1
|
Hou H, Li Y, Zhou S, Zhang R, Wang Y, Lei L, Yang C, Huang S, Xu H, Liu X, Gao M, Luo J. Compositional Analysis of Grape Berries: Mapping the Global Metabolism of Grapes. Foods 2024; 13:3716. [PMID: 39682788 DOI: 10.3390/foods13233716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
To characterize the nutrients and bioactive compounds in grape berries and to explore the real cause of the "French paradox" phenomenon, we performed metabolomic analysis of 66 grape varieties worldwide using liquid chromatography-tandem mass spectrometry (LC-MS). A nontargeted metabolomics approach detected a total of 4889 metabolite signals. From these, 964 bioactive and nutrient compounds were identified and quantified, including modified flavonoids, medicinal pentacyclic triterpenoids, vitamins, amino acids, lipids, etc. Interestingly, metabolic variations between varieties are not explained by geography or subspecies but can be significantly distinguished by grapes' color, even after excluding flavonoids and anthocyanins. In our analysis, we found that purple grape varieties had the highest levels of key bioactive components such as flavonoids, pentacyclic triterpenes, and polyphenols, which are thought to have a variety of health benefits such as antioxidant, anti-inflammatory, and antitumor properties, when compared to grapes of other colors. In addition, we found higher levels of vitamins in red and pink grapes, possibly explaining their role in preventing anemia and scurvy and protecting the skin. These findings may be a major factor in the greater health benefits of wines made from purple grapes. Our study provides comprehensive metabolic profiling data of grape berries that may contribute to future research on the French paradox.
Collapse
Affiliation(s)
- Huanteng Hou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yufei Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Shen Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Ran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yuanyue Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Long Lei
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Chenkun Yang
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Sishu Huang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Hang Xu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Xianqing Liu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Min Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
2
|
Lugiņina J, Kroškins V, Lācis R, Fedorovska E, Demir Ö, Dubnika A, Loca D, Turks M. Synthesis and preliminary cytotoxicity evaluation of water soluble pentacyclic triterpenoid phosphonates. Sci Rep 2024; 14:28031. [PMID: 39543237 PMCID: PMC11564732 DOI: 10.1038/s41598-024-76816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Synthesis, solubility and cytotoxicity evaluation of anionic phosphonates derived from betulin, betulinic acid, oleanolic acid and ursolic acid is reported. Phosphonate moieties were successfully installed at terpenoid C28 by carboxylic acid deprotonation/alkylation sequence using (dimethoxyphosphoryl)methyl trifluoromethanesulfonate as alkylation reagent. Also, betulin-derived and ether-linked bis-phosphonate is obtained and characterized. After demethylation in the presence of TMSI the resulting phosphonic acids were transformed into their disodium salts. All target compounds display excellent water solubility, which was determined by qNMR in D2O. Cytotoxicity tests were performed in different concentrations of each compound (10-50 µM) against human osteosarcoma cell line MG-63 and osteoblast precursor cell line MC3T3-E1. Improved aqueous solubility and low cytotoxicity profile of the newly designed triterpenoid phosphonates reveal high potential for various medicinal chemistry and pharmacological applications in the future.
Collapse
Affiliation(s)
- Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia
| | - Rihards Lācis
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia
| | - Elza Fedorovska
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia
| | - Öznur Demir
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, 3 Pulka Street, Riga, LV-1048, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubnika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, 3 Pulka Street, Riga, LV-1048, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, 3 Pulka Street, Riga, LV-1048, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia.
| |
Collapse
|
3
|
Ponce-Zea JE, Ryu B, Lee JY, Park EJ, Mai VH, Doan TP, Lee HJ, Oh WK. In Vitro and In Silico Analysis of PTP1B Inhibitors from Cleistocalyx operculatus Leaves and Their Effect on Glucose Uptake. Nutrients 2024; 16:2839. [PMID: 39275157 PMCID: PMC11397035 DOI: 10.3390/nu16172839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
As part of our ongoing research on new anti-diabetic compounds from ethnopharmacologically consumed plants, two previously undescribed lupane-type triterpenoids (1 and 2) with dicarboxylic groups, an undescribed nor-taraxastane-type triterpenoid (3), and 14 known compounds (4-17) were isolated from the leaves of Cleistocalyx operculatus. Extensive spectroscopic analysis (IR, HRESIMS, 1D, and 2D NMR) was used for structure elucidation, while the known compounds were compared to reference data reported in the scientific literature. All the isolates (1-17) were evaluated for their inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme. Compounds 6, 9, and 17 showed strong PTP1B inhibitory activities. The mechanism of PTP1B inhibition was studied through enzyme kinetic experiments. A non-competitive mechanism of inhibition was determined using Lineweaver-Burk plots for compounds 6, 9, and 17. Additionally, Dixon plots were employed to determine the inhibition constant. Further insights were gained through a structure-activity relationship study and molecular docking analysis of isolated compounds with the PTP1B crystal structure. Moreover, all isolates (1-17) were tested for their stimulatory effects on the uptake of 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) in differentiated 3T3-L1 adipocyte cells. Compounds 6, 13, and 17 exhibited strong glucose absorption stimulation activity in a dose-dependent manner.
Collapse
Affiliation(s)
- Jorge-Eduardo Ponce-Zea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeol Ryu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Yong Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Van-Hieu Mai
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Thi-Phuong Doan
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee-Ju Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Won-Keun Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Günther A, Zalewski P, Sip S, Bednarczyk-Cwynar B. Exploring the Potential of Oleanolic Acid Dimers-Cytostatic and Antioxidant Activities, Molecular Docking, and ADMETox Profile. Molecules 2024; 29:3623. [PMID: 39125028 PMCID: PMC11313909 DOI: 10.3390/molecules29153623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The presented work aimed to explore the potential of oleanolic acid dimers (OADs): their cytostatic and antioxidant activities, molecular docking, pharmacokinetics, and ADMETox profile. The cytostatic properties of oleanolic acid (1) and its 14 synthesised dimers (2a-2n) were evaluated against 10 tumour types and expressed as IC50 values. Molecular docking was performed with the CB-Dock2 server. Antioxidant properties were evaluated with the CUPRAC method. ADMETox properties were evaluated with the ADMETlab Manual (2.0) database. The results indicate that the obtained OADs can be effective cytostatic agents, for which the IC50 not exceeded 10.00 for many tested cancer cell lines. All OADs were much more active against all cell lines than the mother compound (1). All dimers can inhibit the interaction between the 1MP8 protein and cellular proteins with the best results for compounds 2f and 2g with unsaturated bonds within the linker. An additional advantage of the tested OADs was a high level of antioxidant activity, with Trolox equivalent for OADs 2c, 2d, 2g-2j, 2l, and 2m of approximately 0.04 mg/mL, and beneficial pharmacokinetics and ADMETox properties. The differences in the DPPH and CUPRAC assay results obtained for OADs may indicate that these compounds may be effective antioxidants against different radicals.
Collapse
Affiliation(s)
- Andrzej Günther
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland; (P.Z.); (S.S.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland; (P.Z.); (S.S.)
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland;
- Center of Innovative Pharmaceutical Technology (CITF), Rokietnicka Str. 3, 60-806 Poznan, Poland
| |
Collapse
|
5
|
Jeyasri R, Muthuramalingam P, Priya A, Alexpandi R, Shanmugam NRS, Nivetha S, Shin H, Pandian SK, Ravi AV, Ramesh M. Comprehensive in vitro and in vivo evaluation of therapeutic potential of Bacopa-derived asiatic acid against a human oral pathogen Streptococcus mutans. Front Microbiol 2024; 15:1404012. [PMID: 38983632 PMCID: PMC11231090 DOI: 10.3389/fmicb.2024.1404012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
Dental caries is a common human oral disease worldwide, caused by an acid-producing bacteria Streptococcus mutans. The use of synthetic drugs and antibiotics to prevent dental caries has been increasing, but this can lead to severe side effects. To solve this issue, developing and developed countries have resorted to herbal medicines as an alternative to synthetic drugs for the treatment and prevention of dental caries. Therefore, there is an urgent need for plant-derived products to treat such diseases. Bacopa monnieri, a well-documented medicinal plant, contains 52 phytocompounds, including the pentacyclic triterpenoid metabolite known as asiatic acid (ASTA). Hence, this study aimed to demonstrate, for the first time, the antibacterial activity of phytocompound ASTA against S. mutans. The findings revealed that ASTA significantly inhibited the growth of S. mutans and the production of virulence factors such as acidurity, acidogenicity, and eDNA synthesis. Molecular docking analysis evaluated the potential activity of ASTA against S. mutans virulence genes, including VicR and GtfC. Furthermore, toxicity assessment of ASTA in human buccal epithelial cells was performed, and no morphological changes were observed. An in vivo analysis using Danio rerio (zebrafish) confirmed that the ASTA treatment significantly increased the survival rates of infected fish by hindering the intestinal colonization of S. mutans. Furthermore, the disease protection potential of ASTA against the pathognomonic symptom of S. mutans infection was proven by the histopathological examination of the gills, gut, and kidney. Overall, these findings suggest that ASTA may be a promising therapeutic and alternative drug for the treatment and prevention of oral infection imposed by S. mutans.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Arumugam Priya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
- Department of Medicine, Division of Gastroenterology and Hepatology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rajaiah Alexpandi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - N. R. Siva Shanmugam
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska - Lincoln, Lincoln, NE, United States
| | - Saminathan Nivetha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
6
|
Surendran K, Pradeep S, Pillai PP. Comparative transcriptome and metabolite profiling reveal diverse pattern of CYP-TS gene expression during corosolic acid biosynthesis in Lagerstroemia speciosa (L.) Pers. PLANT CELL REPORTS 2024; 43:122. [PMID: 38642121 DOI: 10.1007/s00299-024-03203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
KEY MESSAGE Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.
Collapse
Affiliation(s)
- Karuna Surendran
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | - Siya Pradeep
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | | |
Collapse
|
7
|
Stempel ZD, Radomska HS, Coss CC, Micalizio GC. Function-Oriented Synthesis of Pentacyclic Triterpenoids and Discovery of an ent-Estrane as a Natural Product-Inspired Androgen Receptor Antagonist. Org Lett 2024; 26:3054-3059. [PMID: 38557107 PMCID: PMC11590179 DOI: 10.1021/acs.orglett.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While pentacyclic triterpenoids have a rich history in chemistry and biology, the challenges associated with their asymmetric synthesis contribute to the current reality that medicinal exploration in the area is largely constrained to natural product derivatization. To address this deficiency, a function-oriented synthesis of pentacyclic triterpenoids was pursued. Overall, we report a divergent synthesis of 26-norgermanicol and 26-norlupeol and we have identified a new class of androgen receptor antagonist that is ∼6× more potent than lupeol.
Collapse
Affiliation(s)
- Zachary D. Stempel
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755, United States
| | - Hanna S. Radomska
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Glenn C. Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755, United States
| |
Collapse
|
8
|
Zhu L, Tian Y, Wang T, Huang X, Zhou L, Shengming L, Chen G, Che Z. Semisynthesis, anti-oomycete and anti-fungal activities of ursolic acid ester derivatives. Nat Prod Res 2024; 38:906-915. [PMID: 37115170 DOI: 10.1080/14786419.2023.2207135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Using ursolic acid (UA) as the lead compound, thirteen UA ester derivatives (3 and 7a-l) were synthesized by modifying their C-3 and C-28 positions, respectively, and their structures were well characterized by 1H NMR, 13C NMR, HRMS and melting points. Furthermore, we evaluated the anti-oomycete and anti-fungal activities of these compounds against Phytophthora capsici and Fusarium graminearum in vitro. The results showed that compound 7h exhibited prominent anti-oomycete and anti-fungal activities, and the median effective concentration (EC50) values of 7h against P. capsici and F. graminearum were 70.49 and 113.21 mg/L, respectively. This study suggested that the anti-oomycete and anti-fungal activities of esters synthesized by introducing acyloxy group at C-3 position of UA was more conspicuous than that of esters synthesized by introducing benzyloxy group at C-28 position. This result will pave the way for further modification of UA to develop potential new fungicides.
Collapse
Affiliation(s)
- Lina Zhu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yuee Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Tiewei Wang
- ShanDong New Power Biology Science &Technology Co., Ltd, Jinan, China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Liu Shengming
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Genqiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
9
|
Hu M, Zhang L, Jia H, Xue C, Zhao L, Dong N, Shan A. Oleanolic acid attenuates hydrogen peroxide-induced apoptosis of IPEC-J2 cells through suppressing c-Jun and MAPK pathway. J Biochem Mol Toxicol 2024; 38:e23538. [PMID: 37706587 DOI: 10.1002/jbt.23538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Oleanolic acid (OA) is a natural triterpenoid with therapeutic potential for a multitude of diseases. However, the precise mechanism by which OA influences stress-induced apoptosis of intestinal epithelial cells remains elusive. Therefore, the effect of OA on intestinal diseases under stressful conditions and its possible mechanisms have been investigated. In a hydrogen peroxide (H2 O2 )-induced oxidative stress model, OA attenuated H2 O2 -induced apoptosis in a concentration-dependent manner. To investigate the underlying mechanisms, the gene expression profile of OA on IPEC-J2 cells was analyzed using an RNA sequencing system. Results from gene ontology and Kyoto encyclopedia of genes and genomes analysis confirmed that OA may mitigate the cytotoxic effects of H2 O2 by downregulating gene expression through the MAPK signaling pathway. Furthermore, Quantitative real-time polymerase chain reaction results validated the differentially expressed genes data. Western blot analysis further demonstrated that OA effectively suppressed the expression level of c-Jun protein induced by H2 O2 in IPEC-J2 cells. Collectively, our results indicate that OA pretreatment significantly attenuated H2 O2 -induced apoptosis in intestinal epithelial cells through suppressing c-Jun and MAPK pathway.
Collapse
Affiliation(s)
- Mingyang Hu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Lei Zhang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hongpeng Jia
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Lu Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
10
|
Odarenko KV, Zenkova MA, Markov AV. The Nexus of Inflammation-Induced Epithelial-Mesenchymal Transition and Lung Cancer Progression: A Roadmap to Pentacyclic Triterpenoid-Based Therapies. Int J Mol Sci 2023; 24:17325. [PMID: 38139154 PMCID: PMC10743660 DOI: 10.3390/ijms242417325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its high mortality is partly due to chronic inflammation that accompanies the disease and stimulates cancer progression. In this review, we analyzed recent studies and highlighted the role of the epithelial-mesenchymal transition (EMT) as a link between inflammation and lung cancer. In the inflammatory tumor microenvironment (iTME), fibroblasts, macrophages, granulocytes, and lymphocytes produce inflammatory mediators, some of which can induce EMT. This leads to increased invasiveness of tumor cells and self-renewal of cancer stem cells (CSCs), which are associated with metastasis and tumor recurrence, respectively. Based on published data, we propose that inflammation-induced EMT may be a potential therapeutic target for the treatment of lung cancer. This prospect is partially realized in the development of EMT inhibitors based on pentacyclic triterpenoids (PTs), described in the second part of our study. PTs reduce the metastatic potential and stemness of tumor cells, making PTs promising candidates for lung cancer therapy. We emphasize that the high diversity of molecular mechanisms underlying inflammation-induced EMT far exceeds those that have been implicated in drug development. Therefore, analysis of information on the relationship between the iTME and EMT is of great interest and may provide ideas for novel treatment approaches for lung cancer.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| |
Collapse
|
11
|
Gupta S, Baweja GS, Singh S, Irani M, Singh R, Asati V. Integrated fragment-based drug design and virtual screening techniques for exploring the antidiabetic potential of thiazolidine-2,4-diones: Design, synthesis and in vivo studies. Eur J Med Chem 2023; 261:115826. [PMID: 37793328 DOI: 10.1016/j.ejmech.2023.115826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder characterized by elevated blood sugar levels and related complications. This study focuses on harnessing and integrating fragment-based drug design and virtual screening techniques to explore the antidiabetic potential of newly synthesized thiazolidine-2,4-dione derivatives. The research involves the design of novel variations of thiazolidine-2,4-dione compounds by Fragment-Based Drug Design. The screening process involves pharmacophore based virtual screening through docking algorithms, and the identification of newly twelve top-scoring compounds. The molecular docking analysis revealed that compounds SP4e, SP4f showed highest docking scores of -9.082 and -10.345. The binding free energies of the compounds SP4e, SP4f and pioglitazone was found to be -19.9, -16.1 and -13 respectively, calculated using the Prime MM/GBSA approach. The molecular dynamic study validates the docking results. Furthermore, In the Swiss albino mice model, both SP4e and SP4f exhibited significant hypoglycaemic effects, comparable to the reference drug pioglitazone. Furthermore, these compounds demonstrated favorable effects on the lipid profile, reducing total cholesterol, triglycerides, and LDL levels while increasing HDL levels. In mice tissue, the disease control group showed PPAR-γ expression of 4.200 ± 0.24, while compound SP4f displayed higher activation at 7.84 ± 0.431 compared to compound SP4e with an activation of 7.68 ± 0.65. In zebrafish model, SP4e and SP4f showed significant reductions in blood glucose levels and lipid peroxidation, along with increased glutathione levels and catalase activity. These findings highlighted the potential of SP4e and SP4f as antidiabetic agents, warranting further exploration for therapeutic applications. The in vitro study was performed in HEK-2 cell line, the pioglitazone group demonstrated PPAR-γ expression of EC50 = 575.2, while compound SP4f exhibited enhanced activation at EC50 = 739.0 in contrast to compound SP4e activation of EC50 = 826.7.
Collapse
Affiliation(s)
- Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Mehdi Irani
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
12
|
Nunta R, Khemacheewakul J, Sommanee S, Mahakuntha C, Chompoo M, Phimolsiripol Y, Jantanasakulwong K, Kumar A, Leksawasdi N. Extraction of gymnemic acid from Gymnema inodorum (Lour.) Decne. leaves and production of dry powder extract using maltodextrin. Sci Rep 2023; 13:11193. [PMID: 37433848 PMCID: PMC10336054 DOI: 10.1038/s41598-023-38305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
The aim of the present study was to maximize the extraction of gymnemic acid (GA) from Phak Chiang Da (PCD) leaves, an indigenous medicinal plant used for diabetic treatment in Northern Thailand. The goal was to overcome the low concentration of GA in the leaves, which limits its applications among a larger population and develop a process to produce GA-enriched PCD extract powder. The solvent extraction method was employed to extract GA from PCD leaves. The effect of ethanol concentration and extraction temperature were investigated to determine the optimum extraction conditions. A process was developed to produce GA-enriched PCD extract powder, and its properties were characterized. In addition, color analysis (L*, a*, and b*) was performed to evaluate the overall appearance of the PCD extract powder. Antioxidant activity assay was conducted to assess the ability of the PCD extract powder to neutralize DPPH free radicals. The results showed that the concentration of 50% (v/v) ethanol at 70 °C for 2 h resulted in a higher GA concentration of 8307 mg/kg from dried PCD leaves. During the drying process, the use of maltodextrin at a concentration of 0.5% (w/v) was found to produce PCD extract powder with the maximum GA concentration. The color analysis revealed that the PCD extract powder had a dark greenish tint mixed with yellow. The antioxidant activity assay showed that 0.1 g of PCD extract powder was able to neutralize 75.8% of DPPH free radicals. The results concluded that PCD extract powder could potentially be used as a source of nutraceuticals or as a functional food ingredient. These findings suggest the potential value of GA-rich PCD extract powder in various applications in the pharmaceutical, nutraceutical, or food industries.
Collapse
Affiliation(s)
- Rojarej Nunta
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Julaluk Khemacheewakul
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sumeth Sommanee
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chatchadaporn Mahakuntha
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Mayuree Chompoo
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Anbarasu Kumar
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Thanjavur, 613403, India.
| | - Noppol Leksawasdi
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
13
|
Antihyperglycemic Potential of Spondias mangifera Fruits via Inhibition of 11β-HSD Type 1 Enzyme: In Silico and In Vivo Approach. J Clin Med 2023; 12:jcm12062152. [PMID: 36983154 PMCID: PMC10051293 DOI: 10.3390/jcm12062152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The 11 β- hydroxysteroid dehydrogenase 1 (11 β-HSD1) is hypothesized to play a role in the pathogenesis of type 2 diabetes and its related complications. Because high glucocorticoid levels are a risk factor for metabolic disorders, 11β-HSD1 might be a viable therapeutic target. In this investigation, docking experiments were performed on the main constituents of Spondias mangifera (SM) oleanolic acid, β-amyrin, and β-sitosterol to ascertain their affinity and binding interaction in the human 11β-hydroxysteroid dehydrogenase-1 enzyme’s active region. The results of in vitro 11β HSD1 inhibitory assay demonstrated that the extract of S. mangifera had a significant (p < 0.05) decrease in the 11-HSD1% inhibition (63.97%) in comparison to STZ (31.79%). Additionally, a non-insulin-dependent diabetic mice model was used to examine the sub-acute anti-hyperlipidemic and anti-diabetic effects of SM fruits. Results revealed that, in comparison to the diabetic control group, SM fruit extract (SMFE) extract at doses of 200 and 400 mg/kg body weight considerably (p < 0.05 and p < 0.01) lowered blood glucose levels at 21 and 28 days, as well as significantly decreased total cholesterol (TC) and triglycerides (TG) and enhanced the levels of high-density lipoprotein (HDL). After 120 and 180 s of receiving 200 and 400 mg/kg SMFE, respectively, disease control mice showed significantly poorer blood glucose tolerance (p < 0.05 and p < 0.01). SMFE extract 200 (p < 0.05), SMFE extract 400 (p < 0.01), and Glibenclamide at a dosage of 5 mg/kg body weight all resulted in statistically significant weight increase (p < 0.01) when compared to the diabetic control group after 28 days of treatment. According to in silico, in vitro, and in vivo validation, SMFE is a prospective medication with anti-diabetic and hypoglycemic effects.
Collapse
|
14
|
Zafar S, Khan K, Hafeez A, Irfan M, Armaghan M, Rahman AU, Gürer ES, Sharifi-Rad J, Butnariu M, Bagiu IC, Bagiu RV. Ursolic acid: a natural modulator of signaling networks in different cancers. Cancer Cell Int 2022; 22:399. [PMID: 36496432 PMCID: PMC9741527 DOI: 10.1186/s12935-022-02804-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Incidence rate of cancer is estimated to increase by 40% in 2030. Furthermore, the development of resistance against currently available treatment strategies has contributed to the cancer-associated mortality. Scientists are now looking for the solutions that could help prevent the disease occurrence and could provide a pain-free treatment alternative for cancers. Therefore, efforts are now put to find a potent natural compound that could sever this purpose. Ursolic acid (UA), a triterpene acid, has potential to inhibit the tumor progression and induce sensitization to conventional treatment drugs has been documented. Though, UA is a hydrophobic compound therefore it is usually chemically modified to increase its bioavailability prior to administration. However, a thorough literature indicating its mechanism of action and limitations for its use at clinical level was not reviewed. Therefore, the current study was designed to highlight the potential mechanism of UA, its anti-cancer properties, and potential applications as therapeutic compound. This endeavour is a valuable contribution in understanding the hurdles preventing the translation of its potential at clinical level and provides foundations to design new studies that could help enhance its bioavailability and anti-cancer potential for various cancers.
Collapse
Affiliation(s)
- Sameen Zafar
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Amna Hafeez
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Irfan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Armaghan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Anees ur Rahman
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Eda Sönmez Gürer
- grid.411689.30000 0001 2259 4311Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Iulia-Cristina Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Preventive Medicine Study Center, Timisoara, Romania
| |
Collapse
|
15
|
Wang X, Tang L, Ping W, Su Q, Ouyang S, Su J. Progress in Research on the Alleviation of Glucose Metabolism Disorders in Type 2 Diabetes Using Cyclocarya paliurus. Nutrients 2022; 14:nu14153169. [PMID: 35956345 PMCID: PMC9370411 DOI: 10.3390/nu14153169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, the incidence of diabetes is increasing annually, and China has the largest number of patients with diabetes. Patients with type 2 diabetes need lifelong medication, with severe cases requiring surgery. Diabetes treatment may cause complications, side-effects, and postoperative sequelae that could lead to adverse health problems and significant social and economic burdens; thus, more efficient hypoglycemic drugs have become a research hotspot. Glucose metabolism disorders can promote diabetes, a systemic metabolic disease that impairs the function of other organs, including the heart, liver, and kidneys. Cyclocarya paliurus leaves have gathered increasing interest among researchers because of their effectiveness in ameliorating glucose metabolism disorders. At present, various compounds have been isolated from C. paliurus, and the main active components include polysaccharides, triterpenes, flavonoids, and phenolic acids. C. paliurus mainly ameliorates glucose metabolism disorders by reducing glucose uptake, regulating blood lipid levels, regulating the insulin signaling pathway, reducing β-cell apoptosis, increasing insulin synthesis and secretion, regulating abundances of intestinal microorganisms, and exhibiting α-glucosidase inhibitor activity. In this paper, the mechanism of glucose metabolism regulation by C. paliurus was reviewed to provide a reference to prevent and treat diabetes, hyperlipidaemia, obesity, and other metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Songying Ouyang
- Correspondence: (S.O.); (J.S.); Tel./Fax: +86-0591-22868199 (S.O.); +86-0591-22868830 (J.S.)
| | - Jingqian Su
- Correspondence: (S.O.); (J.S.); Tel./Fax: +86-0591-22868199 (S.O.); +86-0591-22868830 (J.S.)
| |
Collapse
|
16
|
Synthesis and Biological Evaluation of Novel Allobetulon/Allobetulin-Nucleoside Conjugates as AntitumorAgents. Molecules 2022; 27:molecules27154738. [PMID: 35897914 PMCID: PMC9329720 DOI: 10.3390/molecules27154738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Allobetulin is structurally similar tobetulinic acid, inducing the apoptosis of cancer cells with low toxicity. However, both of them exhibited weak antiproliferation against several tumor cell lines. Therefore, the new series of allobetulon/allobetulin–nucleoside conjugates 9a–10i were designed and synthesized for potency improvement. Compounds 9b, 9e, 10a, and 10d showed promising antiproliferative activity toward six tested cell lines, compared to zidovudine, cisplatin, and oxaliplatin based on their antitumor activity results. Among them, compound 10d exhibited much more potent antiproliferative activity against SMMC-7721, HepG2, MNK-45, SW620, and A549 human cancer cell lines than cisplatin and oxaliplatin. In the preliminary study for the mechanism of action, compound 10d induced cell apoptosis and autophagy in SMMC cells, resulting in antiproliferation and G0/G1 cell cycle arrest by regulating protein expression levels of Bax, Bcl-2, and LC3. Consequently, the nucleoside-conjugated allobetulin (10d) evidenced that nucleoside substitution was a viable strategy to improve allobetulin/allobetulon’s antitumor activity based on our present study.
Collapse
|
17
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
18
|
Farid M, Aboul Naser AF, Salem M, Ahmed YR, Emam M, Hamed MA. Chemical compositions of Commiphora opobalsamum stem bark to alleviate liver complications in streptozotocin-induced diabetes in rats: Role of oxidative stress and DNA damage. Biomarkers 2022; 27:671-683. [DOI: 10.1080/1354750x.2022.2099015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mai Farid
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Asmaa F. Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki Giza, Egypt
| | - Maha Salem
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Yomna R. Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki Giza, Egypt
| | - Mahmoud Emam
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Manal A. Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki Giza, Egypt
| |
Collapse
|
19
|
Polycyclic Phenol Derivatives from the Leaves of Spermacoce latifolia and Their Antibacterial and α-Glucosidase Inhibitory Activity. Molecules 2022; 27:molecules27103334. [PMID: 35630810 PMCID: PMC9145846 DOI: 10.3390/molecules27103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Three new polycyclic phenol derivatives, 2-acetyl-4-hydroxy-6H-furo [2,3-g]chromen-6-one (1), 2-(1′,2′-dihydroxypropan-2′-yl)-4-hydroxy-6H-furo [2,3-g][1]benzopyran-6-one (2) and 3,8,10-trihydroxy-4,9-dimethoxy-6H-benzo[c]chromen-6-one (8), along with seven known ones (3–7, 9 and 10) were isolated for the first time from the leaves of Spermacoce latifolia. Their structures were determined by spectroscopic analysis and comparison with literature-reported data. These compounds were tested for their in vitro antibacterial activity against four Gram-(+) bacteria: Staphyloccocus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (BC), Bacillus subtilis (BS), and the Gram-(−) bacterium Escherichia coli. Compounds 1, 2, 5 and 8 showed antibacterial activity toward SA, BC and BS with MIC values ranging from 7.8 to 62.5 µg/mL, but they were inactive to MRSA. Compound 4 not only showed the best antibacterial activity against SA, BC and BS, but it further displayed significant antibacterial activity against MRSA (MIC 1.95 µg/mL) even stronger than vancomycin (MIC 3.9 µg/mL). No compounds showed inhibitory activity toward E. coli. Further bioassay indicated that compounds 1, 4, 5, 6, 8 and 9 showed in vitro α-glucosidase inhibitory activity, among which compound 9 displayed the best α-glucosidase inhibitory activity with IC50 value (0.026 mM) about 15-fold stronger than the reference compound acarbose (IC50 0.408 mM). These results suggested that compounds 4, 8 and 9 were potentially highly valuable compounds worthy of consideration to be further developed as an effective anti-MRSA agent or effective α-glucosidase inhibitors, respectively. In addition, the obtained data also supported that S. latifolia was rich in structurally diverse bioactive compounds worthy of further investigation, at least in searching for potential antibiotics and α-glucosidase inhibitors.
Collapse
|
20
|
Chen S, Lin B, Gu J, Yong T, Gao X, Xie Y, Xiao C, Zhan JY, Wu Q. Binding Interaction of Betulinic Acid to α-Glucosidase and Its Alleviation on Postprandial Hyperglycemia. Molecules 2022; 27:molecules27082517. [PMID: 35458714 PMCID: PMC9032457 DOI: 10.3390/molecules27082517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Inhibiting the intestinal α-glucosidase can effectively control postprandial hyperglycemia for type 2 diabetes mellitus (T2DM) treatment. In the present study, we reported the binding interaction of betulinic acid (BA), a pentacyclic triterpene widely distributed in nature, on α-glucosidase and its alleviation on postprandial hyperglycemia. BA was verified to exhibit a strong inhibitory effect against α-glucosidase with an IC50 value of 16.83 ± 1.16 μM. More importantly, it showed a synergistically inhibitory effect with acarbose. The underlying inhibitory mechanism was investigated by kinetics analysis, surface plasmon resonance (SPR) detection, molecular docking, molecular dynamics (MD) simulation and binding free energy calculation. BA showed a non-competitive inhibition on α-glucosidase. SPR revealed that it had a strong and fast affinity to α-glucosidase with an equilibrium dissociation constant (KD) value of 5.529 × 10−5 M and a slow dissociation. Molecular docking and MD simulation revealed that BA bound to the active site of α-glucosidase mainly due to the van der Waals force and hydrogen bond, and then changed the micro-environment and secondary structure of α-glucosidase. Free energy decomposition indicated amino acid residues such as PHE155, PHE175, HIE277, PHE298, GLU302, TRY311 and ASP347 of α-glucosidase at the binding pocket had strong interactions with BA, while LYS153, ARG210, ARG310, ARG354 and ARG437 showed a negative contribution to binding affinity between BA and α-glucosidase. Significantly, oral administration of BA alleviated the postprandial blood glucose fluctuations in mice. This work may provide new insights into the utilization of BA as a functional food and natural medicine for the control of postprandial hyperglycemia.
Collapse
Affiliation(s)
- Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Bing Lin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Jiangyong Gu
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Tianqiao Yong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Xiong Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Janis Yaxian Zhan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- Correspondence: (J.Y.Z.); (Q.W.)
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
- Correspondence: (J.Y.Z.); (Q.W.)
| |
Collapse
|
21
|
Synthesis and Structural Characterization of a New 1,2,3-Triazole Derivative of Pentacyclic Triterpene. CRYSTALS 2022. [DOI: 10.3390/cryst12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The new 30-substituted triazole derivative of 3,28-O,O′-diacetylbetulin was obtained in the copper(I) catalyzed azide-alkyne cycloaddition (CuAAC). The title compound was characterized by NMR, IR, HR-MS, and X-ray diffraction techniques. The X-ray diffraction study showed that the 1,2,3-triazole derivative crystallizes in the orthorhombic space group P212121, Z = 4, and unit cell parameters are as follows a = 9.4860(10) Å, b = 13.9440(2) Å, and c = 30.2347(4) Å. The molecular packing is stabilized by intermolecular hydrogen interactions C-H…O. The Hirshfeld surface analysis showed the presence of the O…H interactions with a percentage of the 16.5% in the total Hirshfeld area. The MEP analysis showed that the nucleophilic regions are located near the oxygen atoms of the acyl and carbonyl groups of betulin moiety and the sulfur atom in the triazole linker. The HOMO and LUMO orbitals are located near the triazole moiety. The obtained results indicated that this new betulin derivative is more reactive with electrophilic than nucleophilic molecules.
Collapse
|
22
|
El-Feky AM, Elbatanony MM, Aboul Naser AF, Younis EA, Hamed MA. Salvia hispanica L. seeds extract alleviate encephalopathy in streptozotocin-induced diabetes in rats: Role of oxidative stress, neurotransmitters, DNA and histological indices. Biomarkers 2022; 27:427-440. [PMID: 35253573 DOI: 10.1080/1354750x.2022.2051072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT Diabetes mellitus (DM) is a metabolic disorder and may lead to cognitive dysfunctions. OBJECTIVE The aim of this work is to evaluate the potency of Salvia hispanica L. seeds (S. hispanica L.) (chia seeds) petroleum ether extract in attenuating brain complications associated with streptozotocin (STZ) induced diabetes in rats. MATERIALS AND METHODS Phytochemical composition of the seeds extract, macro and micro elements, vitamins, protein, carbohydrate and caloric values were estimated. Diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg body weight (b.wt)). Glibenclamide as a reference drug was also evaluated. The biochemical evaluation was done by measuring levels of glucose, insulin, α amylase, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), dopamine (DA), serotonin (5-HD), noradrenaline (NE), acetylcholinesterase (AchE), tumor necrosis factor-α (TNF-α), DNA fragmentation pattern and the histopathological profile of the brain hippocampus region. RESULTS Gas chromatography/mass spectrometry (GC/MS) analysis revealed the presence of twenty-five fatty acid esters and twenty-two compounds. Column chromatography led to the isolation of nine compounds. Treatment with the seeds extract revealed improvement of the measured parameters with variable degrees. CONCLUSION Chia seeds extract succeeded to attenuate the neurodegeneration in diabetic rats. Thereafter, it could be potentially used as a new dietary supplement against diabetic encephalopathy.
Collapse
Affiliation(s)
- Amal M El-Feky
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Eman A Younis
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|