1
|
Zhang K, Wang H. Development and validation of a highly sensitive UPLC-MS/MS method for the determination of Huperzine A in rat plasma. Biomed Chromatogr 2024; 38:e6011. [PMID: 39300201 DOI: 10.1002/bmc.6011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Huperzine A is a reversible and selective cholinesterase inhibitor and has been approved for the treatment of Alzheimer's diseases. In this study, we developed a highly sensitive and specific ulta-high-performance liquid chromatography-tandem mass spectrometry method for the determination of Huperzine A in rat plasma. An aliquot of 50 μL of rat plasma sample was pretreated with 200 μL of acetonitrile-methanol (v/v; 1:1) containing 0.2% formic acid followed by solid phase extraction. The resulting sample was separated on a Waters ACQUITY BEH C18 column using acetonitrile and water containing 0.2% formic acid as mobile phase, at a flow rate of 0.3 mL/min. Multiple-reaction monitoring (MRM) mode was used for quantitative analysis of Huperzine A in positive electrospray ionization. In the concentration range of 0.01-10 ng/mL, Huperzine A showed excellent linearity with correlation coefficient > 0.998. The intra- and inter-day RSD% were less than 9.7%, while the RE% ranged from -6.7% to 10.0%. The mean recovery was >84.5%. The validated method was demonstrated to be selective, sensitive, and reliable, which has been successfully applied to pharmacokinetic study of Huperzine A in rat plasma. Huperzine A displayed a long half-life in rat plasma and high oral bioavailability.
Collapse
Affiliation(s)
- Kejun Zhang
- Department of Neurology, Xuzhou New Health Geriatric Hospital, Xuzhou, Jiangsu Province, China
| | - Haizhou Wang
- Department of Neurology, Xuzhou New Health Geriatric Hospital, Xuzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
3
|
Xia Q, Liang T, Zhou Y, Liu J, Tang Y, Liu F. Recent Advances in Biomedical Nanotechnology Related to Natural Products. Curr Pharm Biotechnol 2024; 25:944-961. [PMID: 37605408 DOI: 10.2174/1389201024666230821090222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023]
Abstract
Natural product processing via nanotechnology has opened the door to innovative and significant applications in medical fields. On one hand, plants-derived bioactive ingredients such as phenols, pentacyclic triterpenes and flavonoids exhibit significant pharmacological activities, on another hand, most of them are hydrophobic in nature, posing challenges to their use. To overcome this issue, nanoencapsulation technology is employed to encapsulate these lipophilic compounds and enhance their bioavailability. In this regard, various nano-sized vehicles, including degradable functional polymer organic compounds, mesoporous silicon or carbon materials, offer superior stability and retention for bioactive ingredients against decomposition and loss during delivery as well as sustained release. On the other hand, some naturally occurring polymers, lipids and even microorganisms, which constitute a significant portion of Earth's biomass, show promising potential for biomedical applications as well. Through nano-processing, these natural products can be developed into nano-delivery systems with desirable characteristics for encapsulation a wide range of bioactive components and therapeutic agents, facilitating in vivo drug transport. Beyond the presentation of the most recent nanoencapsulation and nano-processing advancements with formulations mainly based on natural products, this review emphasizes the importance of their physicochemical properties at the nanoscale and their potential in disease therapy.
Collapse
Affiliation(s)
- Qing Xia
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
4
|
Song J, Zhao Y, Shan X, Luo Y, Hao N, Zhao L. Active ingredients of Chinese medicine with immunomodulatory properties: NF-κB pathway and Parkinson's disease. Brain Res 2024; 1822:148603. [PMID: 37748570 DOI: 10.1016/j.brainres.2023.148603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a complex pathogenesis and no cure. Persistent neuroinflammation plays an important role in the development of PD, and activation of microglia and astrocytes within the central nervous system leads to an inflammatory response and production of pro-inflammatory factors, and activation of NF-κB is key to neuroglial activation in chronic inflammation in PD and a hallmark of the onset of neuroinflammatory disease. Therefore, inhibiting NF-κB activation to prevent further loss of dopaminergic nerves is a more effective means of treating PD. It has been found that an increasing number of active ingredients in Chinese medicines, such as flavonoids, alkaloids, saponins, terpenoids, phenols and phenylpropanoids, have anti-inflammatory properties that can regulate neuroglia cell activation and ameliorate neuroinflammation through the NF-κB pathway, and increase dopamine release or protect dopaminergic neurons for neuroprotection to improve behavioural dysfunction in PD. The active ingredients of traditional Chinese medicine are expected to be good candidates for the treatment of PD, as they provide holistic regulation through multi-targeting and multi-level effects, and are safe, inexpensive and readily available. Therefore, this paper summarises that the active ingredients of some relevant Chinese medicines ameliorate the symptoms of PD and delay the development of PD by inhibiting glial cell-mediated neuroinflammation through the NF-κB pathway, which may provide new ideas for exploring the molecular mechanism of PD pathogenesis and developing new anti-PD drugs.
Collapse
Affiliation(s)
- Jingjing Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yang Zhao
- Huiji District People's Hospital, Henan Province, Zhengzhou 450000, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yongyin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
5
|
Zhu J, Song L, Shen S, Fu W, Zhu Y, Liu L. Bioactive Alkaloids as Secondary Metabolites from Plant Endophytic Aspergillus Genus. Molecules 2023; 28:7789. [PMID: 38067519 PMCID: PMC10707824 DOI: 10.3390/molecules28237789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Alkaloids represent a large family of natural products with diverse structures and bioactivities. These compounds and their derivatives have been widely used in clinics to treat various diseases. The endophytic Aspergillus is a filamentous fungus renowned for its extraordinary ability to produce active natural products of high therapeutic value and economic importance. This review is the first to focus on Aspergillus-derived alkaloids. Through an extensive literature review and data analysis, 263 alkaloids are categorized according to their structural features into those containing cytochalasans, diketopiperazine alkaloids, quinazoline alkaloids, quinoline alkaloids, indole alkaloids, pyrrolidine alkaloids, and others. These metabolites exhibited diverse biological activities, such as antibacterial activity, cytotoxicity, anti-inflammatory activity, and α-glucosidase, ACE, and DPPH inhibitory activities. The bioactivity, structural diversity, and occurrence of these alkaloids are reviewed in detail.
Collapse
Affiliation(s)
- Juntai Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.Z.); (L.S.); (S.S.); (W.F.); (Y.Z.)
- Center for Medical Device Evaluation, NMPA, Beijing 100081, China
| | - Lixia Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.Z.); (L.S.); (S.S.); (W.F.); (Y.Z.)
| | - Shengnan Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.Z.); (L.S.); (S.S.); (W.F.); (Y.Z.)
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wanxin Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.Z.); (L.S.); (S.S.); (W.F.); (Y.Z.)
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yaying Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.Z.); (L.S.); (S.S.); (W.F.); (Y.Z.)
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.Z.); (L.S.); (S.S.); (W.F.); (Y.Z.)
| |
Collapse
|
6
|
Kumari N, Anand S, Shah K, Chauhan NS, Sethiya NK, Singhal M. Emerging Role of Plant-Based Bioactive Compounds as Therapeutics in Parkinson's Disease. Molecules 2023; 28:7588. [PMID: 38005310 PMCID: PMC10673433 DOI: 10.3390/molecules28227588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological ailments, including stroke, Alzheimer's disease (AD), epilepsy, Parkinson's disease (PD), and other related diseases, have affected around 1 billion people globally to date. PD stands second among the common neurodegenerative diseases caused as a result of dopaminergic neuron loss in the midbrain's substantia nigra regions. It affects cognitive and motor activities, resulting in tremors during rest, slow movement, and muscle stiffness. There are various traditional approaches for the management of PD, but they provide only symptomatic relief. Thus, a survey for finding new biomolecules or substances exhibiting the therapeutic potential to patients with PD is the main focus of present-day research. Medicinal plants, herbal formulations, and natural bioactive molecules have been gaining much more attention in recent years as synthetic molecules orchestrate a number of undesired effects. Several in vitro, in vivo, and in silico studies in the recent past have demonstrated the therapeutic potential of medicinal plants, herbal formulations, and plant-based bioactives. Among the plant-based bioactives, polyphenols, terpenes, and alkaloids are of particular interest due to their potent anti-inflammatory, antioxidant, and brain-health-promoting properties. Further, there are no concise, elaborated articles comprising updated mechanism-of-action-based reviews of the published literature on potent, recently investigated (2019-2023) medicinal plants, herbal formulations, and plant based-bioactive molecules, including polyphenols, terpenes, and alkaloids, as a method for the management of PD. Therefore, we designed the current review to provide an illustration of the efficacious role of various medicinal plants, herbal formulations, and bioactives (polyphenols, terpenes, and alkaloids) that can become potential therapeutics against PD with greater specificity, target approachability, bioavailability, and safety to the host. This information can be further utilized in the future to develop several value-added formulations and nutraceutical products to achieve the desired safety and efficacy for the management of PD.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | | | - Neeraj K. Sethiya
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Manmohan Singhal
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| |
Collapse
|
7
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
8
|
Wu MC, Gao YH, Zhang C, Ma BT, Lin HR, Jiang JY, Xue MF, Li S, Wang HB. Liensinine and neferine exert neuroprotective effects via the autophagy pathway in transgenic Caenorhabditis elegans. BMC Complement Med Ther 2023; 23:386. [PMID: 37891552 PMCID: PMC10612239 DOI: 10.1186/s12906-023-04183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Liensinine and neferine are the main bisbenzylisoquinoline alkaloids obtained from the seeds of Nelumbo nucifera, which commonly used as edible food and traditional medicine in Asia. It was reported that liensinine and neferine could inhibit the activities of acetylcholinesterase and cross the blood-brain barriers, suggesting their therapeutic potential for the management of Alzheimer's disease. METHODS Here, we employed SH-SY5Y human neuroblastoma cells stably transfected with the human Swedish amyloid precursor protein (APP) mutation APP695 (APP695swe SH-SY5Y) as an in vitro model and transgenic Caenorhabditis elegans as an in vivo model to investigate the neuroprotective effects and underlying mechanism of liensinine and neferine. RESULTS We found that liensinine and neferine could significantly improve the viability and reduce ROS levels in APP695swe SH-SY5Y cells, inhibit β-amyloid and tau-induced toxicity, and enhance stress resistance in nematodes. Moreover, liensinine and neferine had obviously neuroprotective effects by assaying chemotaxis, 5-hydroxytryptamine sensitivity and the integrity of injured neurons in nematodes. Preliminary mechanism studies revealed that liensinine and neferine could upregulate the expression of autophagy related genes (lgg-1, unc-51, pha-4, atg-9 and ced-9) and reduce the accumulation of β-amyloid induced autophagosomes, which suggested autophagy pathway played a key role in neuroprotective effects of these two alkaloids. CONCLUSIONS Altogether, our findings provided a certain working foundation for the use of liensinine and neferine to treat Alzheimer's disease based on neuroprotective effects.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Ye-Hui Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Chen Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Bo-Tian Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Hong-Ru Lin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jin-Yun Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Meng-Fan Xue
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Shan Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
| | - Hong-Bing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
9
|
Nigdelioglu Dolanbay S, Şirin S, Aslim B. Cocktail of three isoquinoline alkaloids derived from Glaucium grandiflorum Boiss. & A. Huet subsp. refractum (Nábelek) Mory inhibits the production of LPS-induced ROS, pro-inflammatory cytokines, and mediators through the down-regulation of p38 MAPK in BV-2 cells. Fitoterapia 2023; 170:105652. [PMID: 37595642 DOI: 10.1016/j.fitote.2023.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Glaucium grandiflorum extracts have traditionally been used to treat brain-related disorders. G. grandiflorum extracts also exhibited inhibitory effects on cholinesterase enzymes, as well as antigenotoxic activity. However, no research has been done on the effect of G. grandiflorum alkaloid extracts on the anti-oxidative and anti-inflammatory mechanisms. In this study we aimed to evaluate the anti-oxidative and anti-inflammatory activities of the alkaloid extract obtained from G. grandiflorum as well as the mechanisms responsible for their neuroprotective effects in neuronal damage caused by LPS in BV2 cells. We used LC-MS/MS and 1H, 13C NMR analysis to determine the presence of major alkaloids (allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide (trans-cannadine-N-oxide) in the alkaloid extracts. We used flow cytometry to study the alkaloid extracts' effects on ROS production; we also employed qRT-PCR and Western Blot to analyze the effects of oxidative stress and inflammation-related genes and proteins. ROS production within the cell was inhibited by chloroform alkaloid extract (CAE). There occurred marked CAE-induced reductions in IL-1β, Cox-2, and iNOS mRNA expressions. We also observed marked reductions in IL-6 and TNF-α mRNA expressions with methanol alkaloid extract (MAE). CAE effectively suppressed IL-1β and iNOS protein levels, especially as in qRT-PCR studies, while MAE effectively reduced IL-6 and TNF-α protein levels. Additionally, MAE was found to be prominent in suppressing the levels of Cox-2 protein, unlike qRT-PCR studies. According to our study findings, oxidative stress brought about by inflammation was suppressed by alkaloid extracts from G. grandiflorum which can be attributed to their suppressor effects on the pro-inflammatory cytokines-mediators, and p38 MAPK. As a result, a drug active substance that suppresses oxidative stress and inflammation has been brought to the neuropharmacological field.
Collapse
Affiliation(s)
| | - Seda Şirin
- Gazi University, Faculty of Science, Department of Biology, 06500, Teknikokullar, Ankara, Turkey
| | - Belma Aslim
- Gazi University, Faculty of Science, Department of Biology, 06500, Teknikokullar, Ankara, Turkey
| |
Collapse
|
10
|
Jiang K, Liu X, Liu YM, Wang LN, Xiao YT, Wu FC. Bioactive Isoquinoline Alkaloids with Diverse Skeletons from Fissistigma polyanthum. JOURNAL OF NATURAL PRODUCTS 2023; 86:2162-2170. [PMID: 37615114 DOI: 10.1021/acs.jnatprod.3c00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Six new isoquinoline alkaloids, including aporphine alkaloids (2, 3, 9, and 10), a benzylisoquinoline alkaloid (13), and a protoberberine alkaloid (17), were isolated from the roots of Fissistigma polyanthum, along with a new furanone (20) and 13 known isoquinoline alkaloids (1, 4-8, 11, 12, 14-16, 18, and 19). The structures of the new compounds were elucidated by the analysis of spectroscopic data. Compounds 1 and 2 are rare oxalyl-fused dehydroaporphine alkaloids. Compound 12 presented the most potent dual-target activities on AChE inhibition and Aβ aggregation inhibition, while compounds 13 and 19 simultaneously exhibited discernible AChE and BChE inhibitions with antioxidant activities. The activity results indicate that F. polyanthum alkaloids have a potential of inhibition and prevention of Alzheimer's disease mainly through both ChEs and β-amyloid pathways in addition to antioxidant activity.
Collapse
Affiliation(s)
- Kun Jiang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiao Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Yu-Ming Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Li-Ning Wang
- College of Traditional Chinese Medicine, Tianjin Univerisity of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Ya-Ting Xiao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Feng-Chen Wu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| |
Collapse
|
11
|
Li J, Wu Y, Dong S, Yu Y, Wu Y, Xiang B, Li Q. Research Progress on Neuroprotective Effects of Isoquinoline Alkaloids. Molecules 2023; 28:4797. [PMID: 37375352 DOI: 10.3390/molecules28124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal injury and apoptosis are important causes of the occurrence and development of many neurodegenerative diseases, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Although the detailed mechanism of some diseases is unknown, the loss of neurons in the brain is still the main pathological feature. By exerting the neuroprotective effects of drugs, it is of great significance to alleviate the symptoms and improve the prognosis of these diseases. Isoquinoline alkaloids are important active ingredients in many traditional Chinese medicines. These substances have a wide range of pharmacological effects and significant activity. Although some studies have suggested that isoquinoline alkaloids may have pharmacological activities for treating neurodegenerative diseases, there is currently a lack of a comprehensive summary regarding their mechanisms and characteristics in neuroprotection. This paper provides a comprehensive review of the active components found in isoquinoline alkaloids that have neuroprotective effects. It thoroughly explains the various mechanisms behind the neuroprotective effects of isoquinoline alkaloids and summarizes their common characteristics. This information can serve as a reference for further research on the neuroprotective effects of isoquinoline alkaloids.
Collapse
Affiliation(s)
- Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yarong Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Shuze Dong
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Ye Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yuhao Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Benhan Xiang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| |
Collapse
|
12
|
Nagarajan K, Ibrahim B, Bawadikji A, Khaw KY, Tong WY, Leong CR, Ramanathan S, Tan WN. Characterization of Metabolites in an Endophytic Fungus Diaporthe fraxini via NMR-based Metabolomics and Cholinesterase Inhibitory Activity. APPL BIOCHEM MICRO+ 2023; 59:316-322. [DOI: 10.1134/s0003683823030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 10/18/2023]
|
13
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
14
|
Chhabra S, Mehan S. Matrine exerts its neuroprotective effects by modulating multiple neuronal pathways. Metab Brain Dis 2023; 38:1471-1499. [PMID: 37103719 DOI: 10.1007/s11011-023-01214-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Recent evidence suggests that misfolding, clumping, and accumulation of proteins in the brain may be common causes and pathogenic mechanism for several neurological illnesses. This causes neuronal structural deterioration and disruption of neural circuits. Research from various fields supports this idea, indicating that developing a single treatment for several severe conditions might be possible. Phytochemicals from medicinal plants play an essential part in maintaining the brain's chemical equilibrium by affecting the proximity of neurons. Matrine is a tetracyclo-quinolizidine alkaloid derived from the plant Sophora flavescens Aiton. Matrine has been shown to have a therapeutic effect on Multiple Sclerosis, Alzheimer's disease, and various other neurological disorders. Numerous studies have demonstrated that matrine protects neurons by altering multiple signalling pathways and crossing the blood-brain barrier. As a result, matrine may have therapeutic utility in the treatment of a variety of neurocomplications. This work aims to serve as a foundation for future clinical research by reviewing the current state of matrine as a neuroprotective agent and its potential therapeutic application in treating neurodegenerative and neuropsychiatric illnesses. Future research will answer many concerns and lead to fascinating discoveries that could impact other aspects of matrine.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
15
|
Tau-aggregation inhibitors derived from Streptomyces tendae MCCC 1A01534 protect HT22 cells against okadaic acid-induced damage. Int J Biol Macromol 2023; 231:123170. [PMID: 36621732 DOI: 10.1016/j.ijbiomac.2023.123170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by tau aggregating into neurofibrillary tangles. Targeting tau aggregation is one of the most critical strategies for AD treatment and prevention. Herein, a high-throughput screening of tau-aggregation inhibitors was performed by thioflavin T (ThT) fluorescence assay and tauR3 peptides. According to bioactivity-guided isolation, homoprejadomycin (1) was obtained from the marine bacterium Streptomyces tendae MCCC 1A01534. Two new stable derivatives, 2 and 3, were yielded in a one-step reaction. By ThT assay, transmission electron microscopy, and circular dichroism, we demonstrated that the angucyclinones 2 and 3 inhibited tau aggregation and disaggregated tau fibrils. In the presence of 2, native tauR3 peptides maintained the disorder conformation, whereas the tauR3 aggregates reduced β-sheet structures. And compound 2 was confirmed to inhibit the aggregation of full-length 2N4R tau protein. Furthermore, 2 with low cytotoxicity protected HT22 cells from okadaic acid-induced damage by suppressing tau aggregates. These results indicated that 2 was a promising lead structure with tau therapeutic potency for AD treatment.
Collapse
|
16
|
Chear NJY, Ching-Ga TAF, Khaw KY, León F, Tan WN, Yusof SR, McCurdy CR, Murugaiyah V, Ramanathan S. Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies. Metabolites 2023; 13:metabo13030390. [PMID: 36984830 PMCID: PMC10059728 DOI: 10.3390/metabo13030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
The Uncaria genus is notable for its therapeutic potential in treating age-related dementia, such as Alzheimer’s disease. A phytochemical study of the leaves of Malaysian Uncaria attenuata Korth., afforded an undescribed natural corynanthe-type oxindole alkaloid, isovillocarine D (1) together with two known indole alkaloids, villocarine A (2) and geissoschizine methyl ether (3), and their structural identification was performed with extensive mono- and bidimensional NMR and MS spectroscopic methods. The isolated alkaloids were evaluated for their acetylcholinesterase (AChE)- and butyrylcholinesterase (BChE)-inhibitory activity. The results indicated that compound (2) was the most potent inhibitor against both AChE and BChE, with IC50 values of 14.45 and 13.95 µM, respectively, whereas compounds (1) and (3) were selective BChE inhibitors with IC50 values of 35.28 and 17.65 µM, respectively. In addition, molecular docking studies revealed that compound (2) interacts with the five main regions of AChE via both hydrogen and hydrophobic bonding. In contrast to AChE, the interactions of (2) with the enzymatic site of BChE are established only through hydrophobic bonding. The current finding suggests that U. attenuata could be a good source of bioactive alkaloids for treating age-related dementia.
Collapse
Affiliation(s)
| | - Tan Ai Fein Ching-Ga
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Kooi-Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29201, USA
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: (V.M.); (S.R.)
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: (V.M.); (S.R.)
| |
Collapse
|
17
|
Vrabec R, Blunden G, Cahlíková L. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054399. [PMID: 36901826 PMCID: PMC10003045 DOI: 10.3390/ijms24054399] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people; currently, there is no efficient treatment. Considering the increase in life expectancy worldwide AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. A great amount of experimental and clinical evidence indicated that AD is a complex disorder characterized by widespread neurodegeneration of the CNS, with major involvement of the cholinergic system, causing progressive cognitive decline and dementia. The current treatment, based on the cholinergic hypothesis, is only symptomatic and mainly involves the restoration of acetylcholine (ACh) levels through the inhibition of acetylcholinesterase (AChE). Since the introduction of the Amaryllidaceae alkaloid galanthamine as an antidementia drug in 2001, alkaloids have been one of the most attractive groups for searching for new AD drugs. The present review aims to comprehensively summarize alkaloids of various origins as multi-target compounds for AD. From this point of view, the most promising compounds seem to be the β-carboline alkaloid harmine and several isoquinoline alkaloids since they can simultaneously inhibit several key enzymes of AD's pathophysiology. However, this topic remains open for further research on detailed mechanisms of action and the synthesis of potentially better semi-synthetic analogues.
Collapse
Affiliation(s)
- Rudolf Vrabec
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Lucie Cahlíková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
- Correspondence:
| |
Collapse
|
18
|
Neuroprotective Activities of New Monoterpenoid Indole Alkaloid from Nauclea officinalis. Processes (Basel) 2023. [DOI: 10.3390/pr11030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Phytochemical investigation on the bark of Nauclea officinalis led to the isolation of a new monoterpenoid indole alkaloid, nauclediol. The structure of the compound was identified through extensive spectroscopic analysis. Nauclediol displayed cholinesterase-inhibitory activities towards AChE and BChE with IC50 values of 15.429 and 8.756 µM, respectively. Statistical analysis revealed that the mode of inhibition of nauclediol was non-competitive inhibitor for both AChE and BChE. Molecular docking revealed that nauclediol interacts with the choline-binding site and the catalytic triad of TcAChE and hBChE. This study also demonstrated the neuroprotective potential of nauclediol against amyloid beta-induced cytotoxicity and LPS-induced neuroinflammation activity in a dose-dependent manner.
Collapse
|
19
|
Galzitskaya OV, Grishin SY, Glyakina AV, Dovidchenko NV, Konstantinova AV, Kravchenko SV, Surin AK. The Strategies of Development of New Non-Toxic Inhibitors of Amyloid Formation. Int J Mol Sci 2023; 24:3781. [PMID: 36835194 PMCID: PMC9964835 DOI: 10.3390/ijms24043781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In recent years, due to the aging of the population and the development of diagnostic medicine, the number of identified diseases associated with the accumulation of amyloid proteins has increased. Some of these proteins are known to cause a number of degenerative diseases in humans, such as amyloid-beta (Aβ) in Alzheimer's disease (AD), α-synuclein in Parkinson's disease (PD), and insulin and its analogues in insulin-derived amyloidosis. In this regard, it is important to develop strategies for the search and development of effective inhibitors of amyloid formation. Many studies have been carried out aimed at elucidating the mechanisms of amyloid aggregation of proteins and peptides. This review focuses on three amyloidogenic peptides and proteins-Aβ, α-synuclein, and insulin-for which we will consider amyloid fibril formation mechanisms and analyze existing and prospective strategies for the development of effective and non-toxic inhibitors of amyloid formation. The development of non-toxic inhibitors of amyloid will allow them to be used more effectively for the treatment of diseases associated with amyloid.
Collapse
Affiliation(s)
- Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Mathematical Problems of Biology RAS, The Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nikita V. Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anastasiia V. Konstantinova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Faculty of Biotechnology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| |
Collapse
|
20
|
Dimeric alkaloids from the barks of Erythrina variegata as well as their occurrence. Fitoterapia 2022; 166:105408. [PMID: 36586624 DOI: 10.1016/j.fitote.2022.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Thirteen undescribed dimeric Erythrina alkaloids, named as erythrivarines A1-A13, were isolated from the barks of Erythrina variegata L. and. Their structures were determined on the basis of NMR, UV and mass spectral analyses. Dimeric Erythrina alkaloid with a C-8/8' linkage in erythrivarine A1 was not yet reported. Representative dimers from titled plant were used to prove their occurrence as natural products by LC - MS detection. Additionally, simultaneous investigation enabled us to propose the natural property of seemingly artificial Erythrina alkaloid with acetonyl group.
Collapse
|
21
|
Zhang H, Wang D, Sun J, Wang Y, Wu S, Wang J. Huperzine-A Improved Animal Behavior in Cuprizone-Induced Mouse Model by Alleviating Demyelination and Neuroinflammation. Int J Mol Sci 2022; 23:ijms232416182. [PMID: 36555825 PMCID: PMC9785798 DOI: 10.3390/ijms232416182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Huperzine A (HupA) is a natural acetylcholinesterase inhibitor (AChEI) with the advantages of high efficiency, selectivity as well as reversibility and can exhibit significant therapeutic effects against certain neurodegenerative diseases. It is also beneficial in reducing the neurological impairment and neuroinflammation of experimental autoimmune encephalomyelitis (EAE), a classic model for multiple sclerosis (MS). However, whether HupA can directly regulate oligodendrocyte differentiation and maturation and promote remyelination has not been investigated previously. In this study, we have analyzed the potential protective effects of HupA on the demylination model of MS induced by cuprizone (CPZ). It was found that HupA significantly attenuated anxiety-like behavior, as well as augmented motor and cognitive functions in CPZ mice. It also decreased demyelination and axonal injury in CPZ mice. Moreover, in CPZ mice, HupA increased mRNA levels of the various anti-inflammatory cytokines (Arg1, CD206) while reducing the levels of different pro-inflammatory cytokines (iNOS, IL-1β, IL-18, CD16, and TNF-α). Mecamylamine, a nicotinic acetylcholinergic receptor antagonist, could effectively reverse the effects of HupA. Therefore, we concluded that HupA primarily exerts its therapeutic effects on multiple sclerosis through alleviating demyelination and neuroinflammation.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Danjie Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingxian Sun
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yumeng Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shuai Wu
- Department of Neurology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: (S.W.); (J.W.); Tel.: +86-15921977760 (S.W.); +86-17721371757 (J.W.)
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: (S.W.); (J.W.); Tel.: +86-15921977760 (S.W.); +86-17721371757 (J.W.)
| |
Collapse
|
22
|
Schmiedhofer P, Vogel FD, Koniuszewski F, Ernst M. Cys-loop receptors on cannabinoids: All high? Front Physiol 2022; 13:1044575. [PMID: 36439263 PMCID: PMC9682269 DOI: 10.3389/fphys.2022.1044575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Endocannabinoids (eCBS) are endogenously derived lipid signaling molecules that serve as tissue hormones and interact with multiple targets, mostly within the endocannabinoid system (ECS). The ECS is a highly conserved regulatory system involved in homeostatic regulation, organ formation, and immunomodulation of chordates. The term “cannabinoid” evolved from the distinctive class of plant compounds found in Cannabis sativa, an ancient herb, due to their action on CB1 and CB2 receptors. CB1/2 receptors are the primary targets for eCBs, but their effects are not limited to the ECS. Due to the high interest and extensive research on the ECS, knowledge on its constituents and physiological role is substantial and still growing. Crosstalk and multiple targeting of molecules are common features of endogenous and plant compounds. Cannabimimetic molecules can be divided according to their origin, natural or synthetic, including phytocannabinoids (pCB’s) or synthetic cannabinoids (sCB’s). The endocannabinoid system (ECS) consists of receptors, transporters, enzymes, and signaling molecules. In this review, we focus on the effects of cannabinoids on Cys-loop receptors. Cys-loop receptors belong to the class of membrane-bound pentameric ligand gated ion channels, each family comprising multiple subunits. Mammalians possess GABA type A receptors (GABAAR), glycine receptors (GlyR), serotonin receptors type 3 (5-HT3R), and nicotinic acetylcholine receptors (nAChR). Several studies have shown different modulatory effects of CBs on multiple members of the Cys-loop receptor family. We highlight the existing knowledge, especially on subunits and protein domains with conserved binding sites for CBs and their possible pharmacological and physiological role in epilepsy and in chronic pain. We further discuss the potential for cannabinoids as first line treatments in epilepsy, chronic pain and other neuropsychiatric conditions, indicated by their polypharmacology and therapeutic profile.
Collapse
Affiliation(s)
- Philip Schmiedhofer
- SBR Development Holding, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| | - Florian Daniel Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| |
Collapse
|
23
|
Meng-zhen S, Ju L, Lan-chun Z, Cai-feng D, Shu-da Y, Hao-fei Y, Wei-yan H. Potential therapeutic use of plant flavonoids in AD and PD. Heliyon 2022; 8:e11440. [DOI: 10.1016/j.heliyon.2022.e11440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
24
|
Kumar S, Kumari D, Singh B. Genus Rauvolfia: A review of its ethnopharmacology, phytochemistry, quality control/quality assurance, pharmacological activities and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115327. [PMID: 35504505 DOI: 10.1016/j.jep.2022.115327] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants are from the genus Rauvolfia Plum. ex L. (Apocynaceae), which is represented by 74 species with many synonyms, and distributed worldwide, especially in the Asian, and African continents. Traditionally, some of them are used for the treatment of various disorders related to the central nervous system (CNS), cardiovascular diseases (CVD), and as an antidote due to the presence of monoterpene indole alkaloids (MIAs) such as ajmaline (144), ajmalicine (164) serpentine (182), yohimbine (190) and reserpine (214). AIM The present review provides comprehensive summarization and critical analysis of the traditional to modern applications of Rauvolfia species, and the major focus was to include traditional uses, phytochemistry, quality control, pharmacological properties, as well as clinical evidence that may be useful in the drug discovery process. MATERIALS AND METHODS Information related to traditional uses, chemical constituents, separation techniques/analytical methods, and pharmacological properties of the genus Rauvolfia were obtained using electronic databases such as Web of Science, Scopus, SciFinder, PubMed, PubChem, ChemSpider, and Google Scholar between the years 1949-2021. The scientific name of the species and its synonyms were checked with the information of The Plant List. RESULTS A total of seventeen Rauvolfia species have been traditionally explored for various therapeutic applications, out of which the roots of R. serpentina and R. vomitoria are used most commonly for the treatment of many diseases. About 287 alkaloids, seven terpenoids, nine flavonoids, and four phenolic acids have been reported in different parts of the forty-three species. Quality control (QC)/quality assurance (QA) of extracts/herbal formulations of Rauvolfia species was analyzed by qualitative and quantitative methods based on the major MIAs such as compounds 144, 164, 182, 190, and 214 using HPTLC, HPLC, and HPLC-MS. The various extracts of different plant parts of thirteen Rauvolfia species are explored for their pharmacological properties such as antimicrobial, antioxidant, antiprotozoal, antitrypanosomal, antipsychotic, cardioprotective, cholinesterase inhibitory, and hepatoprotective. Of which, clinical trials of herbal formulations/extracts of R. serpentina and MIAs have been reported for CVD, CNS, antihypertensive therapy, antidiabetic effects, and psoriasis therapy, while the extracts and phytoconstituents of remaining Rauvolfia species are predominantly significant, owning them to be additional attention for further investigation under clinical trials and QC/QA. CONCLUSION The present communication has provided a comprehensive, systematic, and critically analyzed vision into the traditional uses, phytochemistry, and modern therapeutic applications of the genus Rauvolfia are validated by scientific evidence. In addition, different plant parts from this genus, especially raw and finished herbal products of the roots of R. serpentina have been demonstrated for the QC/QA.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, Farrukhabad, 209602, India; Chhatrapati Shahu Ji Maharaj University (CSJM) Kanpur, Kalyanpur, 208024, Uttar Pradesh, India.
| | - Diksha Kumari
- Botanic Garden Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Bikarma Singh
- Botanic Garden Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
25
|
Jiang M, Guo H, Wu Q, Yuan S, Liu L. Two New Picoline-Derived Meroterpenoids with Anti-Acetylcholinesterase Activity from Ascidian-Derived Fungus Amphichorda felina. Molecules 2022; 27:5076. [PMID: 36014315 PMCID: PMC9416303 DOI: 10.3390/molecules27165076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Amphichoterpenoids D (1) and E (2), two new picoline-derived meroterpenoids with a rare 6/6/6 tricyclic pyrano[3,2-c]pyridinyl-γ-pyranone scaffold, were isolated from the ascidian-derived fungus Amphichorda felina SYSU-MS7908. Their structures, including the absolute configurations, were established by extensive spectroscopic methods (1D and 2D NMR and high-resolution mass spectrometry) and ECD calculations. Compounds 1 and 2 showed anti-acetylcholinesterase (anti-AChE) activities with IC50 values of 12.5 μM and 11.6 μM, respectively. The binding interactions between 1, 2, and AChE were investigated using molecular docking analyses.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Qilin Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| |
Collapse
|
26
|
Yu GX, Yu Y, Zeng LH, Schinnerl J, Cai XH. Cephalotaxine homologous alkaloids from seeds of Cephalotaxus oliveri Mast. PHYTOCHEMISTRY 2022; 200:113220. [PMID: 35513135 DOI: 10.1016/j.phytochem.2022.113220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Six undescribed isoquinoline alkaloids, named as cephaloliverines A-F, were isolated from the seeds of Cephalotaxus oliveri. They were identified by NMR and MS spectroscopic data analyses, combined with the time-dependent density functional theory ECD calculation for cephaloliverines A and B and also by X-ray crystal diffraction for cephaloliverine E. Biosynthetic considerations suggest that cephaloliverines A-D are homologous of cephalotaxine-, homoerythrina- and Erythrina-type alkaloids. The performed bioassay revealed no cytotoxic activity against cancer cells and no neuroprotective properties on HEI-OC-1 cells model.
Collapse
Affiliation(s)
- Guang-Xing Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Yang Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ling-Hui Zeng
- Zhejiang University City College, Hangzhou, 310015, China.
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030, Vienna, Austria
| | - Xiang-Hai Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
27
|
Wang Y, Zheng T, Huo Y, Du W. Exploration of Isoquinoline Alkaloids as Potential Inhibitors against Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2022; 13:2164-2175. [PMID: 35797238 DOI: 10.1021/acschemneuro.2c00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is one of the most concerning public health problems because of its high incidence, multiple complications, and difficult treatment. Human islet amyloid polypeptide (hIAPP) is closely linked to T2DM because its abnormal self-assembly causes membrane damage and cell dysfunction. The development of potential inhibitors to prevent hIAPP fibrillation is a promising strategy for the intervention and treatment of diabetes. Natural isoquinoline alkaloids are used as effective medication that targets different biomolecules. Although studies explored the efficacy of berberine, jatrorrhizine, and chelerythrine in diabetes, the underlying mechanism remains unclear. Herein, three isoquinoline alkaloids are selected to reveal their roles in hIAPP aggregation, disaggregation, and cell protection. All three compounds displayed good inhibitory effects on peptide fibrillation, scattered the preformed fibrils into small oligomers and most monomers, and upregulated cell viability by reducing hIAPP oligomerization. Moreover, combined biophysical analyses indicated that the compounds affected the β-sheet structure and hydrophobicity of polypeptides significantly, and the benzo[c]phenanthridine structure of chelerythrine was beneficial to the inhibition of hIAPP aggregation and their hydrophobic interaction, compared with that of berberine and jatrorrhizine. Our work elaborated the effects of these alkaloids on hIAPP fibrillation and reveals a possible mechanism for these compounds against T2DM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
28
|
Tang YT, Wu J, Bao MF, Tan QG, Cai XH. Dimeric Erythrina alkaloids as well as their key units from Erythrina variegata. PHYTOCHEMISTRY 2022; 198:113160. [PMID: 35292327 DOI: 10.1016/j.phytochem.2022.113160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Ten dimeric and two monomeric Erythrina alkaloids, all of them are undescribed, were isolated from the bark of Erythrina variegata L. and named as erythrivarines O-Z. Their structures were determined on the basis of NMR and UV-spectroscopy and mass spectrometry. Dimeric Erythrina alkaloids with a C-10/11' linkage in erythrivarine O and a C-7/10' connectivity in erythrivarines P-U are not yet reported. The two identified monomeric alkaloids may be the precursors of the described dimeric derivatives. These co-occurring dimeric and monomeric alkaloids enabled us to propose a possible biosynthetic pathway leading to these dimers. Their effects of preventing hearing loss were additionally evaluated and erythrivarine T showed as a potential protector of the House Ear Institute-Organ of Corti 1 (HEI-OC-1) cells against neomycin.
Collapse
Affiliation(s)
- Yu-Ting Tang
- School of Pharmaceutical Sciences, Guilin Medical University, Guilin, 541199, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Jing Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Mei-Fen Bao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Qin-Gang Tan
- School of Pharmaceutical Sciences, Guilin Medical University, Guilin, 541199, PR China.
| | - Xiang-Hai Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
29
|
Liu BR, Zheng HR, Jiang XJ, Zhang PZ, Wei GZ. Serratene triterpenoids from Lycopodium cernuum L. as α-glucosidase inhibitors: Identification, structure-activity relationship and molecular docking studies. PHYTOCHEMISTRY 2022; 195:113056. [PMID: 34953266 DOI: 10.1016/j.phytochem.2021.113056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Phytochemical investigation of Lycopodium cernuum L. afforded seven undescribed serratene triterpenoids named 3β, 21β-dihydroxyserra-14-en-24-oic acid-3β-(5'-hydroxybenzoate) (1), 3β, 21β, 24-trihydroxyserrat-14-en-3β-(5'-hydroxyl benzoate) (2), 3β, 14α, 15α, 21β-tetrahydroxyserratane-24-methyl ester (3), 3β, 14α, 21β-trihydroxyserratane-15α-(4'-methoxy-5'-hydroxybenzoate)-24-methyl ester (4), 3β, 14α, 21β-trihydroxyserratane-15α-(4'-methoxy-5'-hydroxybenzoate) (5), 3β-hydroxy-21β-acetate-16-oxoserrat-14-en-24-oic acid (6), 3β, 21β-dihydroxy-16α, 29-epoxyserrat-14-en-24-methyl ester (7), together with eleven known compounds (8-18), whose chemical structures were elucidated through spectroscopic analysis of HRESIMS, 1D NMR, 2D NMR and comparison between the literature. All compounds were evaluated for their α-glucosidase inhibitory activity for the first time. The results showed that compounds 1, 2, 4, 5, 6, 10, 13, 15, and 16 were among the most potent α-glucosidase inhibitors, with IC50 values ranging from 23.22 ± 0.64 to 50.65 ± 0.82 μM. Structure-activity relationship (SAR) studies indicated that the combined properties of the 5-hydroxybenzoate moiety at C-3, β-OH at C-21, COOH- at C-24, and Δ14,15 groups enabled an increase in the α-glucosidase inhibitory effect. In addition, molecular docking studies showed that the potential inhibitors mainly interact with key amino acid residues in the active site of α-glucosidase through hydrogen bonds and hydrophobic forces.
Collapse
Affiliation(s)
- Bing-Rui Liu
- College of Chemistry and Technology, Hebei Agricultural University, Huanghua, 061100, PR China; College of Public Heath, North China University of Science and Technology, Tangshan, 063503, PR China
| | - Hai-Rong Zheng
- Reference Substance Branch, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Kunming, 650201, PR China; BioBioPha Co., Ltd., Kunming, 650201, PR China
| | - Xian-Jun Jiang
- Reference Substance Branch, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Kunming, 650201, PR China; BioBioPha Co., Ltd., Kunming, 650201, PR China
| | - Pu-Zhao Zhang
- Key Laboratory of Modern Preparation of TCM. Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China.
| | - Guo-Zhu Wei
- Reference Substance Branch, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Kunming, 650201, PR China; BioBioPha Co., Ltd., Kunming, 650201, PR China.
| |
Collapse
|
30
|
Lai Shi Min S, Liew SY, Chear NJY, Goh BH, Tan WN, Khaw KY. Plant Terpenoids as the Promising Source of Cholinesterase Inhibitors for Anti-AD Therapy. BIOLOGY 2022; 11:biology11020307. [PMID: 35205173 PMCID: PMC8869317 DOI: 10.3390/biology11020307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Plant-derived terpenes have been a research interest in the recent years, as they are believed to possess the ability to function as a cholinesterase inhibitor. As the deficit of cholinergic activity is one of the factors that causes cognitive impairment in Alzheimer’s disease patients, it serves as a great therapeutic target. It has been found that various terpenoids, such as diterpenoids, triterpenoids and sesquiterpenoids, do have the ability to inhibit cholinesterase activity, and their chemical structures do play a role in this. As terpenoids possess anti-cholinesterase properties, it is encouraged to have future research on drug discovery and development in treating Alzheimer’s disease. Abstract Plant-derived terpenes are the prolific source of modern drugs such as taxol, chloroquine and artemisinin, which are widely used to treat cancer and malaria infections. There are research interests in recent years on terpene-derived metabolites (diterpenes, triterpenes and sesquiterpenes), which are believed to serve as excellent cholinesterase inhibitors. As cholinesterase inhibitors are the current treatment for Alzheimer’s disease, terpene-derived metabolites will have the potential to be involved in the future drug development for Alzheimer’s disease. Hence, a bibliographic search was conducted by using the keywords “terpene”, “cholinesterase” and “Alzheimer’s disease”, along with cross-referencing from 2011 to 2020, to provide an overview of natural terpenes with potential anticholinesterase properties. This review focuses on the extraction, chemical structures and anti-cholinesterase mechanisms of terpenes, which support and encourage future research on drug discovery and development in treating Alzheimer’s disease.
Collapse
Affiliation(s)
- Shereen Lai Shi Min
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Sook Yee Liew
- Chemistry Division, Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nelson Jeng Yeou Chear
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia;
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (W.-N.T.); (K.Y.K.)
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Correspondence: (W.-N.T.); (K.Y.K.)
| |
Collapse
|
31
|
A Synopsis of Multitarget Potential Therapeutic Effects of Huperzine A in Diverse Pathologies-Emphasis on Alzheimer's Disease Pathogenesis. Neurochem Res 2022; 47:1166-1182. [PMID: 35122609 DOI: 10.1007/s11064-022-03530-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
Numerous challenges are confronted when it comes to the recognition of therapeutic agents for treating complex neurodegenerative diseases like Alzheimer's disease (AD). The perplexing pathogenicity of AD embodies cholinergic dysfunction, amyloid beta (Aβ) aggregation, neurofibrillary tangle formation, neuroinflammation, mitochondrial disruption along with vicious production of reactive oxygen species (ROS) generating oxidative stress. In this frame of reference, drugs with multi target components could prove more advantageous to counter complex pathological mechanisms that are responsible for AD progression. For as much as, medicinal plant based pharmaco-therapies are emerging as potential candidates for AD treatment keeping the efficacy and safety parameters in terms of toxicity and side effects into consideration. Huperzine A (Hup A) is a purified alkaloid compound extracted from a club moss called Huperzia serrata. Several studies have reported both cholinergic and non-cholinergic effects of this compound on AD with significant neuroprotective properties. The present review convenes cumulative demonstrations of neuroprotection provided by Hup A in in vitro, in vivo, and human studies in various pathologies. The underlying molecular mechanisms of its actions have also been discussed. However, more profound evidence would certainly promote the therapeutic implementation of this drug thus furnishing decisive insights into AD therapeutics and various other pathologies along with preventive and curative management.
Collapse
|
32
|
Plazas E, Avila M MC, Muñoz DR, Cuca S LE. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol Res 2022; 177:106126. [DOI: 10.1016/j.phrs.2022.106126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
33
|
Sazali Hamzah A, Fazli Mohammat M, Wibowo A, Shaameri Z, Nur Ain Abdul Rashid F, Hidayah Pungot N. Five-Membered Nitrogen Heterocycles as New Lead Compounds in Drug Discovery. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Huperzine A and Its Neuroprotective Molecular Signaling in Alzheimer's Disease. Molecules 2021; 26:molecules26216531. [PMID: 34770940 PMCID: PMC8587556 DOI: 10.3390/molecules26216531] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Huperzine A (HupA), an alkaloid found in the club moss Huperzia serrata, has been used for centuries in Chinese folk medicine to treat dementia. The effects of this alkaloid have been attributed to its ability to inhibit the cholinergic enzyme acetylcholinesterase (AChE), acting as an acetylcholinesterase inhibitor (AChEI). The biological functions of HupA have been studied both in vitro and in vivo, and its role in neuroprotection appears to be a good therapeutic candidate for Alzheimer´s disease (AD). Here, we summarize the neuroprotective effects of HupA on AD, with an emphasis on its interactions with different molecular signaling avenues, such as the Wnt signaling, the pre- and post-synaptic region mechanisms (synaptotagmin, neuroligins), the amyloid precursor protein (APP) processing, the amyloid-β peptide (Aβ) accumulation, and mitochondrial protection. Our goal is to provide an integrated overview of the molecular mechanisms through which HupA affects AD.
Collapse
|
35
|
Song HP, Zhang H, Hu R, Xiao HH, Guo H, Yuan WH, Han XT, Xu XY, Zhang X, Ding ZX, Zhao MY, Kang TG, Sun HY, Chang A, Chen YH, Xie M. A strategy to discover lead chemome from traditional Chinese medicines based on natural chromatogram-effect correlation (NCEC) and natural structure-effect correlation (NSEC): Mahonia bealei and Mahonia fortunei as a case study. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1181:122922. [PMID: 34500403 DOI: 10.1016/j.jchromb.2021.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
Lead compound is an important concept for modern drug discovery. In this study, a new concept of lead chemome and an efficient strategy to discover lead chemome were proposed. Compared with the concept of lead compound, lead chemome can provide not only the starting point for drug development, but also the direction for structure optimization. Two traditional Chinese medicines of Mahonia bealei and Mahonia fortunei were used as examples to illustrate the strategy. Based on natural chromatogram-effect correlation (NCEC), berberine, palmatine and jatrorrhizine were discovered as acetylcholinesterase (AchE) inhibitors. Taking the three compounds as template molecules, a lead chemome consisting of 10 structurally related natural compounds were generated through natural structure-effect correlation (NSEC). In the lead chemome, the IC50 values of jatrorrhizine, berberine, coptisine, palmatine and epiberberine are at nanomolar level, which are comparable to a widely used drug of galantamine. Pharmacophore modeling shows that the positive ionizable group and aromatic rings are important substructures for AchE inhibition. Molecular docking further shows that pi-cation interaction and pi-pi stacking are critical for compounds to maintain nanomolar IC50 values. The structure-activity information is helpful for drug design and structure optimization. This work also expanded the traditional understanding of "stem is the medicinal part of Mahonia bealei and Mahonia fortunei". Actually, all parts except the leaf of Mahonia bealei exhibited potent AchE-inhibitory activity. This study provides not only a strategy to discover lead chemome for modern drug development, but also a reference for the application of different parts of medicinal plants.
Collapse
Affiliation(s)
- Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Key Laboratory of Ministry of Education for Traditional Chinese Medicine Visera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Rui Hu
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hong-He Xiao
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hua Guo
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wei-Hong Yuan
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xin-Tong Han
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xin-Yi Xu
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xin Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Xuan Ding
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ming-Yue Zhao
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ting-Guo Kang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui-Yang Sun
- China Pharmaceutical University, Nanjing 210009, China
| | - An Chang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
36
|
Natural Alkaloid Compounds as Inhibitors for Alpha-Synuclein Seeded Fibril Formation and Toxicity. Molecules 2021; 26:molecules26123736. [PMID: 34205249 PMCID: PMC8234408 DOI: 10.3390/molecules26123736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023] Open
Abstract
The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson’s disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.
Collapse
|
37
|
Chemical Composition and Immunomodulatory Activity of Essential Oils from Rhododendron albiflorum. Molecules 2021; 26:molecules26123652. [PMID: 34203809 PMCID: PMC8232766 DOI: 10.3390/molecules26123652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 01/20/2023] Open
Abstract
Rhododendron (Ericaceae) extracts contain flavonoids, chromones, terpenoids, steroids, and essential oils and are used in traditional ethnobotanical medicine. However, little is known about the immunomodulatory activity of essential oils isolated from these plants. Thus, we isolated essential oils from the flowers and leaves of R. albiflorum (cascade azalea) and analyzed their chemical composition and innate immunomodulatory activity. Compositional analysis of flower (REOFl) versus leaf (REOLv) essential oils revealed significant differences. REOFl was comprised mainly of monoterpenes (92%), whereas sesquiterpenes were found in relatively low amounts. In contrast, REOLv was primarily composed of sesquiterpenes (90.9%), with a small number of monoterpenes. REOLv and its primary sesquiterpenes (viridiflorol, spathulenol, curzerene, and germacrone) induced intracellular Ca2+ mobilization in human neutrophils, C20 microglial cells, and HL60 cells transfected with N-formyl peptide receptor 1 (FPR1) or FPR2. On the other hand, pretreatment with these essential oils or component compounds inhibited agonist-induced Ca2+ mobilization and chemotaxis in human neutrophils and agonist-induced Ca2+ mobilization in microglial cells and FPR-transfected HL60 cells, indicating that the direct effect of these compounds on [Ca2+]i desensitized the cells to subsequent agonist activation. Reverse pharmacophore mapping suggested several potential kinase targets for these compounds; however, these targets were not supported by kinase binding assays. Our results provide a cellular and molecular basis to explain at least part of the beneficial immunotherapeutic properties of the R. albiflorum essential oils and suggest that essential oils from leaves of this plant may be effective in modulating some innate immune responses, possibly by inhibition of neutrophil migration.
Collapse
|