1
|
Liang B, Bai X, Wang Y, Li X, Kong Y, Li X, Zeng X, Liu W, Li H, Sun S, Gong H, Fan X. Effect of five lactic acid bacteria on the flavor quality of fermented sweet potato juice. Food Chem X 2024; 24:102023. [PMID: 39655217 PMCID: PMC11626060 DOI: 10.1016/j.fochx.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
The purpose of this research was to assess the impact of 5 lactic acid bacteria (LAB), Lactiplantibacillus plantarum, Lacticaseibacillus casei, Streptococcus thermophilus, Lacticaseibacillus rhamnosus and Lactobacillus delbrueckii subsp. bulgaricus on the characteristic flavor of the fermented sweet potato juice. Following the fermentation process, significant variations were observed in the concentrations of sugars, organic acids, as well as the overall volatile aroma compounds. LAB can effectively facilitate the production of volatile organic compounds (VOCs), including acids and ketones, thereby enhancing the aroma quality. Inoculation fermentation by LAB decreased the sweet and nutty odor, and increased fresh, floral, and citrus aroma of the sweet potato juice. The sweet potato juice fermented by 5 lactic acid bacteria strains had different flavor features, while the sample of Lp10 showed the highest overall acceptability. Compared to other strains, L. plantarum exerted a more significant influence on the volatile compounds present in fermented sweet potato juice.
Collapse
Affiliation(s)
- Bin Liang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Xue Bai
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Yunfan Wang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Xiaohe Li
- School of Health, YanTai Nanshan University, Longkou, Shandong 265713, PR China
| | - Yanhui Kong
- Yantai Landscape Construction and Maintenance Center, Yantai, Shandong 264000, PR China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiangquan Zeng
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN 47906, USA
| | - Wenli Liu
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Huamin Li
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Shuyang Sun
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Xinguang Fan
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| |
Collapse
|
2
|
Ivane NMA, Wang W, Ma Q, Wang J, Sun J. Harnessing the health benefits of purple and yellow-fleshed sweet potatoes: Phytochemical composition, stabilization methods, and industrial utilization- A review. Food Chem X 2024; 23:101462. [PMID: 38974195 PMCID: PMC11225668 DOI: 10.1016/j.fochx.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024] Open
Abstract
Purple-fleshed sweet potato (PFSP) and yellow-fleshed sweet potato (YFSP) are crops highly valued for their nutritional benefits and rich bioactive compounds. These compounds include carotenoids, flavonoids (including anthocyanins), and phenolic acids etc. which are present in both the leaves and roots of these sweet potatoes. PFSP and YFSP offer numerous health benefits, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective properties. The antioxidant activity of these sweet potatoes holds significant potential for various industries, including food, pharmaceutical, and cosmetics. However, a challenge in utilizing PFSP and YFSP is their susceptibility to rapid oxidation and color fading during processing and storage. To address this issue and enhance the nutritional value and shelf life of food products, researchers have explored preservation methods such as co-pigmentation and encapsulation. While YFSP has not been extensively studied, this review provides a comprehensive summary of the nutritional value, phytochemical composition, health benefits, stabilization techniques for phytochemical, and industrial applications of both PFSP and YFSP in the food industry. Additionally, the comparison between PFSP and YFSP highlights their similarities and differences, shedding light on their potential uses and benefits in various food products.
Collapse
Affiliation(s)
- Ngouana Moffo A. Ivane
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
- Hebei Technology Innovation Center of Potato Processing, Hebei 076576, China
| |
Collapse
|
3
|
Liu C, Miao Y, Zhou W, Ma Y, Guo W, Li A. Impact of Thermal Processing on the Structure, Antioxidant Properties and Hypoglycemic Activities of Sweet Potato Polysaccharides. Foods 2024; 13:3082. [PMID: 39410117 PMCID: PMC11475978 DOI: 10.3390/foods13193082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, three kinds of thermal treatments were applied to sweet potatoes: steaming (100 °C, 20 min), frying (150 °C, 10 min), and baking (200 °C, 30 min). We analyzed the changes in the physicochemical structure, antioxidant properties, and hypoglycemic activities of sweet potato polysaccharides between untreated and heat-treated samples. The results showed that the polysaccharides of all sweet potatoes (untreated and heat-treated) were composed of pyranose structures, had low protein content, and shared the same monosaccharide composition. Infrared spectra showed that the three thermal processing treatments had no significant effect on the functional groups or chemical bonding of sweet potato polysaccharides. In addition, all four polysaccharides exhibited dose-dependent antioxidant and hypoglycemic activities. The above experimental results suggest that thermal processing did not affect the physicochemical, antioxidant, or hypoglycemic activities of sweet potato polysaccharides.
Collapse
Affiliation(s)
- Chuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150000, China; (C.L.); (Y.M.); (W.Z.); (Y.M.)
| | - Yu Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150000, China; (C.L.); (Y.M.); (W.Z.); (Y.M.)
| | - Wenjia Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150000, China; (C.L.); (Y.M.); (W.Z.); (Y.M.)
| | - Yiming Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150000, China; (C.L.); (Y.M.); (W.Z.); (Y.M.)
| | - Wenkui Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150000, China; (C.L.); (Y.M.); (W.Z.); (Y.M.)
| | - Aili Li
- Heilongjiang Green Food Science Research Institute, Harbin 150000, China
| |
Collapse
|
4
|
Sultana T, Islam S, Azad MAK, Akanda MJH, Rahman A, Rahman MS. Phytochemical Profiling and Antimicrobial Properties of Various Sweet Potato ( Ipomoea batatas L.) Leaves Assessed by RP-HPLC-DAD. Foods 2024; 13:2787. [PMID: 39272552 PMCID: PMC11395622 DOI: 10.3390/foods13172787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to investigate the leaves of six cultivars of Ipomoea batatas L. from the USA, focusing on their Total Polyphenol Content (TPC), Total Flavonoid Content (TFC), antioxidant, and antimicrobial activities. TPC and TFC ranged from 7.29 ± 0.62 to 10.49 ± 1.04 mg TAE/g Dw, and from 2.30 ± 0.04 to 4.26 ± 0.23 mg QE/g Dw, respectively, with the highest values found in the 'O'Henry' variety. RP-High-Performance Liquid Chromatography identified six phenolic and flavonoid compounds: caffeic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and quercetin, excluding gallic acid. The highest levels of these compounds were found in acidified methanolic extracts. Antioxidant activities, measured by ABTS and DPPH assays, showed low IC50 values ranging from 94.6 ± 2.76 to 115.17 ± 7.65 µg/mL, and from 88.83 ± 1.94 to 147.6 ± 1.22 µg/mL. Ferric Ion-Reducing Antioxidant Potential (FRAP) measurements indicated significant antioxidant levels, varying from 1.98 ± 0.14 to 2.83 ± 0.07, with the 'O'Henry' variety exhibiting the highest levels. The antimicrobial activity test included five Gram-positive bacteria, three Gram-negative bacteria, and two pathogenic fungi. S. aureus, S. mutans, L. monocytogenes, E. coli, S. dysenteriae, and C. albicans were most susceptible to the methanolic extract. This study underscores the impressive antioxidant and antimicrobial activities of sweet potato leaves, often discarded, making them a valuable source of natural antioxidants, antimicrobials, and other health-promoting compounds.
Collapse
Affiliation(s)
- Tasbida Sultana
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Shahidul Islam
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Muhammad Abul Kalam Azad
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Md Jahurul Haque Akanda
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Atikur Rahman
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 S University Ave., Little Rock, AR 72204, USA
| | - Md Sahidur Rahman
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| |
Collapse
|
5
|
Kim J, Park SH, Kim DY, Ryu HW, Jun HS. Molecular Mechanisms of Anticarcinogenic Potential of Hydrocotyle umbellata and Its Major Components. Nutr Cancer 2024; 76:1018-1030. [PMID: 38994559 DOI: 10.1080/01635581.2024.2377344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Despite the development of several anticancer treatments, there remains a need for new drugs that can overcome resistance and reduce side effects. While the medicinal herb Hydrocotyle umbellata (H. umbellata) has been used to relieve pain and inflammation, its antitumor properties have not yet been explored. In this study, we investigated the anticarcinogenic potential of H. umbellata extract (HUE) and its major components, as well as the underlying molecular mechanisms. Our results showed that HUE inhibited the growth of various tumor cell lines, including B16F10, without affecting non-cancer cells. Furthermore, HUE was effective in treating and preventing tumor growth in mice. Our mechanistic studies revealed that HUE inhibited cellular respiration, thereby reducing tumor cell proliferation. When combined with 2-deoxy-D-glucose, HUE demonstrated an enhanced anticancer effect by increasing the rate apoptosis. Analysis of the ethyl acetate and n-butanol fractions of HUE identified 1,3,4-trihydroxy-2-butanyl-α-d-glucopyranoside and caffeoylquinic acid derivatives as the major components responsible for the observed anticancer effects. In conclusion, our findings suggest that HUE and its two major components have the potential to be developed as effective therapeutic agents for a wide range of tumors by targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Jaeyong Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Sang Hyuk Park
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
6
|
Meng X, Dong T, Li Z, Zhu M. First systematic review of the last 30 years of research on sweetpotato: elucidating the frontiers and hotspots. FRONTIERS IN PLANT SCIENCE 2024; 15:1428975. [PMID: 39036362 PMCID: PMC11258629 DOI: 10.3389/fpls.2024.1428975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Sweetpotato is an economically important crop, and it has various advantages over other crops in addressing global food security and climate change. Although substantial articles have been published on the research of various aspects of sweetpotato biology, there are no specific reports to systematically crystallize the research achievements. The current review takes the lead in conducting a keyword-centric spatiotemporal dimensional bibliometric analysis of articles on sweetpotato research using CiteSpace software to comprehensively clarify the development status, research hotspot, and development trend in the past 30 years (1993-2022). Quantitative analysis was carried out on the publishing countries, institutions, disciplines, and scholars to understand the basic status of sweetpotato research; then, visual analysis was conducted on high-frequency keywords, burst keywords, and keyword clustering; the evolution of major research hotspots and the development trend in different periods were summarized. Finally, the three main development stages-preliminary stage (1993-2005), rapid stage (2006-2013), and diversified mature stage (2014-2022)-were reviewed and analyzed in detail. Particularly, the development needs of sweetpotato production in improving breeding efficiency, enhancing stress tolerance, coordinating high yield with high quality and high resistance, and promoting demand were discussed, which will help to comprehensively understand the development dynamics of sweetpotato research from different aspects of biological exploration.
Collapse
Affiliation(s)
| | | | | | - Mingku Zhu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Jiang WP, Deng JS, Yu CC, Lin JG, Huang GJ. Anti-SARS-CoV-2 Viral Activity of Sweet Potato Trypsin Inhibitor via Downregulation of TMPRSS2 Activity and ACE2 Expression In Vitro and In Vivo. Int J Mol Sci 2024; 25:6067. [PMID: 38892254 PMCID: PMC11172529 DOI: 10.3390/ijms25116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Known as COVID-19, it has affected billions of people worldwide, claiming millions of lives and posing a continuing threat to humanity. This is considered one of the most extensive pandemics ever recorded in human history, causing significant losses to both life and economies globally. However, the available evidence is currently insufficient to establish the effectiveness and safety of antiviral drugs or vaccines. The entry of the virus into host cells involves binding to angiotensin-converting enzyme 2 (ACE2), a cell surface receptor, via its spike protein. Meanwhile, transmembrane protease serine 2 (TMPRSS2), a host surface protease, cleaves and activates the virus's S protein, thus promoting viral infection. Plant protease inhibitors play a crucial role in protecting plants against insects and/or microorganisms. The major storage proteins in sweet potato roots include sweet potato trypsin inhibitor (SWTI), which accounts for approximately 60% of the total water-soluble protein and has been found to possess a variety of health-promoting properties, including antioxidant, anti-inflammatory, ACE-inhibitory, and anticancer functions. Our study found that SWTI caused a significant reduction in the expression of the ACE2 and TMPRSS2 proteins, without any adverse effects on cells. Therefore, our findings suggest that the ACE2 and TMPRSS2 axis can be targeted via SWTI to potentially inhibit SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Chia-Chen Yu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| |
Collapse
|
8
|
Tshilongo L, Mianda SM, Seke F, Laurie SM, Sivakumar D. Influence of Harvesting Stages on Phytonutrients and Antioxidant Properties of Leaves of Five Purple-Fleshed Sweet Potato ( Ipomoea batatas) Genotypes. Foods 2024; 13:1640. [PMID: 38890868 PMCID: PMC11172356 DOI: 10.3390/foods13111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Sweet potatoes (Ipomoea batatas) are highly profitable, contribute to food security, and their leaves rich in phytonutrients. This study examined the optimal leaf harvesting stage by harvesting newly formed leaves (leaves 1 to 5) to achieve the highest concentration of carotenoids, phenolic compounds, antioxidant properties and mineral content. Leaves of five purple-fleshed sweet potato genotypes '2019-11-2' and '2019-1-1', 'Purple-purple', and from the USA '08-21P' and '16-283P' were harvested based on tuber life cycle [vegetative 8 weeks after planting (VS-8WAP), tuber initiation (TIS-12WAP), and tuber maturation phases (TMS-16WAP)]. At the 8WAP stage, leaves of genotype '2019-11-2' had the highest concentrations of cyanidin-caffeoyl-sophoroside-glucoside (17.64 mg/kg), cyanidin-caffeoyl-feruloyl-sophoroside-glucoside (41.51 mg/kg), peonidin-caffeoyl-hydroxybenzoyl-sophoriside-glucoside (45.25 mg/kg), and peonidin caffeoyl-feruloyl-sophoriside-glucoside (24.47 mg/kg), as well as antioxidant scavenging activity. In contrast, 'Purple-purple' harvested at TIS-12WAP showed the highest concentration of caffeoylquinic acid derivatives. Zeaxanthin, lutein, all trans-β-carotene, and cis-β-carotene are the most abundant carotenoids in genotype '08-21P' at VS-8WAP. As a result, local genotypes '2019-11-2' harvested at 8WAP and 'Purple-purple' harvested at 12WAP are potential sources of anthocyanins and caffeoylquinic acid derivatives. Conversely, USA's genotype '08-21P' at the VS-8WAP stage is an excellent source of carotenoids. The leaves of USA's '08-21P' genotype and the local '2019-11-2' genotype at TMS-16WAP exhibited the highest content of Fe and Mn, respectively. The study identified the optimal leaf stage for consumption of leaves and for use as a functional ingredient.
Collapse
Affiliation(s)
- Lavhelani Tshilongo
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
| | - Sephora Mutombo Mianda
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
| | - Faith Seke
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
| | - Sunette M. Laurie
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants, Pretoria 0001, South Africa
| | - Dharini Sivakumar
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants, Pretoria 0001, South Africa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Indooroopilly, QLD 4068, Australia
| |
Collapse
|
9
|
Wen J, Sui Y, Shi J, Cai S, Xiong T, Cai F, Zhou L, Li S, Mei X. In Vitro Gastrointestinal Digestion of Various Sweet Potato Leaves: Polyphenol Profiles, Bioaccessibility and Bioavailability Elucidation. Antioxidants (Basel) 2024; 13:520. [PMID: 38790625 PMCID: PMC11117659 DOI: 10.3390/antiox13050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
The chemical composition discrepancies of five sweet potato leaves (SPLs) and their phenolic profile variations during in vitro digestion were investigated. The results indicated that Ecaishu No. 10 (EC10) provided better retention capacity for phenolic compounds after drying. Furthermore, polyphenols were progressively released from the matrix as the digestion process proceeded. The highest bioaccessibility of polyphenols was found in EC10 intestinal chyme at 48.47%. For its phenolic profile, 3-, 4-, and 5-monosubstituted caffeoyl quinic acids were 9.75%, 57.39%, and 79.37%, respectively, while 3,4-, 3,5-, and 4,5-disubstituted caffeoyl quinic acids were 6.55, 0.27 and 13.18%, respectively. In contrast, the 3,4-, 3,5-, 4,5-disubstituted caffeoylquinic acid in the intestinal fluid after dialysis bag treatment was 62.12%, 79.12%, and 62.98%, respectively, which resulted in relatively enhanced bioactivities (DPPH, 10.51 μmol Trolox/g; FRAP, 8.89 μmol Trolox/g; ORAC, 7.32 μmol Trolox/g; IC50 for α-amylase, 19.36 mg/g; IC50 for α-glucosidase, 25.21 mg/g). In summary, desirable phenolic acid release characteristics and bioactivity of EC10 were observed in this study, indicating that it has potential as a functional food ingredient, which is conducive to the exploitation of the sweet potato processing industry from a long-term perspective.
Collapse
Affiliation(s)
- Junren Wen
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Sui
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Jianbin Shi
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Sha Cai
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Tian Xiong
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Fang Cai
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Lei Zhou
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
- National R & D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Product, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyi Li
- National R & D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Product, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Mei
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| |
Collapse
|
10
|
Jing X, Chen P, Jin X, Lei J, Wang L, Chai S, Yang X. Physiological, Photosynthetic, and Transcriptomics Insights into the Influence of Shading on Leafy Sweet Potato. Genes (Basel) 2023; 14:2112. [PMID: 38136933 PMCID: PMC10742944 DOI: 10.3390/genes14122112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Leafy sweet potato is a new type of sweet potato, whose leaves and stems are used as green vegetables. However, sweet potato tips can be affected by pre-harvest factors, especially the intensity of light. At present, intercropping, greenhouse planting, and photovoltaic agriculture have become common planting modes for sweet potato. Likewise, they can also cause insufficient light conditions or even low light stress. This research aimed to evaluate the influence of four different shading levels (no shading, 30%, 50%, and 70% shading degree) on the growth profile of sweet potato leaves. The net photosynthetic rate, chlorophyll pigments, carbohydrates, and polyphenol components were determined. Our findings displayed that shading reduced the content of the soluble sugar, starch, and sucrose of leaves, as well as the yield and Pn. The concentrations of Chl a, Chl b, and total Chl were increased and the Chl a/b ratio was decreased for the more efficient interception and absorption of light under shading conditions. In addition, 30% and 50% shading increased the total phenolic, total flavonoids, and chlorogenic acid. Transcriptome analysis indicated that genes related to the antioxidant, secondary metabolism of phenols and flavonoids, photosynthesis, and MAPK signaling pathway were altered in response to shading stresses. We concluded that 30% shading induced a high expression of antioxidant genes, while genes related to the secondary metabolism of phenols and flavonoids were upregulated by 50% shading. And the MAPK signaling pathway was modulated under 70% shading, and most stress-related genes were downregulated. Moreover, the genes involved in photosynthesis, such as chloroplast development, introns splicing, and Chlorophyll synthesis, were upregulated as shading levels increased. This research provides a new theoretical basis for understanding the tolerance and adaptation mechanism of leafy sweet potato in low light environments.
Collapse
Affiliation(s)
- Xiaojing Jing
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
- Agricultural College, Yangtze University, Jingzhou 434022, China
| | - Peiru Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Xiaojie Jin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Jian Lei
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Shasha Chai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Xinsun Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| |
Collapse
|
11
|
Rakoczy K, Kaczor J, Sołtyk A, Szymańska N, Stecko J, Sleziak J, Kulbacka J, Baczyńska D. Application of Luteolin in Neoplasms and Nonneoplastic Diseases. Int J Mol Sci 2023; 24:15995. [PMID: 37958980 PMCID: PMC10650338 DOI: 10.3390/ijms242115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Researchers are amazed at the multitude of biological effects of 3',4',5,7-tetrahydroxyflavone, more commonly known as luteolin, as it simultaneously has antioxidant and pro-oxidant, as well as antimicrobial, anti-inflammatory, and cancer-preventive, properties. The anticancer properties of luteolin constitute a mosaic of pathways due to which this flavonoid influences cancer cells. Not only is it able to induce apoptosis and inhibit cancer cell proliferation, but it also suppresses angiogenesis and metastasis. Moreover, luteolin succeeds in cancer cell sensitization to therapeutically induced cytotoxicity. Nevertheless, apart from its promising role in chemoprevention, luteolin exhibits numerous potential utilizations in patients with conditions other than neoplasms, which include inflammatory skin diseases, diabetes mellitus, and COVID-19. This review aims to present the multidimensionality of the luteolin's impact on both neoplastic and nonneoplastic diseases. When it comes to neoplasms, we intend to describe the complexity of the molecular mechanisms that underlay luteolin's anticancer effectiveness, as well as to prove the usefulness of integrating this flavonoid in cancer therapy via the analysis of recent research on breast, colon, and lung cancer. Regarding nonneoplastic diseases, this review aims to emphasize the importance of researching the potential of luteolin in areas such as diabetology, virology, and dermatology as it summarizes the most important discoveries in those fields regarding its application.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
12
|
Arief Waskito B, Sargowo D, Kalsum U, Tjokroprawiro A. Anti-atherosclerotic activity of aqueous extract of Ipomoea batatas (L.) leaves in high-fat diet-induced atherosclerosis model rats. J Basic Clin Physiol Pharmacol 2023; 34:725-734. [PMID: 34986543 DOI: 10.1515/jbcpp-2021-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cardiovascular diseases, especially atherosclerosis, are the leading cause of human mortality in Indonesia. Ipomoea batatas (L.) is a food plant used in Indonesian traditional medicine to treat cardiovascular diseases and related conditions. We assessed the anti-atherosclerotic activity of the aqueous extract of I. batatas leaves in a rat model of high-fat diet-induced atherosclerosis and its mechanism. METHODS The presence of amino acid content in the I. batatas L. purple variant was determined by liquid chromatography high-resolution mass spectrometry (LC-HRMS). Thirty male Wistar rats were divided into five groups (n=6/group), i.e., standard diet group (SD), high-fat diet group (HF), and HF plus I. batatas L. extracts orally (625; 1,250; or 2,500 mg/kg) groups. The numbers of macrophages and aortic wall thickness were analyzed histologically. Immunohistochemical analyses were performed to assess foam cells-oxidized low-density lipoprotein (oxLDL), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF) expression in the aorta. RESULTS LC-HRMS analysis showed nine amino acid content were identified from I. batatas L. In vivo study revealed that oral administration of I. batatas L. leaf extract alleviated foam cells-oxLDL formation and aortic wall thickness caused by high-fat diet atherosclerosis rats. Further, I. batatas L. leaf extract promoted the number of macrophages and modulated VEGF and eNOS expression in the aorta. CONCLUSIONS I. batatas L. leaf extract shows a positive anti-atherosclerosis effect. Furthermore, the mechanism may promote the macrophages, eNOS, VEGF expressions, and inhibition of foam cells-oxLDL formation and aortic wall thickness with the best dosage at 2,500 mg/kg. This could represent a novel approach to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Budi Arief Waskito
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Wijaya Kusuma University, Surabaya, East Java, Indonesia
| | - Djanggan Sargowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Umi Kalsum
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Askandar Tjokroprawiro
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
13
|
Li G, Gao X, Wang Y, He S, Guo W, Huang J. Effects of superfine grinding sweet potato leaf powders on physicochemical and structure properties of sweet potato starch noodles. Food Sci Nutr 2023; 11:6498-6508. [PMID: 37823126 PMCID: PMC10563675 DOI: 10.1002/fsn3.3593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 10/13/2023] Open
Abstract
Sweet potato leaves (SPLs) containing abundant functional components are consumed primarily as fresh vegetables worldwide. This study investigated the physical properties of superfine grinding SPLs powder, and their effects on cooking, texture, and sensory properties, micro- and molecular structures of starch noodles were also explored. The results showed that the bulk and tapped density (from 0.34 to 0.28 g/mL3 and from 0.69 to 0.61 g/mL3), repose and slid angle (from 42.15 to 30.96° and from 48.67 to 22.00°), water-holding capacity and swelling capacity (from 8.66 to 4.94 g/g and from 10.03 to 7.77 mL/g) of SPLs powders were decreased with milling time increased. The cooking loss, swelling index, texture, and sensory properties of SPLs sweet potato starch noodles (SPLSNs) were improved as the particle size of SPLs decreased. XRD and FT-IR showed that SPLSNs contained less complete crystallites (from 28.85% to 14.19%) and lower proportion of crystalline region (R 1047/1017 from 0.96 to 0.81, R 1017/994 from 0.41 to 0.43). SEM revealed that SPLSNs exhibited fewer ordered arrays and smooth cross sections. Our findings provide a foundation for utilizing SPLs and developing functional starch noodles.
Collapse
Affiliation(s)
- Guanghui Li
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Xueli Gao
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Yonghui Wang
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Shenghua He
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Weiyun Guo
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Jihong Huang
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
- College of AgricultureHenan UniversityZhengzhouChina
| |
Collapse
|
14
|
Hisamuddin ASDB, Naomi R, Bin Manan KA, Bahari H, Yazid MD, Othman F, Embong H, Hadizah Jumidil S, Hussain MK, Zakaria ZA. Phytochemical component and toxicological evaluation of purple sweet potato leaf extract in male Sprague–Dawley rats. Front Pharmacol 2023; 14:1132087. [PMID: 37077809 PMCID: PMC10106777 DOI: 10.3389/fphar.2023.1132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
This study assessed the toxicity of lutein-rich purple sweet potato leaf (PSPL) extract in male Sprague–Dawley rats.Methods and study design: A total of 54 adult male Sprague–Dawley rats were used. For the acute toxicity study, three rats in the acute control group were fed 2,000 mg/kg of PSPL for 14 days. The subacute toxicity study included six rats each in four groups administered 50, 250, 500, or 1,000 mg/kg for 28 days and observed for further 14 days without treatment in the subacute control and subacute satellite groups. Changes in body weight; blood biochemistry; hematological parameters; relative organ weight; and histological sections of the heart, kidney, liver, pancreas, aorta, and retina were observed for signs of toxicity.Results: The gradual increase in weekly body weight, normal level full blood count, normal liver and kidney profile, relative organ weight, and histological sections of all stained organ tissue in the treated group compared with the acute, subacute, and satellite control groups demonstrated the absence of signs of toxicity.Conclusion: Lutein-rich PSPL extract shows no signs of toxicity up to 2,000 mg/kg/day.
Collapse
|
15
|
Nagy VD, Zhumakayev A, Vörös M, Bordé Á, Szarvas A, Szűcs A, Kocsubé S, Jakab P, Monostori T, Škrbić BD, Mohai E, Hatvani L, Vágvölgyi C, Kredics L. Development of a Multicomponent Microbiological Soil Inoculant and Its Performance in Sweet Potato Cultivation. Microorganisms 2023; 11:microorganisms11040914. [PMID: 37110337 PMCID: PMC10143537 DOI: 10.3390/microorganisms11040914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The cultivation and consumption of sweet potato (Ipomoea batatas) are increasing globally. As the usage of chemical fertilizers and pest control agents during its cultivation may lead to soil, water and air pollution, there is an emerging need for environment-friendly, biological solutions enabling increased amounts of healthy crop and efficient disease management. Microbiological agents for agricultural purposes gained increasing importance in the past few decades. Our goal was to develop an agricultural soil inoculant from multiple microorganisms and test its application potential in sweet potato cultivation. Two Trichoderma strains were selected: Trichoderma ghanense strain SZMC 25217 based on its extracellular enzyme activities for the biodegradation of plant residues, and Trichoderma afroharzianum strain SZMC 25231 for biocontrol purposes against fungal plant pathogens. The Bacillus velezensis strain SZMC 24986 proved to be the best growth inhibitor of most of the nine tested strains of fungal species known as plant pathogens, therefore it was also selected for biocontrol purposes against fungal plant pathogens. Arthrobacter globiformis strain SZMC 25081, showing the fastest growth on nitrogen-free medium, was selected as a component with possible nitrogen-fixing potential. A Pseudomonas resinovorans strain, SZMC 25872, was selected for its ability to produce indole-3-acetic acid, which is among the important traits of potential plant growth-promoting rhizobacteria (PGPR). A series of experiments were performed to test the selected strains for their tolerance to abiotic stress factors such as pH, temperature, water activity and fungicides, influencing the survivability in agricultural environments. The selected strains were used to treat sweet potato in two separate field experiments. Yield increase was observed for the plants treated with the selected microbial consortium (synthetic community) in comparison with the control group in both cases. Our results suggest that the developed microbial inoculant has the potential to be used in sweet potato plantations. To the best of our knowledge, this is the first report about the successful application of a fungal-bacterial consortium in sweet potato cultivation.
Collapse
Affiliation(s)
- Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Anuar Zhumakayev
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Ádám Bordé
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Adrienn Szarvas
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Péter Jakab
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Tamás Monostori
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Biljana D. Škrbić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Edina Mohai
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
16
|
Leichtweis MG, Molina AK, Pires TCS, Dias MI, Calhelha R, Bachari K, Ziani BEC, Oliveira MBPP, Pereira C, Barros L. Biological Activity of Pumpkin Byproducts: Antimicrobial and Antioxidant Properties. Molecules 2022; 27:molecules27238366. [PMID: 36500462 PMCID: PMC9739767 DOI: 10.3390/molecules27238366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Pumpkin fruits are widely appreciated and consumed worldwide. In addition to their balanced nutritional profile, pumpkin species also present valuable bioactive compounds that confer biological and pharmacological properties to them. However, the seeds, peels, and fibrous strands resulting from pumpkin processing are still poorly explored by the food industry. The current study used those fruit components from the genotypes of pumpkin that are economically significant in Portugal and Algeria to produce bioactive extracts. In order to support their usage as preservatives, their phenolic content (HPLC-DAD-ESI/MS) and antioxidant (OxHLIA and TBARS) and antimicrobial properties (against eight bacterial and two fungal strains) were assessed. In terms of phenolic profile, the peel of the Portuguese 'Common Pumpkin' showed the most diversified profile and also the highest concentration of total phenolic compounds, with considerable concentrations of (-)-epicatechin. Regarding the antioxidant capacity, the seeds of 'Butternut Squash' from both countries stood out, while the fibrous strands of Portuguese 'Butternut Squash' and the seeds of Algerian 'Gold Nugget Pumpkin' revealed the strongest antimicrobial activity. The bioactive compounds identified in the pumpkin byproducts may validate their enormous potential as a source of bio-based preservatives that may enhance consumers' health and promote a circular economy.
Collapse
Affiliation(s)
- Maria G. Leichtweis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Tânia C. S. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques-CRAPC, Bou Ismaïl 42004, Algeria
| | - Borhane E. C. Ziani
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques-CRAPC, Bou Ismaïl 42004, Algeria
| | - M. Beatriz P. P. Oliveira
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Correspondence: ; Tel.: +351-2733-309-04
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
17
|
Dong J, Zhao C, Zhang J, Ren Y, He L, Tang R, Wang W, Jia X. The sweet potato B-box transcription factor gene IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis. Front Genet 2022; 13:1077958. [PMID: 36523761 PMCID: PMC9744756 DOI: 10.3389/fgene.2022.1077958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
B-box (BBX) which are a class of zinc finger transcription factors, play an important role in regulating of photoperiod, photomorphogenesis, and biotic and abiotic stresses in plants. However, there are few studies on the involvement of BBX transcription factors in response to abiotic stresses in sweet potato. In this paper, we cloned the DNA and promoter sequences of IbBBX28. There was one B-box conserved domain in IbBBX28, and the expression of IbBBX28 was induced under drought stress. Under drought stress, compared to wild type Arabidopsis, the protective enzyme activities (SOD, POD, and CAT) were all decreased in IbBBX28-overexpression Arabidopsis but increased in the mutant line bbx28, while the MDA content was increased in the IbBBX28-overexpression Arabidopsis and decreased in the bbx28. Moreover, the expression levels of the resistance-related genes showed the same trend as the protective enzyme activities. These results showed that IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis. Additionally, the yeast two-hybrid and BiFC assays verified that IbBBX28 interacted with IbHOX11 and IbZMAT2. The above results provide important clues for further studies on the role of IbBBX28 in regulating the stress response in sweet potato.
Collapse
Affiliation(s)
- Jingjing Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Cailiang Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yuchao Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Liheng He
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ruimin Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
18
|
Liu T, Wu F, Chen K, Pan B, Yin X, You Y, Song Z, Li D, Huang D. Sweet potato extract alleviates high-fat-diet-induced obesity in C57BL/6J mice, but not by inhibiting pancreatic lipases. Front Nutr 2022; 9:1016020. [PMID: 36505243 PMCID: PMC9731405 DOI: 10.3389/fnut.2022.1016020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Scope and aim Sweet potato is widely consumed as a healthy and nutritive vegetable containing bioactive constituents for health promotion. This study investigated the beneficial impact of white-fleshed sweet potato extract (SPE) on high fat diet (HFD)-induced obese mice. Methods and results First, SPE, in which resin glycoside was found as the dominant constituent, was suggested as a potential anti-obesity agent, because 20-70% pancreatic lipase (PL) inhibition was measured with SPE by in vitro turbidity assay and pNPP assay. Hence, next, the effect of SPE on obese mice was detected by oral administration of HFD supplemented with 6% SPE on C57BL/6J mice for 9 weeks. Surprisingly, being the opposite of what was typically observed from a lipase inhibitor such as orlistat, the fecal fat content in SPE-fed obese mice was decreased (p < 0.01). Meanwhile, 6% SPE supplement indeed significantly ameliorated HFD-induced obesity in mice, including body weight gain, fat accumulation, adipocyte enlargement, insulin resistance, and hepatic steatosis (p < 0.05). The improved liver steatosis was found associated with a down-regulating action of SPE on nuclear factor kappa B activation in HFD-fed mice. The anti-obesity influence of SPE was also confirmed on the HepG2 cell model for non-alcoholic fatty liver disease (NAFLD). Conclusion These results indicate that SPE, as a dietary supplement, has the great potential for weight control and treating hepatic steatosis, possibly through a different action mechanism from that of orlistat.
Collapse
Affiliation(s)
- Tiange Liu
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Fan Wu
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Kejing Chen
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bingna Pan
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Xifeng Yin
- Suzhou Kosmode Biotechnology Company, Suzhou, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Zhixuan Song
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Dan Li
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Shi J, Wu Q, Deng J, Balfour K, Chen Z, Liu Y, Kumar S, Chen Y, Zhu Z, Zhu G. Metabolic Profiling and Antioxidant Analysis for the Juvenile Red Fading Leaves of Sweetpotato. PLANTS (BASEL, SWITZERLAND) 2022; 11:3014. [PMID: 36432744 PMCID: PMC9697311 DOI: 10.3390/plants11223014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Leaves of sweetpotato (Ipomoea batatas L.) are promising healthy leafy vegetable. Juvenile red fading (JRF) leaves of sweetpotato, with anthocyanins in young leaves, are good candidates for developing functional vegetables. Here, metabolic profiling and possible antioxidants were analyzed for five leaf stages of the sweetpotato cultivar "Chuanshan Zi". The contents of anthocyanins, total phenolics, and flavonoids all declined during leaf maturation, corresponding to declining antioxidant activities. By widely targeted metabolomics, we characterized 449 metabolites belonging to 23 classes. A total of 193 secondary metabolites were identified, including 82 simple phenols, 85 flavonoids, 18 alkaloids, and eight terpenes. Analysis of the metabolic data indicates that the antioxidant capacity of sweetpotato leaves is the combined result of anthocyanins and many other colorless compounds. Increased levels of "chlorogenic acid methyl ester", a compromised form of chlorogenic acid, significantly correlated with the declined antioxidant abilities. Besides anthocyanins, some significant metabolites contributing to the high antioxidant property of the sweetpotato leaves were highlighted, including chlorogenic acids, isorhamnetin glycosides, trans-4-hydroxycinnamic acid methyl ester, 4-methoxycinnamic acid, esculetin, caffeate, and trigonelline. This study provides metabolic data for the utilization of sweetpotato leaves as food sources, and sheds light on the metabolomic change for JRF leaves of other plants.
Collapse
Affiliation(s)
- Jie Shi
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Yazhou Nanfan Service Center of Agricultural and Rural Bureau, Sanya 572025, China
| | - Qiang Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Jiliang Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Kelly Balfour
- Department of Biology, Algoma University, Sault Sainte Marie, ON P6A 2G4, Canada
| | - Zhuo Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yonghua Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhixin Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
20
|
A prospective cohort study of starchy and non-starchy vegetable intake and mortality risk. Br J Nutr 2022:1-9. [PMID: 36274633 DOI: 10.1017/s0007114522003518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Whether starchy and non-starchy vegetables have distinct impacts on health remains unknown. We prospectively investigated the intake of starchy and non-starchy vegetables in relation to mortality risk in a nationwide cohort. Diet was assessed using 24-h dietary recalls. Deaths were identified via the record linkage to the National Death Index. Hazard ratios (HR) and 95 % CI were calculated using Cox regression. During a median follow-up of 7·8 years, 4904 deaths were documented among 40 074 participants aged 18 years or older. Compared to those with no consumption, participants with daily consumption of ≥ 1 serving of non-starchy vegetables had a lower risk of mortality (HR = 0·76, 95 % CI 0·66, 0·88, Ptrend = 0·001). Dark-green and deep-yellow vegetables (HR = 0·79, 95 % CI 0·63, 0·99, Ptrend = 0·023) and other non-starchy vegetables (HR = 0·80, 95 % CI 0·70, 0·92, Ptrend = 0·004) showed similar results. Total starchy vegetable intake exhibited a marginally weak inverse association with mortality risk (HR = 0·89, 95 % CI 0·80, 1·00, Ptrend = 0·048), while potatoes showed a null association (HR = 0·93, 95 % CI 0·82, 1·06, Ptrend = 0·186). Restricted cubic spline analysis suggested a linear dose-response relationship between vegetable intake and death risk, with a plateau at over 300 and 200 g/d for total and non-starchy vegetables, respectively. Compared with starchy vegetables, non-starchy vegetables might be more beneficial to health, although both showed a protective association with mortality risk. The risk reduction in mortality plateaued at approximately 200 g/d for non-starchy vegetables and 300 g/d for total vegetables.
Collapse
|
21
|
Valdés-Restrepo MP, Ortiz-Grisales S. Calidad de forraje y almidón en 10 clones de batata Ipomoea batatas (L.) Lam. REVISTA U.D.C.A ACTUALIDAD & DIVULGACIÓN CIENTÍFICA 2022. [DOI: 10.31910/rudca.v24.n2.2021.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Wang F, Tan WF, Song W, Yang ST, Qiao S. Transcriptome analysis of sweet potato responses to potassium deficiency. BMC Genomics 2022; 23:655. [PMID: 36109727 PMCID: PMC9479357 DOI: 10.1186/s12864-022-08870-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background As one of three essential nutrients, potassium is regarded as a main limiting factor for growth and development in plant. Sweet potato (Ipomoea batatas L.) is one of seven major food crops grown worldwide, and is both a nutrient-rich food and a bioenergy crop. It is a typical ‘K-favoring’ crop, and the level of potassium ion (K+) supplementation directly influences its production. However, little is known about the transcriptional changes in sweet potato genes under low-K+ conditions. Here, we analyzed the transcriptomic profiles of sweet potato roots in response to K+ deficiency to determine the effect of low-K+ stress on this economically important crop. Results The roots of sweet potato seedlings with or without K+ treatment were harvested and used for transcriptome analyses. The results showed 559 differently expressed genes (DEGs) in low and high K+ groups. Among the DEGs, 336 were upregulated and 223 were downregulated. These DEGs were involved in transcriptional regulation, calcium binding, redox-signaling, biosynthesis, transport, and metabolic process. Further analysis revealed previously unknow genes involved in low-K+ stress, which could be investigated further to improve low K+ tolerance in plants. Confirmation of RNA-sequencing results using qRT-PCR displayed a high level of consistency between the two experiments. Analysis showed that many auxin-, ethylene- and jasmonic acid-related genes respond to K+ deficiency, suggesting that these hormones have important roles in K+ nutrient signaling in sweet potato. Conclusions According to the transcriptome data of sweet potato, various DEGs showed transcriptional changes in response to low-K+ stress. However, the expression level of some kinases, transporters, transcription factors (TFs), hormone-related genes, and plant defense-related genes changed significantly, suggesting that they have important roles during K+ deficiency. Thus, this study identifies potential genes for genetic improvement of responses to low-K+ stress and provides valuable insight into the molecular mechanisms regulating low K+ tolerance in sweet potato. Further research is required to clarify the function of these DEGs under low-K+ stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08870-5.
Collapse
|
23
|
Natural Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Total Flavonoid Compounds from Spent Sweet Potato ( Ipomoea batatas L.) Leaves: Optimization and Antioxidant and Bacteriostatic Activity. Molecules 2022; 27:molecules27185985. [PMID: 36144716 PMCID: PMC9501105 DOI: 10.3390/molecules27185985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Natural deep eutectic solvents (NADESs) coupled with microwave-assisted extraction (MAE) were applied to extract total flavonoid compounds from spent sweet potato (Ipomoea batatas L.) leaves. In this study, ten different NADESs were successfully synthesized for the MAE. Based on single-factor experiments, the response surface methodology (RSM) was applied, and the microwave power, extraction temperature, extraction time, and solid−liquid ratio were further evaluated in order to optimize the yields of total flavonoid compounds. Besides, the extracts were recovered by macroporous resin for the biological activity detection of flavonoid compounds. As a result, NADES-2, synthesized by choline chloride and malic acid (molar ratio 1:2), exhibited the highest extraction yield. After that, the NADES-2-based MAE process was optimized and the optimal conditions were as follows: microwave power of 470 W, extraction temperature of 54 °C, extraction time of 21 min, and solid−liquid ratio of 70 mg/mL. The extraction yield (40.21 ± 0.23 mg rutin equivalents/g sweet potato leaves) of the model validation experiment was demonstrated to be in accordance with the predicted value (40.49 mg rutin equivalents/g sweet potato leaves). In addition, flavonoid compounds were efficiently recovered from NADES-extracts with a high recovery yield (>85%) using AB-8 macroporous resin. The bioactivity experiments in vitro confirmed that total flavonoid compounds had good DPPH and O2−· radical-scavenging activity, as well as inhibitory effects on E. coli, S. aureus, E. carotovora, and B. subtilis. In conclusion, this study provides a green and efficient method to extract flavonoid compounds from spent sweet potato leaves, providing technical support for the development and utilization of sweet potato leaves’ waste.
Collapse
|
24
|
Laveriano-Santos EP, López-Yerena A, Jaime-Rodríguez C, González-Coria J, Lamuela-Raventós RM, Vallverdú-Queralt A, Romanyà J, Pérez M. Sweet Potato Is Not Simply an Abundant Food Crop: A Comprehensive Review of Its Phytochemical Constituents, Biological Activities, and the Effects of Processing. Antioxidants (Basel) 2022; 11:antiox11091648. [PMID: 36139723 PMCID: PMC9495970 DOI: 10.3390/antiox11091648] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, sweet potato (Ipomoea batata L.; Lam.) is considered a very interesting nutritive food because it is rich in complex carbohydrates, but as a tubercle, contains high amounts of health-promoting secondary metabolites. The aim of this review is to summarize the most recently published information on this root vegetable, focusing on its bioactive phytochemical constituents, potential effects on health, and the impact of processing technologies. Sweet potato is considered an excellent source of dietary carotenoids, and polysaccharides, whose health benefits include antioxidant, anti-inflammatory and hepatoprotective activity, cardiovascular protection, anticancer properties and improvement in neurological and memory capacity, metabolic disorders, and intestinal barrier function. Moreover, the purple sweet potato, due to its high anthocyanin content, represents a unique food option for consumers, as well as a potential source of functional ingredients for healthy food products. In this context, the effects of commercial processing and domestic cooking techniques on sweet potato bioactive compounds require further study to understand how to minimize their loss.
Collapse
Affiliation(s)
- Emily P. Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Carolina Jaime-Rodríguez
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Johana González-Coria
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Joan Romanyà
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (J.R.); (M.P.)
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (J.R.); (M.P.)
| |
Collapse
|
25
|
Chiu CH, Lin KH, Lin HH, Chu WX, Lai YC, Chao PY. Analysis of Chlorogenic Acid in Sweet Potato Leaf Extracts. PLANTS 2022; 11:plants11152063. [PMID: 35956541 PMCID: PMC9370470 DOI: 10.3390/plants11152063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/27/2022]
Abstract
Sweet potato (Ipomoea batatas L.) is one of the most important food crops worldwide, with leaves of different varieties showing purple, green and yellow, and these leaves provide a dietary source of nutrients and various bioactive compounds. The objective of this study was to identify the active constituents of chlorogenic acids (CGAs) in different methanolic extract of leaves of three varieties of sweet potato (purple CYY 98-59, green Taoyuan 2, and yellow CN 1927-16) using liquid chromatography–tandem mass spectrometry. Genotype-specific metabolite variations were observed; CGAs and three isomeric peaks were detected in sweet potato leaf extracts (SPLEs). Among them, the yellow SPLE contained the highest contents of 3,5-dicaffeoylquinic acid (3,5-di-CQA) and 3,4-dicaffeoylquinic acid (3,4-di-CQA), followed by the green SPLE, whereas the purple SPLE retained lower 3,5-di-CQA content compared to yellow and green SPLEs. All three SPLEs contained lower 4,5-dicaffeoylquinic acid (4,5-di-CQA) and CGA contents compared to 3,5-di-CQA and 3,4-di-CQA, although CGA constituents were not significantly different in genotypes, whereas purple SPLE contained higher 4,5-di-CQA content compared to yellow and green SPLEs. This study indicates that SPLs marketed in Taiwan vary widely in their biological potentials and may impart different health benefits to consumers.
Collapse
Affiliation(s)
- Chun-Hui Chiu
- Graduate Institute of Health Industry and Technology, Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Traditional Chinese Medicine, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Hsin-Hung Lin
- Department of Agronomy, National Chung Hsing University, Taichung 40277, Taiwan
| | - Wen-Xin Chu
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yung-Chang Lai
- Agronomy Division, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute (TARI), Concil of Agriculture (COA), Executive Yuan, Chiayi 60044, Taiwan
| | - Pi-Yu Chao
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence:
| |
Collapse
|
26
|
Plant Bioactives in the Treatment of Inflammation of Skeletal Muscles: A Molecular Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4295802. [PMID: 35911155 PMCID: PMC9328972 DOI: 10.1155/2022/4295802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022]
Abstract
Skeletal muscle mass responds rapidly to growth stimuli, precipitating hypertrophies (increased protein synthesis) and hyperplasia (activation of the myogenic program). For ages, muscle degeneration has been attributed to changes in the intracellular myofiber pathways. These pathways are tightly regulated by hormones and lymphokines that ultimately pave the way to decreased anabolism and accelerated protein breakdown. Despite the lacunae in our understanding of specific pathways, growing bodies of evidence suggest that the changes in the myogenic/regenerative program are the major contributing factor in the development and progression of muscle wasting. In addition, inflammation plays a key role in the pathophysiology of diseases linked to the failure of skeletal muscles. Chronic inflammation with elevated levels of inflammatory mediators has been observed in a spectrum of diseases, such as inflammatory myopathies and chronic obstructive pulmonary disease (COPD). Although the pathophysiology of these diseases varies greatly, they all demonstrate sarcopenia and dysregulated skeletal muscle physiology as common symptoms. Medicinal plants harbor potential novel chemical moieties for a plenitude of illnesses, and inflammation is no exception. However, despite the vast number of potential antiinflammatory compounds found in plant extracts and isolated components, the research on medicinal plants is highly daunting. This review aims to explore the various phytoconstituents employed in the treatment of inflammatory responses in skeletal muscles, while providing an in-depth molecular insight into the latter.
Collapse
|
27
|
Escobar-Puentes AA, Palomo I, Rodríguez L, Fuentes E, Villegas-Ochoa MA, González-Aguilar GA, Olivas-Aguirre FJ, Wall-Medrano A. Sweet Potato (Ipomoea batatas L.) Phenotypes: From Agroindustry to Health Effects. Foods 2022; 11:foods11071058. [PMID: 35407143 PMCID: PMC8997864 DOI: 10.3390/foods11071058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Sweet potato (SP; Ipomoea batatas (L.) Lam) is an edible tuber native to America and the sixth most important food crop worldwide. China leads its production in a global market of USD 45 trillion. SP domesticated varieties differ in specific phenotypic/genotypic traits, yet all of them are rich in sugars, slow digestible/resistant starch, vitamins, minerals, bioactive proteins and lipids, carotenoids, polyphenols, ascorbic acid, alkaloids, coumarins, and saponins, in a genotype-dependent manner. Individually or synergistically, SP’s phytochemicals help to prevent many illnesses, including certain types of cancers and cardiovascular disorders. These and other topics, including the production and market diversification of raw SP and its products, and SP’s starch as a functional ingredient, are briefly discussed in this review.
Collapse
Affiliation(s)
- Alberto A. Escobar-Puentes
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Anillo envolvente del Pronaf y Estocolmo s/n, Ciudad Juárez 32300, Chihuahua, Mexico; or
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (I.P.); (L.R.); (E.F.)
| | - Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (I.P.); (L.R.); (E.F.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (I.P.); (L.R.); (E.F.)
| | - Mónica A. Villegas-Ochoa
- Center for Research on Food and Development, Carretera al ejido la Victoria Km 0.6, Hermosillo 83304, Sonora, Mexico; (M.A.V.-O.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Center for Research on Food and Development, Carretera al ejido la Victoria Km 0.6, Hermosillo 83304, Sonora, Mexico; (M.A.V.-O.); (G.A.G.-A.)
| | - Francisco J. Olivas-Aguirre
- Department of Health Sciences, University of Sonora (Campus Cajeme), Blvd. Bordo Nuevo s/n, 7 Ejido Providencia, Cd. Obregón 85199, Sonora, Mexico
- Correspondence: (F.J.O.-A.); (A.W.-M.); Tel.: +52-(656)-3058685 (F.J.O.-A.); +52-(656)-3052344 (A.W.-M.)
| | - Abraham Wall-Medrano
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Anillo envolvente del Pronaf y Estocolmo s/n, Ciudad Juárez 32300, Chihuahua, Mexico; or
- Correspondence: (F.J.O.-A.); (A.W.-M.); Tel.: +52-(656)-3058685 (F.J.O.-A.); +52-(656)-3052344 (A.W.-M.)
| |
Collapse
|
28
|
Nanoencapsulated Boron Foliar Supply Increased Expression of NIPs Aquaporins and BOR Transporters of In Vitro Ipomoea batatas Plants. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nanoencapsulation with proteoliposomes from natural membranes has been proposed as a carrier for the highly efficient delivery of mineral nutrients into plant tissues. Since Boron deficiency occurred frequently in crops, and is an element with low movement in tissues, in this work, nanoencapsulated B vs free B was applied to in vitro sweet potato plants to investigate the regulation of B transporters (aquaporins and specific transporters). Additionally, an metabolomic analysis was performed, and mineral nutrient and pigment concentrations were determined. The results showed high increases in B concentration in leaves when B was applied as encapsulated, but also Fe and Mn concentration increased. Likewise, the metabolomics study showed that single carbohydrates of these plants could be related to the energy need for increasing the expression of most NIP aquaporins (NIP1;2, NIP1;3; NIP4;1, NIP4;2, NIP5;1, NIP6;1, and NIP7) and boron transporters (BOR2, BOR4 and BOR7;1). Therefore, the results were associated with the higher mobility of encapsulated B into leaves and the stimulation of transport into cells, since after applying encapsulated B, the aforementioned NIPs and BORs increased in expression.
Collapse
|
29
|
Yang RY, Zongo AWS, Chen YC, Chiang MT, Zogona D, Huang CY, Yao HT. Green sweet potato leaves increase Nrf2-mediated antioxidant activity and facilitate benzo[ a]pyrene metabolism in the liver by increasing phase II detoxifying enzyme activities in rats. Food Funct 2022; 13:7548-7559. [DOI: 10.1039/d2fo01049f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green and purple SPL consumption may enhance the Nrf2-mediated hepatic antioxidant activity and modulate xenobiotic-metabolizing enzymes and transporters via different mechanisms.
Collapse
Affiliation(s)
- Ray-Yu Yang
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Abel Wend-Soo Zongo
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Yu-Chen Chen
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Meng-Tsan Chiang
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Daniel Zogona
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Chun-Yin Huang
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| |
Collapse
|
30
|
Phahlane CJ, Laurie SM, Shoko T, Manhivi VE, Sivakumar D. An Evaluation of Phenolic Compounds, Carotenoids, and Antioxidant Properties in Leaves of South African Cultivars, Peruvian 199062.1 and USA's Beauregard. Front Nutr 2021; 8:773550. [PMID: 34901120 PMCID: PMC8662696 DOI: 10.3389/fnut.2021.773550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, leaves of sweet potato cultivars from South Africa (“Ndou,” “Bophelo,” “Monate,” and “Blesbok”), “Beauregard,” a sweet potato cultivar from the USA, and a Peruvian cultivar “199062. 1” were analyzed using UPLC/QTOF/MS and chemometrics, with the aim of characterizing the locally developed sweet potato cultivars and comparing them with already well-known established varieties on the market. A set of 13 phenolic compounds was identified. A partial least squares discriminant analysis, a hierarchical cluster analysis, and variables importance in projection were used to successfully distinguish sweet potato varieties based on their distinct metabolites. Caffeic acid enabled to distinguish Cluster 1 leaves of varieties (“Beauregard” and “Ndou”) from Cluster 2 (“199062.1,” “Bophelo,” “Monate,” and “Blesbok”). The leaves of “Bophelo” contained the highest concentrations of rutin, quercetin 3-O-galactoside, 3-caffeoylquinic acid (3-CQA), (5-CQA), 1,3 dicaffeoylquinic acid (1,3-diCQA), 1,4-diCQA, and 3,5-diCQA. Furthermore, Bophelo leaves showed the highest antioxidant activities (FRAP 19.69 mM TEACg−1 and IC50 values of (3.51 and 3.43 mg ml−1) for DPPH and ABTS, respectively, compared to the other varieties. Leaves of “Blesbok” contained the highest levels of β-carotene (10.27 mg kg−1) and zeaxanthin (5.02 mg kg−1) on a dry weight basis compared to all other varieties. This study demonstrated that the leaves of local cultivars “Bophelo” and “Blesbok” have the potential to become functional ingredients for food processing.
Collapse
Affiliation(s)
- Charmaine J Phahlane
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa.,Agricultural Research Council-Vegetable, Industrial and Medicinal Plants (ARC-VIMP), Pretoria, South Africa
| | - Sunette M Laurie
- Agricultural Research Council-Vegetable, Industrial and Medicinal Plants (ARC-VIMP), Pretoria, South Africa
| | - Tinotenda Shoko
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Vimbainashe E Manhivi
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
31
|
Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. COSMETICS 2021. [DOI: 10.3390/cosmetics8040106] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, interest in the health effects of natural antioxidants has increased due to their safety and applicability in cosmetic formulation. Nevertheless, efficacy of natural antioxidants in vivo is less documented than their prooxidant properties in vivo. Plant extracts rich in vitamins, flavonoids, and phenolic compounds can induce oxidative damage by reacting with various biomolecules while also providing antioxidant properties. Because the biological activities of natural antioxidants differ, their effectiveness for slowing the aging process remains unclear. This review article focuses on the use of natural antioxidants in skincare and the possible mechanisms underlying their desired effect, along with recent applications in skincare formulation and their limitations.
Collapse
|
32
|
Pang LJ, Adeel M, Shakoor N, Guo KR, Ma DF, Ahmad MA, Lu GQ, Zhao MH, Li SE, Rui YK. Engineered Nanomaterials Suppress the Soft Rot Disease ( Rhizopus stolonifer) and Slow Down the Loss of Nutrient in Sweet Potato. NANOMATERIALS 2021; 11:nano11102572. [PMID: 34685013 PMCID: PMC8537040 DOI: 10.3390/nano11102572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022]
Abstract
About 45% of the world’s fruit and vegetables are wasted, resulting in postharvest losses and contributing to economic losses ranging from $10 billion to $100 billion worldwide. Soft rot disease caused by Rhizopus stolonifer leads to postharvest storage losses of sweet potatoes. Nanoscience stands as a new tool in our arsenal against these mounting challenges that will restrict efforts to achieve and maintain global food security. In this study, three nanomaterials (NMs) namely C60, CuO, and TiO2 were evaluated for their potential application in the restriction of Rhizopus soft rot disease in two cultivars of sweet potato (Y25, J26). CuO NM exhibited a better antifungal effect than C60 and TiO2 NMs. The contents of three important hormones, indolepropionic acid (IPA), gibberellic acid 3 (GA-3), and indole-3-acetic acid (IAA) in the infected J26 sweet potato treated with 50 mg/L CuO NM were significantly higher than those of the control by 14.5%, 10.8%, and 24.1%. CuO and C60 NMs promoted antioxidants in both cultivars of sweet potato. Overall, CuO NM at 50 mg/L exhibited the best antifungal properties, followed by TiO2 NM and C60 NM, and these results were further confirmed through scanning electron microscope (SEM) analysis. The use of CuO NMs as an antifungal agent in the prevention of Rhizopus stolonifer infections in sweet potatoes could greatly reduce postharvest storage and delivery losses.
Collapse
Affiliation(s)
- Lin-Jiang Pang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China; (L.-J.P.); (M.-H.Z.); (S.-E.L.)
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Muhammed Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (M.A.); (N.S.); (K.-R.G.); (Y.-K.R.)
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai 519085, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (M.A.); (N.S.); (K.-R.G.); (Y.-K.R.)
| | - Ke-Rui Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (M.A.); (N.S.); (K.-R.G.); (Y.-K.R.)
- Laboratory of Soil Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Dai-Fu Ma
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
- Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China
- Correspondence: or (D.-F.M.); (G.-Q.L.)
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Guo-Quan Lu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China; (L.-J.P.); (M.-H.Z.); (S.-E.L.)
- Correspondence: or (D.-F.M.); (G.-Q.L.)
| | - Mei-Hui Zhao
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China; (L.-J.P.); (M.-H.Z.); (S.-E.L.)
| | - Sheng-E Li
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China; (L.-J.P.); (M.-H.Z.); (S.-E.L.)
| | - Yu-Kui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (M.A.); (N.S.); (K.-R.G.); (Y.-K.R.)
| |
Collapse
|
33
|
Ji C, Zhang Z, Chen J, Song D, Liu B, Li J, Liu R, Niu J, Wang D, Ling N, Qi Z, Li W. Immune-Enhancing Effects of a Novel Glucan from Purple Sweet Potato Ipomoea batatas (L.) Lam on RAW264.7 Macrophage Cells via TLR2- and TLR4-Mediated Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9313-9325. [PMID: 34370469 DOI: 10.1021/acs.jafc.1c03850] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PSPP-1 was obtained from purple sweet potato, and the effects of PSPP-1 on the immune modulation on macrophage cells were investigated for the first time. PSPP-1 promoted RAW264.7 proliferation and increased the total cell percentage in DNA synthesis and mitosis phases, and the cell morphology changed in volume and appearance. Additionally, the RAW264.7 immune functions of phagocytic activity and nitric oxide, reactive oxygen species, and cytokine production were improved by PSPP-1. The western blot experiment showed that PSPP-1 could activate toll-like receptor 2 and toll-like receptor 4-mediated pathways, and the expressions of proteins in MyD88-dependent, mitogen-activated protein kinase (MAPK)-signaling, NF-κB-signaling, AP-1 signaling, and TRIF-dependent pathways were improved markedly. Molecular docking and Biolayer Interferometry study further indicated that PSPP-1 could recognize and bind TLR2 and TLR4 by targeting the binding sites with a strong affinity. It suggested that PSPP-1 could enhance immunity via TLR2- and TLR4-mediated pathways, and it could be explored as an immunomodulatory agent.
Collapse
Affiliation(s)
- Chenfeng Ji
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Ziyi Zhang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jinrui Chen
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Dongxue Song
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Bing Liu
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Jun Li
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Rongyu Liu
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Junbo Niu
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Di Wang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Na Ling
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Zheng Qi
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Wenlan Li
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| |
Collapse
|
34
|
Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Med Oncol 2021; 38:66. [PMID: 33950369 DOI: 10.1007/s12032-021-01508-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process that assumes a primary role in the induction of cancer metastasis. This results in increased cell renewal, and resistance to cell death and therapies. EMT, therefore, represents an effective strategy for regulating cancerous cell activity. A need for efficacy and low cytotoxicity epithelial to mesenchymal transition modifying drugs has led to the investigational testing of the efficacy of plethora of different groups of phytonutrients. Luteolin is a natural flavonoid inhibits the growth of cancer cells by various mechanisms, such as the stimulation of cancer cell apoptosis, cell cycle arrest, inhibition of cell replication, tumor growth, improvement of drug resistance, prevention of cancer cell intrusiveness and metastasis. This review article focuses on the anti-cancer and anti-metastatic potential of luteolin targeting various transcription factors, markers and signaling pathways associated with the repression of epithelial to mesenchymal transition.
Collapse
|