1
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
2
|
Sameh S, Elissawy AM, Al-Sayed E, Labib RM, Chang HW, Yu SY, Chang FR, Yang SC, Singab ANB. Family Malvaceae: a potential source of secondary metabolites with chemopreventive and anticancer activities supported with in silico pharmacokinetic and pharmacodynamic profiles. Front Pharmacol 2024; 15:1465055. [PMID: 39478959 PMCID: PMC11521888 DOI: 10.3389/fphar.2024.1465055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Cancer is the second most widespread cause of mortality following cardiovascular disorders, and it imposes a heavy global burden. Nowadays, herbal nutraceutical products with a plethora of bioactive metabolites represent a foundation stone for the development of promising chemopreventive and anticancer agents. Certain members of the family Malvaceae have traditionally been employed to relieve tumors. The literature concerning the chemopreventive and anticancer effects of the plant species along with the isolated cytotoxic phytometabolites was reviewed. Based on the findings, comprehensive computational modelling studies were performed to explore the pharmacokinetic and pharmacodynamic profiles of the reported cytotoxic metabolites to present basis for future plant-based anticancer drug discovery. Methods All the available information about the anticancer research in family Malvaceae and its cytotoxic phytometabolites were retrieved from official sources. Extensive search was carried out using the keywords Malvaceae, cancer, cytotoxicity, mechanism and signalling pathway. Pharmacokinetic study was performed on the cytotoxic metabolites using SWISS ADME model. Acute oral toxicity expressed as median lethal dose (LD50) was predicted using Pro Tox 3.0 web tool. The compounds were docked using AutoDock Vina platform against epidermal growth factor receptor (EGFR kinase enzyme) obtained from the Protein Data Bank. Molecular dynamic simulations and MMGBSA calculations were performed using GROMACS 2024.2 and gmx_MMPBSA tool v1.5.2. Results One hundred forty-five articles were eligible in the study. Several tested compounds showed safe pharmacokinetic properties. Also, the molecular docking study showed that the bioactive metabolites possessed agreeable binding affinities to EGFR kinase enzyme. Tiliroside (25), boehmenan (30), boehmenan H (31), and isoquercetin (22) elicited the highest binding affinity toward the enzyme with a score of -10.4, -10.4, -10.2 and -10.1 Kcal/mol compared to the reference drug erlotinib having a binding score equal to -9 Kcal/mol. Additionally, compounds 25 and 31 elicited binding free energies equal to -42.17 and -42.68 Kcal/mol, respectively, comparable to erlotinib. Discussion Overall, the current study presents helpful insights into the pharmacokinetic and pharmacodynamic properties of the reported cytotoxic metabolites belonging to family Malvaceae members. The molecular docking and dynamic simulations results intensify the roles of secondary metabolites from medicinal plants in fighting cancer.
Collapse
Affiliation(s)
- Salma Sameh
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Ahmed M. Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Rola M. Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, and PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Yin Yu
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Chyun Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Choudary MRP, Surya M, Saravanan M. Green synthesis of cerium oxide nanoparticles using Tribulus terrestris: characterization and evaluation of antioxidant, anti-inflammatory and antibacterial efficacy against wound isolates. Biomed Phys Eng Express 2024; 10:065033. [PMID: 39321823 DOI: 10.1088/2057-1976/ad7f59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Multi-drug resistance (MDR) infections are a significant global challenge, necessitating innovative and eco-friendly approaches for developing effective antimicrobial agents. This study focuses on the synthesis, characterization, and evaluation of cerium oxide nanoparticles (CeO2NPs) for their antioxidant, anti-inflammatory, and antibacterial properties. The CeO2NPs were synthesized using aTribulus terrestrisaqueous extract through an environmentally friendly process. Characterization techniques included UV-visible spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), x-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive x-ray (EDX) analysis. The UV-vis spectroscopy shows the presence of peak at 320 nm which confirms the formation of CeO2NPs. The FT-IR analysis of the CeO2NPs revealed several distinct functional groups, with peak values at 3287, 2920, 2340, 1640, 1538, 1066, 714, and 574 cm-1. These peaks correspond to specific functional groups, including C-H stretching in alkynes and alkanes, C=C=O, C=C, alkanes, C-O-C, C-Cl, and C-Br, indicating the presence of diverse chemical bonds within the CeO2NPs. XRD revealed that the nanoparticles were highly crystalline with a face-centered cubic structure, and SEM images showed irregularly shaped, agglomerated particles ranging from 100-150 nm. In terms of biological activity, the synthesized CeO2NPs demonstrated significant antioxidant and anti-inflammatory properties. The nanoparticles exhibited 82.54% antioxidant activity at 100 μg ml-1, closely matching the 83.1% activity of ascorbic acid. Additionally, the CeO2NPs showed 65.2% anti-inflammatory activity at the same concentration, compared to 70.1% for a standard drug. Antibacterial testing revealed that the CeO2NPs were particularly effective against multi-drug resistant strains, includingPseudomonas aeruginosa,Enterococcus faecalis, and MRSA, with moderate activity againstKlebsiella pneumoniae. These findings suggest that CeO2NPs synthesized viaT. terrestrishave strong potential as antimicrobial agents in addressing MDR infections.
Collapse
Affiliation(s)
| | - Muthuvel Surya
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Muthupandian Saravanan
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
4
|
A M, Snega R, Geetha Sravanthy P, Saravanan M. Eco-Friendly Synthesis of Cerium Nanoparticles Using Spirulina platensis: Assessing Antibacterial and Anti-inflammatory Efficacy. Cureus 2024; 16:e71502. [PMID: 39544550 PMCID: PMC11561378 DOI: 10.7759/cureus.71502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Spirulina platensis, a type of cyanobacterium (blue-green algae), is well known for its rich abundant nutritional profile and bioactive compounds, which contribute to various biological functions within the human body. The application of nanotechnology to Spirulina has the potential to further enhance its biological activity in biomedical assays. OBJECTIVE This study aimed to utilize Spirulina platensis for the green synthesis of cerium oxide nanoparticles (CeO-NPs) and evaluate their physiochemical properties. The research will assess the antibacterial and anti-inflammatory efficacy of the synthesized nanoparticles and explore the underlying mechanisms of action. METHODOLOGY Spirulina platensis-mediated cerium oxide nanoparticles are synthesized by the green synthesis (titration method). The biosynthesized CeO-NPs are characterized by using techniques such as UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). Antibacterial activity was carried out by the agar-well diffusion method and anti-inflammatory activity was carried out by the albumin denaturation method. RESULT The green synthesis of cerium oxide nanoparticles (CeO-NPs) using Spirulina, a sustainable and eco-friendly method has potential application in antibacterial and anti-inflammatory therapies. This study focuses on the green synthesis of CeO-NPs and characterizes them by using UV-Vis, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), SEM, and EDX. The UV-vis analysis confirmed the presence of CeO-NPs at a wavelength of 320 nm. FT-IR reveals four functional groups, such as C-O, N-O, and C=C stretches. XRD analysis showed higher crystalline and less amorphous content. SEM and EDX spectra were utilized to confirm the morphology (agglomerated square shape) and the elemental composition [Ce, O, C] in the CeO-NPs. The antibacterial activity was evaluated against multidrug-resistant (MDR) clinical strains and the anti-inflammatory activity revealed significant activity in a dose-dependent manner. CONCLUSION This study concluded that Spirulina-mediated CeO-NPs have potential as a drug in biomedical assays. Further in vitro and in vivo analysis is required to fully confirm their viability as a potential drug.
Collapse
Affiliation(s)
- Mathesh A
- Department of Pharmacology, Antimicrobial Resistance (AMR) and Nanotherapeutics Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Ramanathan Snega
- Department of Pharmacology, Antimicrobial Resistance (AMR) and Nanotherapeutics Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - P Geetha Sravanthy
- Department of Pharmacology, Antimicrobial Resistance (AMR) and Nanotherapeutics Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Muthupandian Saravanan
- Department of Pharmacology, Antimicrobial Resistance (AMR) and Nanotherapeutics Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| |
Collapse
|
5
|
Mim J, Sultana MS, Dhar PK, Hasan MK, Dutta SK. Green mediated synthesis of cerium oxide nanoparticles by using Oroxylum indicum for evaluation of catalytic and biomedical activity. RSC Adv 2024; 14:25409-25424. [PMID: 39139232 PMCID: PMC11320963 DOI: 10.1039/d4ra04132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
The present perspective emphasizes the green synthesis of CeO2-NPs using Oroxylum indicum fruit extract. The synthesized NPs were characterized utilizing analytical techniques, including FT-IR, UV-vis, XRD, SEM-EDX, and VSM. Of them, XRD analysis ratifies the cubic fluorite crystal structure along with a particle size of 23.58 nm. EDX results support the presence of cerium and oxygen in a proper ratio. The surface morphology of NPs, however, was scrutinized using SEM. The lower IC50 value (20.8 μg mL-1) of NPs compared to the reference substance, ascorbic acid (33.2 μg mL-1), demonstrates CeO2-NPs to be a compatible antioxidant. Moreover, the drug-releasing capability of CeO2-NPs was a buffer pH-dependent parameter. The acidic pH solution was 20.5%, while the basic pH solution was 16.9%. The drug-releasing capability was analyzed using the Higuchi model and Korsmeyer-Peppas kinetics. The values of the determination coefficient (R 2) were found to be 0.9944 and 0.9834, respectively. The photocatalytic activity of CeO2-NPs was evaluated, considering methylene blue as a model dye. The degradation percentage was attained up to 56.77% after it had been exposed for 150 min. Apart from this, the synthesized NPs were screened against two fungus species, Bipolaris sorokiniana and Fusarium. The percentage of growth was measured at 56% and 49%, respectively.
Collapse
Affiliation(s)
- Jannatul Mim
- Chemistry Discipline, Khulna University Khulna 9208 Bangladesh
| | | | | | - Md Kamrul Hasan
- Chemistry Discipline, Khulna University Khulna 9208 Bangladesh
| | | |
Collapse
|
6
|
Yi L, Yu L, Chen S, Huang D, Yang C, Deng H, Hu Y, Wang H, Wen Z, Wang Y, Tu Y. The regulatory mechanisms of cerium oxide nanoparticles in oxidative stress and emerging applications in refractory wound care. Front Pharmacol 2024; 15:1439960. [PMID: 39156103 PMCID: PMC11327095 DOI: 10.3389/fphar.2024.1439960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Cerium oxide nanoparticles (CeNPs) have emerged as a potent therapeutic agent in the realm of wound healing, attributing their efficacy predominantly to their exceptional antioxidant properties. Mimicking the activity of endogenous antioxidant enzymes, CeNPs alleviate oxidative stress and curtail the generation of inflammatory mediators, thus expediting the wound healing process. Their application spans various disease models, showcasing therapeutic potential in treating inflammatory responses and infections, particularly in oxidative stress-induced chronic wounds such as diabetic ulcers, radiation-induced skin injuries, and psoriasis. Despite the promising advancements in laboratory studies, the clinical translation of CeNPs is challenged by several factors, including biocompatibility, toxicity, effective drug delivery, and the development of multifunctional compounds. Addressing these challenges necessitates advancements in CeNP synthesis and functionalization, novel nano delivery systems, and comprehensive bio effectiveness and safety evaluations. This paper reviews the progress of CeNPs in wound healing, highlighting their mechanisms, applications, challenges, and future perspectives in clinical therapeutics.
Collapse
Affiliation(s)
- Lijun Yi
- Department of General Surgery, Luzhou People’s Hospital, Luzhou, China
| | - Lijian Yu
- Department of General Surgery, Luzhou People’s Hospital, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Luzhou, China
| | - Delong Huang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Cheng Yang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Hairui Deng
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Luzhou, China
| | - Yiheng Hu
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Hui Wang
- People’s Hospital of Nanjiang, Bazhong, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Luzhou, China
| | - Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Luzhou, China
| | - Yu Tu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Meng X, Wang WD, Li SR, Sun ZJ, Zhang L. Harnessing cerium-based biomaterials for the treatment of bone diseases. Acta Biomater 2024; 183:30-49. [PMID: 38849022 DOI: 10.1016/j.actbio.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Bone, an actively metabolic organ, undergoes constant remodeling throughout life. Disturbances in the bone microenvironment can be responsible for pathologically bone diseases such as periodontitis, osteoarthritis, rheumatoid arthritis and osteoporosis. Conventional bone tissue biomaterials are not adequately adapted to complex bone microenvironment. Therefore, there is an urgent clinical need to find an effective strategy to improve the status quo. In recent years, nanotechnology has caused a revolution in biomedicine. Cerium(III, IV) oxide, as an important member of metal oxide nanomaterials, has dual redox properties through reversible binding with oxygen atoms, which continuously cycle between Ce(III) and Ce(IV). Due to its special physicochemical properties, cerium(III, IV) oxide has received widespread attention as a versatile nanomaterial, especially in bone diseases. This review describes the characteristics of bone microenvironment. The enzyme-like properties and biosafety of cerium(III, IV) oxide are also emphasized. Meanwhile, we summarizes controllable synthesis of cerium(III, IV) oxide with different nanostructural morphologies. Following resolution of synthetic principles of cerium(III, IV) oxide, a variety of tailored cerium-based biomaterials have been widely developed, including bioactive glasses, scaffolds, nanomembranes, coatings, and nanocomposites. Furthermore, we highlight the latest advances in cerium-based biomaterials for inflammatory and metabolic bone diseases and bone-related tumors. Tailored cerium-based biomaterials have already demonstrated their value in disease prevention, diagnosis (imaging and biosensors) and treatment. Therefore, it is important to assist in bone disease management by clarifying tailored properties of cerium(III, IV) oxide in order to promote the use of cerium-based biomaterials in the future clinical setting. STATEMENT OF SIGNIFICANCE: In this review, we focused on the promising of cerium-based biomaterials for bone diseases. We reviewed the key role of bone microenvironment in bone diseases and the main biological activities of cerium(III, IV) oxide. By setting different synthesis conditions, cerium(III, IV) oxide nanostructures with different morphologies can be controlled. Meanwhile, tailored cerium-based biomaterials can serve as a versatile toolbox (e.g., bioactive glasses, scaffolds, nanofibrous membranes, coatings, and nanocomposites). Then, the latest research advances based on cerium-based biomaterials for the treatment of bone diseases were also highlighted. Most importantly, we analyzed the perspectives and challenges of cerium-based biomaterials. In future perspectives, this insight has given rise to a cascade of cerium-based biomaterial strategies, including disease prevention, diagnosis (imaging and biosensors) and treatment.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan, 430079, PR China.
| |
Collapse
|
8
|
Koula G, Yakati V, Rachamalla HK, Bhamidipati K, Kathirvel M, Banerjee R, Puvvada N. Integrin receptor-targeted, doxorubicin-loaded cerium oxide nanoparticles delivery to combat glioblastoma. Nanomedicine (Lond) 2024; 19:1389-1406. [PMID: 38912661 PMCID: PMC11318704 DOI: 10.1080/17435889.2024.2350357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
Aim: To assess the chemo-immunomodulatory effects of doxorubicin-loaded cerium oxide nanoparticles coated with oleyl amine-linked cyclic RGDfK peptide (CeNP+Dox+RGD) to target both gliomas and its tumor microenvironment (TME) via integrin receptors. Materials & methods: CeNP+Dox+RGD nanoparticles are synthesized by the sequential addition of cerium III chloride heptahydrate, beta-cyclodextrin, oleic acid, and F127 micelle (CeNP). Doxorubicin was then loaded into CeNPs and coated with oleyl amine-linked cyclic RGDfK peptide to form stable CeNP+Dox+RGD nanoparticles. Results: CeNP+Dox+RGD nanoparticles crossed blood-brain barrier (BBB) effectively and demonstrated threefold enhanced survivability in glioma-bearing mice. The IHC profiling of glial tumor cross-sections showed increased CD80 expression (M1 TAMs) and decreased arginase-1 expression (M2 TAMs). Conclusion: CeNP+Dox+RGD can be an immunotherapeutic treatment option to combat glioblastoma.
Collapse
Affiliation(s)
- Gayathri Koula
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Venu Yakati
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Hari Krishnareddy Rachamalla
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Keerti Bhamidipati
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Muralidharan Kathirvel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Rajkumar Banerjee
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Nagaprasad Puvvada
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| |
Collapse
|
9
|
Guillén-Meléndez GA, Pérez-Hernández RA, Chávez-Montes A, Castillo-Velázquez U, de Jesús Loera-Arias M, Montes-de-Oca-Saucedo CR, Rodríguez-Rocha H, Contreras-Torres FF, Saucedo-Cárdenas O, Soto-Domínguez A. Nanoencapsulation of extracts and isolated compounds of plant origin and their cytotoxic effects on breast and cervical cancer treatments: Advantages and new challenges. Toxicon 2024; 244:107753. [PMID: 38740098 DOI: 10.1016/j.toxicon.2024.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
This review analyzes the current progress in loaded nanoparticles (NPs) of plant extracts or isolated antineoplastic compounds used in breast and cervical cancer treatments. Also, it provides a comprehensive overview of the contributions made by traditional medicine and nanomedicine to the research of two of the most prevalent types of cancer in women worldwide: breast and cervical cancer. Searches were conducted in electronic databases to gather relevant information related to the biological activity of the NPs, which were meticulously reviewed. Nanomedicine has advanced to incorporate plant compounds including their crude extracts, in the preparation of NPs. The most used method is green synthesis, whose most outstanding advantages, is the reduced preparation time, and the variety of results that can be obtained depending on the reaction times, pH, temperature, and concentration of both the bio-reducing agent and the compound or plant extract. Most of the studies focus on evaluating crude extracts with high polarity, such as aqueous, alcoholic, and hydroalcoholic extracts. In conclusion, exploring the use of organic compounds is considered an area of opportunity for further research and future perspectives. Most of the analyzed studies were conducted using in vitro assays, highlighting the relatively recent nature of this field. It is expected that future research will involve more in vivo assays, particularly focusing on isolated cell lines representing the most difficult-to-treat types of cancer, such as triple-negative breast cancer like MDA-MB-231. Notably the MCF-7 cell line is one of the most used, while limited studies were found concerning cervical cancer.
Collapse
Affiliation(s)
- Gloria A Guillén-Meléndez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey, N.L., C.P. 64460, Mexico.
| | - Raymundo A Pérez-Hernández
- Departamento de Química, Facultad de Ciencias Biológicas, UANL. San Nicolás de los Garza, N.L., C.P. 64455, Mexico.
| | - Abelardo Chávez-Montes
- Departamento de Química, Facultad de Ciencias Biológicas, UANL. San Nicolás de los Garza, N.L., C.P. 64455, Mexico.
| | - Uziel Castillo-Velázquez
- Departamento de Inmunología, Facultad de Medicina Veterinaria y Zootecnia, UANL. Escobedo, N.L., C.P. 66050, Mexico.
| | - María de Jesús Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey, N.L., C.P. 64460, Mexico.
| | - Carlos R Montes-de-Oca-Saucedo
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey, N.L., C.P. 64460, Mexico.
| | - Humberto Rodríguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey, N.L., C.P. 64460, Mexico.
| | | | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey, N.L., C.P. 64460, Mexico.
| | - Adolfo Soto-Domínguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Monterrey, N.L., C.P. 64460, Mexico.
| |
Collapse
|
10
|
Palani N, Vijayakumar P, Monisha P, Ayyadurai S, Rajadesingu S. Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing. J Nanobiotechnology 2024; 22:211. [PMID: 38678271 PMCID: PMC11056076 DOI: 10.1186/s12951-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The development of innovative wound dressing materials is crucial for effective wound care. It's an active area of research driven by a better understanding of chronic wound pathogenesis. Addressing wound care properly is a clinical challenge, but there is a growing demand for advancements in this field. The synergy of medicinal plants and nanotechnology offers a promising approach to expedite the healing process for both acute and chronic wounds by facilitating the appropriate progression through various healing phases. Metal nanoparticles play an increasingly pivotal role in promoting efficient wound healing and preventing secondary bacterial infections. Their small size and high surface area facilitate enhanced biological interaction and penetration at the wound site. Specifically designed for topical drug delivery, these nanoparticles enable the sustained release of therapeutic molecules, such as growth factors and antibiotics. This targeted approach ensures optimal cell-to-cell interactions, proliferation, and vascularization, fostering effective and controlled wound healing. Nanoscale scaffolds have significant attention due to their attractive properties, including delivery capacity, high porosity and high surface area. They mimic the Extracellular matrix (ECM) and hence biocompatible. In response to the alarming rise of antibiotic-resistant, biohybrid nanofibrous wound dressings are gradually replacing conventional antibiotic delivery systems. This emerging class of wound dressings comprises biopolymeric nanofibers with inherent antibacterial properties, nature-derived compounds, and biofunctional agents. Nanotechnology, diminutive nanomaterials, nanoscaffolds, nanofibers, and biomaterials are harnessed for targeted drug delivery aimed at wound healing. This review article discusses the effects of nanofibrous scaffolds loaded with nanoparticles on wound healing, including biological (in vivo and in vitro) and mechanical outcomes.
Collapse
Affiliation(s)
- Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Pradeshwaran Vijayakumar
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem, 636 016, Tamil Nadu, India
| | - Saravanakumar Ayyadurai
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
11
|
Zakiyyah SN, Irkham, Einaga Y, Gultom NS, Fauzia RP, Kadja GTM, Gaffar S, Ozsoz M, Hartati YW. Green Synthesis of Ceria Nanoparticles from Cassava Tubers for Electrochemical Aptasensor Detection of SARS-CoV-2 on a Screen-Printed Carbon Electrode. ACS APPLIED BIO MATERIALS 2024; 7:2488-2498. [PMID: 38577953 DOI: 10.1021/acsabm.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Green synthesis approaches for making nanosized ceria using starch from cassava as template molecules to control the particle size are reported. The results of the green synthesis of ceria with an optimum calcination temperature of 800 °C shows a size distribution of each particle of less than 30 nm with an average size of 9.68 nm, while the ratio of Ce3+ to Ce4+ was 25.6%. The green-synthesized nanoceria are applied to increase the sensitivity and attach biomolecules to the electrode surface of the electrochemical aptasensor system for coronavirus disease (COVID-19). The response of the aptasensor to the receptor binding domain of the virus was determined with the potassium ferricyanide redox system. The screen-printed carbon electrode that has been modified with green-synthesized nanoceria shows 1.43 times higher conductivity than the bare electrode, while those modified with commercial ceria increase only 1.18 times. Using an optimized parameter for preparing the aptasensors, the detection and quantification limits were 1.94 and 5.87 ng·mL-1, and the accuracy and precision values were 98.5 and 89.1%. These results show that green-synthesized ceria could be a promising approach for fabricating an electrochemical aptasensor.
Collapse
Affiliation(s)
- Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Noto Susanto Gultom
- Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Retna Putri Fauzia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Grandprix Thomreys Marth Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Mehmet Ozsoz
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
12
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
13
|
Thiruvengadam R, Easwaran M, Rethinam S, Madasamy S, Siddiqui SA, Kandhaswamy A, Venkidasamy B. Boosting plant resilience: The promise of rare earth nanomaterials in growth, physiology, and stress mitigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108519. [PMID: 38490154 DOI: 10.1016/j.plaphy.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Senthil Rethinam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Sivagnanavelmurugan Madasamy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Anandhi Kandhaswamy
- Post Graduate Research Department of Microbiology, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur, 621212, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
14
|
Majid MA, Ullah H, Alshehri AM, Tabassum R, Aleem A, Khan AUR, Batool Z, Nazir A, Bibi I. Development of novel polymer haemoglobin based particles as an antioxidant, antibacterial and an oxygen carrier agents. Sci Rep 2024; 14:3031. [PMID: 38321082 PMCID: PMC10847508 DOI: 10.1038/s41598-024-53548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
This innovative work aims to develop highly biocompatible and degradable nanoparticles by encapsulating haemoglobin (Hb) within poly-ε-caprolactone for novel biomedical applications. We used a modified double emulsion solvent evaporation method to fabricate the particles. A Scanning electron microscope (SEM) characterized them for surface morphology. Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-visible spectroscopies (UV-visible) elucidated preserved chemical and biological structure of encapsulated haemoglobin. The airproof equilibrium apparatus obtained the oxygen-carrying capacity and P50 values. The DPPH assay assessed free radical scavenging potential. The antibacterial properties were observed using four different bacterial strains by disk diffusion method. The MTT assay investigates the cytotoxic effects on mouse fibroblast cultured cell lines (L-929). The MTT assay showed that nanoparticles have no toxicity over large concentrations. The well-preserved structure of Hb within particles, no toxicity, high oxygen affinity, P50 value, and IC50 values open the area of new research, which may be used as artificial oxygen carriers, antioxidant, and antibacterial agents, potential therapeutic agents as well as drug carrier particles to treat the cancerous cells. The novelty of this work is the antioxidant and antibacterial properties of developed nanoparticles are not been reported yet. Results showed that the prepared particles have strong antioxidant and antibacterial potential.
Collapse
Affiliation(s)
- Muhammad Abdul Majid
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafeez Ullah
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Ali Mohammad Alshehri
- Department of Physics, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Rukhsana Tabassum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Aleem
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asad Ur Rehman Khan
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahida Batool
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aalia Nazir
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ismat Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
15
|
Shiraz M, Imtiaz H, Azam A, Hayat S. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37:23-70. [PMID: 37914858 DOI: 10.1007/s10534-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.
Collapse
Affiliation(s)
- Mohammad Shiraz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Havza Imtiaz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ameer Azam
- Department of Physics, Faculty of Science Islamic Universityof Madinah Al Jamiah, Madinah, 42351, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
16
|
Hosseini SA, Khatami M, Asadollahi A, Yaghoobi H. Cerium Oxide Nanoparticles Synthesis using Alhagi Maurorum Leaf Extract and Evaluation of Their Cytotoxic Effect on Breast Cancer Cell Lines and Antibacterial Effects. Anticancer Agents Med Chem 2024; 24:1056-1062. [PMID: 38685807 DOI: 10.2174/0118715206296523240424072939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Green synthesis offers a fast, simple, and economical method for producing metallic nanoparticles.The basis of this method is to obtain nanoparticles using natural materials, such as plants, fungi, and bacteria, instead of harmful and expensive chemical-reducing agents. In this study, CeO2NPs were produced using Alhagi maurorum extract, and their anticancer and antibacterial activities were evaluated. METHODS Alhagi maurorum extract was prepared according to a previously described protocol, and CeO2NPs were synthesized from the salt of this extract. The resulting nanoparticles were characterized using Transmission electron microscopy (TEM), scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. The antibacterial and cytotoxic effects of the nanoparticles were measured by MIC, MBC, and MTT assays, respectively. The results were analyzed using one-way analysis of variance (ANOVA) using Prism software. RESULTS The MTT assay on breast cancer cell lines showed that the cytotoxic effect of CeO2NPs on cell lines was concentration-dependent. In addition, this nanoparticle was more effective against Gram-positive bacteria. CONCLUSION These nanoparticles can be used as cancer drug delivery systems with specific targeting at low concentrations in addition to anticancer treatments. It can also have biological and medicinal applications, such as natural food preservation and wound dressing.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirkian Asadollahi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
17
|
Niculescu AG, Georgescu M, Marinas IC, Ustundag CB, Bertesteanu G, Pinteală M, Maier SS, Al-Matarneh CM, Angheloiu M, Chifiriuc MC. Therapeutic Management of Malignant Wounds: An Update. Curr Treat Options Oncol 2024; 25:97-126. [PMID: 38224423 DOI: 10.1007/s11864-023-01172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
OPINION STATEMENT Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management. The last decade screened literature evidenced an increasing interest in developing natural treatment alternatives based on beehive, plant extracts, pure vegetal compounds, and bacteriocins. Promising therapeutics can also be envisaged by involving nanotechnology due to either intrinsic biological activities or drug delivery properties of nanomaterials. Despite recent progress in the field of malignant wound care, the literature is still mainly based on in vitro and in vivo studies on small animal models, while the case reports and clinical trials (less than 10 and only one providing public results) remain scarce. Some innovative treatment approaches are used in clinical practice without prior extensive testing in fungating wound patients. Extensive research is urgently needed to fill this knowledge gap and translate the identified promising therapeutic approaches to more advanced testing stages toward creating multidimensional wound care strategies.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061, Bucharest, Romania
| | - Mihaela Georgescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Dermatology, Dr. Carol Davila Central Military, Emergency University Hospital, Bucharest, Romania
| | - Ioana Cristina Marinas
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania.
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, 020022, Bucharest, Romania
| | - Mariana Pinteală
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Stelian Sergiu Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
- Department of Chemical Engineering, Faculty of Industrial Design and Business Management, Gheorghe Asachi" Technical University of Iasi, Iasi, Romania
| | - Cristina Maria Al-Matarneh
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Marian Angheloiu
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest-Giurgiu Street, Giurgiu, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, Bucharest, Romania
- The Romanian Academy, 25, Calea Victoriei, District 1, Bucharest, Romania
| |
Collapse
|
18
|
Srivastava M, Singh KR, Singh T, Asiri M, Suliman M, Sabia H, Deen PR, Chaube R, Singh J. Bioinspired fabrication of zinc hydroxide-based nanostructure from lignocellulosic biomass Litchi chinensis leaves and its efficacy evaluation on antibacterial, antioxidant, and anticancer activity. Int J Biol Macromol 2023; 253:126886. [PMID: 37709228 DOI: 10.1016/j.ijbiomac.2023.126886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Zinc-based nanostructures are known for their numerous potential biomedical applications. In this context, the biosynthesis of nanostructures using plant extracts has become a more sustainable and promising alternative to effectively replace conventional chemical methods while avoiding their toxic impact. In this study, following a low-temperature calcination process, a green synthesis of Zn-hydroxide-based nanostructure has been performed using an aqueous extract derived from the leaves of Litchi chinensis, which is employed as a lignocellulose waste biomass known to possess a variety of phytocompounds. The biogenic preparation of Zn-hydroxide based nanostructures is enabled by bioactive compounds present in the leaf extract, which act as reducing and capping agents. In order to evaluate its physicochemical characteristics, the produced Zn-hydroxide-based nanostructure has been subjected to several characterization techniques. Further, the multifunctional properties of the prepared Zn-hydroxide-based nanostructure have been evaluated for antioxidant, antimicrobial, and anticancer activity. The prepared nanostructure showed antibacterial efficacy against Bacillus subtilis and demonstrated its anti-biofilm activity as evaluated through the Congo red method. In addition, the antioxidant activity of the prepared nanostructure has been found to be dose-dependent, wherein 91.52 % scavenging activity could be recorded at 200 μg/ml, with an IC50 value of 45.22 μg/ml, indicating the prepared nanostructure has a high radical scavenging activity. Besides, the in vitro cytotoxicity investigation against HepG2 cell lines explored that the as-prepared nanostructure exhibited a higher cytotoxic effect and 73.21 % cell inhibition could be noticed at 25.6 μg/ml with an IC50 of 2.58 μg/ml. On the contrary, it was found to be significantly lower in the case of HEK-293 cell lines, wherein ~47.64 % inhibition could be noticed at the same concentration. These findings might be further extended to develop unique biologically derived nanostructures that can be extensively evaluated for various biomedical purposes.
Collapse
Affiliation(s)
- Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi 221005, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh 273015, India.
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Tripti Singh
- Institute of Management Studies, Ghaziabad (University Course Campus), NH 09, Adhyatmik Nagar, Ghaziabad 201015, India
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Haleema Sabia
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Prakash Ranjan Deen
- Department of Physics, Purnea College, Purnea University, Purnea, Bihar 854301, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
19
|
Chormey DS, Zaman BT, Borahan Kustanto T, Erarpat Bodur S, Bodur S, Tekin Z, Nejati O, Bakırdere S. Biogenic synthesis of novel nanomaterials and their applications. NANOSCALE 2023; 15:19423-19447. [PMID: 38018389 DOI: 10.1039/d3nr03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye
- İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Omid Nejati
- İstinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye
| |
Collapse
|
20
|
Huang Y, Zhang M, Jin M, Ma T, Guo J, Zhai X, Du Y. Recent Advances on Cerium Oxide-Based Biomaterials: Toward the Next Generation of Intelligent Theranostics Platforms. Adv Healthc Mater 2023; 12:e2300748. [PMID: 37314429 DOI: 10.1002/adhm.202300748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Disease or organ damage due to unhealthy living habits, or accidents, is inevitable. Discovering an efficient strategy to address these problems is urgently needed in the clinic. In recent years, the biological applications of nanotechnology have received extensive attention. Among them, as a widely used rare earth oxide, cerium oxide (CeO2 ) has shown good application prospects in biomedical fields due to its attractive physical and chemical properties. Here, the enzyme-like mechanism of CeO2 is elucidated, and the latest research progress in the biomedical field is reviewed. At the nanoscale, Ce ions in CeO2 can be reversibly converted between +3 and +4. The conversion process is accompanied by the generation and elimination of oxygen vacancies, which give CeO2 the performance of dual redox properties. This property facilitates nano-CeO2 to catalyze the scavenging of excess free radicals in organisms, hence providing a possibility for the treatment of oxidative stress diseases such as diabetic foot, arthritis, degenerative neurological diseases, and cancer. In addition, relying on its excellent catalytic properties, customizable life-signaling factor detectors based on electrochemical techniques are developed. At the end of this review, an outlook on the opportunities and challenges of CeO2 in various fields is provided.
Collapse
Affiliation(s)
- Yongkang Huang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei Ma
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jialiang Guo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xinyun Zhai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
21
|
Quddus F, Shah A, Nisar J, Zia MA, Munir S. Neem plant extract-assisted synthesis of CeO 2 nanoparticles for photocatalytic degradation of piroxicam and naproxen. RSC Adv 2023; 13:28121-28130. [PMID: 37746332 PMCID: PMC10517110 DOI: 10.1039/d3ra04185a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Piroxicam and naproxen are well-known non-steroidal anti-inflammatory drugs that are frequently detected in aquatic environments due to their widespread usage and improper disposal practices. This research investigates the photocatalytic degradation of these drugs by using CeO2 nanoparticles. The nanoparticles were synthesized by using Azadirachta indica plant extract and were characterized through various characterization techniques such as UV-visible spectroscopy, FTIR spectroscopy, SEM, EDX, and XRD. The photocatalytic degradation of piroxicam and naproxen using CeO2 nanoparticles led to the efficient removal of these pharmaceutical drugs in a short time duration with photodegradation efficiencies of 89% and 97% for naproxen and piroxicam, respectively. The photodegradation reaction was found to follow pseudo-order first-order kinetics. The recyclability of the catalyst was also studied for up to six cycles where the degradation efficiency was maintained at 100% till the 2nd cycle and was decreased by 11 and 13% for piroxicam and naproxen respectively after the 6th cycle. The current work focused on the achievement of sustainable development goals (SDGs) for water purification via environmentally benign nanoparticles to remedy water pollution as it is the most prevalent issue in developed and underdeveloped countries throughout the world.
Collapse
Affiliation(s)
- Farah Quddus
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar Peshawar 25120 Pakistan
| | | | - Shamsa Munir
- School of Applied Sciences and Humanities, National University of Technology Islamabad 44000 Pakistan
| |
Collapse
|
22
|
Alizadeh K, Dezvare Y, Kamyab S, Amirian J, Brangule A, Bandere D. Development of Composite Sponge Scaffolds Based on Carrageenan (CRG) and Cerium Oxide Nanoparticles (CeO 2 NPs) for Hemostatic Applications. Biomimetics (Basel) 2023; 8:409. [PMID: 37754160 PMCID: PMC10527261 DOI: 10.3390/biomimetics8050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
In this study, a novel absorbable hemostatic agent was developed using carrageenan (CRG) as a natural polymer and cerium oxide nanoparticles (CeO2 NPs). CRG-CeO2-0.5 and CRG-CeO2-1 composites were prepared by compositing CeO2 to CRG + CeO2 at a weight ratio of 0.5:100 and 1:100, respectively. The physicochemical and structural properties of these compounds were studied and compared with pristine CRG. Upon incorporation of CeO2 nanoparticles into the CRG matrix, significant reductions in hydrogel degradation were observed. In addition, it was noted that CRG-CeO2 exhibited better antibacterial and hemostatic properties than CRG hydrogel without CeO2 NPs. The biocompatibility of the materials was tested using the NIH 3T3 cell line, and all samples were found to be nontoxic. Particularly, CRG-CeO2-1 demonstrated superior hemostatic effects, biocompatibility, and a lower degradation rate since more CeO2 NPs were present in the CRG matrix. Therefore, CRG-CeO2-1 has the potential to be used as a hemostatic agent and wound dressing.
Collapse
Affiliation(s)
- Kimia Alizadeh
- Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, Tehran 1439957131, Iran; (K.A.); (Y.D.); (S.K.)
| | - Yasaman Dezvare
- Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, Tehran 1439957131, Iran; (K.A.); (Y.D.); (S.K.)
| | - Shirin Kamyab
- Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, Tehran 1439957131, Iran; (K.A.); (Y.D.); (S.K.)
| | - Jhaleh Amirian
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (A.B.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (A.B.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (A.B.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| |
Collapse
|
23
|
Fakudze NT, Sarbadhikary P, George BP, Abrahamse H. Ethnomedicinal Uses, Phytochemistry, and Anticancer Potentials of African Medicinal Fruits: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:1117. [PMID: 37631032 PMCID: PMC10458058 DOI: 10.3390/ph16081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Africa is home to diverse medicinal plants that have been used for generations for the treatment of several different cancers and, presently, they are gaining interest from researchers as promising approaches to cancer treatment. This review aims to provide a comprehensive review of dietary and medicinal African fruits including their traditional uses, botanical description, ethnobotanical uses, bioactive phytochemical compositions, and anticancer properties investigated to date in vitro, in vivo, and in clinical studies. Data on recent updates concerning the traditional uses and anticancer properties of these fruits were collected from a myriad of available publications in electronic databases, such as Web of Science, PubMed, ScienceDirect, Scopus, SpringerLink, and Google Scholar. The results suggest that approximately 12 native or commercially grown African fruits belonging to different plant species, including Tribulus terrestris, Xanthium strumarium, Withania somnifera, Xylopia aethiopica, Abelmoschus esculentus, Carissa macrocarpa, Carpobrotus edulis, Syzygium cumini, Kigelia Africana, Annona muricata, Persea americana, and Punica granatum, have been reported for their potential as treatment options for the management of cancer. We further found that approximately eight different fruits from native plant species from Africa, namely, Sclerocarya birrea, Dovyalis caffra, Parinari curatellifolia, Mimusops caffra, Carpobrotus edulis, Vangueria infausta, Harpephyllum caffrum, and Carissa macrocarpa, have been widely used for the traditional treatment of different ailments but somehow failed to gain the interest of researchers for their use in anticancer research. In this review, we show the potential use of various fruits as anticancer agents, such as Tribulus terrestris, Xanthium strumarium, Withania somnifera, Xylopia aethiopica, Abelmoschus esculentus, Carissa macrocarpa, Carpobrotus edulis, Syzygium cumini, Kigelia Africana, Annona muricata, Persea americana, and Punica granatum; unfortunately, not enough reported research data have been published to gain thorough mechanistic insights and clinical applications. Additionally, we discuss the possibility of the utilization of potential phytochemicals from fruits like Persea americana and Punica granatum in anticancer research, as well as future directions.
Collapse
Affiliation(s)
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 1701, Johannesburg 2028, South Africa; (N.T.F.); (H.A.)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 1701, Johannesburg 2028, South Africa; (N.T.F.); (H.A.)
| | | |
Collapse
|
24
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
25
|
Abdel-Razek MAM, Abdelwahab MF, Abdelmohsen UR, Hamed ANE. A Review: Pharmacological Activity and Phytochemical Profile of Abelmoschus esculentus (2010-2022). RSC Adv 2023; 13:15280-15294. [PMID: 37213342 PMCID: PMC10196740 DOI: 10.1039/d3ra01367g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
Abelmoschus esculentus L. Moench (okra) which belongs to the family Malvaceae is a commonly consumed vegetable that consists of the seed component which is rich in polyphenolic compounds. The aim of this study is to highlight the chemical and biological diversity of A. esculentus. This plant contains many vitamins, minerals, proteins and carbohydrates in addition to flavonoids, terpenes, phenolic compounds and sterols. These variations in the chemical composition resulted in different therapeutic activities including antidiabetic, hypolipidemic, antioxidant, antimicrobial, anticancer, wound healing, hepatoprotective, immunomodulator, neuroprotective, and gastroprotective activities in addition to cardioprotective activity.
Collapse
Affiliation(s)
- Marwa A M Abdel-Razek
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone 61111 New Minia City Egypt
| | - Ashraf N E Hamed
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| |
Collapse
|
26
|
Appu M, Wu H, Chen H, Huang J. Tea polyphenols mediated biogenic synthesis of chitosan-coated cerium oxide (CS/CeO 2) nanocomposites and their potent antimicrobial capabilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42575-42586. [PMID: 35233667 DOI: 10.1007/s11356-022-19349-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In the present study, we hypothesized that novel nanocomposites of chitosan-coated cerium oxide (CS/CeO2 NCs) derived from aqueous extracts of tea polyphenols would be stabilized and reduced by using green chemistry. The UV-visible spectrum of the synthesized material revealed an SPR peak at 279 nm, and the morphological characteristics of nanoparticles (NPs) as a uniformly distributed spherical shape with a size range of 20 nm were confirmed by field emission scanning electron microscopy (FESEM). The Fourier transform infrared spectroscopy (FTIR) spectrum illustrated the amino groups of chitosan-coated with CeO2 NPs on the surface. While, the hydrodynamic size (376 nm) and surface charge (+ 25.0 mV) of particles were assessed by dynamic light scattering (DLS), and the existence of oxidation state elements Ce 3d, O 1 s, and C 1 s was identified by employing X-ray photoelectron spectroscopy (XPS). A cubic fluorite polycrystalline structure with a crystallite size of (5.24 nm) NPs was determined using an X-ray Diffractometer (XRD). The developed CS/CeO2 NCs demonstrated excellent antibacterial and antifungal efficacy against foodborne pathogens such as Escherichia coli, Staphylococcus aureus, and Botrytis cinerea with zone of inhibition of 13.5 ± 0.2 and 11.7 ± 0.2 mm, respectively. The results elucidated the potential of biosynthesized CS/CeO2 NCs could be utilized as potent antimicrobial agents in the food and agriculture industries.
Collapse
Affiliation(s)
- Manikandan Appu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Huixiang Wu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Hao Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China.
| |
Collapse
|
27
|
Gaobotse G, Venkataraman S, Brown PD, Masisi K, Kwape TE, Nkwe DO, Rantong G, Makhzoum A. The use of African medicinal plants in cancer management. Front Pharmacol 2023; 14:1122388. [PMID: 36865913 PMCID: PMC9971233 DOI: 10.3389/fphar.2023.1122388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer is the third leading cause of premature death in sub-Saharan Africa. Cervical cancer has the highest number of incidences in sub-Saharan Africa due to high HIV prevalence (70% of global cases) in African countries which is linked to increasing the risk of developing cervical cancer, and the continuous high risk of being infected with Human papillomavirus In 2020, the risk of dying from cancer amongst women was higher in Eastern Africa (11%) than it was in Northern America (7.4%). Plants continue to provide unlimited pharmacological bioactive compounds that are used to manage various illnesses, including cancer. By reviewing the literature, we provide an inventory of African plants with reported anticancer activity and evidence supporting their use in cancer management. In this review, we report 23 plants that have been used for cancer management in Africa, where the anticancer extracts are usually prepared from barks, fruits, leaves, roots, and stems of these plants. Extensive information is reported about the bioactive compounds present in these plants as well as their potential activities against various forms of cancer. However, information on the anticancer properties of other African medicinal plants is insufficient. Therefore, there is a need to isolate and evaluate the anticancer potential of bioactive compounds from other African medicinal plants. Further studies on these plants will allow the elucidation of their anticancer mechanisms of action and allow the identification of phytochemicals that are responsible for their anticancer properties. Overall, this review provides consolidated and extensive information not only on diverse medicinal plants of Africa but on the different types of cancer that these plants are used to manage and the diverse mechanisms and pathways that are involved during cancer alleviation.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Phenyo D. Brown
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - David O. Nkwe
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| |
Collapse
|
28
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
29
|
Tang JLY, Moonshi SS, Ta HT. Nanoceria: an innovative strategy for cancer treatment. Cell Mol Life Sci 2023; 80:46. [PMID: 36656411 PMCID: PMC9851121 DOI: 10.1007/s00018-023-04694-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Nanoceria or cerium oxide nanoparticles characterised by the co-existing of Ce3+ and Ce4+ that allows self-regenerative, redox-responsive dual-catalytic activities, have attracted interest as an innovative approach to treating cancer. Depending on surface characteristics and immediate environment, nanoceria exerts either anti- or pro-oxidative effects which regulate reactive oxygen species (ROS) levels in biological systems. Nanoceria mimics ROS-related enzymes that protect normal cells at physiological pH from oxidative stress and induce ROS production in the slightly acidic tumour microenvironment to trigger cancer cell death. Nanoceria as nanozymes also generates molecular oxygen that relieves tumour hypoxia, leading to tumour cell sensitisation to improve therapeutic outcomes of photodynamic (PDT), photothermal (PTT) and radiation (RT), targeted and chemotherapies. Nanoceria has been engineered as a nanocarrier to improve drug delivery or in combination with other drugs to produce synergistic anti-cancer effects. Despite reported preclinical successes, there are still knowledge gaps arising from the inadequate number of studies reporting findings based on physiologically relevant disease models that accurately represent the complexities of cancer. This review discusses the dual-catalytic activities of nanoceria responding to pH and oxygen tension gradient in tumour microenvironment, highlights the recent nanoceria-based platforms reported to be feasible direct and indirect anti-cancer agents with protective effects on healthy tissues, and finally addresses the challenges in clinical translation of nanoceria based therapeutics.
Collapse
Affiliation(s)
- Joyce L. Y. Tang
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia ,grid.1022.10000 0004 0437 5432Bioscience Discipline Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111 Australia
| | - Shehzahdi S. Moonshi
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia
| | - Hang T. Ta
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia ,grid.1022.10000 0004 0437 5432Bioscience Discipline Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111 Australia ,grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
30
|
Li D, Guo Z, Zhao R, Yin N, Xu Q, Yao X. A simple method for the preparation of CeO 2with high antioxidant activity and wide application range. NANOTECHNOLOGY 2022; 34:105706. [PMID: 36562515 DOI: 10.1088/1361-6528/aca982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Cerium oxide (CeO2) is a well-known antioxidant with the ability to scavenge reactive oxygen species due to its unique electronic structure and chemical properties. Although many methods to enhance the antioxidant activity of CeO2have been reported, its antioxidant activity is still not high enough, and some enhancement effects are limited by the material concentration. There are also some CeO2obtained with high antioxidant activity at high concentrations, which is not conducive to the application of biomedicine. Therefore, it is urgent to obtain CeO2material with low cell cytotoxicity, high antioxidant activity and wide application range. In this work, rod-like metal organic framework derived CeO2(CeO2-MOF) was prepared by a simple method. Compared with the CeO2nanorods prepared by hydrothermal method, it shows better antioxidant activity compared with the CeO2nanorods prepared by hydrothermal method. Moreover, the advantage of CeO2-MOF's antioxidant activity is not affected by the hydroxyl radical and material concentrations The reason why CeO2-MOF has higher antioxidant activity should be attributed to its higher Ce3+content and larger specific surface area. In addition, CeO2-MOF also exhibits low cytotoxicity to HeLa cells and PC12 cellsin vitro. The strategy of using MOF as a structural and compositional material to create CeO2provides a new method to explore highly efficient and biocompatible CeO2for practical applications.
Collapse
Affiliation(s)
- Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Nan Yin
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Qingling Xu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
- Binzhou Institute of Technology, Binzhou 256601, People's Republic of China
| |
Collapse
|
31
|
Huang C, Dong L, Zhao B, Lu Y, Huang S, Yuan Z, Luo G, Xu Y, Qian W. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med 2022; 12:e1094. [PMID: 36354147 PMCID: PMC9647861 DOI: 10.1002/ctm2.1094] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Hydrogels are promising and widely utilized in the biomedical field. In recent years, the anti-inflammatory function of hydrogel dressings has been significantly improved, addressing many clinical challenges presented in ongoing endeavours to promote wound healing. Wound healing is a cascaded and highly complex process, especially in chronic wounds, such as diabetic and severe burn wounds, in which adverse endogenous or exogenous factors can interfere with inflammatory regulation, leading to the disruption of the healing process. Although insufficient wound inflammation is uncommon, excessive inflammatory infiltration is an almost universal feature of chronic wounds, which impedes a histological repair of the wound in a predictable biological step and chronological order. Therefore, resolving excessive inflammation in wound healing is essential. In the past 5 years, extensive research has been conducted on hydrogel dressings to address excessive inflammation in wound healing, specifically by efficiently scavenging excessive free radicals, sequestering chemokines and promoting M1 -to-M2 polarization of macrophages, thereby regulating inflammation and promoting wound healing. In this study, we introduced novel anti-inflammatory hydrogel dressings and demonstrated innovative methods for their preparation and application to achieve enhanced healing. In addition, we summarize the most important properties required for wound healing and discuss our analysis of potential challenges yet to be addressed.
Collapse
Affiliation(s)
- Can Huang
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Lanlan Dong
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Baohua Zhao
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yifei Lu
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Shurun Huang
- Department of Burns and Plastic Surgerythe 910th Hospital of Joint Logistic Force of Chinese People's Liberation ArmyQuanzhouFujianChina
| | - Zhiqiang Yuan
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Gaoxing Luo
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yong Xu
- Orthopedic InstituteSuzhou Medical CollegeSoochow UniversitySuzhouChina
- B CUBE Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Wei Qian
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| |
Collapse
|
32
|
Lu H, Wan L, Li X, Zhang M, Shakoor A, Li W, Zhang X. Combined Synthesis of Cerium Oxide Particles for Effective Anti-Bacterial and Anti-Cancer Nanotherapeutics. Int J Nanomedicine 2022; 17:5733-5746. [DOI: 10.2147/ijn.s379689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
|
33
|
Zhou D, Du M, Luo H, Ran F, Zhao X, Dong Y, Zhang T, Hao J, Li D, Li J. Multifunctional mesoporous silica-cerium oxide nanozymes facilitate miR129 delivery for high-quality healing of radiation-induced skin injury. J Nanobiotechnology 2022; 20:409. [PMID: 36104685 PMCID: PMC9476328 DOI: 10.1186/s12951-022-01620-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced skin injury (RISI) is an important challenge for clinical treatments. The main causes of RISI include hypoxia in the wound microenvironment, reactive oxygen species (ROS) activation, and downregulation of DNA repair proteins. Here, a multiple radioresistance strategy was designed for microRNA therapy and attenuating hypoxia. A novel mesoporous silica (MS) firmly anchored and dispersed cerium (IV) oxide (CeO2) nanoparticles to form MS-CeO2 nanocomposites, which exhibit superior activity in inhibiting radiation-induced ROS and HIF-1α activation and ultimately promote RISI wound healing. The miR129 serum concentrations in patients can promote radioresistance by directly targeting RAD17 and regulating the Chk2 pathway. Subsequently, MS-CeO2 nanocomposites with miR129 were conjugated with iRGD-grafted polyoxyethylene glycol (short for nano-miR129), which increased the stability and antibacterial character, efficiently delivered miR129 to wound blood capillaries, and exhibited low toxicity. Notably, nano-miR129 promoted radioresistance and enhanced anti-ROS therapeutic efficacy in a subcutaneous RISI mouse model. Overall, this MS-CeO2 nanozyme and miR129-based multiresistance radiotherapy protection strategy provided a promising therapeutic approach for RISI.
Collapse
|
34
|
Pansambal S, Oza R, Borgave S, Chauhan A, Bardapurkar P, Vyas S, Ghotekar S. Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02574-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics 2022; 14:pharmaceutics14081574. [PMID: 36015200 PMCID: PMC9414988 DOI: 10.3390/pharmaceutics14081574] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The healing of wounds is a dynamic function that necessitates coordination among multiple cell types and an optimal extracellular milieu. Much of the research focused on finding new techniques to improve and manage dermal injuries, chronic injuries, burn injuries, and sepsis, which are frequent medical concerns. A new research strategy involves developing multifunctional dressings to aid innate healing and combat numerous issues that trouble incompletely healed injuries, such as extreme inflammation, ischemic damage, scarring, and wound infection. Natural origin-based compounds offer distinct characteristics, such as excellent biocompatibility, cost-effectiveness, and low toxicity. Researchers have developed biopolymer-based wound dressings with drugs, biomacromolecules, and cells that are cytocompatible, hemostatic, initiate skin rejuvenation and rapid healing, and possess anti-inflammatory and antimicrobial activity. The main goal would be to mimic characteristics of fetal tissue regeneration in the adult healing phase, including complete hair and glandular restoration without delay or scarring. Emerging treatments based on biomaterials, nanoparticles, and biomimetic proteases have the keys to improving wound care and will be a vital addition to the therapeutic toolkit for slow-healing wounds. This study focuses on recent discoveries of several dressings that have undergone extensive pre-clinical development or are now undergoing fundamental research.
Collapse
Affiliation(s)
- Nithya Rani Raju
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Victor Stupin
- Department of Hospital Surgery No 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Natalia Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, N.I. Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Centre for Experimental Pharmacology and Toxicology (CPT), Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Correspondence: ; Tel.: +91-9535413026
| |
Collapse
|
36
|
Kermani G, Karimi E, Tabrizi MH. Hybrid Nanoarchitectonics of Chitosan-Cerium Oxide Nanoparticles for Anticancer Potentials. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02329-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Hussein MAM, Gunduz O, Sahin A, Grinholc M, El-Sherbiny IM, Megahed M. Dual Spinneret Electrospun Polyurethane/PVA-Gelatin Nanofibrous Scaffolds Containing Cinnamon Essential Oil and Nanoceria for Chronic Diabetic Wound Healing: Preparation, Physicochemical Characterization and In-Vitro Evaluation. Molecules 2022; 27:2146. [PMID: 35408546 PMCID: PMC9000402 DOI: 10.3390/molecules27072146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
In this study, a dual spinneret electrospinning technique was applied to fabricate a series of polyurethane (PU) and polyvinyl alcohol-gelatin (PVA/Gel) nanofibrous scaffolds. The study aims to enhance the properties of PU/PVA-Gel NFs loaded with a low dose of nanoceria through the incorporation of cinnamon essential oil (CEO). The as-prepared nCeO2 were embedded into the PVA/Gel nanofibrous layer, where the cinnamon essential oil (CEO) was incorporated into the PU nanofibrous layer. The morphology, thermal stability, mechanical properties, and chemical composition of the produced NF mats were investigated by STEM, DSC, and FTIR. The obtained results showed improvement in the mechanical, and thermal stability of the dual-fiber scaffolds by adding CEO along with nanoceria. The cytotoxicity evaluation revealed that the incorporation of CEO to PU/PVA-Gel loaded with a low dose of nanoceria could enhance the cell population compared to using pure PU/PVA-Gel NFs. Moreover, the presence of CEO could inhibit the growth rate of S. aureus more than E. coli. To our knowledge, this is the first time such nanofibrous membranes composed of PU and PVA-Gel have been produced. The first time was to load the nanofibrous membranes with both CEO and nCeO2. The obtained results indicate that the proposed PU/PVA-Gel NFs represent promising platforms with CEO and nCeO2 for effectively managing diabetic wounds.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
- Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo 12622, Egypt
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey;
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ali Sahin
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul 34854, Turkey;
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 80307 Gdansk, Poland;
| | - Ibrahim Mohamed El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
| |
Collapse
|
38
|
Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|