tim Nawrot is a Methusalem grant holder.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Peter Van Eyken
- Department of Pathology, Ziekenhuis Oost-Limburg (ZOL), 3600, Genk, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Philip Caenepeel
- Department of Gastroenterology, Ziekenhuis Oost-Limburg (ZOL), 3600, Genk, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Department of Public Health and Primary Care, Leuven University, Herestraat 49-box 706, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Viana AR, Poleze TC, da S Bruckmann F, Bottari NB, Peroza LR, Rosales I, Zago NS, Schetinger MRC, Krause LMF, Rhoden CRB, Mortari SR. Liposome preparation of alpha-arbutin: stability and toxicity assessment using mouse B16F10 melanoma cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:879-894. [PMID: 39221705 DOI: 10.1080/15287394.2024.2393308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Melanoma is the most aggressive type of skin cancer, with few therapeutic alternatives following metastasis development. In recent years, drug delivery-associated nanotechnology has shown promising targeted results with diminished adverse effects compared to conventional treatments. This study aimed to (1) examine the effects of plant-derived α-arbutin, a natural compound and (2) compare these findings with bioactively developed liposomes containing α-arbutin utilizing the B16-F10 murine melanoma cell line as a model. Liposomes were obtained through reversed-phase evaporation by applying a spray dryer to assess their stability. The following biologic assays were measured cytotoxicity/antiproliferative (MTT, Neutral Red, and dsDNA PicoGreen). In addition, the levels of melanin and purinergic enzymes were also measured. The production of reactive oxygen species (ROS) and nitric oxide (NO) was determined as a measure of oxidative state. Treatment with nano-liposome containing alpha-arbutin induced a significant 68.4% cytotoxicity, similar to the positive control, in the B16-F10 murine melanoma cell line at 72 hr. Further, arbutin and liposomes containing alpha-arbutin increased levels of ROS and nitrite formation at 72 hr at the highest concentration (100 and 300 µg/ml) of treatments. Arbutin and liposomes containing alpha-arbutin reduced melanin levels at all tested concentrations. In addition, arbutin and alpha-arbutin containing liposomes lowered nucleotides (AMP, ADP, and ATP) and nucleoside (adenosine) levels in melanoma cells. Evidence suggests that α-arbutin containing liposome can be considered as an alternative immunosuppressive agent stimulated in melanoma treatment.
Collapse
Affiliation(s)
- Altevir R Viana
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Thatyana C Poleze
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Franciele da S Bruckmann
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
- Laboratory of Nanostructured Magnetic Materials - LAMMAN, Franciscan University, Santa Maria, RS, Brazil
| | - Nathieli B Bottari
- Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Luis R Peroza
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Ingrid Rosales
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Natalia S Zago
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Maria R C Schetinger
- Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Luciana M F Krause
- Department of Morphology, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Cristiano R B Rhoden
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
- Laboratory of Nanostructured Magnetic Materials - LAMMAN, Franciscan University, Santa Maria, RS, Brazil
| | - Sergio R Mortari
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Sandalova E, Li H, Guan L, Raj SD, Lim TG, Tian E, Kennedy BK, Maier AB. Testing the amount of nicotinamide mononucleotide and urolithin A as compared to the label claim. GeroScience 2024; 46:5075-5083. [PMID: 38935229 PMCID: PMC11335992 DOI: 10.1007/s11357-024-01257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Healthy Longevity Medicine aims to optimize health by targeting aging processes across the lifespan. Addressing accelerated aging involves adaptation of lifestyle and the use of geroprotective drugs and supplements, including nutritional supplements and bioactive compounds. The Food and Drug Administration, under the Dietary Supplement Health and Education Act, categorizes bioactive compounds and medicinal products as dietary supplements. While numerous companies sell ingredients that can be deemed geroprotectors, there's limited oversight in their quality control. Governmental safety authorities only verify the presence of prohibited compounds, not the accuracy of ingredients listed on labels.Here, Nicotinamide mononucleotide and Urolithin A supplements, easily accessible online or in pharmacies, were tested for their active ingredient content. Results showed a significant deviation from the labeled amounts, ranging from + 28.6% to -100%. This indicates a considerable disparity in the quality of geroprotective supplements.To address this variability, collaboration between and within societies representing healthcare professionals, industry and regulatory bodies is imperative to ensure the quality of geroprotective supplements.
Collapse
Affiliation(s)
- E Sandalova
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore.
| | - H Li
- Centre of Innovation, for Complementary Health Product (COI-CHP) Temasek Polytechnic, Singapore, Singapore
| | - L Guan
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - S D Raj
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - T G Lim
- Centre of Innovation, for Complementary Health Product (COI-CHP) Temasek Polytechnic, Singapore, Singapore
| | - E Tian
- Centre of Innovation, for Complementary Health Product (COI-CHP) Temasek Polytechnic, Singapore, Singapore
| | - B K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - A B Maier
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore.
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands.
| |
Collapse
|
5
|
Mohammed H, Karhib MM, Al-Fahad KSJ, Atef AM, Eskandrani A, Darwish AAE, Sary AA, Elwakil BH, Bakr BA, Eldrieny AM. Newly synthesized chitosan nanoparticles loaded with caffeine/moringa leaf extracts Halt Her2, BRCA1, and BRCA2 expressions. Sci Rep 2024; 14:18118. [PMID: 39103402 PMCID: PMC11300450 DOI: 10.1038/s41598-024-67599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Breast cancer is among the highest morbidity and mortality rates in women around the world. In the present investigation we aimed to synthesis novel nanosystem combining two naturally important anticancer agents with different mechanism of action namely Moringa oleifera and caffeine. Firstly, chemical analysis of Moringa oleifera extract and caffeine was done by gas chromatography-mass spectroscopy (GC-MS) in order to assess the main chemical compounds present and correlate between them and the possible anticancer effect. The novel nanosystem was characterized through dynamic light scattering techniques which revealed the stability and homogeneity of the prepared M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles, while FTIR and transmission electron microscope (TEM) proved the shape and the successful incorporation of M. oleifera leaves extract/Caffeine onto the nanochitosan carrier. Our initial step was to assess the anticancer effect in vitro in cancer cell line MCF-7 which proved the significant enhanced effect of M. oleifera leaves extract/Caffeine nanosystem compared to M. oleifera leaves extract or caffeine loaded nanoparticles. Further studies were conducted in vivo namely tumor biomarkers, tumor volume, bioluminescence imaging, molecular and histopathological investigations. The present study proved the potent anticancer effect of the synthesized M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles. Mo/Caf/CsNPs exhibited a large number of apoptotic cells within the tumor mass while the adipose tissue regeneration was higher compared to the positive control. The prepared nanoparticles downregulated the expression of Her2, BRCA1 and BRCA2 while mTOR expression was upregulated. The aforementioned data demonstrated the successful synergistic impact of Moringa and caffeine in decreasing the carcinoma grade.
Collapse
Affiliation(s)
- Hanaa Mohammed
- Human Anatomy and Embryology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mustafa M Karhib
- Department of Medical Laboratory Techniques, College of Health and Medical Technologies, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq
| | | | - Atef Mohamed Atef
- Faculty of Medical Applied Science, Irbid National University, Irbid, Jordan
| | - Areej Eskandrani
- College of Science, Taibah University, 30002, Madinah, Kingdom of Saudi Arabia
| | - Amira Abd-Elfattah Darwish
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Ahmed Abdallah Sary
- Faculty of Physical Therapy, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Bassma H Elwakil
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt.
| | - Basant A Bakr
- Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Ahmed M Eldrieny
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| |
Collapse
|
6
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Estevinho BN, López-Rubio A. Recent Advances in Encapsulation for Food Applications. Foods 2024; 13:579. [PMID: 38397556 PMCID: PMC10888041 DOI: 10.3390/foods13040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Food-related research is closely related to health [...].
Collapse
Affiliation(s)
- Berta Nogueiro Estevinho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Amparo López-Rubio
- Food Safety and Preservation Department, CSIC—Consejo Superior de Investigaciones Científicas, Instituto de Agroquimica y Tecnologia de los Alimentos (IATA), 46980 Paterna, Valencia, Spain
| |
Collapse
|
8
|
Thiruvalluvan M, Kaur BP, Singh A, Kumari S. Enhancement of the bioavailability of phenolic compounds from fruit and vegetable waste by liposomal nanocarriers. Food Sci Biotechnol 2024; 33:307-325. [PMID: 38222914 PMCID: PMC10786787 DOI: 10.1007/s10068-023-01458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 01/16/2024] Open
Abstract
Fruits and vegetables are one of the most consumed and processed commodities globally and comprise abundant phenolic compounds, one of the main nutraceuticals in the food industry. Comparably elevated rates of these compounds are found in waste (peel, seeds, leaf, stem, etc.) in the food processing industry. They are being investigated for their potential use in functional foods. However, phenolic compounds' low bioavailability limits their application, which can be approached by loading the phenolic compounds into an encapsulation system such as liposomal carriers. This review aims to elucidate the recent trend in extracting phenolic compounds from the waste stream and the means to load them in stable liposomes. Furthermore, the application of these liposomes with only natural extracts in food matrices is also presented. Many studies have indicated that liposomes can be a proper candidate for encapsulating and delivering phenolic compounds and as a means to increase their bioavailability.
Collapse
Affiliation(s)
- Manonmani Thiruvalluvan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Barjinder Pal Kaur
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Anupama Singh
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Sanjana Kumari
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| |
Collapse
|
9
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
10
|
Cheng X, Zou Q, Zhang H, Zhu J, Hasan M, Dong F, Liu X, Li J, Wu Y, Lv X, Wang K, Deng X, Liu Z, Jiang X. Effects of a chitosan nanoparticles encapsulation on the properties of litchi polyphenols. Food Sci Biotechnol 2023; 32:1861-1871. [PMID: 37781058 PMCID: PMC10541391 DOI: 10.1007/s10068-023-01303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 10/03/2023] Open
Abstract
Litchi polyphenols have very specific biological activities. Nevertheless, the low and inconsistent oral bioavailability and instability hinder the further application of litchi polyphenols in food systems. This work prepared litchi polyphenols loaded chitosan nanoparticles (LP-CSNPs) by ionic gelation method to enhance the encapsulation on the properties of litchi polyphenols. The optimum conditions of formation via single factors and the Box-Behnken design were chitosan (CS) concentration 1.065 mg/mL, sodium tripolyphosphate (TPP) concentration 0.975 mg/mL, and the mass ratios of polyphenols and CS 1:1 with encapsulation efficiency (EE%) of 45.53%. LP-CSNPs presented the nanosized range of particle size (mean 170 nm), excellent polydispersity index (PDI) (0.156 ± 0.025), and zeta potential values (+ 35.44 ± 0.59). The in vitro release in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8) during 100 h was 58.34% and 81.68%, respectively. LP-CSNPs could effectively improve the storage stability and had great antibacterial activity compared with unencapsulated litchi polyphenols.
Collapse
Affiliation(s)
- Xingan Cheng
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Qiwen Zou
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Hanhui Zhang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Jianwei Zhu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Murtaza Hasan
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Fangyun Dong
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Xin Liu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Junjie Li
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Yuehua Wu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Xiaojing Lv
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Keqiang Wang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Xiangling Deng
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Zhanmei Liu
- Department of Teaching and Research, Guangzhou Nanyang Polytechnic College, Guangzhou, 510900 Guangdong China
| | - Xuhong Jiang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| |
Collapse
|
11
|
Simón L, Arazo-Rusindo M, Quest AFG, Mariotti-Celis MS. Phlorotannins: Novel Orally Administrated Bioactive Compounds That Induce Mitochondrial Dysfunction and Oxidative Stress in Cancer. Antioxidants (Basel) 2023; 12:1734. [PMID: 37760037 PMCID: PMC10525198 DOI: 10.3390/antiox12091734] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is an interesting therapeutic target to help reduce cancer deaths, and the use of bioactive compounds has emerged as a novel and safe approach to solve this problem. Here, we discuss the information available related to phlorotannins, a type of polyphenol present in brown seaweeds that reportedly functions as antioxidants/pro-oxidants and anti-inflammatory and anti-tumorigenic agents. Specifically, available evidence indicates that dieckol and phloroglucinol promote mitochondrial membrane depolarization and mitochondria-dependent apoptosis. Phlorotannins also reduce pro-tumorigenic, -inflammatory, and -angiogenic signaling mechanisms involving RAS/MAPK/ERK, PI3K/Akt/mTOR, NF-κB, and VEGF. In doing so, they inhibit pathways that favor cancer development and progression. Unfortunately, these compounds are rather labile and, therefore, this review also summarizes approaches permitting the encapsulation of bioactive compounds, like phlorotannins, and their subsequent oral administration as novel and non-invasive therapeutic alternatives for cancer treatment.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Migdalia Arazo-Rusindo
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | | |
Collapse
|
12
|
Liu Y, Ma M, Yuan Y. The potential of curcumin-based co-delivery systems for applications in the food industry: Food preservation, freshness monitoring, and functional food. Food Res Int 2023; 171:113070. [PMID: 37330831 DOI: 10.1016/j.foodres.2023.113070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Currently, curcumin-based co-delivery systems are receiving widespread attention. However, a systematic summary of the possibility of curcumin-based co-delivery systems used for the food industry from multiple directions based on the functional characteristics of curcumin is lacking. This review details the different forms of curcumin-based co-delivery systems including the single system of nanoparticle, liposome, double emulsion, and multiple systems composed of different hydrocolloids. The structural composition, stability, encapsulation efficiency, and protective effects of these forms are discussed comprehensively. The functional characteristics of curcumin-based co-delivery systems are summarized, involving biological activity (antimicrobial and antioxidant), pH-responsive discoloration, and bioaccessibility/bioavailability. Correspondingly, potential applications for food preservation, freshness detection, and functional foods are introduced. In the future, more novel co-delivery systems for active ingredients and food matrices should be developed. Besides, the synergistic mechanisms between active ingredients, delivery carrier/active ingredient, and external physical condition/active ingredient should be explored. In conclusion, curcumin-based co-delivery systems have the potential to be widely used in the food industry.
Collapse
Affiliation(s)
- Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Wickramasinghe ASD, Attanayake AP, Kalansuriya P. Herbal Extracts Encapsulated Nanoliposomes as Potential Glucose-lowering Agents: An in Vitro and in Vivo Approach Using Three Herbal Extracts. J Pharm Sci 2023; 112:2538-2551. [PMID: 37399889 DOI: 10.1016/j.xphs.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Encapsulation of polyphenol-rich herbal extracts into nanoliposomes is a promising strategy for the development of novel therapeutic agents against type 2 diabetes mellitus. An attempt was made to encapsulate aqueous, ethanol, and aqueous ethanol (70% v/v) extracts of Senna auriculata (L.) Roxb., Murraya koenigii (L.) Spreng,. and Coccinia grandis (L.) Voigt into nanoliposomes and to screen acute bioactivities in vitro and in vivo. A wide spectrum of bioactivity was observed of which aqueous extracts encapsulated nanoliposomes of all three plants showed high bioactivity in terms of in vivo glucose-lowering activity in high-fat diet-fed streptozotocin induced Wistar rats, compared to respective free extracts. The particle size, polydispersity index, and zeta potential of the aforementioned nanoliposomes ranged from 179-494 nm, 0.362-0.483, and (-22) to (-17) mV, respectively. The atomic force microscopy (AFM) imaging reflected that the nanoparticles have desired morphological characteristics and Fourier-transform infrared (FTIR) spectroscopy analysis revealed successful encapsulation of plant extracts into nanoparticles. However, only the S. auriculata aqueous extract encapsulated nanoliposome, despite the slow release (9% by 30 hours), showed significant (p < 0.05) in vitro α-glucosidase inhibitory activity and in vivo glucose-lowering activity compared to free extract, proving worthy for future investigations.
Collapse
Affiliation(s)
| | | | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Sri Lanka
| |
Collapse
|
14
|
Wei F, Wang J, Luo L, Tayyab Rashid M, Zeng L. The perception and influencing factors of astringency, and health-promoting effects associated with phytochemicals: A comprehensive review. Food Res Int 2023; 170:112994. [PMID: 37316067 DOI: 10.1016/j.foodres.2023.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
Astringency as the complex sensory of drying or shrinking can be perceived from natural foods, including abundant phenolic compounds. Up to now, there have been two possible astringency perception mechanisms of phenolic compounds. The first possible mechanism involved chemosensors and mechanosensors and took salivary binding proteins as the premise. Although piecemeal reports about chemosensors, friction mechanosensor's perception mechanisms were absent. There might be another perception way because a part of astringent phenolic compounds also triggered astringency although they could not bind with salivary proteins, however, the specific mechanism was unclear. Structures caused the differences in astringency perception mechanisms and intensities. Except for structures, other influencing factors also changed astringency perception intensity and aimed to decrease it, which probably ignored the health-promoting effects of phenolic compounds. Therefore, we roundly summarized the chemosensor's perception processes of the first mechanism. Meanwhile, we speculated that friction mechanosensor's probably activated Piezo2 ion channel on cell membranes. Phenolic compounds directly binds with oral epithelial cells, activating Piezo2 ion channel probably the another astringency perception mechanism. Except for structure, the increase of pH values, ethanol concentrations, and viscosity not only lowered astringency perception but were beneficial to improve the bioaccessibility and bioavailability of astringent phenolic compounds, which contributed to stronger antioxidant, anti-inflammatory, antiaging and anticancer effects.
Collapse
Affiliation(s)
- Fang Wei
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Jie Wang
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Yongchuan, Chongqing 402160, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China; Tea Research Institute, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
15
|
Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, Mocan A, Bunea CI, Crișan G. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr 2023; 10:1184535. [PMID: 37575331 PMCID: PMC10415696 DOI: 10.3389/fnut.2023.1184535] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Nutraceuticals and functional foods are composed of especially complex matrices, with polyphenols, carotenoids, minerals, and vitamins, among others, being the main classes of phytochemicals involved in their bioactivities. Despite their wide use, further investigations are needed to certify the proper release of these phytochemicals into the gastrointestinal medium, where the bioaccessibility assay is one of the most frequently used method. The aim of this review was to gather and describe different methods that can be used to assess the bioaccessibility of nutraceuticals and functional foods, along with the most important factors that can impact this process. The link between simulated digestion testing of phytochemicals and their in vitro bioactivity is also discussed, with a special focus on the potential of developing nutraceuticals and functional foods from simple plant materials. The bioactive potential of certain classes of phytochemicals from nutraceuticals and functional foods is susceptible to different variations during the bioaccessibility assessment, with different factors contributing to this variability, namely the chemical composition and the nature of the matrix. Regardless of the high number of studies, the current methodology fails to assume correlations between bioaccessibility and bioactivity, and the findings of this review indicate a necessity for updated and standardized protocols.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Claudiu I. Bunea
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Ranjbar S, Emamjomeh A, Sharifi F, Zarepour A, Aghaabbasi K, Dehshahri A, Sepahvand AM, Zarrabi A, Beyzaei H, Zahedi MM, Mohammadinejad R. Lipid-Based Delivery Systems for Flavonoids and Flavonolignans: Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles. Pharmaceutics 2023; 15:1944. [PMID: 37514130 PMCID: PMC10383758 DOI: 10.3390/pharmaceutics15071944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Herbal chemicals with a long history in medicine have attracted a lot of attention. Flavonolignans and flavonoids are considered as two classes of the above-mentioned compounds with different functional groups which exhibit several therapeutic capabilities such as antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and anticancer activities. Based on the studies, high hydrophobic properties of the aforementioned compounds limit their bioavailability inside the human body and restrict their wide application. Nanoscale formulations such as solid lipid nanoparticles, liposomes, and other types of lipid-based delivery systems have been introduced to overcome the above-mentioned challenges. This approach allows the aforementioned hydrophobic therapeutic compounds to be encapsulated between hydrophobic structures, resulting in improving their bioavailability. The above-mentioned enhanced delivery system improves delivery to the targeted sites and reduces the daily required dosage. Lowering the required daily dose improves the performance of the drug by diminishing its side effects on non-targeted tissues. The present study aims to highlight the recent improvements in implementing lipid-based nanocarriers to deliver flavonolignans and flavonoids.
Collapse
Affiliation(s)
- Shahla Ranjbar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht 4199613776, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Azadeh Mohammadi Sepahvand
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7148664685, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol 9861335856, Iran
| | - Mohammad Mehdi Zahedi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
17
|
Lan H, Wang H, Chen C, Hu W, Ai C, Chen L, Teng H. Flavonoids and gastrointestinal health: single molecule for multiple roles. Crit Rev Food Sci Nutr 2023; 64:10987-11005. [PMID: 37409462 DOI: 10.1080/10408398.2023.2230501] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Diet can be considered as one of the pivotal factors in regulating gastrointestinal health, and polyphenols widely distributed in human daily diet. The polyphenols and their metabolites playing a series of beneficial effects in human gastrointestinal tract that can regulate of the gut microbiota, increase intestinal barrier function, repair gastrointestinal mucosa, reduce oxidative stress, inhibit the secretion of inflammatory factors and regulating immune function, and their absorption and biotransformation mainly depend on the activity of intestinal microflora. However, little is known about the two-way interaction between polyphenols and intestinal microbiota. The objective of this review is to highlight the structure optimization and effect of flavonoids on intestinal flora, and discusses the mechanisms of dietary flavonoids regulating intestinal flora. The multiple effects of single molecule of flavonoids, and inter-dependence between the gut microbiota and polyphenol metabolites. Moreover, the protective effects of polyphenols on intestinal barrier function, and effects of interaction between plant polyphenols and macromolecules on gastrointestinal health. This review provided valuable insight that may be useful for better understanding the mechanism of the gastrointestinal health effects of polyphenols, and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Haijing Lan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Wenlu Hu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
18
|
Zou Q, Wang W, Xu Q, Yan M, Lan D, Wang Y. Influence of Proteins on Bioaccessibility of α-Tocopherol Encapsulation within High Diacylglycerol-Based Emulsions. Foods 2023; 12:2483. [PMID: 37444221 DOI: 10.3390/foods12132483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
α-Tocopherol has been widely used in medicine, cosmetics, and food industry as a nutritional supplement and antioxidant. However, α-tocopherol showed low bioaccessibility, and there is a widespread α-tocopherol deficiency in society today. The preparation of oil-in-water emulsions with high safety and low-calorie property is necessary. The aim of this research was to investigate the effects of different protein emulsifiers (whey protein isolate (WPI), soy protein isolate (SPI), and sodium casein (SC)) on the properties of emulsions delivery system, and diacylglycerol (DAG) was picked as a low-accumulated lipid. The interfacial changes, microstructural alterations, and possible interactions of the protein-stabilized DAG emulsions were investigated during the in vitro digestion. The results show that different proteins affect the degree of digestibility and α-tocopherol bioaccessibility of the emulsions. Both WPI- and SPI-coated emulsions showed good digestibility and α-tocopherol bioaccessibility (77.64 ± 2.93%). This might be due to the strong hydrolysis resistance of WPI (β-lactoglobulin) and the good emulsification ability of SPI. The SC-coated emulsion showed the lowest digestibility and α-tocopherol bioaccessibility, this might be due to the emulsification property of hydrolysis products of SC and the potential interaction with calcium ions. This study provides new possibilities for the application of DAG emulsions in delivery systems.
Collapse
Affiliation(s)
- Qian Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Qingqing Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Menglei Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Yue-Shan Special Nutrition Technology Co., Ltd., Foshan 528000, China
| |
Collapse
|
19
|
Řepka D, Kurillová A, Murtaja Y, Lapčík L. Application of Physical-Chemical Approaches for Encapsulation of Active Substances in Pharmaceutical and Food Industries. Foods 2023; 12:foods12112189. [PMID: 37297434 DOI: 10.3390/foods12112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Encapsulation is a valuable method used to protect active substances and enhance their physico-chemical properties. It can also be used as protection from unpleasant scents and flavors or adverse environmental conditions. METHODS In this comprehensive review, we highlight the methods commonly utilized in the food and pharmaceutical industries, along with recent applications of these methods. RESULTS Through an analysis of numerous articles published in the last decade, we summarize the key methods and physico-chemical properties that are frequently considered with encapsulation techniques. CONCLUSION Encapsulation has demonstrated effectiveness and versatility in multiple industries, such as food, nutraceutical, and pharmaceuticals. Moreover, the selection of appropriate encapsulation methods is critical for the effective encapsulation of specific active compounds. Therefore, constant efforts are being made to develop novel encapsulation methods and coating materials for better encapsulation efficiency and to improve properties for specific use.
Collapse
Affiliation(s)
- David Řepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Antónia Kurillová
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Yousef Murtaja
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin, Czech Republic
| |
Collapse
|
20
|
Nemli E, Capanoglu E, McClements DJ, Tomas M. Use of excipient emulsions for improving the bioaccessibility of antioxidants in tomato sauce. Food Chem 2023; 424:136395. [PMID: 37263092 DOI: 10.1016/j.foodchem.2023.136395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
In this study, tomato sauces were prepared by adding different levels of emulsified oil (0, 5, 10, or 20 wt%) to tomato pomace. The effects of adding these excipient emulsions on the concentration, bioaccessibility, and bioactivity of the carotenoids and phenolics in the tomato sauces were then determined. The carotenoid and phenolic profiles were analyzed by HPLC and LC-MS/MS, respectively. The bioaccessibility values of the lycopene, lutein, and β-carotene were around 36-82%, 73-112%, and 67-94% for tomato sauces with excipient emulsions, respectively. In contrast, they were considerably lower for tomato sauces without excipient emulsions, being around 24-31%, 69-71%, and 45-62%, respectively. The TPC and TAC values of the tomato sauces with the excipient emulsions were significantly higher than those without. Considerably higher concentrations of carotenoids and phenolic compounds were detected in the tomato sauce samples containing the excipient emulsions. These results suggest that the presence of the oil droplets increased the extractability, stability, and bioaccessibility of the nutraceuticals in the tomato sauce.
Collapse
Affiliation(s)
- Elifsu Nemli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| | | | - Merve Tomas
- Department of Food Engineering, Faculty of Enginering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Halkali, Istanbul, Turkey.
| |
Collapse
|
21
|
Das S, Verma PRP, Sekarbabu V, Mohanty S, Pattnaik AK, Ruokolainen J, Kesari KK, Singh SK. Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry Estimation of Quercetin-Loaded Nanoemulsion in Rabbit Plasma: In Vivo- In Silico Pharmacokinetic Analysis Using GastroPlus. ACS OMEGA 2023; 8:12456-12466. [PMID: 37033804 PMCID: PMC10077531 DOI: 10.1021/acsomega.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
In the present study, we developed and validated a rapid, specific, sensitive, and reproducible liquid chromatography-electrospray ionization tandem mass spectrometry method for quantifying quercetin (QT) in rabbit plasma using hydrochlorothiazide as the internal standard. Animals were orally administered with optimized QT-loaded nanoemulsion (QTNE) and QT suspension (QTS), equivalent to 30 mg/kg, to the test and control group, respectively. The blood samples were collected at pre-determined time points up to 48 h. The linearity range was from 5 to 5000 ng mL-1 with R 2 = 0.995. Further, we analyzed the various pharmacokinetic parameters and established the in vitro-in vivo correlation (IVIVC) of QTNE using GastroPlus software. The method was successfully developed and validated, and when applied for the determination of QT in rabbit plasma, it exhibited an increase in C max from 122.56 ng mL-1 (QTS) to 286.51 ng mL-1 (QTNE) (2.34-fold) and AUC0-48 from 976 ng h mL-1 (QTS) to 4249 ng h mL-1 (QTNE) (4.35-fold), indicating improved oral bioavailability QT when administered as QTNE. Statistical analysis revealed that the Loo-Riegelman method (two-compartmental method) best fitted the deconvolution approach (R 2 = 0.998, SEP = 4.537, MAE = 2.759, and AIC = 42.38) for establishing the IVIVC. In conclusion, the established bioanalytical method and IVIVC studies revealed that QTNE is a potential carrier for the effective delivery of QT with enhanced oral bioavailability.
Collapse
Affiliation(s)
- Sabya
Sachi Das
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Priya Ranjan Prasad Verma
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Viswanathan Sekarbabu
- Innospecs
Bioresearch Private Limited, Rajakilpakkam, Chennai 600073, Tamil Nadu, India
| | - Satyajit Mohanty
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ashok Kumar Pattnaik
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 00076 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 00076 Espoo, Finland
- Faculty
of Biological and Environmental Sciences, University of Helsinki, Biocentre 3, Helsinki 00014, Finland
| | - Sandeep Kumar Singh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
22
|
Jongjitphisut N, Thitikornpong W, Wichitnithad W, Thanusuwannasak T, Vajragupta O, Rojsitthisak P. A Stability-Indicating Assay for Tetrahydrocurcumin-Diglutaric Acid and Its Applications to Evaluate Bioaccessibility in an In Vitro Digestive Model. Molecules 2023; 28:molecules28041678. [PMID: 36838664 PMCID: PMC9966976 DOI: 10.3390/molecules28041678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
A simple and reliable ultra-high-performance liquid chromatographic (UHPLC) method was developed and validated for determination of tetrahydrocurcumin diglutaric acid (TDG) and applied for evaluation of its bioaccessibility. The analytical method was validated to demonstrate as a stability-indicating assay (SIA) according to the ICH Q2(R1) guidelines under various force degradation conditions including thermal degradation, moisture, acid and base hydrolysis, oxidation, and photolysis. The developed chromatographic condition could completely separate all degradants from the analyte of interest. The method linearity was verified in the range of 0.4-12 μg/mL with the coefficient of determination (r2) > 0.995. The accuracy and precision of the method provided %recovery in the range of 98.9-104.2% and %RSD lower than 4.97%, respectively. The limit of detection and quantitation were found to be 0.25 μg/mL and 0.40 μg/mL, respectively. This method has been successfully applied for the bioaccessibility assessment of TDG with the bioaccessibility of TDG approximately four fold greater than THC in simulated gastrointestinal fluid. The validated SIA method can also benefit the quality control of TDG raw materials in pharmaceutical and nutraceutical development.
Collapse
Affiliation(s)
- Nattapong Jongjitphisut
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Government Pharmaceutical Organization, Bangkok 10400, Thailand
| | - Worathat Thitikornpong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-8315; Fax: +66-2-254-5195
| | - Wisut Wichitnithad
- Department of Analytical and Clinical Development, Pharma Nueva Co., Ltd., Bangkok 10900, Thailand
| | - Thanundorn Thanusuwannasak
- CU Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Johnson B, Panek P, Yu A, Fischer E, Koba M, Mendoza Hermosillo D, Capaldo CT. Interferon gamma upregulates the cytokine receptors IFNGR1 and TNFRSF1A in HT-29-MTX E12 cells. Cytokine 2022; 156:155892. [PMID: 35653895 PMCID: PMC9636846 DOI: 10.1016/j.cyto.2022.155892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
The intestinal mucosa protects the body from physical damage, pathogens, and antigens. However, inflammatory bowel diseases (IBDs) patients suffer from poor mucosal tissue function, including the lack of an effective cellular and/or mucus barrier. We investigated the mucus producing human colonic epithelial cell line HT29-MTX E12 to study its suitability as an in vitro model of cell/mucus barrier adaption during IBD. It was found that the proinflammatory cytokine interferon-gamma (IFN-γ), but not tumor necrosis factor-alpha (TNF-α), reduced cell viability. IFN-γ and TNF-α were found to synergize to decrease barrier function, as measured by trans-epithelial electric resistance (TER) and molecular flux assays. Cells cultured under an air-liquid interface produced an adherent mucus layer, and under these conditions reduced barrier function was found after cytokine exposure. Furthermore, IFN-γ, but not TNF-α treatment, upregulated the IFN-γ receptor 1 (IFNGR1) and TNF-α receptor super family 1A (TNFRSF1A) subunit mRNA in vitro. Co-stimulation resulted in increased mRNA expression of CLDN 2 and 5, two gene known to play a role in epithelial barrier integrity. Analysis of IBD patient samples revealed IFNGR1 and TNFRSF mRNA increased coincidently with guanylate binding protein 1 (GBP1) expression, an indicator of NFkB activity. Lastly, CLDN2 was found at higher levels in IBD patients while HNF4a was suppressed with disease. In conclusion, IFN-γ and TNF-α degrade epithelial/mucus barriers coincident with changes in CLDN gene and cytokine receptor subunit mRNA expression in HT29-MTX E12 cells. These changes largely reflect those observed in IBD patient samples.
Collapse
Affiliation(s)
- Brandon Johnson
- Center for Biomedical Research at The Queen's Medical Center, Honolulu, HI 96813, USA
| | - Paulina Panek
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Andy Yu
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Elizabeth Fischer
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Marli Koba
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | | | | |
Collapse
|
25
|
Wanjiru J, Gathirwa J, Sauli E, Swai HS. Formulation, Optimization, and Evaluation of Moringa oleifera Leaf Polyphenol-Loaded Phytosome Delivery System against Breast Cancer Cell Lines. Molecules 2022; 27:molecules27144430. [PMID: 35889305 PMCID: PMC9320383 DOI: 10.3390/molecules27144430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Moringa oleifera leaf polyphenols (Mopp) were encapsulated with phytosomes to enhance their efficacy on 4T1 cancer cell lines. The Mopp were extracted via microwave-assisted extraction. Moringa oleifera polyphenol-loaded phytosomes (MoP) were prepared with the nanoprecipitation method and characterized using the dynamic light scattering and dialysis membrane techniques. The in vitro cytotoxic and antiproliferative activity were investigated with the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazole) MTT assay. Acute toxicity was assessed using Swiss albino mice. An MoP particle size of 296 ± 0.29 nm, −40.1 ± 1.19 mV zeta potential, and polydispersity index of 0.106 ± 0.002 were obtained. The total phenolic content was 50.81 ± 0.02 mg GAE/g, while encapsulation efficiency was 90.32 ± 0.11%. The drug release profiles demonstrated biphasic and prolonged subsequent sustained release. In vitro assays indicated MoP had a low cytotoxicity effect of 98.84 ± 0.53 μg/mL, doxorubicin was 68.35 ± 3.508, and Mopp was 212.9 ± 1.30 μg/mL. Moreover, MoP exhibited the highest antiproliferative effect on 4T1 cancer cells with an inhibitory concentration of 7.73 ± 2.87 μg/mL and selectivity index > 3. The results indicated a significant difference (p ≤ 0.001) in MoP when compared to Mopp and doxorubicin. The in vivo investigation showed the safety of MoP at a dose below 2000 mg/kg. The present findings suggest that MoP may serve as an effective and promising formulation for breast cancer drug delivery and therapy.
Collapse
Affiliation(s)
- Jecinta Wanjiru
- Department of Global Health and Biomedical Sciences, School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23100, Tanzania; (E.S.); (H.S.S.)
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840, Nairobi 00200, Kenya;
- Correspondence: or ; Tel.: +254-72586-5116; Fax: +254-020-2720030
| | - Jeremiah Gathirwa
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840, Nairobi 00200, Kenya;
| | - Elingarami Sauli
- Department of Global Health and Biomedical Sciences, School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23100, Tanzania; (E.S.); (H.S.S.)
| | - Hulda Shaid Swai
- Department of Global Health and Biomedical Sciences, School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23100, Tanzania; (E.S.); (H.S.S.)
| |
Collapse
|
26
|
Lipid-Coated Nanocrystals as a Tool for Improving the Antioxidant Activity of Resveratrol. Antioxidants (Basel) 2022; 11:antiox11051007. [PMID: 35624871 PMCID: PMC9137619 DOI: 10.3390/antiox11051007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/16/2023] Open
Abstract
Trans-resveratrol, a polyphenolic phytoalexin found in various plant sources, has been the focus of increasing attention in recent years because of its role in the prevention of many human diseases, and particularly because of its antioxidant properties. However, the in vivo effect of trans-resveratrol after oral administration is negligible when compared to its efficacy in vitro, due to its low bioavailability. Moreover, it presents stability issues as it is an extremely photosensitive compound when exposed to light. This work aims to develop lipid-coated nanocrystals in order to improve the antioxidant activity and bioavailability of trans-resveratrol. Lipid-coated trans-resveratrol nanocrystals with sizes lower than 500 nm, spherical shapes and smooth surfaces were obtained via a milling method. They showed a faster dissolution rate than the coarse trans-resveratrol powder. The antioxidant properties of trans-resveratrol were not impaired by the milling process. The in vivo pharmacokinetics of lipid-coated trans-resveratrol nanocrystals were evaluated after oral administration to rats, with a commercial Phytosome® formulation being used for comparison purposes. An increase in the trans-resveratrol area under the curve was observed and the lipid-coated nanocrystal formulation led to an enhancement in the oral bioavailability of the compound.
Collapse
|
27
|
Farag MA, Kabbash EM, Mediani A, Döll S, Esatbeyoglu T, Afifi SM. Comparative Metabolite Fingerprinting of Four Different Cinnamon Species Analyzed via UPLC-MS and GC-MS and Chemometric Tools. Molecules 2022; 27:molecules27092935. [PMID: 35566284 PMCID: PMC9104325 DOI: 10.3390/molecules27092935] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to assess metabolites heterogeneity among four major Cinnamomum species, including true cinnamon (Cinnamomum verum) and less explored species (C. cassia, C. iners, and C. tamala). UPLC-MS led to the annotation of 74 secondary metabolites belonging to different classes, including phenolic acids, tannins, flavonoids, and lignans. A new proanthocyanidin was identified for the first time in C. tamala, along with several glycosylated flavonoid and dicarboxylic fatty acids reported for the first time in cinnamon. Multivariate data analyses revealed, for cinnamates, an abundance in C. verum versus procyandins, dihydro-coumaroylglycosides, and coumarin in C. cassia. A total of 51 primary metabolites were detected using GC-MS analysis encompassing different classes, viz. sugars, fatty acids, and sugar alcohols, with true cinnamon from Malaysia suggested as a good sugar source for diabetic patients. Glycerol in C. tamala, erythritol in C. iners, and glucose and fructose in C. verum from Malaysia were major metabolites contributing to the discrimination among species.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
- Correspondence: (M.A.F.); (T.E.); (S.M.A.); Tel.: +11-202-2362245 (M.A.F.); +49-511-762-5589 (T.E.)
| | - Eman M. Kabbash
- Phytochemistry Department, National Organization for Drug Control and Research, Giza 12622, Egypt;
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Stefanie Döll
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany;
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am KleinenFelde 30, 30167 Hannover, Germany
- Correspondence: (M.A.F.); (T.E.); (S.M.A.); Tel.: +11-202-2362245 (M.A.F.); +49-511-762-5589 (T.E.)
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
- Correspondence: (M.A.F.); (T.E.); (S.M.A.); Tel.: +11-202-2362245 (M.A.F.); +49-511-762-5589 (T.E.)
| |
Collapse
|
28
|
Kala C, Asif M, Gilani SJ, Imam SS, Khan NA, Taleuzzaman M, Zafar A, Ahmed MM, Alshehri S, Ghoneim MM. Formulation of Isopropyl Isothiocyanate Loaded Nano Vesicles Delivery Systems: In Vitro Characterization and In Vivo Assessment. Molecules 2022; 27:molecules27092876. [PMID: 35566224 PMCID: PMC9104827 DOI: 10.3390/molecules27092876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Isopropyl Isothiocyanate (IPI) is a poorly water-soluble drug used in different biological activities. So, the present work was designed to prepare and evaluate IPI loaded vesicles and evaluated for vesicle size, polydispersity index (PDI) and zeta potential, encapsulation efficiency, drug release, and drug permeation. The selected formulation was coated with chitosan and further assessed for the anti-platelet and anti-thrombotic activity. The prepared IPI vesicles (F3) exhibited a vesicle size of 298 nm ± 5.1, the zeta potential of −18.7 mV, encapsulation efficiency of 86.2 ± 5.3% and PDI of 0.33. The chitosan-coated IPI vesicles (F3C) exhibited an increased size of 379 ± 4.5 nm, a positive zeta potential of 23.5 ± 2.8 mV and encapsulation efficiency of 77.3 ± 4.1%. IPI chitosan vesicle (F3C) showed enhanced mucoadhesive property (2.7 folds) and intestinal permeation (~1.8-fold) higher than IPI vesicles (F3). There was a significant (p < 0.05) enhancement in size, muco-adhesion, and permeation flux achieved after coating with chitosan. The IPI chitosan vesicle (F3C) demonstrated an enhanced bleeding time of 525.33 ± 12.43 s, anti-thrombin activity of 59.72 ± 4.21, and inhibition of platelet aggregation 68.64 ± 3.99%, and anti-platelet activity of 99.47%. The results of the study suggest that IPI chitosan vesicles showed promising in vitro results, as well as improved anti-platelet and anti-thrombotic activity compared to pure IPI and IPI vesicles.
Collapse
Affiliation(s)
- Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Jodhpur 342802, Rajasthan, India
- Correspondence: (C.K.); (S.S.I.)
| | - Mohammad Asif
- Faculty of Pharmacy, Lachoo Memorial College of Science and Technology, Sector-A, Shastri Nagar, Jodhpur 342001, Rajasthan, India;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Adbulrahman University, Riyadh 11671, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (C.K.); (S.S.I.)
| | - Najam Ali Khan
- GMS College of Pharmacy, Shakarpur, Rajabpur, Amroha 244236, Uttar Pradesh, India;
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur 342802, Rajasthan, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia;
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Almaarefa University, Ad Diriyah 13713, Saudi Arabia;
| |
Collapse
|
29
|
El‐Sayed SM, El‐Sayed HS, Elgamily HM, Youssef AM. Preparation and Evaluation of Yogurt fortified with Probiotics Jelly Candy Enriched with Grape Seeds Extract Nanoemulsion. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samah M. El‐Sayed
- Dairy science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| | - Hoda S. El‐Sayed
- Dairy science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| | - Hanaa M. Elgamily
- Restorative and Dental Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| | - Ahmed. M. Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| |
Collapse
|
30
|
Ozkan G, Franco P, De Marco I, Capanoglu E, Esatbeyoglu T. Investigating the effects of supercritical antisolvent process and food models on antioxidant capacity, bioaccessibility and transepithelial transport of quercetin and rutin. Food Funct 2022; 13:4469-4477. [PMID: 35343983 DOI: 10.1039/d1fo04091j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, the effects of the Supercritical Anti-Solvent (SAS) process and food models on the antioxidant capacity, bioaccessibility and transport dynamics of flavonol-loaded polyvinylpyrrolidone (PVP) based microparticles were investigated using a combined in vitro gastrointestinal digestion/Caco-2 cell culture model. SAS-processed and unprocessed flavonols were supplied in two different food models: 10% ethanol for an aqueous hydrophilic food simulant and 3% acetic acid for an acidic food simulant. The SAS processing of quercetin and rutin resulted in a much higher recovery of these bioactives as well as greater retention of antioxidant capacity after gastrointestinal digestion in both hydrophilic and acidic food models. The present study also demonstrates that SAS coprecipitation has a positive effect on the stability and transport of bioactives across the epithelial cell layer. It can be deduced from the results that the SAS process can be a useful method in pharmaceutical and nutraceutical applications with high stability, bioaccessibility, bioavailability and thus enhanced nutritional value.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey. .,Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
31
|
Wu H, Gu J, BK A, Nawaz MA, Barrow CJ, Dunshea FR, Suleria HA. Effect of processing on bioaccessibility and bioavailability of bioactive compounds in coffee beans. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Gao Y, Yuan S, Chen Y, Liu F, Wei Z, Cao W, Li RW, Xu J, Xue C, Tang Q. The improvement effect of astaxanthin-loaded emulsions on obesity is better than that of astaxanthin in the oil phase. Food Funct 2022; 13:3720-3731. [PMID: 35266464 DOI: 10.1039/d1fo03185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emulsion-based delivery systems have been reported to improve the solubility, stability and bioavailability of astaxanthin. In this study, the ability of astaxanthin-loaded emulsions (AL) to ameliorate obesity induced by a high-fat and high-sucrose diet was explored, using astaxanthin in the oil phase (ASTA) as a comparison. After the administration of AL, ASTA (30 mg per kg body weight), or saline on normal or obese mice for 4 weeks, the body fat accumulation levels, hepatic lipid contents and hepatic fatty acid profiles were detected, and AL showed better anti-obesity properties than ASTA. In an acute feeding experiment, it was first observed that the astaxanthin concentration of AL was higher than that of ASTA in the blood and liver of obese mice. What's more, AL altered the microbial co-occurrence patterns in obese mice. Some gut microbial modules that were significantly correlated with obesity-related physiological parameters were identified. Overall, the improvement effect of AL on obesity is better than that of ASTA due to their higher oral absorbability and modulating effects on the gut microbiota, and we suggest AL as a more suitable astaxanthin product type for obese bodies.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Shihan Yuan
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Yuze Chen
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Fang Liu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Zihao Wei
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Wanxiu Cao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Robert W Li
- Laboratory of Animal Genomics and Improvement, United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Jie Xu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China. .,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
33
|
Ricci A, Arboleda Mejia JA, Versari A, Chiarello E, Bordoni A, Parpinello GP. Microencapsulation of polyphenolic compounds recovered from red wine lees: Process optimization and nutraceutical study. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Sahatsapan N, Pamornpathomkul B, Rojanarata T, Ngawhirunpat T, Poonkhum R, Opanasopit P, Patrojanasophon P. Feasibility of mucoadhesive chitosan maleimide-coated liposomes for improved buccal delivery of a protein drug. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Kostka T, Ostberg-Potthoff JJ, Stärke J, Guigas C, Matsugo S, Mirčeski V, Stojanov L, Veličkovska SK, Winterhalter P, Esatbeyoglu T. Bioactive Phenolic Compounds from Lingonberry ( Vaccinium vitis-idaea L.): Extraction, Chemical Characterization, Fractionation and Cellular Antioxidant Activity. Antioxidants (Basel) 2022; 11:467. [PMID: 35326117 PMCID: PMC8944762 DOI: 10.3390/antiox11030467] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Lingonberries contain high contents of bioactive compounds such as chlorogenic acids and anthocyanins. In addition to radical scavenging and antioxidant activities, these compounds can protect cells from DNA damage. For this reason, lingonberries might be well suited for nutraceuticals or natural biomedicines. To assess these applications, the present study characterized and identified the most effective extract, only consisting of anthocyanins, copigments or a mixture of both, obtained from a lingonberry juice concentrate. An extract was generated by using a XAD-7 column followed by fractionation into anthocyanins and copigments using adsorptive membrane chromatography. After identification of main polyphenols by HPLC-photodiode array-electrospray ionization-tandem mass spectrometry, free radical scavenging activity was analyzed by electron spin resonance spectroscopy using 2,2-diphenyl-1-picrylhydrazyl and galvinoxyl radicals. Furthermore, cyclic voltammetry analyses and the Trolox equivalent antioxidant capacity (TEAC) assay were applied. Finally, the reactive oxygen species (ROS) reducing effects of the lingonberry extract and its fractions were evaluated in HepG2 cells. While the combination of anthocyanins and copigments possessed the highest antioxidant activities, all samples (XAD-7 extract, anthocyanin and copigment fraction) protected cells from oxidative stress. Thus, synergistic effects between phenolic compounds may be responsible for the high antioxidant potential of lingonberries, enabling their use as nutraceuticals.
Collapse
Affiliation(s)
- Tina Kostka
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | | | - Joachim Stärke
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - Claudia Guigas
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - Seiichi Matsugo
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| | - Valentin Mirčeski
- Department of Inorganic and Analytical Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
- Institute of Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia
| | - Leon Stojanov
- Institute of Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia
| | | | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| |
Collapse
|
36
|
Imam SS, Alshehri S, Altamimi MA, Almalki RKH, Hussain A, Bukhari SI, Mahdi WA, Qamar W. Formulation of Chitosan-Coated Apigenin Bilosomes: In Vitro Characterization, Antimicrobial and Cytotoxicity Assessment. Polymers (Basel) 2022; 14:polym14050921. [PMID: 35267744 PMCID: PMC8912891 DOI: 10.3390/polym14050921] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022] Open
Abstract
We prepared apigenin (APG)-loaded bilosomes (BLs) and evaluated them for vesicle size, zeta-potential and encapsulation efficiency. The formulations were prepared with cholesterol (CHL), sodium deoxy cholate (SDC), Tween 80 (T80) and phosphatidylcholine (PC) using solvent evaporation method. The prepared formulations showed the optimum result was coated with much mucoadhesive polymer chitosan (CH, 0.25 and 0.5% w/v). The chitosan-coated bilosomes (CH-BLs) were further evaluated for surface morphology, drug−polymer interaction, mucoadhesion, permeation, antimicrobial activity and cell viability. The prepared APG-BLs showed nano-metric size (211 ± 2.87 nm to 433 ± 1.98 nm), polydispersibility index <0.5, negative zeta potential (−15 to −29 mV) and enhanced encapsulation efficiency (69.5 ± 0.93 to 81.9 ± 1.3%). Based on these findings, selected formulation (F2) was further coated with chitosan and showed a marked increase in vesicle size (298 ± 3.56 nm), a positive zeta potential (+17 mV), superior encapsulation efficiency (88.1 ± 1.48%) and improved drug release (69.37 ± 1.34%). Formulation F2C1 showed significantly enhanced permeation and mucoadhesion (p < 0.05) compared to formulation F2 due to the presence of CH as a mucoadhesive polymer. The presence of CH on the surfaces of BLs helps to open the tight membrane junctions and leads to enhanced permeation. A TEM study revealed non-aggregated smooth surface vesicles. The antimicrobial and cell viability assessment revealed better effects in terms of zone of inhibition and cell line assessment against two different cancer cell line. From the study, it can be concluded that APG-CHBLs could be a superior alternative to conventional delivery systems.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (R.K.H.A.); (A.H.); (S.I.B.); (W.A.M.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (R.K.H.A.); (A.H.); (S.I.B.); (W.A.M.)
- Correspondence:
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (R.K.H.A.); (A.H.); (S.I.B.); (W.A.M.)
| | - Raed Khalid Hassan Almalki
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (R.K.H.A.); (A.H.); (S.I.B.); (W.A.M.)
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (R.K.H.A.); (A.H.); (S.I.B.); (W.A.M.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (R.K.H.A.); (A.H.); (S.I.B.); (W.A.M.)
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (R.K.H.A.); (A.H.); (S.I.B.); (W.A.M.)
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
37
|
Zafar A, Alruwaili NK, Imam SS, Alsaidan OA, Ahmed MM, Yasir M, Warsi MH, Alquraini A, Ghoneim MM, Alshehri S. Development and Optimization of Hybrid Polymeric Nanoparticles of Apigenin: Physicochemical Characterization, Antioxidant Activity and Cytotoxicity Evaluation. SENSORS (BASEL, SWITZERLAND) 2022; 22:1364. [PMID: 35214260 PMCID: PMC8962971 DOI: 10.3390/s22041364] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023]
Abstract
Breast cancer is the most common cancer in females and ranked second after skin cancer. The use of natural compounds is a good alternative for the treatment of breast cancer with less toxicity than synthetic drugs. The aim of the present study is to develop and characterize hybrid Apigenin (AN) Nanoparticles (NPs) for oral delivery (AN-NPs). The hybrid AN-NPs were prepared by the self-assembly method using lecithin, chitosan and TPGS. Further, the NPs were optimized by Box-Behnken design (3-factor, 3-level). The hybrid NPs were evaluated for particle size (PS), entrapment efficiency (EE), zeta potential (ZP), and drug release. The optimized hybrid NPs (ON2), were further evaluated for solid state characterization, permeation, antioxidant, cytotoxicity and antimicrobial study. The formulation (ON2) exhibited small PS of 192.6 ± 4.2 nm, high EE 69.35 ± 1.1%, zeta potential of +36.54 mV, and sustained drug release (61.5 ± 2.5% in 24 h), as well as significantly (p < 0.05) enhanced drug permeation and antioxidant activity. The IC50 of pure AN was found to be significantly (p < 0.05) lower than the formulation (ON2). It also showed significantly greater (p < 0.05) antibacterial activity than pure AN against Bacillus subtilis and Salmonella typhimurium. From these findings, it revealed that a hybrid AN polymeric nanoparticle is a good carrier for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (N.K.A.); (O.A.A.)
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (N.K.A.); (O.A.A.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (N.K.A.); (O.A.A.)
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella 396, Ethiopia;
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al-Maarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
38
|
Marcel MR, Chacha JS, Ofoedu CE. Nutritional evaluation of complementary porridge formulated from orange-fleshed sweet potato, amaranth grain, pumpkin seed, and soybean flours. Food Sci Nutr 2022; 10:536-553. [PMID: 35154690 PMCID: PMC8825733 DOI: 10.1002/fsn3.2675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
Supplementing breastmilk with poor energy and nutrient-dense complementary foodstuffs for young children and infants has resulted in malnutrition, poor growth, and retardation of infant development in many sub-Saharan African countries. Ensuring nutrient adequacy for infants because of their lower consumption requires energy and nutrient-dense food. In this context, the nutritional composition of porridge from complementary flour blends of locally available foodstuffs (orange-fleshed sweet potato, pumpkin seeds, amaranth grains, and soybeans) was carried out. Complementary flours formulated from flour blends of pumpkin seeds, extrusion cooked soybean, and orange-fleshed sweet potato, as well as germinated and extrusion cooked amaranth grains, resulted in varieties of complementary porridges (SAPO1-SAPO5). From these, proximate composition, mineral content (sodium, iron, magnesium, calcium, phosphorus, and zinc), vitamin contents (A and C), and nutrient density of the formulated complementary porridge were determined. Results showed that all the formulated complementary porridge were able to meet the stipulated standards of energy and nutrient (zinc, iron, vitamin A, and protein) densities. Flour blend ratio, germination process, and extrusion cooking significantly (p < .05) influenced the targeted nutrients of interest, as well as the nutrient and energy densities of the formulated complementary porridge. Specifically, the formulated complementary porridge with 40% amaranth grain, 25% orange-fleshed sweet potato, 20% soybean, and 15% pumpkin seed composite mixture had 76.92% compliance level with recommended standards, which assure adequate nutrient complementation to breastfeeding. The present study provides a valuable insight that complementary foods from locally obtainable foodstuffs are potential solutions for mitigating childhood malnutrition and adequate complementation to breastfeeding by proffering the needed energy and nutrient densities required for the immunity, well-being, growth, and development of young children and infants, without fortification.
Collapse
Affiliation(s)
- Mary R. Marcel
- Department of Human Nutrition and Consumer Sciences, College of AgricultureSokoine University of AgricultureMorogoroTanzania
| | - James S. Chacha
- Department of Food Science and Agroprocessing, School of Engineering and TechnologySokoine University of AgricultureMorogoroTanzania
| | - Chigozie E. Ofoedu
- Department of Food Science and Technology, School of Engineering and Engineering TechnologyFederal University of TechnologyOwerriImo StateNigeria
| |
Collapse
|
39
|
Gupta S, Tejavath KK. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Fathi F, Ebrahimi SN, Prior JAV, Machado SML, Kouchaksaraee RM, Oliveira MBPP, Alves RC. Formulation of Nano/Micro-Carriers Loaded with an Enriched Extract of Coffee Silverskin: Physicochemical Properties, In Vitro Release Mechanism and In Silico Molecular Modeling. Pharmaceutics 2022; 14:112. [PMID: 35057007 PMCID: PMC8781543 DOI: 10.3390/pharmaceutics14010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
Designing strategies for an effective transformation of food waste into high-value products is a priority to address environmental sustainability concerns. Coffee silverskin is the major by-product of the coffee roasting industry, being rich in compounds with health benefits. Such composition gives it the potential to be transformed into high-value products. In this study, coffee silverskin extracts were enriched, regarding caffeine and chlorogenic acid contents, by adsorbent column chromatography. The compounds content increased 3.08- and 2.75-fold, respectively, compared to the original extract. The enriched fractions were loaded into nano-phytosomes or cholesterol-incorporated nano-phytosomes (first coating layers) to improve the physiochemical properties and permeation rate. These nano-lipid carriers were also subjected to a secondary coating with different natural polymers to improve protection and stability against degradation. In parallel, and for comparison, different natural polymers were also used as first coating layers. The produced particles were evaluated regarding product yield, encapsulation efficiency, loading capacity, particle size, surface charge, and in vitro release simulating gastrointestinal conditions. All samples exhibited anionic surface charge. FTIR and molecular docking confirmed interactions between the phytoconstituents and lipid bilayers. The best docking score was observed for 5-caffeoylquinic acid (chlorogenic acid) exhibiting a stronger hydrogen binding to the lipid bilayer. Among several kinetic models tested, the particle release mechanism fitted well with the First-order, Korsmeyer-Peppas, and Higuchi models. Moreover, most of the formulated particles followed the diffusion-Fick law and anomalous transport.
Collapse
Affiliation(s)
- Faezeh Fathi
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - João A. V. Prior
- REQUIMTE/LAQV, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Susana M. L. Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Reza Mohsenian Kouchaksaraee
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| |
Collapse
|
41
|
Meerson A, Khatib S, Mahajna J. Natural Products Targeting Cancer Stem Cells for Augmenting Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222313044. [PMID: 34884848 PMCID: PMC8657727 DOI: 10.3390/ijms222313044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor's resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.
Collapse
Affiliation(s)
- Ari Meerson
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Soliman Khatib
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Jamal Mahajna
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
- Correspondence:
| |
Collapse
|
42
|
Kasote D, Tiozon RN, Sartagoda KJD, Itagi H, Roy P, Kohli A, Regina A, Sreenivasulu N. Food Processing Technologies to Develop Functional Foods With Enriched Bioactive Phenolic Compounds in Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:771276. [PMID: 34917106 PMCID: PMC8670417 DOI: 10.3389/fpls.2021.771276] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 05/13/2023]
Abstract
Cereal grains and products provide calories globally. The health benefits of cereals attributed to their diverse phenolic constituents have not been systematically explored. Post-harvest processing, such as drying, storing, and milling cereals, can alter the phenolic concentration and influence the antioxidant activity. Furthermore, cooking has been shown to degrade thermo-labile compounds. This review covers several methods for retaining and enhancing the phenolic content of cereals to develop functional foods. These include using bioprocesses such as germination, enzymatic, and fermentation treatments designed to enhance the phenolics in cereals. In addition, physical processes like extrusion, nixtamalization, and parboiling are discussed to improve the bioavailability of phenolics. Recent technologies utilizing ultrasound, micro- or nano-capsule polymers, and infrared utilizing processes are also evaluated for their effectiveness in improving the phenolics content and bio-accessibility. We also present contemporary products made from pigmented cereals that contain phenolics.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Rhowell N. Tiozon
- International Rice Research Institute, Los Baños, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Hameeda Itagi
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Priyabrata Roy
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Nese Sreenivasulu
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
- International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
43
|
Beaumont P, Faure C, Courtois A, Jourdes M, Marchal A, Teissedre PL, Richard T, Atgié C, Krisa S. Trans-ε-Viniferin Encapsulation in Multi-Lamellar Liposomes: Consequences on Pharmacokinetic Parameters, Biodistribution and Glucuronide Formation in Rats. Nutrients 2021; 13:4212. [PMID: 34959765 PMCID: PMC8708455 DOI: 10.3390/nu13124212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Trans-ε-viniferin (εVin) is a resveratrol dimer exhibiting promising biological activities for human health. Its bioavailability being low, the development of encapsulation methods would be used to overcome this issue. The aim of this study was to measure the consequences of the encapsulation of εVin in multilamellar liposomes on its pharmacokinetic parameters, metabolism and tissue distribution in rats. After oral administration of εVin (20 mg/kg body weight), either as free or encapsulated forms, plasmas were sequentially collected (from 0 to 4 h) as well as liver, kidneys and adipose tissues (4 h after administration) and analyzed by LC-HRMS. The glucuronide metabolites (εVG) were also produced by hemisynthesis for their quantification in plasma and tissues. The encapsulation process did not significantly modify the pharmacokinetic parameters of εVin itself. However, a significant increase of the T1/2 was noticed for εVG after administration of the encapsulated form as compared to the free form. An accumulation of εVin and εVG in adipose tissues was noticed, and interestingly a significant increase of the latter in the mesenteric one after administration of the encapsulated form was highlighted. Since adipose tissues could represent storage depots, and encapsulation allows for prolonging the exposure time of glucuronide metabolites in the organism, this could be of interest to promote their potential biological activities.
Collapse
Affiliation(s)
- Pauline Beaumont
- INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 33140 Villenave d’Ornon, France; (P.B.); (A.C.); (M.J.); (A.M.); (P.-L.T.); (T.R.)
| | - Chrystel Faure
- CNRS, Bordeaux INP, CBMN, UMR 5248, Université de Bordeaux, 33600 Pessac, France;
| | - Arnaud Courtois
- INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 33140 Villenave d’Ornon, France; (P.B.); (A.C.); (M.J.); (A.M.); (P.-L.T.); (T.R.)
- Centre Antipoison et de Toxicovigilance de Nouvelle Aquitaine, Bâtiment UNDR, CHU de Bordeaux, Place Amélie Raba Léon, 33076 Bordeaux, France
| | - Michael Jourdes
- INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 33140 Villenave d’Ornon, France; (P.B.); (A.C.); (M.J.); (A.M.); (P.-L.T.); (T.R.)
| | - Axel Marchal
- INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 33140 Villenave d’Ornon, France; (P.B.); (A.C.); (M.J.); (A.M.); (P.-L.T.); (T.R.)
| | - Pierre-Louis Teissedre
- INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 33140 Villenave d’Ornon, France; (P.B.); (A.C.); (M.J.); (A.M.); (P.-L.T.); (T.R.)
| | - Tristan Richard
- INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 33140 Villenave d’Ornon, France; (P.B.); (A.C.); (M.J.); (A.M.); (P.-L.T.); (T.R.)
| | - Claude Atgié
- CNRS, Bordeaux INP, CBMN, UMR 5248, Université de Bordeaux, 33600 Pessac, France;
| | - Stéphanie Krisa
- INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 33140 Villenave d’Ornon, France; (P.B.); (A.C.); (M.J.); (A.M.); (P.-L.T.); (T.R.)
| |
Collapse
|
44
|
Pappalardo I, Santarsiero A, De Luca M, Acquavia MA, Todisco S, Caddeo C, Bianco G, Infantino V, Martelli G, Vassallo A. Exploiting the Anti-Inflammatory Potential of White Capsicum Extract by the Nanoformulation in Phospholipid Vesicles. Antioxidants (Basel) 2021; 10:antiox10111683. [PMID: 34829554 PMCID: PMC8614711 DOI: 10.3390/antiox10111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022] Open
Abstract
The peppers of the Capsicum species are exploited in many fields, as flavoring agents in food industry, or as decorative and therapeutic plants. Peppers show a diversified phytochemical content responsible for different biological activities. Synergic activity exerted by high levels of antioxidant compounds is responsible for their important anti-inflammatory property. A methanolic extract was obtained from a new pepper genotype and tested for anti-inflammatory activity. The extract was incorporated into phospholipid vesicles to increase the bioavailability of its bioactive components. Two types of phospholipid vesicles were produced, conventional liposomes and Penetration Enhancer containing Vesicles (PEVs). They were tested in human monoblastic leukemia U937 cell line, showing no cytotoxic effect. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were measured to value the in vitro efficacy of the vesicles in regulating inflammatory responses. Liposomal incorporation significantly reduced ROS levels in extract-treated LPS-activated cells. Furthermore, LC-MS/MS analyses demonstrated that liposomes facilitated the transport of the extract components across the cell membrane and their accumulation into the cytoplasm.
Collapse
Affiliation(s)
- Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- ALMACABIO Srl, C/so Italia 27, 39100 Bolzano, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Maria De Luca
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- KAMABIO Srl, Via Al Boschetto 4/B, 39100 Bolzano, Italy
| | - Maria Assunta Acquavia
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- Thema Informatik Srl, Via Ressel 2/F, 39100 Bolzano, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Carla Caddeo
- Department of Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
- Correspondence: ; Tel.: +39-0706-758-462
| | - Giuliana Bianco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- Spinoff TNcKILLERS s.r.l., Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
45
|
Rashwan AK, Karim N, Xu Y, Xie J, Cui H, Mozafari MR, Chen W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit Rev Food Sci Nutr 2021:1-24. [PMID: 34661483 DOI: 10.1080/10408398.2021.1987858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anthocyanins (ACNs) are notable hydrophilic compounds that belong to the flavonoid family, which are available in plants. They have excellent antioxidants, anti-obesity, anti-diabetic, anti-inflammatory, anticancer activity, and so on. Furthermore, ACNs can be used as a natural dye in the food industry (food colorant). On the other hand, the stability of ACNs can be affected by processing and storage conditions, for example, pH, temperature, light, oxygen, enzymes, and so on. These factors further reduce the bioavailability (BA) and biological efficacy of ACNs, as well as limit ACNs application in both food and pharmaceutics field. The stability and BA of ACNs can be improved via loading them in encapsulation systems including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nanogel, complex coacervates, and tocosomes. Among all systems, biopolymer-based nanoparticles, nanohydrogels, and complex coacervates are comparatively suitable for improving the stability and BA of ACNs. These three systems have excellent functional properties such as high encapsulation efficiency and well-stable against unfavorable conditions. Furthermore, these carrier systems can be used for coating of other encapsulation systems (such as liposome). Additionally, tocosomes are a new system that can be used for encapsulating ACNs. ACNs-loaded encapsulation systems can improve the stability and BA of ACNs. However, further studies regarding stability, BA, and in vivo work of ACNs-loaded micro/nano-encapsulation systems could shed a light to evaluate the therapeutic efficacy including physicochemical stability, target mechanisms, cellular internalization, and release kinetics.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Haoxin Cui
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, Australia
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Tan Y, Tam CC, Rolston M, Alves P, Chen L, Meng S, Hong H, Chang SKC, Yokoyama W. Quercetin Ameliorates Insulin Resistance and Restores Gut Microbiome in Mice on High-Fat Diets. Antioxidants (Basel) 2021; 10:antiox10081251. [PMID: 34439499 PMCID: PMC8389224 DOI: 10.3390/antiox10081251] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Quercetin is a flavonoid that has been shown to have health-promoting capacities due to its potent antioxidant activity. However, the effect of chronic intake of quercetin on the gut microbiome and diabetes-related biomarkers remains unclear. Male C57BL/6J mice were fed HF or HF supplemented with 0.05% quercetin (HFQ) for 6 weeks. Diabetes-related biomarkers in blood were determined in mice fed high-fat (HF) diets supplemented with quercetin. Mice fed the HFQ diet gained less body, liver, and adipose weight, while liver lipid and blood glucose levels were also lowered. Diabetes-related plasma biomarkers insulin, leptin, resistin, and glucagon were significantly reduced by quercetin supplementation. In feces, quercetin supplementation significantly increased the relative abundance of Akkermansia and decreased the Firmicutes/Bacteroidetes ratio. The expression of genes Srebf1, Ppara, Cyp51, Scd1, and Fasn was downregulated by quercetin supplementation. These results indicated that diabetes biomarkers are associated with early metabolic changes accompanying obesity, and quercetin may ameliorate insulin resistance.
Collapse
Affiliation(s)
- Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China;
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (P.A.); (L.C.); (W.Y.)
| | - Christina C. Tam
- Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | - Matt Rolston
- Host Microbe Systems Biology Core, University of California, One Shields Avenue, Davis, CA 95616, USA;
| | - Priscila Alves
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (P.A.); (L.C.); (W.Y.)
| | - Ling Chen
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (P.A.); (L.C.); (W.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shi Meng
- Nestlé R & D (China) Ltd., Beijing 100015, China
- Key Research Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (S.M.); (H.H.)
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China;
- Correspondence: (S.M.); (H.H.)
| | - Sam K. C. Chang
- Experimental Seafood Processing Laboratory, Costal Research and Extension Center, Mississippi State University, Biloxi, MS 39579, USA;
| | - Wallace Yokoyama
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (P.A.); (L.C.); (W.Y.)
| |
Collapse
|
47
|
Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf 2021; 20:5173-5196. [PMID: 34350681 DOI: 10.1111/1541-4337.12808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Dysregulated glucose metabolism is associated with many chronic diseases such as obesity and type 2 diabetes mellitus (T2DM), and strategies to restore and maintain glucose homeostasis are essential to health. The incretin hormone of glucagon-like peptide-1 (GLP-1) is known to play a critical role in regulating glucose homeostasis and dietary nutrients are the primary stimuli to the release of intestinal GLP-1. However, the GLP-1 producing enteroendocrine L-cells are mainly distributed in the distal region of the gastrointestinal tract where there are almost no nutrients to stimulate the secretion of GLP-1 under normal situations. Thus, a dietary strategy to sustain the release of GLP-1 was proposed, and the slow digestion property and dipeptidyl peptidase IV (DPP-IV) inhibitory activity of food components, approaches to reduce the rate of food digestion, and mechanisms to sustain the release of GLP-1 were reviewed. A slow digestion-oriented dietary approach through encapsulation of nutrients, incorporation of viscous dietary fibers, and enzyme inhibitors of phytochemicals in a designed whole food matrix will be implemented to efficiently reduce the digestion rate of food nutrients, potentiate their distal deposition and a sustained secretion of GLP-1, which will be beneficial to improved glucose homeostasis and health.
Collapse
Affiliation(s)
- Wangyan Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wang Ying
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
48
|
Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules 2021; 26:molecules26154621. [PMID: 34361774 PMCID: PMC8347607 DOI: 10.3390/molecules26154621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
Polyphenols play a therapeutic role in vascular diseases, acting in inherent illness-associate conditions such as inflammation, diabetes, dyslipidemia, hypertension, and oxidative stress, as demonstrated by clinical trials and epidemiological surveys. The main polyphenol cardioprotective mechanisms rely on increased nitric oxide, decreased asymmetric dimethylarginine levels, upregulation of genes encoding antioxidant enzymes via the Nrf2-ARE pathway and anti-inflammatory action through the redox-sensitive transcription factor NF-κB and PPAR-γ receptor. However, poor polyphenol bioavailability and extensive metabolization restrict their applicability. Polyphenols carried by nanoparticles circumvent these limitations providing controlled release and better solubility, chemical protection, and target achievement. Nano-encapsulate polyphenols loaded in food grade polymers and lipids appear to be safe, gaining resistance in the enteric route for intestinal absorption, in which the mucoadhesiveness ensures their increased uptake, achieving high systemic levels in non-metabolized forms. Nano-capsules confer a gradual release to these compounds, as well as longer half-lives and cell and whole organism permanence, reinforcing their effectiveness, as demonstrated in pre-clinical trials, enabling their application as an adjuvant therapy against cardiovascular diseases. Polyphenol entrapment in nanoparticles should be encouraged in nutraceutical manufacturing for the fortification of foods and beverages. This study discusses pre-clinical trials evaluating how nano-encapsulate polyphenols following oral administration can aid in cardiovascular performance.
Collapse
|
49
|
Evaluation of the bioaccessibility of tetrahydrocurcumin-hyaluronic acid conjugate using in vitro and ex vivo models. Int J Biol Macromol 2021; 182:1322-1330. [PMID: 34004198 DOI: 10.1016/j.ijbiomac.2021.05.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Tetrahydrocurcumin-hyaluronic acid (THC-HA) conjugate was synthesized in order to improve the bioaccessibility of tetrahydrocurcumin (THC). The successful conjugation was confirmed by the results from 1H-nuclear magnetic resonance (1H NMR), Differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Bioaccessibility enhancement from the THC-HA conjugate compared to the free crystalline THC suspension was demonstrated by the results from ex vivo Franz diffusion cell using small intestine from porcine and in vitro TNO dynamic gastrointestinal model-1 (TIM-1). Additionally, in vitro release was studied, and the integrity of the conjugate in both simulated gastric and intestinal conditions was found to maintain for up to 4 h. Mucoadhesive assay and rheological results indicated that the mucoadhesive property of THC-HA, in combination with the aqueous solubility enhancement, might contribute to the increased bioaccessibility. This study provides a promising approach to enhance the bioaccessibility of tetrahydrocurcumin through the innovative conjugation with hyaluronic acid.
Collapse
|
50
|
Formulation and characterization of zein/gum arabic nanoparticles for the encapsulation of a rutin-rich extract from Ruta chalepensis L. Food Chem 2021; 367:129982. [PMID: 34375887 DOI: 10.1016/j.foodchem.2021.129982] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
Rutin, a plant flavonol characterized by a wide range of biological effects, has limited application in foods because of its low water solubility and scarce bioavailability. This work aimed to investigate the encapsulation of a rutin-rich extract (200.6 ± 1.5 mg/g of rutin) from Ruta chalepensis L. in zein nanoparticles (hydrodynamic diameter of 80-170 nm) prepared by antisolvent precipitation and stabilized by gum arabic (GA). The addition of GA (1:1 mass ratio with zein) significantly reduced the instability phenomena of zein nanoparticles through the deposition of a negatively charged layer as evidenced by the zeta potential and the UV-visible measurement, suggesting an electrostatic interaction between zein and GA. It also contributed to enhancing the encapsulation efficiency of rutin and inducing a rapid release during simulated digestion. These findings show that zein/GA nanoparticles represent a promising delivery system for natural extracts, fabricated through a facile and versatile process.
Collapse
|