1
|
Tunçel E, Tort S, Han S, Yücel Ç, Tırnaksız F. Development and optimization of hydrogel-forming microneedles fabricated with 3d-printed molds for enhanced dermal diclofenac sodium delivery: a comprehensive in vitro, ex vivo, and in vivo study. Drug Deliv Transl Res 2024:10.1007/s13346-024-01728-1. [PMID: 39455506 DOI: 10.1007/s13346-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
With the developing manufacturing technologies, the use of 3D printers in microneedle production is becoming widespread. Hydrogel-forming microneedles (HFMs), a variant of microneedles, demonstrate distinctive features such as a high loading capacity and controlled drug release. In this study, the conical microneedle master molds with approximately 500 μm needle height and 250 μm base diameter were created using a Stereolithography (SLA) 3D printer and were utilized to fabricate composite HFMs containing diclofenac sodium. Using Box-Behnken Design, the effects of different polymers on swelling index and mechanical strength of the developed HFMs were evaluated. The optimum HFMs were selected according to experimental design results with the aim of the highest mechanical strength with varying swelling indexes, which was needed to use 20% Gantrez S97 and 0.1% (F22), 0.42% (F23), and 1% (F24) hyaluronic acid. The skin penetration and drug release properties of the optimum formulations were assessed. Ex vivo studies were conducted on formulations to determine drug penetration and accumulation. F24, which has the highest mechanical strength and optimized swelling index, achieved the highest drug accumulation in the skin tissue (17.70 ± 3.66%). All optimum HFMs were found to be non-cytotoxic by the MTT cell viability test (> 70% cell viability). In in vivo studies, the efficacy of the F24 was assessed for the treatment of xylene-induced ear edema by contrasting it to the conventional dosage form. It was revealed that HFMs might be an improved replacement for conventional dosage forms in terms of dermal diseases such as actinic keratosis.
Collapse
Affiliation(s)
- Emre Tunçel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Figen Tırnaksız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye.
| |
Collapse
|
2
|
Machado ND, Mosquera JE, Cejudo-Bastante C, Goñi ML, Martini RE, Gañán NA, Mantell-Serrano C, Casas-Cardoso L. Supercritical Impregnation of PETG with Olea europaea Leaf Extract: Influence of Operational Parameters on Expansion Degree, Antioxidant and Mechanical Properties. Polymers (Basel) 2024; 16:1567. [PMID: 38891513 PMCID: PMC11174583 DOI: 10.3390/polym16111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
PETG (poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)) is an amorphous copolymer, biocompatible, recyclable, and versatile. Nowadays, it is being actively researched for biomedical applications. However, proposals of PETG as a platform for the loading of bioactive compounds from natural extract are scarce, as well as the effect of the supercritical impregnation on this polymer. In this work, the supercritical impregnation of PETG filaments with Olea europaea leaf extract was investigated, evaluating the effect of pressure (100-400 bar), temperature (35-55 °C), and depressurization rate (5-50 bar min-1) on the expansion degree, antioxidant activity, and mechanical properties of the resulting filaments. PETG expansion degree ranged from ~3 to 120%, with antioxidant loading ranging from 2.28 to 17.96 g per 100 g of polymer, corresponding to oxidation inhibition values of 7.65 and 66.55%, respectively. The temperature and the binary interaction between pressure and depressurization rate most affected these properties. The mechanical properties of PETG filaments depended greatly on process variables. Tensile strength values were similar or lower than the untreated filaments. Young's modulus and elongation at break values decreased below ~1000 MPa and ~10%, respectively, after the scCO2 treatment and impregnation. The extent of this decrease depended on the supercritical operational parameters. Therefore, filaments with higher antioxidant activity and different expansion degrees and mechanical properties were obtained by adjusting the supercritical processing conditions.
Collapse
Affiliation(s)
- Noelia D. Machado
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Spain; (C.C.-B.); (C.M.-S.); (L.C.-C.)
| | - José E. Mosquera
- Centre de Recherche de Royallieu, Laboratoire Transformations Intégrées de la Matière Renouvelable (TIMR), Ecole Supérieure de Chimie Organique et Minérale (ESCOM), Université de Technologie de Compiègne, Rue du Docteur Schweitzer CS 60319, 60203 Compiègne, France;
| | - Cristina Cejudo-Bastante
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Spain; (C.C.-B.); (C.M.-S.); (L.C.-C.)
| | - María L. Goñi
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA–UNC–CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina; (M.L.G.); (R.E.M.); (N.A.G.)
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (ICTA–FCEFyN–UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Raquel E. Martini
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA–UNC–CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina; (M.L.G.); (R.E.M.); (N.A.G.)
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (ICTA–FCEFyN–UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Nicolás A. Gañán
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA–UNC–CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina; (M.L.G.); (R.E.M.); (N.A.G.)
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (ICTA–FCEFyN–UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Casimiro Mantell-Serrano
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Spain; (C.C.-B.); (C.M.-S.); (L.C.-C.)
| | - Lourdes Casas-Cardoso
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Spain; (C.C.-B.); (C.M.-S.); (L.C.-C.)
| |
Collapse
|
3
|
Liu Y, Wu Z, Chen Y, Guan Y, Guo H, Yang M, Yue P. Rubusoside As a Multifunctional Stabilizer for Novel Nanocrystal-Based Solid Dispersions with a High Drug Loading: A Case Study. J Pharm Sci 2024; 113:699-710. [PMID: 37659720 DOI: 10.1016/j.xphs.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
The oral bioavailability of poorly soluble drugs has always been the focus of pharmaceutical researchers. We innovatively combined nanocrystal technology and solid dispersion technology to prepare novel nanocrystalline solid dispersions (NCSDs), which enable both the solidification and redispersion of nanocrystals, offering a promising new pathway for oral delivery of insoluble Chinese medicine ingredients. The rubusoside (Rub) was first used as the multifunctional stabilizer of novel apigenin nanocrystal-based solid dispersions (AP-NSD), improving the in vitro solubilization rate of the insoluble drug apigenin(AP). AP-NSD has been produced using a combination of homogenisation and spray-drying technology. The effects of stabilizer type and concentration on AP nanosuspensions (AP-NS) particles, span, and zeta potential were studied. And the effects of different types of protective agents on the yield and redispersibility of AP-NSD were also studied. Furthermore, AP-NSD was characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). Solubility was used to assess the in vitro dissolution of AP-NSD relative to APIs and amorphous solid dispersions (AP-ASD), and AP-ASD was prepared by the solvent method. The results showed that 20% Rub stabilized AP-NSD exhibited high drug-loading and good redispersibility and stability, and higher in vitro dissolution rate, which may be related to the presence of Rub on surface of drug. Therefore provides a natural and safe option for the development of formulations for insoluble drugs.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Zhenfeng Wu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Yingchong Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Yongmei Guan
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Huiwen Guo
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Ming Yang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China.
| |
Collapse
|
4
|
Maurizii G, Moroni S, Khorshid S, Aluigi A, Tiboni M, Casettari L. 3D-printed EVA-based patches manufactured by direct powder extrusion for personalized transdermal therapies. Int J Pharm 2023; 635:122720. [PMID: 36781085 DOI: 10.1016/j.ijpharm.2023.122720] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
In recent years, 3D printing has attracted great interest in the pharmaceutical field as a promising tool for the on-demand manufacturing of patient-centered pharmaceutical forms. Among the existing 3D printing techniques, direct powder extrusion (DPE) resulted as the most practical approach thanks to the possibility to directly process excipients and drugs in a single step. The main goal of this work was to determine whether different grades of ethylene vinyl acetate (EVA) copolymer might be employed as new feedstock materials for the DPE technique to manufacture transdermal patches. By selecting two model drugs with different thermal behavior, (i.e., ibuprofen and diclofenac sodium) we also wanted to pay attention to the versatility of EVA excipient in preparing patches for customized transdermal therapies. EVA was combined with 30 % (w/w) of each model drugs. The physicochemical composition of the printed devices was investigated through Fourier-transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analyses. FT-IR spectra confirmed that the starting materials were effectively incorporated into the final formulation, and thermal analyses demonstrated that the extrusion process altered the crystalline morphology of the raw polymers inducing the formation of crystals at lower thicknesses. Lastly, the drug release and permeation profile of the printed systems was evaluated for 48 h and showed to be dependent on the VA content of the EVA grade (74.5 % of ibuprofen released from EVA 4030AC matrix and 12.6 % of diclofenac sodium released from EVA1821A matrix). Hence, this study demonstrated that EVA and direct powder extrusion technique could be promising tools for manufacturing transdermal patches. By selecting the EVA grade with the appropriate VA content, drugs with dissimilar melting points could be printed preserving their thermal stability. Moreover, the desired drug release and permeation profile of the drug can be achieved, representing an important advantage in terms of personalized medicine.
Collapse
Affiliation(s)
- Giorgia Maurizii
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Sofia Moroni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Shiva Khorshid
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy.
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy; Prosopika Srl, Via del Trabocchetto, 1, 61034, Fossombrone, PU, Italy
| |
Collapse
|
5
|
Mazarura KR, Kumar P, Choonara YE. Customised 3D printed multi-drug systems: An effective and efficient approach to polypharmacy. Expert Opin Drug Deliv 2022; 19:1149-1163. [PMID: 36059243 DOI: 10.1080/17425247.2022.2121816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Combination therapies continue to improve therapeutic outcomes as currently achieved by polypharmacy. Since the introduction of the polypill, there has been a significant improvement in adherence and patient outcomes. However, the mass production of polypills presents a number of technical, formulation, and clinical challenges. The current one-size-fits-all approach ignores the unique clinical demands of patients, necessitating the adoption of a more versatile tool. That will be the novel, but not so novel, 3D printing. AREAS COVERED : The present review investigates this promising paradigm shift from one medication for all, to customised medicines, providing an overview of the current state of 3D-printed multi-active pharmaceutical forms, techniques applied and printing materials. Details on cost implications, as well as potential limitations and challenges are also elaborated. EXPERT OPINION : 3D printing of multi-active systems, is not only beneficial but also essential. With growing interest in this field, a shift in manufacturing, prescribing, and administration patterns is at this point, unavoidable. Addressing limitations and challenges, as well as data presentation on clinical trial results, will aid in the acceleration of this technology's implementation. However, it is clear that 3D printing is not the end of it, as evidenced by the emerging 4D printing technology.
Collapse
Affiliation(s)
- Kundai R Mazarura
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
6
|
Bácskay I, Ujhelyi Z, Fehér P, Arany P. The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14071312. [PMID: 35890208 PMCID: PMC9318419 DOI: 10.3390/pharmaceutics14071312] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since the appearance of the 3D printing in the 1980s it has revolutionized many research fields including the pharmaceutical industry. The main goal is to manufacture complex, personalized products in a low-cost manufacturing process on-demand. In the last few decades, 3D printing has attracted the attention of numerous research groups for the manufacturing of different drug delivery systems. Since the 2015 approval of the first 3D-printed drug product, the number of publications has multiplied. In our review, we focused on summarizing the evolution of the produced drug delivery systems in the last 20 years and especially in the last 5 years. The drug delivery systems are sub-grouped into tablets, capsules, orodispersible films, implants, transdermal delivery systems, microneedles, vaginal drug delivery systems, and micro- and nanoscale dosage forms. Our classification may provide guidance for researchers to more easily examine the publications and to find further research directions.
Collapse
Affiliation(s)
- Ildikó Bácskay
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Petra Arany
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
7
|
Anwar-Fadzil AFB, Yuan Y, Wang L, Kochhar JS, Kachouie NN, Kang L. Recent progress in three-dimensionally-printed dosage forms from a pharmacist perspective. J Pharm Pharmacol 2022; 74:1367-1390. [PMID: 35191505 DOI: 10.1093/jpp/rgab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Additive manufacturing (AM), commonly known as 3D printing (3DP), has opened new frontiers in pharmaceutical applications. This review is aimed to summarise the recent development of 3D-printed dosage forms, from a pharmacists' perspective. METHODS Keywords including additive manufacturing, 3D printing and drug delivery were used for literature search in PubMed, Excerpta Medica Database (EMBASE) and Web of Science, to identify articles published in the year 2020. RESULTS For each 3DP study, the active pharmaceutical ingredients, 3D printers and materials used for the printing were tabulated and discussed. 3DP has found its applications in various dosage forms for oral delivery, transdermal delivery, rectal delivery, vaginal delivery, implant and bone scaffolding. Several topics were discussed in detail, namely patient-specific dosing, customisable drug administration, multidrug approach, varying drug release, compounding pharmacy, regulatory progress and future perspectives. AM is expected to become a common tool in compounding pharmacies to make polypills and personalised medications. CONCLUSION 3DP is an enabling tool to fabricate dosage forms with intricate structure designs, tailored dosing, drug combinations and controlled release, all of which lend it to be highly conducive to personalisation, thereby revolutionising the future of pharmacy practice.
Collapse
Affiliation(s)
| | - Yunong Yuan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lingxin Wang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jaspreet S Kochhar
- Personal Health Care, Procter & Gamble, Singapore, Republic of Singapore
| | - Nezamoddin N Kachouie
- Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Arany P, Papp I, Zichar M, Regdon G, Béres M, Szalóki M, Kovács R, Fehér P, Ujhelyi Z, Vecsernyés M, Bácskay I. Manufacturing and Examination of Vaginal Drug Delivery System by FDM 3D Printing. Pharmaceutics 2021; 13:1714. [PMID: 34684007 PMCID: PMC8539995 DOI: 10.3390/pharmaceutics13101714] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Vaginal drug delivery systems can provide a long-term and constant liberation of the active pharmaceutical ingredient even for months. For our experiment, FDM 3D printing was used to manufacture the vaginal ring samples from thermoplastic polyurethane filament, which enables fast manufacturing of complex, personalized medications. 3D printing can be an excellent alternative instead of industrial manufacturing, which is complicated and time-consuming. In our work, the 3D printed vaginal rings were filled manually with jellified metronidazole or chloramphenicol for the treatment of bacterial vaginosis. The need for manual filling was certified by the thermogravimetric and heatflow assay results. The manufactured samples were analyzed by an Erweka USP type II Dissolution Apparatus, and the dissolution profile can be distinguished based on the applied jellifying agents and the API's. All samples were considered non-similar based on the pairwise comparison. The biocompatibility properties were determined by prolonged MTT assay on HeLa cells, and the polymer could be considered non-toxic. Based on the microbiological assay on E. coli metronidazole and chitosan containing samples had bactericidal effects while just metronidazole or just chitosan containing samples bacteriostatic effect. None of these samples showed a fungistatic or fungicide effect against C. albicans. Based on our results, we successfully manufactured 3D printed vaginal rings filled with jellified metronidazole.
Collapse
Affiliation(s)
- Petra Arany
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Ildikó Papp
- Department of Computer Graphics and Image Processing, Faculty of Informatics, University of Debrecen, Kassai út 26, H-4028 Debrecen, Hungary; (I.P.); (M.Z.)
| | - Marianna Zichar
- Department of Computer Graphics and Image Processing, Faculty of Informatics, University of Debrecen, Kassai út 26, H-4028 Debrecen, Hungary; (I.P.); (M.Z.)
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mónika Béres
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary;
| | - Melinda Szalóki
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary;
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine and Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary;
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (P.A.); (P.F.); (Z.U.); (M.V.)
| |
Collapse
|
9
|
3D Printing of Thermo-Sensitive Drugs. Pharmaceutics 2021; 13:pharmaceutics13091524. [PMID: 34575600 PMCID: PMC8468559 DOI: 10.3390/pharmaceutics13091524] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.
Collapse
|
10
|
Domsta V, Seidlitz A. 3D-Printing of Drug-Eluting Implants: An Overview of the Current Developments Described in the Literature. Molecules 2021; 26:4066. [PMID: 34279405 PMCID: PMC8272161 DOI: 10.3390/molecules26134066] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
The usage of 3D-printing for drug-eluting implants combines the advantages of a targeted local drug therapy over longer periods of time at the precise location of the disease with a manufacturing technique that easily allows modifications of the implant shape to comply with the individual needs of each patient. Research until now has been focused on several aspects of this topic such as 3D-printing with different materials or printing techniques to achieve implants with different shapes, mechanical properties or release profiles. This review is intended to provide an overview of the developments currently described in the literature. The topic is very multifaceted and several of the investigated aspects are not related to just one type of application. Consequently, this overview deals with the topic of 3D-printed drug-eluting implants in the application fields of stents and catheters, gynecological devices, devices for bone treatment and surgical screws, antitumoral devices and surgical meshes, as well as other devices with either simple or complex geometry. Overall, the current findings highlight the great potential of the manufacturing of drug-eluting implants via 3D-printing technology for advanced individualized medicine despite remaining challenges such as the regulatory approval of individualized implants.
Collapse
Affiliation(s)
- Vanessa Domsta
- Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Anne Seidlitz
- Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| |
Collapse
|