1
|
Todd EA, Mirsky NA, Silva BLG, Shinde AR, Arakelians ARL, Nayak VV, Marcantonio RAC, Gupta N, Witek L, Coelho PG. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J Funct Biomater 2024; 15:280. [PMID: 39452579 PMCID: PMC11509029 DOI: 10.3390/jfb15100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.
Collapse
Affiliation(s)
- Emily Ann Todd
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Bruno Luís Graciliano Silva
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 01049-010, Brazil
| | - Ankita Raja Shinde
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aris R. L. Arakelians
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Gao S, Nie T, Lin Y, Jiang L, Wang L, Wu J, Jiao Y. 3D printing tissue-engineered scaffolds for auricular reconstruction. Mater Today Bio 2024; 27:101141. [PMID: 39045312 PMCID: PMC11265588 DOI: 10.1016/j.mtbio.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Congenital microtia is the most common cause of auricular defects, with a prevalence of approximately 5.18 per 10,000 individuals. Autologous rib cartilage grafting is the leading treatment modality at this stage of auricular reconstruction currently. However, harvesting rib cartilage may lead to donor site injuries, such as pneumothorax, postoperative pain, chest wall scarring, and deformity. Therefore, in the pursuit of better graft materials, biomaterial scaffolds with great histocompatibility, precise control of morphology, non-invasiveness properties are gradually becoming a new research hotspot in auricular reconstruction. This review collectively presents the exploit and application of 3D printing biomaterial scaffold in auricular reconstruction. Although the tissue-engineered ear still faces challenges before it can be widely applied to patients in clinical settings, and its long-term effects have yet to be evaluated, we aim to provide guidance for future research directions in 3D printing biomaterial scaffold for auricular reconstruction. This will ultimately benefit the translational and clinical application of cartilage tissue engineering and biomaterials in the treatment of auricular defects.
Collapse
Affiliation(s)
- Shuyi Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Tianqi Nie
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Ying Lin
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Jinan University, Guangzhou, 510240, China
- Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, 510240, China
| | - Linlan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Liwen Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Jun Wu
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuenong Jiao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| |
Collapse
|
5
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Shopova D, Yaneva A, Mihaylova A, Dinkova A, Bakova D. Unlocking the Future: Bioprinting Salivary Glands-From Possibility to Reality. J Funct Biomater 2024; 15:151. [PMID: 38921525 PMCID: PMC11204800 DOI: 10.3390/jfb15060151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Salivary gland biofabrication represents a promising avenue in regenerative medicine, aiming to address the challenges of salivary gland dysfunction caused by various factors such as autoimmune diseases and radiotherapy. This review examines the current state of bioprinting technology, biomaterials, and tissue engineering strategies in the context of creating functional, implantable salivary gland constructs. Key considerations include achieving vascularization for proper nutrient supply, maintaining cell viability and functionality during printing, and promoting tissue maturation and integration with surrounding tissues. Despite the existing challenges, recent advancements offer significant potential for the development of personalized therapeutic options to treat salivary gland disorders. Continued research and innovation in this field hold the potential to revolutionize the management of salivary gland conditions, improving patient outcomes and quality of life. This systematic review covers publications from 2018 to April 2024 and was conducted on four databases: Google Scholar, PubMed, EBSCOhost, and Web of Science. The key features necessary for the successful creation, implantation and functioning of bioprinted salivary glands are addressed.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (A.M.); (D.B.)
| | - Atanaska Dinkova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (A.M.); (D.B.)
| |
Collapse
|
7
|
Elnawam H, Abdallah A, Nouh S, Khalil NM, Elbackly R. Influence of extracellular matrix scaffolds on histological outcomes of regenerative endodontics in experimental animal models: a systematic review. BMC Oral Health 2024; 24:511. [PMID: 38689279 PMCID: PMC11061952 DOI: 10.1186/s12903-024-04266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Decellularized extracellular matrix (dECM) from several tissue sources has been proposed as a promising alternative to conventional scaffolds used in regenerative endodontic procedures (REPs). This systematic review aimed to evaluate the histological outcomes of studies utilizing dECM-derived scaffolds for REPs and to analyse the contributing factors that might influence the nature of regenerated tissues. METHODS The PRISMA 2020 guidelines were used. A search of articles published until April 2024 was conducted in Google Scholar, Scopus, PubMed and Web of Science databases. Additional records were manually searched in major endodontic journals. Original articles including histological results of dECM in REPs and in-vivo studies were included while reviews, in-vitro studies and clinical trials were excluded. The quality assessment of the included studies was analysed using the ARRIVE guidelines. Risk of Bias assessment was done using the (SYRCLE) risk of bias tool. RESULTS Out of the 387 studies obtained, 17 studies were included for analysis. In most studies, when used as scaffolds with or without exogenous cells, dECM showed the potential to enhance angiogenesis, dentinogenesis and to regenerate pulp-like and dentin-like tissues. However, the included studies showed heterogeneity of decellularization methods, animal models, scaffold source, form and delivery, as well as high risk of bias and average quality of evidence. DISCUSSION Decellularized ECM-derived scaffolds could offer a potential off-the-shelf scaffold for dentin-pulp regeneration in REPs. However, due to the methodological heterogeneity and the average quality of the studies included in this review, the overall effectiveness of decellularized ECM-derived scaffolds is still unclear. More standardized preclinical research is needed as well as well-constructed clinical trials to prove the efficacy of these scaffolds for clinical translation. OTHER The protocol was registered in PROSPERO database #CRD42023433026. This review was funded by the Science, Technology and Innovation Funding Authority (STDF) under grant number (44426).
Collapse
Affiliation(s)
- Hisham Elnawam
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt.
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Amr Abdallah
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Wei X, Zhang Z, Wang L, Yan L, Yan Y, Wang C, Peng H, Fan X. Enhancing osteoblast proliferation and bone regeneration by poly (amino acid)/selenium-doped hydroxyapatite. Biomed Mater 2024; 19:035025. [PMID: 38537374 DOI: 10.1088/1748-605x/ad38ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Among various biomaterials employed for bone repair, composites with good biocompatibility and osteogenic ability had received increasing attention from biomedical applications. In this study, we doped selenium (Se) into hydroxyapatite (Se-HA) by the precipitation method, and prepared different amounts of Se-HA-loaded poly (amino acid)/Se-HA (PAA/Se-HA) composites (0, 10 wt%, 20 wt%, 30 wt%) byin-situmelting polycondensation. The physical and chemical properties of PAA/Se-HA composites were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and their mechanical properties. XRD and FT-IR results showed that PAA/Se-HA composites contained characteristic peaks of PAA and Se-HA with amide linkage and HA structures. DSC and TGA results specified the PAA/Se-HA30 composite crystallization, melting, and maximum weight loss temperatures at 203.33 °C, 162.54 °C, and 468.92 °C, respectively, which implied good thermal stability. SEM results showed that Se-HA was uniformly dispersed in PAA. The mechanical properties of PAA/Se-HA30 composites included bending, compressive, and yield strengths at 83.07 ± 0.57, 106.56 ± 0.46, and 99.17 ± 1.11 MPa, respectively. The cellular responses of PAA/Se-HA compositesin vitrowere studied using bone marrow mesenchymal stem cells (BMSCs) by cell counting kit-8 assay, and results showed that PAA/Se-HA30 composites significantly promoted the proliferation of BMSCs at the concentration of 2 mg ml-1. The alkaline phosphatase activity (ALP) and alizarin red staining results showed that the introduction of Se-HA into PAA enhanced ALP activity and formation of calcium nodule. Western blotting and Real-time polymerase chain reaction results showed that the introduction of Se-HA into PAA could promoted the expression of osteogenic-related proteins and mRNA (integrin-binding sialoprotein, osteopontin, runt-related transcription factor 2 and Osterix) in BMSCs. A muscle defect at the back and a bone defect at the femoral condyle of New Zealand white rabbits were introduced for evaluating the enhancement of bone regeneration of PAA and PAA/Se-HA30 composites. The implantation of muscle tissue revealed good biocompatibility of PAA and PAA/Se-HA30 composites. The implantation of bone defect showed that PAA/Se-HA30 composites enhanced bone formation at the defect site (8 weeks), exhibiting good bone conductivity. Therefore, the PAA-based composite was a promising candidate material for bone tissue regeneration.
Collapse
Affiliation(s)
- Xiaobo Wei
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Ziyue Zhang
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Lei Wang
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Lin Yan
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Yonggang Yan
- College of Physical Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Cheng Wang
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Haitao Peng
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Xiaoxia Fan
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| |
Collapse
|
9
|
Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, Nasiri K, Esfahaniani M, Yasamineh S. Mesenchymal Stem Cell-based Scaffolds in Regenerative Medicine of Dental Diseases. Stem Cell Rev Rep 2024; 20:688-721. [PMID: 38308730 DOI: 10.1007/s12015-024-10687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Biomedical engineering breakthroughs and increased patient expectations and requests for more comprehensive care are propelling the field of regenerative dentistry forward at a fast pace. Stem cells (SCs), bioactive compounds, and scaffolds are the mainstays of tissue engineering, the backbone of regenerative dentistry. Repairing damaged teeth and gums is a significant scientific problem at present. Novel therapeutic approaches for tooth and periodontal healing have been inspired by tissue engineering based on mesenchymal stem cells (MSCs). Furthermore, as a component of the MSC secretome, extracellular vesicles (EVs) have been shown to contribute to periodontal tissue repair and regeneration. The scaffold, made of an artificial extracellular matrix (ECM), acts as a supporting structure for new cell development and tissue formation. To effectively promote cell development, a scaffold must be non-toxic, biodegradable, biologically compatible, low in immunogenicity, and safe. Due to its promising biological characteristics for cell regeneration, dental tissue engineering has recently received much attention for its use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix. Moreover, as a bioactive material for carrying MSC-EVs, the combined application of scaffolds and MSC-EVs has a better regenerative effect on dental diseases. In this paper, we discuss how MSCs and MSC-derived EV treatment may be used to regenerate damaged teeth, and we highlight the role of various scaffolds in this process.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Meysam Mohammadi Khah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran.
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
10
|
Alsalhi A. Applications of selected polysaccharides and proteins in dentistry: A review. Int J Biol Macromol 2024; 260:129215. [PMID: 38185301 DOI: 10.1016/j.ijbiomac.2024.129215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
In the last ten years, remarkable characteristics and a variety of functionalities have been created in biopolymeric materials for clinical dental applications. This review gives an overview of current knowledge of natural biopolymers (biological macromolecules) in terms of structural, functional, and property interactions. Natural biopolymers such as polysaccharides (chitosan, bacterial cellulose, hyaluronic acid, and alginate) and polypeptides (collagen and silk fibroin) have been discussed for dental uses. These biopolymers exhibit excellent properties alone and when employed with other composite molecules making them ideal for treatment of periodontitis, endodontics, dental pulp regeneration and oral wound healing. These biopolymers together with the composite materials exhibit better biocompatibility, inertness, elasticity and flexibility which makes them a leading candidate to be used for other dental applications like caries management, oral appliances, dentures, dental implants and oral surgeries.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia.
| |
Collapse
|
11
|
Zhao F, Zhang Z, Guo W. The 3-dimensional printing for dental tissue regeneration: the state of the art and future challenges. Front Bioeng Biotechnol 2024; 12:1356580. [PMID: 38456006 PMCID: PMC10917914 DOI: 10.3389/fbioe.2024.1356580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Tooth loss or damage poses great threaten to oral and general health. While contemporary clinical treatments have enabled tooth restoration to a certain extent, achieving functional tooth regeneration remains a challenging task due to the intricate and hierarchically organized architecture of teeth. The past few decades have seen a rapid development of three-dimensional (3D) printing technology, which has provided new breakthroughs in the field of tissue engineering and regenerative dentistry. This review outlined the bioactive materials and stem/progenitor cells used in dental regeneration, summarized recent advancements in the application of 3D printing technology for tooth and tooth-supporting tissue regeneration, including dental pulp, dentin, periodontal ligament, alveolar bone and so on. It also discussed current obstacles and potential future directions, aiming to inspire innovative ideas and encourage further development in regenerative medicine.
Collapse
Affiliation(s)
- Fengxiao Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Sedek EM, Abdelkader S, Fahmy AE, Kamoun EA, Nouh SR, Khalil NM. Histological evaluation of the regenerative potential of a novel photocrosslinkable gelatin-treated dentin matrix hydrogel in direct pulp capping: an animal study. BMC Oral Health 2024; 24:114. [PMID: 38243218 PMCID: PMC10799547 DOI: 10.1186/s12903-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND To assess histologically the success of the pulp capping approach performed in traumatically exposed dogs' teeth using a novel injectable gelatin-treated dentin matrix light cured hydrogel (LCG-TDM) compared with LCG, MTA and TheraCal LC. METHODS Sixty-four dogs' teeth were divided into two groups (each including 32 teeth) based on the post-treatment evaluation period: group I: 2 weeks and group II: 8 weeks. Each group was further subdivided according to the pulp capping material into four subgroups (n = 8), with subgroup A (light-cured gelatin hydrogel) as the control subgroup, subgroup B (LCG-TDM), subgroup C (TheraCal LC), and subgroup D (MTA). Pulps were mechanically exposed in the middle of the cavity floor and capped with different materials. An assessment of periapical response was performed preoperatively and at 8 weeks. After 2 and 8-week intervals, the dogs were sacrificed, and the teeth were stained with hematoxylin-eosin and graded by using a histologic scoring system. Statistical analysis was performed using the chi-square and Kruskal-Wallis tests (p = 0.05). RESULTS All subgroups showed mild inflammation with normal pulp tissue at 2 weeks with no significant differences between subgroups (p ≤ 0.05), except for the TheraCal LC subgroup, which exhibited moderate inflammation (62.5%). Absence of a complete calcified bridge was reported in all subgroups at 2 weeks, while at 8 weeks, the majority of samples in the LCG-TDM and MTA-Angelus subgroups showed complete dentin bridge formation and absence of inflammatory pulp response with no significant differences between them (p ≤ 0.05). However, the formed dentin in the LCG-TDM group was significantly thicker, with layers of ordered odontoblasts identified to create a homogeneous tubular structure and numerous dentinal tubule lines suggesting a favourable trend towards dentin regeneration. TheraCal LC samples revealed a reasonably thick dentin bridge with moderate inflammation (50%) and LCG showed heavily fibrous tissue infiltrates with areas of degenerated pulp with no signs of hard tissue formation. CONCLUSIONS LCG-TDM, as an extracellular matrix-based material, has the potential to regenerate dentin and preserve pulp vitality, making it a viable natural alternative to silicate-based cements for healing in vivo dentin defects in direct pulp-capping procedures.
Collapse
Affiliation(s)
- Eman M Sedek
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Sally Abdelkader
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Amal E Fahmy
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt, El-Shreouk City, Cairo, Egypt
| | - Samir R Nouh
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Daneshian Y, Lewallen EA, Badreldin AA, Dietz AB, Stein GS, Cool SM, Ryoo HM, Cho YD, van Wijnen AJ. Fundamentals and Translational Applications of Stem Cells and Biomaterials in Dental, Oral and Craniofacial Regenerative Medicine. Crit Rev Eukaryot Gene Expr 2024; 34:37-60. [PMID: 38912962 DOI: 10.1615/critreveukaryotgeneexpr.2024053036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Regenerative dental medicine continuously expands to improve treatments for prevalent clinical problems in dental and oral medicine. Stem cell based translational opportunities include regenerative therapies for tooth restoration, root canal therapy, and inflammatory processes (e.g., periodontitis). The potential of regenerative approaches relies on the biological properties of dental stem cells. These and other multipotent somatic mesenchymal stem cell (MSC) types can in principle be applied as either autologous or allogeneic sources in dental procedures. Dental stem cells have distinct developmental origins and biological markers that determine their translational utility. Dental regenerative medicine is supported by mechanistic knowledge of the molecular pathways that regulate dental stem cell growth and differentiation. Cell fate determination and lineage progression of dental stem cells is regulated by multiple cell signaling pathways (e.g., WNTs, BMPs) and epigenetic mechanisms, including DNA modifications, histone modifications, and non-coding RNAs (e.g., miRNAs and lncRNAs). This review also considers a broad range of novel approaches in which stem cells are applied in combination with biopolymers, ceramics, and composite materials, as well as small molecules (agonistic or anti-agonistic ligands) and natural compounds. Materials that mimic the microenvironment of the stem cell niche are also presented. Promising concepts in bone and dental tissue engineering continue to drive innovation in dental and non-dental restorative procedures.
Collapse
Affiliation(s)
- Yasaman Daneshian
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | - Amr A Badreldin
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Simon M Cool
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Hyun-Mo Ryoo
- School of Dentistry, Seoul National University, 28 Yeonkun-dong, Chongro-gu Seoul, 110-749, Republic of Korea
| | - Young Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, 101 Daehak‑no, Jongno‑gu, Seoul 03080, Republic of Korea
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
14
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Tian Z, Zhao Z, Rausch MA, Behm C, Shokoohi-Tabrizi HA, Andrukhov O, Rausch-Fan X. In Vitro Investigation of Gelatin/Polycaprolactone Nanofibers in Modulating Human Gingival Mesenchymal Stromal Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7508. [PMID: 38138649 PMCID: PMC10744501 DOI: 10.3390/ma16247508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The aesthetic constancy and functional stability of periodontium largely depend on the presence of healthy mucogingival tissue. Soft tissue management is crucial to the success of periodontal surgery. Recently, synthetic substitute materials have been proposed to be used for soft tissue augmentation, but the tissue compatibility of these materials needs to be further investigated. This study aims to assess the in vitro responses of human gingival mesenchymal stromal cells (hG-MSCs) cultured on a Gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM). hG-MSCs were cultured onto the GPP, VSCM, or plastic for 3, 7, and 14 days. The proliferation and/or viability were measured by cell counting kit-8 assay and resazurin-based toxicity assay. Cell morphology and adhesion were evaluated by microscopy. The gene expression of collagen type I, alpha1 (COL1A1), α-smooth muscle actin (α-SMA), fibroblast growth factor (FGF-2), vascular endothelial growth factor A (VEGF-A), transforming growth factor beta-1 (TGF-β1), focal adhesion kinase (FAK), integrin beta-1 (ITG-β1), and interleukin 8 (IL-8) was investigated by RT-qPCR. The levels of VEGF-A, TGF-β1, and IL-8 proteins in conditioned media were tested by ELISA. GPP improved both cell proliferation and viability compared to VSCM. The cells grown on GPP exhibited a distinct morphology and attachment performance. COL1A1, α-SMA, VEGF-A, FGF-2, and FAK were positively modulated in hG-MSCs on GPP at different investigation times. GPP increased the gene expression of TGF-β1 but had no effect on protein production. The level of ITG-β1 had no significant changes in cells seeded on GPP at 7 days. At 3 days, notable differences in VEGF-A, TGF-β1, and α-SMA expression levels were observed between cells seeded on GPP and those on VSCM. Meanwhile, GPP showed higher COL1A1 expression compared to VSCM after 14 days, whereas VSCM demonstrated a more significant upregulation in the production of IL-8. Taken together, our data suggest that GPP electrospun nanofibers have great potential as substitutes for soft tissue regeneration in successful periodontal surgery.
Collapse
Affiliation(s)
- Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Hassan Ali Shokoohi-Tabrizi
- Core Facility Applied Physics, Laser and CAD/CAM Technology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Xiaohui Rausch-Fan
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria;
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria
| |
Collapse
|
16
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
17
|
Lima TDPDL, Canelas CADA, Dutra JDCF, Rodrigues APD, Brígida RTSS, Concha VOC, da Costa FAM, Passos MF. Poly (ε-caprolactone)-Based Scaffolds with Multizonal Architecture: Synthesis, Characterization, and In Vitro Tests. Polymers (Basel) 2023; 15:4403. [PMID: 38006127 PMCID: PMC10674666 DOI: 10.3390/polym15224403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tissue engineering is vital in treating injuries and restoring damaged tissues, aiming to accelerate regeneration and optimize the complex healing process. In this study, multizonal scaffolds, designed to mimic tissues with bilayer architecture, were prepared using the rotary jet spinning technique (RJS scaffolds). Polycaprolactone and different concentrations of alginate hydrogel (2, 4, and 6% m/v) were used. The materials were swollen in pracaxi vegetable oil (PO) (Pentaclethra macroloba) and evaluated in terms of surface morphology, wettability, functional groups, thermal behavior, crystallinity, and cytotoxicity. X-ray diffraction (XRD) showed the disappearance of the diffraction peak 2θ = 31.5° for samples from the polycaprolactone/pracaxi/alginate (PCLOA) group, suggesting a reduction of crystallinity according to the presence of PO and semi-crystalline structure. Wettability gradients (0 to 80.91°) were observed according to the deposition layer and hydrogel content. Pore diameters varied between 9.27 μm and 37.57 μm. Molecular interactions with the constituents of the formulation were observed via infrared spectra with Fourier transform (FTIR), and their influence was detected in the reduction of the maximum degradation temperature within the groups of scaffolds (polycaprolactone/alginate (PCLA) and PCLOA) about the control. In vitro tests indicated reduced cell viability in the presence of alginate hydrogel and PO, respectively.
Collapse
Affiliation(s)
- Tainara de Paula de Lima Lima
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Materials Science and Engineering Program, Federal University of Pará, Ananindeua 67130-660, PA, Brazil;
| | | | - Joyce da Cruz Ferraz Dutra
- Microbiology Department, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Ana Paula Drummond Rodrigues
- Electron Microscopy Laboratory, Evandro Chagas Institute, Ministry of Health, Belém 66093-020, PA, Brazil; (A.P.D.R.); (R.T.S.S.B.)
| | | | | | | | - Marcele Fonseca Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Materials Science and Engineering Program, Federal University of Pará, Ananindeua 67130-660, PA, Brazil;
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (C.A.d.A.C.); (F.A.M.d.C.)
| |
Collapse
|
18
|
Alavi SE, Alavi SZ, Gholami M, Sharma A, Sharma LA, Ebrahimi Shahmabadi H. Biocomposite-based strategies for dental bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:554-568. [PMID: 37612166 DOI: 10.1016/j.oooo.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Because of the anatomical complexity of the oral and maxillofacial sites, repairing bone defects in these regions is very difficult. This review article aims to consider the application of biocomposites-based strategies for dental bone regeneration. STUDY DESIGN Research papers related to the topic, published over the last 20 years, were selected using the Web of Science, Pubmed, Scopus, and Google Scholar databases. RESULTS The strategies of monophasic, biphasic/multiphasic scaffolds, and biopolymer-based nanocomposite scaffolds containing nanomaterials compared with traditional methods used for bone regeneration, such as autografts, allografts, xenografts, and alloplasts are found to be superior because of their ability to overcome the issues (e.g., limited bone sources, pain, immune responses, high cost) related to the applications of the traditional methods. CONCLUSIONS In addition, additive manufacturing technologies were found to be highly advantageous for improving the efficacy of biocomposite scaffolds for treating dental bone defects.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Ajay Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Lavanya A Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia.
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
19
|
Qin C, Ren T, Liu Y, Shao H, Mi F, Wang B. Efficacy of positive space acquiring membrane and antimicrobial membrane combined with granular bone substitute implantation in guiding oral bone regeneration. J Biomater Appl 2023; 38:562-572. [PMID: 37665085 DOI: 10.1177/08853282231200716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Augmentation of the alveolar bone is important before oral implantation. For large bone defects, it becomes necessary to apply guided bone regeneration (GBR) materials, accompanied by filling defect sites with autologous or allogeneic bone, or bone substitutes such as acellular bone powder. In this study, we tested a granular bone substitute and GBR membrane combination therapy in treating MC3T3-E1 and L929 cells in vitro and rat calvarial and alveolar defects in vivo. The recovery conditions of bone defects were monitored by micro-CT, and 3D reconstruction of the CT images was applied to evaluate the bone augmentation semi-quantitatively. Test GBR materials could support the proliferation of MC3T3-E1 cells, poly (p-dioxanone-co-L-phenylalanine) (PDPA)-based membrane could induce apoptosis of L929 cells. Among GBR membranes applied groups, the regeneration condition of defected calvarial defects of PDPA based membrane applied group was the best and this may be caused by its excellent positive space acquiring effect. However, in a complex bacteriogenic environment, the oral bone regeneration-guided efficacy of the PDPA membrane decreased in the post-repair stage with the aggravation of infections. By contrast, the antimicrobial membrane combined with the PDPA membrane exhibited continually increasing GBR efficacy at the later stage of repair owing to its multifunctional properties, which are infection-inhibiting and positive space acquiring. Therefore, multifunctional GBR membranes are preferable for GBR in complex oral environments, and further research should be conducted to determine their efficacy in other models.
Collapse
Affiliation(s)
- Chuanlan Qin
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Tongyan Ren
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yiming Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Huaying Shao
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Fanglin Mi
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
20
|
Nagrani T, Kumar S, Haq MA, Dhanasekaran S, Gajjar S, Patel C, Sinha S, Haque M. Use of Injectable Platelet-Rich Fibrin Accompanied by Bone Graft in Socket Endurance: A Radiographic and Histological Study. Cureus 2023; 15:e46909. [PMID: 37841989 PMCID: PMC10569439 DOI: 10.7759/cureus.46909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Ridge preservation became a crucial dental health issue and strategy to keep away from ridge defacement after post-tooth loss. The recent scientific evolution of platelet-rich fibrin (PRF) comprises a parenteral formulation of PRF. The combined allograft for socket preservation gives benefits. In this study, bone allografts, demineralized freeze-dried bone allografts (DFDBA) and freeze-dried bone allografts (FDBA) are used in a 30:70 ratio alone or in combination with injectable PRF (I-PRF) for socket preservation. Methods This study is a radiographic and histological examination conducted on 60 participants aged between 19-65 years. Participating patients agreed voluntarily that they would not bear any fixed prosthesis for the next nine months and plan for implanted teeth placement, including multi-rooted mandibular molars denticles. Both groups received atraumatic extraction; then, the socket was preserved with bone allograft alone in the control group and bone allograft mixed with I-PRF, forming sticky bone, in the experimental group. Clinical, radiological, and histological assessments were taken at the inception stage, three months, six months, and nine months. A multivariate regression model and a generalized estimating equation (GEE) model were used to analyse the effects of these changes on outcomes. Results In all the parameters, the test group indicated a good amount of bone growth with increasing intervals of time for bone height radiographically with statistically significant difference present (p<0.05) and histologically after nine months when socket site grafted with bone graft in combination with I-PRF. Conclusion This study's results demonstrated that I-PRF possesses the potential to regenerate and heal in the tooth-extracted socket. This study further recommends the implementation of I-PRF in safeguarding and conserving the raised rim of the tooth. Future research should take place on the osteogenic capability of I-PRF in more comprehensive ridge accession surgical procedures and additional expanding and improving capacities in periodontal reconstruction.
Collapse
Affiliation(s)
- Tanya Nagrani
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Md Ahsanul Haq
- Bio-Statistics, Infectious Diseases Division, icddr, b, Dhaka, BGD
| | | | - Shreya Gajjar
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Chandni Patel
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Susmita Sinha
- Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Mainul Haque
- Karnavati Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
21
|
Huang Y, Zhao H, Wang Y, Bi S, Zhou K, Li H, Zhou C, Wang Y, Wu W, Peng B, Tang J, Pan B, Wang B, Chen Z, Li Z, Zhang Z. The application and progress of tissue engineering and biomaterial scaffolds for total auricular reconstruction in microtia. Front Bioeng Biotechnol 2023; 11:1089031. [PMID: 37811379 PMCID: PMC10556751 DOI: 10.3389/fbioe.2023.1089031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/21/2023] [Indexed: 10/10/2023] Open
Abstract
Microtia is a congenital deformity of the ear with an incidence of about 0.8-4.2 per 10,000 births. Total auricular reconstruction is the preferred treatment of microtia at present, and one of the core technologies is the preparation of cartilage scaffolds. Autologous costal cartilage is recognized as the best material source for constructing scaffold platforms. However, costal cartilage harvest can lead to donor-site injuries such as pneumothorax, postoperative pain, chest wall scar and deformity. Therefore, with the need of alternative to autologous cartilage, in vitro and in vivo studies of biomaterial scaffolds and cartilage tissue engineering have gradually become novel research hot points in auricular reconstruction research. Tissue-engineered cartilage possesses obvious advantages including non-rejection, minimally invasive or non-invasive, the potential of large-scale production to ensure sufficient donors and controllable morphology. Exploration and advancements of tissue-engineered cartilaginous framework are also emerging in aspects including three-dimensional biomaterial scaffolds, acquisition of seed cells and chondrocytes, 3D printing techniques, inducing factors for chondrogenesis and so on, which has greatly promoted the research process of biomaterial substitute. This review discussed the development, current application and research progress of cartilage tissue engineering in auricular reconstruction, particularly the usage and creation of biomaterial scaffolds. The development and selection of various types of seed cells and inducing factors to stimulate chondrogenic differentiation in auricular cartilage were also highlighted. There are still confronted challenges before the clinical application becomes widely available for patients, and its long-term effect remains to be evaluated. We hope to provide guidance for future research directions of biomaterials as an alternative to autologous cartilage in ear reconstruction, and finally benefit the transformation and clinical application of cartilage tissue engineering and biomaterials in microtia treatment.
Collapse
Affiliation(s)
- Yeqian Huang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hanxing Zhao
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hairui Li
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yudong Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Peng
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyun Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Duncan HF, Kobayashi Y, Kearney M, Shimizu E. Epigenetic therapeutics in dental pulp treatment: Hopes, challenges and concerns for the development of next-generation biomaterials. Bioact Mater 2023; 27:574-593. [PMID: 37213443 PMCID: PMC10199232 DOI: 10.1016/j.bioactmat.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
This opinion-led review paper highlights the need for novel translational research in vital-pulp-treatment (VPT), but also discusses the challenges in translating evidence to clinics. Traditional dentistry is expensive, invasive and relies on an outmoded mechanical understanding of dental disease, rather than employing a biological perspective that harnesses cell activity and the regenerative-capacity. Recent research has focussed on developing minimally-invasive biologically-based 'fillings' that preserve the dental pulp; research that is shifting the paradigm from expensive high-technology dentistry, with high failure rates, to smart restorations targeted at biological processes. Current VPTs promote repair by recruiting odontoblast-like cells in a material-dependent process. Therefore, exciting opportunities exist for development of next-generation biomaterials targeted at regenerative processes in the dentin-pulp complex. This article analyses recent research using pharmacological-inhibitors to therapeutically-target histone-deacetylase (HDAC) enzymes in dental-pulp-cells (DPCs) that stimulate pro-regenerative effects with limited loss of viability. Consequently, HDAC-inhibitors have the potential to enhance biomaterial-driven tissue responses at low concentration by influencing the cellular processes with minimal side-effects, providing an opportunity to develop a topically-placed, inexpensive bio-inductive pulp-capping material. Despite positive results, clinical translation of these innovations requires enterprise to counteract regulatory obstacles, dental-industry priorities and to develop strong academic/industry partnerships. The aim of this opinion-led review paper is to discuss the potential role of therapeutically-targeting epigenetic modifications as part of a topical VPT strategy in the treatment of the damaged dental pulp, while considering the next steps, material considerations, challenges and future for the clinical development of epigenetic therapeutics or other 'smart' restorations in VPT.
Collapse
Affiliation(s)
- Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Lincoln Place, Dublin, Ireland
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Lincoln Place, Dublin, Ireland
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
23
|
Du Q, Sun J, Zhou Y, Yu Y, Kong W, Chen C, Zhou Y, Zhao K, Shao C, Gu X. Fabrication of ACP-CCS-PVA composite membrane for a potential application in guided bone regeneration. RSC Adv 2023; 13:25930-25938. [PMID: 37664206 PMCID: PMC10472212 DOI: 10.1039/d3ra04498j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
The barrier membranes of guided bone regeneration (GBR) have been widely used in clinical medicine to repair bone defects. However, the unmatched mechanical strength, unsuitable degradation rates, and insufficient regeneration potential limit the application of the current barrier membranes. Here, amorphous calcium phosphate-carboxylated chitosan-polyvinyl alcohol (ACP-CCS-PVA) composite membranes are fabricated by freeze-thaw cycles, in which the ATP-stabilized ACP nanoparticles are uniformly distributed throughout the membranes. The mechanical performance and osteogenic properties are significantly improved by the ACP incorporated into the CCS-PVA system, but excess ACP would suppress cell proliferation and osteogenic differentiation. Our work highlights the pivotal role of ACP in GBR and provides insight into the need for biomaterial fabrication to balance mechanical strength and mineral content.
Collapse
Affiliation(s)
- Qiaolin Du
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine Hangzhou 310006 China
| | - Yadong Yu
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Weijing Kong
- Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine Hangzhou 310006 China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Yifeng Zhou
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Ke Zhao
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine Hangzhou 310006 China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| |
Collapse
|
24
|
Umrath F, Schmitt LF, Kliesch SM, Schille C, Geis-Gerstorfer J, Gurewitsch E, Bahrini K, Peters F, Reinert S, Alexander D. Mechanical and Functional Improvement of β-TCP Scaffolds for Use in Bone Tissue Engineering. J Funct Biomater 2023; 14:427. [PMID: 37623671 PMCID: PMC10455746 DOI: 10.3390/jfb14080427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Autologous bone transplantation is still considered as the gold standard therapeutic option for bone defect repair. The alternative tissue engineering approaches have to combine good hardiness of biomaterials whilst allowing good stem cell functionality. To become more useful for load-bearing applications, mechanical properties of calcium phosphate materials have to be improved. In the present study, we aimed to reduce the brittleness of β-tricalcium phosphate (β-TCP). For this purpose, we used three polymers (PDL-02, -02a, -04) for coatings and compared resulting mechanical and degradation properties as well as their impact on seeded periosteal stem cells. Mechanical properties of coated and uncoated β-TCP scaffolds were analyzed. In addition, degradation kinetics analyses of the polymers employed and of the polymer-coated scaffolds were performed. For bioactivity assessment, the scaffolds were seeded with jaw periosteal cells (JPCs) and cultured under untreated and osteogenic conditions. JPC adhesion/proliferation, gene and protein expression by immunofluorescent staining of embedded scaffolds were analyzed. Raman spectroscopy measurements gave an insight into material properties and cell mineralization. PDL-coated β-TCP scaffolds showed a significantly higher flexural strength in comparison to that of uncoated scaffolds. Degradation kinetics showed considerable differences in pH and electrical conductivity of the three different polymer types, while the core material β-TCP was able to stabilize pH and conductivity. Material differences seemed to have an impact on JPC proliferation and differentiation potential, as reflected by the expression of osteogenic marker genes. A homogenous cell colonialization of coated and uncoated scaffolds was detected. Most interesting from a bone engineer's point of view, the PDL-04 coating enabled detection of cell matrix mineralization by Raman spectroscopy. This was not feasible with uncoated scaffolds, due to intercalating effects of the β-TCP material and the JPC-formed calcium phosphate. In conclusion, the use of PDL-04 coating improved the mechanical properties of the β-TCP scaffold and promoted cell adhesion and osteogenic differentiation, whilst allowing detection of cell mineralization within the ceramic core material.
Collapse
Affiliation(s)
- Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (L.-F.S.); (S.R.)
- Department of Orthopedic Surgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Lukas-Frank Schmitt
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (L.-F.S.); (S.R.)
| | | | - Christine Schille
- Section Medical Materials Science and Technology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.S.); (J.G.-G.)
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.S.); (J.G.-G.)
| | | | | | - Fabian Peters
- Curasan AG, 65933 Frankfurt, Germany; (E.G.); (K.B.); (F.P.)
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (L.-F.S.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (L.-F.S.); (S.R.)
| |
Collapse
|
25
|
Da Cunha MR, Maia FLM, Iatecola A, Massimino LC, Plepis AMDG, Martins VDCA, Da Rocha DN, Mariano ED, Hirata MC, Ferreira JRM, Teixeira ML, Buchaim DV, Buchaim RL, De Oliveira BEG, Pelegrine AA. In Vivo Evaluation of Collagen and Chitosan Scaffold, Associated or Not with Stem Cells, in Bone Repair. J Funct Biomater 2023; 14:357. [PMID: 37504852 PMCID: PMC10381363 DOI: 10.3390/jfb14070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Natural polymers are increasingly being used in tissue engineering due to their ability to mimic the extracellular matrix and to act as a scaffold for cell growth, as well as their possible combination with other osteogenic factors, such as mesenchymal stem cells (MSCs) derived from dental pulp, in an attempt to enhance bone regeneration during the healing of a bone defect. Therefore, the aim of this study was to analyze the repair of mandibular defects filled with a new collagen/chitosan scaffold, seeded or not with MSCs derived from dental pulp. Twenty-eight rats were submitted to surgery for creation of a defect in the right mandibular ramus and divided into the following groups: G1 (control group; mandibular defect with clot); G2 (defect filled with dental pulp mesenchymal stem cells-DPSCs); G3 (defect filled with collagen/chitosan scaffold); and G4 (collagen/chitosan scaffold seeded with DPSCs). The analysis of the scaffold microstructure showed a homogenous material with an adequate percentage of porosity. Macroscopic and radiological examination of the defect area after 6 weeks post-surgery revealed the absence of complete repair, as well as absence of signs of infection, which could indicate rejection of the implants. Histomorphometric analysis of the mandibular defect area showed that bone formation occurred in a centripetal fashion, starting from the borders and progressing towards the center of the defect in all groups. Lower bone formation was observed in G1 when compared to the other groups and G2 exhibited greater osteoregenerative capacity, followed by G4 and G3. In conclusion, the scaffold used showed osteoconductivity, no foreign body reaction, malleability and ease of manipulation, but did not obtain promising results for association with DPSCs.
Collapse
Affiliation(s)
- Marcelo Rodrigues Da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Department of Implant Dentistry, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil
| | | | - Amilton Iatecola
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil
| | - Lívia Contini Massimino
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), São Carlos 13566-590, Brazil
| | | | | | | | | | | | | | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | | |
Collapse
|
26
|
Budi HS, Anitasari S, Shen YK, Tangwattanachuleeporn M, Nuraini P, Setiabudi NA. Novel Application of 3D Scaffolds of Poly(E-Caprolactone)/Graphene as Osteoinductive Properties in Bone Defect. Eur J Dent 2023; 17:790-796. [PMID: 36351454 PMCID: PMC10569855 DOI: 10.1055/s-0042-1755550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Scaffolds provided a surface on which cells could attach, proliferate, and differentiate. Nowadays, bone tissue engineering offers hope for treating bone cancer. Poly(e-caprolactone) (PCL)/graphene have capability as an osteogenic and regenerative therapy. It could be used to produce bone tissue engineering scaffolds. The purpose of this study was to investigate the ability of PCL/graphene to enhance the osteoinductive mechanism. MATERIALS AND METHODS The PCL/graphene scaffold was developed utilizing a particulate-leaching process and cultured with osteoblast-like cells MG63 at 0.5, 1.5, and 2.5 wt% of graphene. We evaluated the porosity, pore size, migratory cells, and cell attachment of the scaffold. STATISTICAL ANALYSIS Data was expressed as the mean ± standard error of the mean and statistical analyses were performed using one-way analysis of variance and Tukey's post hoc at a level of p-value < 0.05. RESULTS Porosity of scaffold with various percentage of graphene was nonsignificant (p > 0.05). There were differences in the acceleration of cell migration following wound closure between groups at 24 hours (p < 0.01) and 48 hours (p < 0.00). Adding the graphene on the scaffolds enhanced migration of osteoblast cells culture and possibility to attach. Graphene on 2.5 wt% exhibited good characteristics over other concentrations. CONCLUSION This finding suggests that PCL/graphene composites may have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Silvia Anitasari
- Department of Dental Material and Devices, Dentistry Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia
- Department Medical Microbiology, Medical Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Marut Tangwattanachuleeporn
- Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
- Research Unit for Sensor Innovation, Burapha University, Chon Buri, Thailand
| | - Prawati Nuraini
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
27
|
Hutomo DI, Amir L, Suniarti DF, Bachtiar EW, Soeroso Y. Hydrogel-Based Biomaterial as a Scaffold for Gingival Regeneration: A Systematic Review of In Vitro Studies. Polymers (Basel) 2023; 15:2591. [PMID: 37376237 DOI: 10.3390/polym15122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Hydrogel is considered a promising scaffold biomaterial for gingival regeneration. In vitro experiments were carried out to test new potential biomaterials for future clinical practice. The systematic review of such in vitro studies could synthesize evidence of the characteristics of the developing biomaterials. This systematic review aimed to identify and synthesize in vitro studies that assessed the hydrogel scaffold for gingival regeneration. METHODS Data on experimental studies on the physical and biological properties of hydrogel were synthesized. A systematic review of the PubMed, Embase, ScienceDirect, and Scopus databases was conducted according to the Preferred Reporting System for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement guidelines. In total, 12 original articles on the physical and biological properties of hydrogels for gingival regeneration, published in the last 10 years, were identified. RESULTS One study only performed physical property analyses, two studies only performed biological property analyses, and nine studies performed both physical and biological property analyses. The incorporation of various natural polymers such as collagen, chitosan, and hyaluronic acids improved the biomaterial characteristics. The use of synthetic polymers faced some drawbacks in their physical and biological properties. Peptides, such as growth factors and arginine-glycine-aspartic acid (RGD), can be used to enhance cell adhesion and migration. Based on the available primary studies, all studies successfully present the potential of hydrogel characteristics in vitro and highlight the essential biomaterial properties for future periodontal regenerative treatment.
Collapse
Affiliation(s)
- Dimas Ilham Hutomo
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Lisa Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dewi Fatma Suniarti
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
28
|
Zong C, Bronckaers A, Willems G, He H, Cadenas de Llano-Pérula M. Nanomaterials for Periodontal Tissue Regeneration: Progress, Challenges and Future Perspectives. J Funct Biomater 2023; 14:290. [PMID: 37367254 DOI: 10.3390/jfb14060290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Bioactive nanomaterials are increasingly being applied in oral health research. Specifically, they have shown great potential for periodontal tissue regeneration and have substantially improved oral health in translational and clinical applications. However, their limitations and side effects still need to be explored and elucidated. This article aims to review the recent advancements in nanomaterials applied for periodontal tissue regeneration and to discuss future research directions in this field, especially focusing on research using nanomaterials to improve oral health. The biomimetic and physiochemical properties of nanomaterials such as metals and polymer composites are described in detail, including their effects on the regeneration of alveolar bone, periodontal ligament, cementum and gingiva. Finally, the biomedical safety issues of their application as regenerative materials are updated, with a discussion about their complications and future perspectives. Although the applications of bioactive nanomaterials in the oral cavity are still at an initial stage, and pose numerous challenges, recent research suggests that they are a promising alternative in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Chen Zong
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute, Faculty of Life Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Guy Willems
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Center for Dentofacial Development and Sleep Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Maria Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
29
|
Muallah D, Matschke J, Kappler M, Kroschwald LM, Lauer G, Eckert AW. Dental Pulp Stem Cells for Salivary Gland Regeneration-Where Are We Today? Int J Mol Sci 2023; 24:ijms24108664. [PMID: 37240009 DOI: 10.3390/ijms24108664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Xerostomia is the phenomenon of dry mouth and is mostly caused by hypofunction of the salivary glands. This hypofunction can be caused by tumors, head and neck irradiation, hormonal changes, inflammation or autoimmune disease such as Sjögren's syndrome. It is associated with a tremendous decrease in health-related quality of life due to impairment of articulation, ingestion and oral immune defenses. Current treatment concepts mainly consist of saliva substitutes and parasympathomimetic drugs, but the outcome of these therapies is deficient. Regenerative medicine is a promising approach for the treatment of compromised tissue. For this purpose, stem cells can be utilized due to their ability to differentiate into various cell types. Dental pulp stem cells are adult stem cells that can be easily harvested from extracted teeth. They can form tissues of all three germ layers and are therefore becoming more and more popular for tissue engineering. Another potential benefit of these cells is their immunomodulatory effect. They suppress proinflammatory pathways of lymphocytes and could therefore probably be used for the treatment of chronic inflammation and autoimmune disease. These attributes make dental pulp stem cells an interesting tool for the regeneration of salivary glands and the treatment of xerostomia. Nevertheless, clinical studies are still missing. This review will highlight the current strategies for using dental pulp stem cells in the regeneration of salivary gland tissue.
Collapse
Affiliation(s)
- David Muallah
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jan Matschke
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine "Carl Gustav Carus", Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Lysann Michaela Kroschwald
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine "Carl Gustav Carus", Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital "Carl Gustav Carus", Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine "Carl Gustav Carus", Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Alexander W Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, Breslauer Straße 201, 90471 Nuremberg, Germany
| |
Collapse
|
30
|
Santonocito S, Ferlito S, Polizzi A, Ronsivalle V, Reitano G, Lo Giudice A, Isola G. Impact exerted by scaffolds and biomaterials in periodontal bone and tissue regeneration engineering: new challenges and perspectives for disease treatment. EXPLORATION OF MEDICINE 2023:215-234. [DOI: 10.37349/emed.2023.00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 10/01/2024] Open
Abstract
The periodontium is an appropriate target for regeneration, as it cannot restore its function following disease. Significantly, the periodontium's limited regenerative capacity could be enhanced through the development of novel biomaterials and therapeutic approaches. Notably, the regenerative potential of the periodontium depends not only on its tissue-specific architecture and function but also on its ability to reconstruct distinct tissues and tissue interfaces, implying that the development of tissue engineering techniques can offer new perspectives for the organized reconstruction of soft and hard periodontal tissues. With their biocompatible structure and one-of-a-kind stimulus-responsive property, hydrogels have been utilized as an excellent drug delivery system for the treatment of several oral diseases. Furthermore, bioceramics and three-dimensional (3D) printed scaffolds are also appropriate scaffolding materials for the regeneration of periodontal tissue, bone, and cartilage. This work aims to examine and update material-based, biologically active cues and the deployment of breakthrough bio-fabrication technologies to regenerate the numerous tissues that comprise the periodontium for clinical and scientific applications.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Catania 95123, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Giuseppe Reitano
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| |
Collapse
|
31
|
Istratov V, Gomzyak V, Vasnev V, Baranov OV, Mezhuev Y, Gritskova I. Branched Amphiphilic Polylactides as a Polymer Matrix Component for Biodegradable Implants. Polymers (Basel) 2023; 15:polym15051315. [PMID: 36904556 PMCID: PMC10007683 DOI: 10.3390/polym15051315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The combination of biocompatibility, biodegradability, and high mechanical strength has provided a steady growth in interest in the synthesis and application of lactic acid-based polyesters for the creation of implants. On the other hand, the hydrophobicity of polylactide limits the possibilities of its use in biomedical fields. The ring-opening polymerization of L-lactide, catalyzed by tin (II) 2-ethylhexanoate in the presence of 2,2-bis(hydroxymethyl)propionic acid, and an ester of polyethylene glycol monomethyl ester and 2,2-bis(hydroxymethyl)propionic acid accompanied by the introduction of a pool of hydrophilic groups, that reduce the contact angle, were considered. The structures of the synthesized amphiphilic branched pegylated copolylactides were characterized by 1H NMR spectroscopy and gel permeation chromatography. The resulting amphiphilic copolylactides, with a narrow MWD (1.14-1.22) and molecular weight of 5000-13,000, were used to prepare interpolymer mixtures with PLLA. Already, with the introduction of 10 wt% branched pegylated copolylactides, PLLA-based films had reduced brittleness, hydrophilicity, with a water contact angle of 71.9-88.5°, and increased water absorption. An additional decrease in the water contact angle, of 66.1°, was achieved by filling the mixed polylactide films with 20 wt% hydroxyapatite, which also led to a moderate decrease in strength and ultimate tensile elongation. At the same time, the PLLA modification did not have a significant effect on the melting point and the glass transition temperature; however, the filling with hydroxyapatite increased the thermal stability.
Collapse
Affiliation(s)
- Vladislav Istratov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Bauman Moscow State Technical University, Baumanskaya 2-ya Str., 5/1, 105005 Moscow, Russia
- Correspondence: (V.I.); (Y.M.)
| | - Vitaliy Gomzyak
- Department of Chemistry and Technology of Macromolecular Compounds, MIREA—Russian Technological University (RTU MIREA), Vernadskogo Avenue 78, 119454 Moscow, Russia
| | - Valerii Vasnev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Oleg V. Baranov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Yaroslav Mezhuev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
- Correspondence: (V.I.); (Y.M.)
| | - Inessa Gritskova
- Department of Chemistry and Technology of Macromolecular Compounds, MIREA—Russian Technological University (RTU MIREA), Vernadskogo Avenue 78, 119454 Moscow, Russia
| |
Collapse
|
32
|
Tahmasebi E, Mohammadi M, Alam M, Abbasi K, Gharibian Bajestani S, Khanmohammad R, Haseli M, Yazdanian M, Esmaeili Fard Barzegar P, Tebyaniyan H. The current regenerative medicine approaches of craniofacial diseases: A narrative review. Front Cell Dev Biol 2023; 11:1112378. [PMID: 36926524 PMCID: PMC10011176 DOI: 10.3389/fcell.2023.1112378] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Craniofacial deformities (CFDs) develop following oncological resection, trauma, or congenital disorders. Trauma is one of the top five causes of death globally, with rates varying from country to country. They result in a non-healing composite tissue wound as they degenerate in soft or hard tissues. Approximately one-third of oral diseases are caused by gum disease. Due to the complexity of anatomical structures in the region and the variety of tissue-specific requirements, CFD treatments present many challenges. Many treatment methods for CFDs are available today, such as drugs, regenerative medicine (RM), surgery, and tissue engineering. Functional restoration of a tissue or an organ after trauma or other chronic diseases is the focus of this emerging field of science. The materials and methodologies used in craniofacial reconstruction have significantly improved in the last few years. A facial fracture requires bone preservation as much as possible, so tiny fragments are removed initially. It is possible to replace bone marrow stem cells with oral stem cells for CFDs due to their excellent potential for bone formation. This review article discusses regenerative approaches for different types of craniofacial diseases.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Gharibian Bajestani
- Student Research Committee, Dentistry Research Center, Research Institute of Dental Sciences, Dental School, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Rojin Khanmohammad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Haseli
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
33
|
Sugiaman VK, Jeffrey, Naliani S, Pranata N, Djuanda R, Saputri RI. Polymeric Scaffolds Used in Dental Pulp Regeneration by Tissue Engineering Approach. Polymers (Basel) 2023; 15:1082. [PMID: 36904323 PMCID: PMC10007583 DOI: 10.3390/polym15051082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Currently, the challenge in dentistry is to revitalize dental pulp by utilizing tissue engineering technology; thus, a biomaterial is needed to facilitate the process. One of the three essential elements in tissue engineering technology is a scaffold. A scaffold acts as a three-dimensional (3D) framework that provides structural and biological support and creates a good environment for cell activation, communication between cells, and inducing cell organization. Therefore, the selection of a scaffold represents a challenge in regenerative endodontics. A scaffold must be safe, biodegradable, and biocompatible, with low immunogenicity, and must be able to support cell growth. Moreover, it must be supported by adequate scaffold characteristics, which include the level of porosity, pore size, and interconnectivity; these factors ultimately play an essential role in cell behavior and tissue formation. The use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix in dental tissue engineering has recently received a lot of attention because it shows great potential with good biological characteristics for cell regeneration. This review describes the latest developments regarding the usage of natural or synthetic scaffold polymers that have the ideal biomaterial properties to facilitate tissue regeneration when combined with stem cells and growth factors in revitalizing dental pulp tissue. The utilization of polymer scaffolds in tissue engineering can help the pulp tissue regeneration process.
Collapse
Affiliation(s)
- Vinna K. Sugiaman
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Jeffrey
- Department of Pediatric Dentistry, Faculty of Dentistry, Jenderal Achmad Yani University, Cimahi 40531, West Java, Indonesia
| | - Silvia Naliani
- Department of Prosthodontics, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Natallia Pranata
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Rudy Djuanda
- Department of Conservative Dentistry and Endodontic, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Rosalina Intan Saputri
- College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| |
Collapse
|
34
|
Tavelli L, Barootchi S, Rasperini G, Giannobile WV. Clinical and patient-reported outcomes of tissue engineering strategies for periodontal and peri-implant reconstruction. Periodontol 2000 2023; 91:217-269. [PMID: 36166659 PMCID: PMC10040478 DOI: 10.1111/prd.12446] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
Scientific advancements in biomaterials, cellular therapies, and growth factors have brought new therapeutic options for periodontal and peri-implant reconstructive procedures. These tissue engineering strategies involve the enrichment of scaffolds with living cells or signaling molecules and aim at mimicking the cascades of wound healing events and the clinical outcomes of conventional autogenous grafts, without the need for donor tissue. Several tissue engineering strategies have been explored over the years for a variety of clinical scenarios, including periodontal regeneration, treatment of gingival recessions/mucogingival conditions, alveolar ridge preservation, bone augmentation procedures, sinus floor elevation, and peri-implant bone regeneration therapies. The goal of this article was to review the tissue engineering strategies that have been performed for periodontal and peri-implant reconstruction and implant site development, and to evaluate their safety, invasiveness, efficacy, and patient-reported outcomes. A detailed systematic search was conducted to identify eligible randomized controlled trials reporting the outcomes of tissue engineering strategies utilized for the aforementioned indications. A total of 128 trials were ultimately included in this review for a detailed qualitative analysis. Commonly performed tissue engineering strategies involved scaffolds enriched with mesenchymal or somatic cells (cell-based tissue engineering strategies), or more often scaffolds loaded with signaling molecules/growth factors (signaling molecule-based tissue engineering strategies). These approaches were found to be safe when utilized for periodontal and peri-implant reconstruction therapies and implant site development. Tissue engineering strategies demonstrated either similar or superior clinical outcomes than conventional approaches for the treatment of infrabony and furcation defects, alveolar ridge preservation, and sinus floor augmentation. Tissue engineering strategies can promote higher root coverage, keratinized tissue width, and gingival thickness gain than scaffolds alone can, and they can often obtain similar mean root coverage compared with autogenous grafts. There is some evidence suggesting that tissue engineering strategies can have a positive effect on patient morbidity, their preference, esthetics, and quality of life when utilized for the treatment of mucogingival deformities. Similarly, tissue engineering strategies can reduce the invasiveness and complications of autogenous graft-based staged bone augmentation. More studies incorporating patient-reported outcomes are needed to understand the cost-benefits of tissue engineering strategies compared with traditional treatments.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
| | - Shayan Barootchi
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Giulio Rasperini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- IRCCS Foundation Polyclinic Ca’ Granda, University of Milan, Milan, Italy
| | | |
Collapse
|
35
|
Xiao X, Liu Z, Shu R, Wang J, Zhu X, Bai D, Lin H. Periodontal bone regeneration with a degradable thermoplastic HA/PLCL bone graft. J Mater Chem B 2023; 11:772-786. [PMID: 36444735 DOI: 10.1039/d2tb02123d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Strategic bone grafts are required to regenerate periodontal bone defects owing to limited self-healing. Current bioceramic particle or deproteinized bovine bone (DBB) products are not able to ideally meet clinical requirements, such as insufficient operability and slow degradation rates. Herein, a strong-interacted bone graft was designed and synthesized by modifying hydroxyapatite (HA) with a lactide-caprolactone copolymer (PLCL) to improve component homogeneity and mechanical properties. The physical-chemical analysis indicated that HA particles were homogenously distributed in HA/PLCL bone grafts, possessed outstanding thermoplasticity, and facilitated clinic operability and initial mechanical support. The in vitro study suggested that HA/PLCL bone graft degraded in a spatiotemporal model. Micropores were formed on the non-porous surface at the beginning, and interconnected porous structures were gradually generated. Furthermore, HA/PLCL bone grafts exhibited excellent biocompatibility and osteogenic ability as revealed in vitro cell culture and in vivo animal experiments. When applied to rat periodontal bone defects, the HA/PLCL bone graft showed a non-inferior bone regeneration compared to the commercial DBB. This study proposes a potential bone graft for periodontal bone repair with thermoplastic, spatiotemporal degraded, and osteogenic characteristics.
Collapse
Affiliation(s)
- Xueling Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jiangyue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
36
|
Abstract
Oral and maxillofacial organoids, as three-dimensional study models of organs, have attracted increasing attention in tissue regeneration and disease modeling. However, traditional strategies for organoid construction still fail to precisely recapitulate the key characteristics of real organs, due to the difficulty in controlling the self-organization of cells in vitro. This review aims to summarize the recent progress of novel approaches to engineering oral and maxillofacial organoids. First, we introduced the necessary components and their roles in forming oral and maxillofacial organoids. Besides, we discussed cutting-edge technology in advancing the architecture and function of organoids, especially focusing on oral and maxillofacial tissue regeneration via novel strategy with designed cell-signal scaffold compounds. Finally, current limitations and future prospects of oral and maxillofacial organoids were represented to provide guidance for further disciplinary progression and clinical application to achieve organ regeneration.
Collapse
Affiliation(s)
- Yu Wang
- Department of Implantology, School & Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200040, China
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200040, China
| |
Collapse
|
37
|
Antunovic F, Tolosa F, Klein C, Ocaranza R. Polycaprolactone-based scaffolds for guided tissue regeneration in periodontal therapy: A systematic review. J Appl Biomater Funct Mater 2023; 21:22808000231211416. [PMID: 37978859 DOI: 10.1177/22808000231211416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Polycaprolactone (PCL) is a highly recognized synthetic polymer for its biocompatibility, ease of fabrication and mechanical strength in bone tissue engineering. Its applications have extended broadly, including regeneration of oral and maxillofacial lost tissues. Its usefulness has brought attention of researchers to regenerate periodontal lost tissues, including alveolar bone, periodontal ligament and cementum. The aim of this systematic review was to obtain an updated analysis of the contribution of PCL-based scaffolds in the alveolar bone regeneration process. METHODS This review adheres to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic reviews. A computerized search of the PubMed, EBSCO, Scielo and Web of Science databases was performed, restricting literature search to published studies in English or Spanish between January 2002 and March 2023. Database search returned 248 studies which were screened based on title, author names and publication dates. RESULTS Data from 17 studies were reviewed and tabulated. All studies combined PCL with other biomaterials (such as Alginate, hydroxyapatite, bioactive glass, poly (lactic-co-glycolic acid)), growth factors (BMP-2, rhCEMP1), and/or mesenchymal stromal cells (adipose-derived, bone marrow, periodontal ligament or gingiva mesenchymal stromal cells). PCL scaffolds showed higher cell viability and osteoinductive potential when combined with bioactive agents. Complementary, its degradation rates were affected by the addition or exposure to specific substances, such as: Dopamine, Cerium Oxide, PLGA and hydrogen peroxide. CONCLUSIONS PCL is an effective biomaterial for alveolar bone regeneration in periodontally affected teeth. It could be part of a new generation of biomaterials with improved regenerative potential.
Collapse
Affiliation(s)
- Florencia Antunovic
- Escuela de Odontología, Facultad de Medicina - Clínica Alemana de Santiago Universidad del Desarrollo, Santiago de Chile, Chile
| | - Felipe Tolosa
- Escuela de Odontología, Facultad de Medicina - Clínica Alemana de Santiago Universidad del Desarrollo, Santiago de Chile, Chile
| | - Catherine Klein
- Especialidad de Periodoncia, Escuela de Odontología, Facultad de Medicina - Clínica Alemana de Santiago Universidad del Desarrollo, Santiago de Chile, Chile
| | - René Ocaranza
- Especialidad de Periodoncia, Escuela de Odontología, Facultad de Medicina - Clínica Alemana de Santiago Universidad del Desarrollo, Santiago de Chile, Chile
| |
Collapse
|
38
|
Chen ZJ, Lv JC, Wang ZG, Wang FY, Huang RH, Zheng ZL, Xu JZ, Wang J. Polycaprolactone Electrospun Nanofiber Membrane with Sustained Chlorohexidine Release Capability against Oral Pathogens. J Funct Biomater 2022; 13:jfb13040280. [PMID: 36547540 PMCID: PMC9785334 DOI: 10.3390/jfb13040280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple-pathogen periodontal disease necessitates a local release and concentration of antibacterial medication to control inflammation in a particular location of the mouth cavity. Therefore, it is necessary to effectively load and deliver medicine/antibiotics to treat numerous complex bacterial infections. This study developed chlorhexidine (CHX)/polycaprolactone (PCL) nanofiber membranes with controlled release properties as periodontal dressings to prevent or treat oral disorders. Electrostatic spinning was adopted to endow the nanofiber membranes with a high porosity, hydrophilicity, and CHX loading capability. The release of CHX occurred in a concentration-dependent manner. The CHX/PCL nanofiber membranes exhibited good biocompatibility with human periodontal ligament stem cells, with cell viability over 85% in each group via CCK-8 assay and LIVE/DEAD staining; moreover, the good attachment of the membrane was illustrated by scanning electron microscopy imaging. Through the agar diffusion assay, the nanofiber membranes with only 0.075 wt% CHX exhibited high antibacterial activity against three typical oral infection-causing bacteria: Porphyromonas gingivalis, Enterococcus faecalis, and Prevotella intermedia. The results indicated that the CHX/PCL nanofiber holds great potential as a periodontal dressing for the prevention and treatment periodontal disorders associated with bacteria.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Department of Clinical Cosmetology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang 441001, China
| | - Jia-Cheng Lv
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei-Yu Wang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610032, China
| | - Ren-Huan Huang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zi-Li Zheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jia-Zhuang Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Correspondence: (J.-Z.X.); (J.W.)
| | - Jing Wang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Correspondence: (J.-Z.X.); (J.W.)
| |
Collapse
|
39
|
Effects of Neutralization on the Physicochemical, Mechanical, and Biological Properties of Ammonium-Hydroxide-Crosslinked Chitosan Scaffolds. Int J Mol Sci 2022; 23:ijms232314822. [PMID: 36499146 PMCID: PMC9735449 DOI: 10.3390/ijms232314822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
It has been reported that chitosan scaffolds, due to their physicochemical properties, stimulate cell proliferation in different tissues of the human body. This study aimed to determine the physicochemical, mechanical, and biological properties of chitosan scaffolds crosslinked with ammonium hydroxide, with different pH values, to better understand cell behavior depending on the pH of the biomaterial. Scaffolds were either neutralized with sodium hydroxide solution, washed with distilled water until reaching a neutral pH, or kept at alkaline pH. Physicochemical characterization included scanning electron microscopy (SEM), elemental composition (EDX), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and mechanical testing. In vitro cytotoxicity was assessed via dental-pulp stem cells' (DPSCs') biocompatibility. The results revealed that the neutralized scaffolds exhibited better cell proliferation and morphology. It was concluded that the chitosan scaffolds' high pH (due to residual ammonium hydroxide) decreases DPSCs' cell viability.
Collapse
|
40
|
Chen C, Huang B, Liu Y, Liu F, Lee IS. Functional engineering strategies of 3D printed implants for hard tissue replacement. Regen Biomater 2022; 10:rbac094. [PMID: 36683758 PMCID: PMC9845531 DOI: 10.1093/rb/rbac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Three-dimensional printing technology with the rapid development of printing materials are widely recognized as a promising way to fabricate bioartificial bone tissues. In consideration of the disadvantages of bone substitutes, including poor mechanical properties, lack of vascularization and insufficient osteointegration, functional modification strategies can provide multiple functions and desired characteristics of printing materials, enhance their physicochemical and biological properties in bone tissue engineering. Thus, this review focuses on the advances of functional engineering strategies for 3D printed biomaterials in hard tissue replacement. It is structured as introducing 3D printing technologies, properties of printing materials (metals, ceramics and polymers) and typical functional engineering strategies utilized in the application of bone, cartilage and joint regeneration.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bo Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yi Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Fan Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | | |
Collapse
|
41
|
Pillai S, Munguia-Lopez JG, Tran SD. Hydrogels for Salivary Gland Tissue Engineering. Gels 2022; 8:730. [PMID: 36354638 PMCID: PMC9690182 DOI: 10.3390/gels8110730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 09/19/2023] Open
Abstract
Mimicking the complex architecture of salivary glands (SGs) outside their native niche is challenging due their multicellular and highly branched organization. However, significant progress has been made to recapitulate the gland structure and function using several in vitro and ex vivo models. Hydrogels are polymers with the potential to retain a large volume of water inside their three-dimensional structure, thus simulating extracellular matrix properties that are essential for the cell and tissue integrity. Hydrogel-based culture of SG cells has seen a tremendous success in terms of developing platforms for cell expansion, building an artificial gland, and for use in transplantation to rescue loss of SG function. Both natural and synthetic hydrogels have been used widely in SG tissue engineering applications owing to their properties that support the proliferation, reorganization, and polarization of SG epithelial cells. While recent improvements in hydrogel properties are essential to establish more sophisticated models, the emphasis should still be made towards supporting factors such as mechanotransduction and associated signaling cues. In this concise review, we discuss considerations of an ideal hydrogel-based biomaterial for SG engineering and their associated signaling pathways. We also discuss the current advances made in natural and synthetic hydrogels for SG tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
42
|
Gallo S, Pascadopoli M, Pellegrini M, Pulicari F, Manfredini M, Zampetti P, Spadari F, Maiorana C, Scribante A. Latest Findings of the Regenerative Materials Application in Periodontal and Peri-Implant Surgery: A Scoping Review. Bioengineering (Basel) 2022; 9:594. [PMID: 36290567 PMCID: PMC9598513 DOI: 10.3390/bioengineering9100594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Regenerative dentistry represents a therapeutic modern approach involving biomaterials and biologics such as mesenchymal stem cells. The role of regenerative dentistry is promising in all branches of dentistry, especially in periodontology and implantology for the treatment of bony defects around teeth and implants, respectively. Due to the number of different materials that can be used for this purpose, the aim of the present review is to evidence the regenerative properties of different materials both in periodontitis and peri-implantitis as well as to compare their efficacy. Clinical trials, case-control studies, cross-sectional studies, and cohort studies have been considered in this review. The outcome assessed is represented by the regenerative properties of bone grafts, barrier membranes, and biological materials in the treatment of intrabony and furcation defects, peri-implantitis sites, alveolar ridge preservation, and implant site development. Based on the studies included, it can be stated that in the last years regenerative materials in periodontal and peri-implant defects treatments have shown excellent results, thus providing valuable support to surgical therapy. To achieve optimal and predictable results, clinicians should always consider factors like occlusal load control, prevention of microbial contamination, and wound dehiscence. Further evidence is required about the use of enamel matrix derivative in alveolar ridge preservation, as well as of stem cells and bone morphogenetic proteins-2 in furcation defects and peri-implantitis sites. Considering the high amount of research being conducted in this field, further evidence is expected to be obtained soon.
Collapse
Affiliation(s)
- Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Matteo Pellegrini
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federica Pulicari
- Maxillo-Facial and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Mattia Manfredini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paolo Zampetti
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Spadari
- Maxillo-Facial and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Carlo Maiorana
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
43
|
Sugiaman VK, Djuanda R, Pranata N, Naliani S, Demolsky WL. Tissue Engineering with Stem Cell from Human Exfoliated Deciduous Teeth (SHED) and Collagen Matrix, Regulated by Growth Factor in Regenerating the Dental Pulp. Polymers (Basel) 2022; 14:polym14183712. [PMID: 36145860 PMCID: PMC9503223 DOI: 10.3390/polym14183712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Maintaining dental pulp vitality and preventing tooth loss are two challenges in endodontic treatment. A tooth lacking a viable pulp loses its defense mechanism and regenerative ability, making it more vulnerable to severe damage and eventually necessitating extraction. The tissue engineering approach has drawn attention as an alternative therapy as it can regenerate dentin-pulp complex structures and functions. Stem cells or progenitor cells, extracellular matrix, and signaling molecules are triad components of this approach. Stem cells from human exfoliated deciduous teeth (SHED) are a promising, noninvasive source of stem cells for tissue regeneration. Not only can SHEDs regenerate dentin-pulp tissues (comprised of fibroblasts, odontoblasts, endothelial cells, and nerve cells), but SHEDs also possess immunomodulatory and immunosuppressive properties. The collagen matrix is a material of choice to provide structural and microenvironmental support for SHED-to-dentin pulp tissue differentiation. Growth factors regulate cell proliferation, migration, and differentiation into specific phenotypes via signal-transduction pathways. This review provides current concepts and applications of the tissue engineering approach, especially SHEDs, in endodontic treatment.
Collapse
Affiliation(s)
- Vinna K Sugiaman
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Rudy Djuanda
- Department of Conservative Dentistry and Endodontic, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Natallia Pranata
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Silvia Naliani
- Department of Prosthodontics, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Wayan L Demolsky
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| |
Collapse
|
44
|
Ahmed Omar N, Amédée J, Letourneur D, Fricain JC, Fenelon M. Recent Advances of Pullulan and/or Dextran-Based Materials for Bone Tissue Engineering Strategies in Preclinical Studies: A Systematic Review. Front Bioeng Biotechnol 2022; 10:889481. [PMID: 35845411 PMCID: PMC9280711 DOI: 10.3389/fbioe.2022.889481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Bone tissue engineering (BTE) strategies are increasingly investigated to overcome the limitations of currently used bone substitutes and to improve the bone regeneration process. Among the natural polymers used for tissue engineering, dextran and pullulan appear as natural hydrophilic polysaccharides that became promising biomaterials for BTE. This systematic review aimed to present the different published applications of pullulan and dextran-based biomaterials for BTE. An electronic search in Pubmed, Scopus, and Web of Science databases was conducted. Selection of articles was performed following PRISMA guidelines. This systematic review led to the inclusion of 28 articles on the use of pullulan and/or dextran-based biomaterials to promote bone regeneration in preclinical models. Sixteen studies focused on dextran-based materials for bone regeneration, six on pullulan substitutes and six on the combination of pullulan and dextran. Several strategies have been developed to provide bone regeneration capacity, mainly through their fabrication processes (functionalization methods, cross-linking process), or the addition of bioactive elements. We have summarized here the strategies employed to use the polysaccharide scaffolds (fabrication process, composition, application usages, route of administration), and we highlighted their relevance and limitations for BTE applications.
Collapse
Affiliation(s)
| | - Joëlle Amédée
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
| | - Didier Letourneur
- SILTISS, Saint-Viance, France
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM U1148, LVTS, X Bichat Hospital, Université de Paris, Paris, France
| | - Jean-Christophe Fricain
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
| | - Mathilde Fenelon
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
- *Correspondence: Mathilde Fenelon,
| |
Collapse
|
45
|
Yang Y, Chu C, Xiao W, Liu L, Man Y, Lin J, Qu Y. Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomed Mater 2022; 17. [PMID: 35168224 DOI: 10.1088/1748-605x/ac5572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
The usage of bone substitute granule materials has improved the clinical results of alveolar bone deficiencies treatment and thus broadened applications in implant dentistry. However, because of the complicated mechanisms controlling the foreign body response, no perfect solution can avoid the fibrotic encapsulation of materials till now, which may impair the results of bone regeneration, even cause the implant materials rejection. Recently, the concept of 'osteoimmunology' has been stressed. The outcomes of bone regeneration are proved to be related to the bio-physicochemical properties of biomaterials, which allow them to regulate the biological behaviours of both innate and adaptive immune cells. With the development of single cell transcriptome, the truly heterogeneity of osteo-immune cells has been clarifying, which is helpful to overcome the limitations of traditional M1/M2 macrophage nomenclature and drive the advancements of particulate biomaterials applications. This review aims at introducing the mechanisms of optimal osseointegration regulated by immune systems and provides feasible strategies for the design of next generation 'osteoimmune-smart' particulate bone substitute materials in dental clinic.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenyu Chu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenlan Xiao
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Man
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jie Lin
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yili Qu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
46
|
Bungthong W, Amornsettachai P, Luangchana P, Chuenjitkuntaworn B, Suphangul S. Bone Dimensional Change Following Immediate Implant Placement in Posterior Teeth with CBCT: A 6-Month Prospective Clinical Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030608. [PMID: 35163869 PMCID: PMC8838578 DOI: 10.3390/molecules27030608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
This prospective clinical study aimed to evaluate the peri-implant hard tissue dimensional change at 6 months of immediate implant placement with bone graft materials in the posterior area using cone-beam computed tomography (CBCT). Twelve dental implants were placed concurrently following tooth extraction in the posterior area and filled with xenograft particles. The CBCT images were taken immediately after surgical procedures and then at 6 months follow-up. To evaluate the hard tissue changes, the vertical and horizontal bone thickness were analyzed and measured using ImageJ software. Paired t-test or Wilcoxon match-pair signed-rank test was done to analyze the changes of hard tissue values at the same level between immediately and 6 months following immediate implant placement. Independent t-test or Mann-Whitney U test was used to analyze the dimensional change in the vertical and horizontal direction in buccal and lingual aspects. The level of significance was set at p value = 0.05. All implants were successfully osseointegrated. At 6 months follow-up, the vertical bone change at the buccal aspect was -0.69 mm and at the lingual aspect -0.39 mm. For horizontal bone thickness, the bone dimensional changes at 0, 1, 5, and 9 mm levels from the implant platform were -0.62 mm, -0.70 mm, -0.24 mm, and -0.22 mm, respectively. A significant bone reduction was observed in all measurement levels during the 6 months after implant placement (p value < 0.05). It was noted that even with bone grafting, a decrease in bone thickness was seen following the immediate implant placement. Therefore, this technique can be an alternative method to place the implant in the posterior area.
Collapse
Affiliation(s)
- Witchayani Bungthong
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand; (W.B.); (P.A.); (B.C.)
| | - Parinya Amornsettachai
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand; (W.B.); (P.A.); (B.C.)
| | - Penporn Luangchana
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Boontharika Chuenjitkuntaworn
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand; (W.B.); (P.A.); (B.C.)
| | - Suphachai Suphangul
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand; (W.B.); (P.A.); (B.C.)
- Correspondence: ; Tel.: +66-2200-7853
| |
Collapse
|