1
|
Al-Shimmary SMH, Al-Thwani AN. Synthesis, Characterization, and Biomedical Applications of Bacteriocin-Selenium Nanoconjugates. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10420-2. [PMID: 39658757 DOI: 10.1007/s12602-024-10420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The antibiotic overuse in hospitals, the food industry, and animal feed over past times has led to a significant rise in the incidence of antibiotic-resistant bacteria. To address these potentially life-threatening antibiotic-resistant illnesses, a quick identification and development of novel antimicrobials are necessary. The aim of this study was to synthesize a novel bacteriocin-nanoconjugates by combining selenium nanoparticles with purified bacteriocin from the Enterococcus faecium SMAA23 and investigate some of its biomedical activities. The nanoconjugates were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray desorption (EDX), and zeta potential analytical techniques. There is investigation of the antibacterial, antifungal, and anticancer properties of nanoconjugates. Purified bacteriocin has a known molecular weight of approximately 43,000 Daltons. The characterization of nanoparticles and nanoconjugates was performed. The crystallite size of nanoconjugate was determined via X-ray diffraction (XRD) to be 15.29 nm. Transmission electron microscopy (TEM) detected particles of irregular form of nanoconjugate, measuring between 11 and 24 nm in diameter. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of selenium and protein. The measured zeta potential was - 12.1 + 0.12 mV. The results revealed potent antibacterial activity against Acinetobacter baumannii, with a growth inhibition zone of 23 mm ± SD. A minimum inhibitory concentration (MIC) of nanoconjugate was 15.625 µg/mL, while a minimum bactericidal concentration (MBC) was 31.25 µg/mL. The application of scanning electron microscopy (SEM) enhanced the rupture of the bacterial cell wall. The antifungal activity against C. albicans and C. tropicalis resulted in growth inhibition zones of 14 mm and 16 mm (± SD), respectively. Various concentrations of the nanoconjugate strongly inhibited MDA-MB-231 cells in the MTT experiment. The novel synthesized bacteriocin-nanoconjugates exhibited substantial antibacterial, antifungal, and anticancer properties.
Collapse
Affiliation(s)
- Sana M H Al-Shimmary
- Institute of Genetic Engineering and Biotechnology for Post Graduate Studies, University of Baghdad, Baghdad, Iraq.
- College of Science for Women, University of Baghdad, Baghdad, Iraq.
| | - Amina N Al-Thwani
- Institute of Genetic Engineering and Biotechnology for Post Graduate Studies, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Shalini TS, Prathiviraj R, Senthilraja P. Metagenomic analysis and bioactive profiling of kombucha fermentation: antioxidant, antibacterial activities, and molecular docking insights into gastric cancer therapeutics. Toxicol Res (Camb) 2024; 13:tfae224. [PMID: 39712641 PMCID: PMC11662944 DOI: 10.1093/toxres/tfae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024] Open
Abstract
Kombucha is fermented and produced with a biofilm called a symbiotic culture of bacteria and yeast, which is drunk all over the world for its beneficial effects on human health and energy levels. The metagenomic study of kombucha frequently detected microorganisms in proteobacteria, firmicutes, and actinobacteria. And also, yeast and fungi are Ascomycota and Basidiomycota is present in green leaf and sugarcane juice fermented kombucha. The kombucha extracts' biological activities were assessed using pH, total phenolic content, antioxidant, antibacterial, and anticancer activity. Fermentation may enhance biological activity and the generation of bioactive substances. These results showed the pH -3.1 ± 0.2 and TPC -0.721 μg/mL of gallic acid equivalent. The antioxidant radicals scavenging activity of kombucha was evaluated by DPPH, ABTS, H2O2 and TAC. The bioactive chemicals identified by FT-IR and HR-LC/MS analysis of Kombucha totaled 45 components. The identified compounds were further move on to perform molecular docking study against gastric cancer target proteins 4H9M, 2DQ7 and 1TVO are binding with Nequinate compounds showing best LibDock scores 105.12, 114.49, and 108.97. So, this study suggests that knowledge can potentially active bioactive compounds are present in kombucha and it's stimulated the mechanism of gastrointestinal transit. Additionally, the metagenomic analysis gives strength to understand the bacterial and fungal distribution and its molecular mechanism from Kombucha.
Collapse
Affiliation(s)
| | - Ragothaman Prathiviraj
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Poomalai Senthilraja
- Department of Bioinformatics, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
3
|
Hemavathi KN, Middha SK, Raju R, Pilankatta R, Keshava Prasad TS, Abhinand CS. Computational screening of phytocompounds from C. amboinicus identifies potential inhibitors of influenza A (H3N2) virus by targeting hemagglutinin. J Biomol Struct Dyn 2024:1-13. [PMID: 39520503 DOI: 10.1080/07391102.2024.2424940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/22/2024] [Indexed: 11/16/2024]
Abstract
The H3N2 subtype of the influenza A virus continues to be a notable public health issue due to its association with seasonal epidemics and severe human morbidity. The constrained effectiveness of current antiviral medications, combined with the inevitable emergence of drug-resistant variants, mandates the exploration of innovative therapeutic approaches. This study focuses on the identification of phytocompounds from Coleus amboinicus with the potential to target hemagglutinin, viral protein involved in viral entry by binding to sialyl glycoconjugates receptors on the surface of host cells. Molecular docking studies were carried out to assess the efficacy of C. amboinicus phytocompounds with hemagglutinin receptor-binding site. The study revealed that among the 84 signature phytocompounds, isosalvianolic acid and salvianolic acid C showed the highest docking scores and favourable intermolecular interactions. Pharmacokinetic analysis and Pan-assay interference compounds (PAINS) filtering confirmed that isosalvianolic acid meets the criteria outlined in Lipinski's rule of five, exhibits favourable ADMET profiles and passes PAINS filters. Furthermore, the molecular dynamics simulations followed by radius of gyration (Rg), solvent accessible surface area (SASA), and MM-PBSA calculations for binding free energy, verified the stability of the docked complexes. Together, the study identifies isosalvianolic acid as a promising inhibitor of the H3N2 virus by binding to hemagglutinin, indicating its potential as a strategy for therapeutic intervention.
Collapse
Affiliation(s)
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, India
| | - Rajesh Raju
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Rajendra Pilankatta
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
4
|
Saleem B, Islam M, Ahmed A, Saeed H, Imtiaz F, Muzaffar S. Bioassay-guided isolation and in silico study of antihyperlipidemic compounds from Onosma hispidum Wall. J Biomol Struct Dyn 2024; 42:8009-8023. [PMID: 37548653 DOI: 10.1080/07391102.2023.2242503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Isolation of bioactive compounds from plants and their therapeutic evaluation is crucial in the pursuit of novel phytochemicals and contributes an indispensable role in drug discovery and design. The literature has documented the hypolipidemic effect of numerous Onosma species. Taking that into consideration, the current study was designed to isolate, purify and evaluate the antihyperlipidemic potential of leaves of Onosma hispidum Wall. For the first time, the bioassay-guided isolation led to the separation of 3 compounds that were identified by spectroscopic techniques as o-phthalic acid bis-(2-ethyl decyl)-ester (1), bis (2-ethyloctyl) phthalate (2), and 1,2 benzenedicarboxylic acid bis(2-methyl heptyl) ester (3). Lipase inhibition assay was utilized to scrutinize the antihyperlipidemic potential of methanolic extract fractions and subsequently isolated compounds. Further, the isolated compounds were employed for in silico studies via molecular docking, molecular mechanics with generalized born and surface area solvation (MM-GBSA), and MD simulations with Pancreatic Lipase Colipase (PDB ID: 1LPB). Molecular docking and MM-GBSA of isolated compounds were employed to explain the mode of binding between the protein-ligand complex and binding free energy calculation, respectively. Since compound (3) displayed the best docking score of -6.689 kcal/mol as compared to orlistat -5.529 kcal/mol with PDB: 1LPB. So, it was chosen for MD simulations to evaluate ligand stability and flexibility of the complex which was validated by the fluctuation of α-carbon chain, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and type of interactions involved which authenticated the in vitro lipase inhibitory potential. Overall, in silico and in vitro results validated that compound (3) could be exploited as a promising pancreatic lipase inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bushra Saleem
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Abrar Ahmed
- Section of Phamarcognosy, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Sana Muzaffar
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| |
Collapse
|
5
|
Raman APS, Pongpaiboon S, Bhatia R, Lal Dabodhia K, Kumar A, Kumar D, Jain P, Sagar M, Singh P, Kumari K. In silico study on antidiabetic and antioxidant activity of bioactive compounds in Ficus carica L. J Biomol Struct Dyn 2024; 42:7515-7531. [PMID: 37545143 DOI: 10.1080/07391102.2023.2240425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
Hyperglycemia is one of the diagnostic issues in diabetes mellitus and is considered as a complex metabolic condition. It has been one of the most prevalent illnesses of the twenty-first century and still rising at an alarming rate across the globe and expected to impact 693 million individuals by 2045. Therefore, it is mandatory to develop more effective and safer treatments to manage diabetes. One of the ways to manage hyperglycemia is through inhibiting carbohydrate digestion and thereby lowering the glucose formation in the human body. The enzyme salivary amylase and pancreatic amylase is responsible for cleaving α-1,4-glucoside bond. Amylase inhibitors can lower blood glucose in diabetics by slowing digestion. Ficus carica is commonly known for its medicinal properties due to its various phytochemicals. In the present study, 10 phytochemicals present in F. carica compounds named, β-carotene, lutein, cyanidin-3-glucoside, gallic acid, luteolin, catechin, kaempferol, vanillic acid, peonidin-3-glucoside, and quercetin hydrate were taken to study their inhibition potential against pancreatic amylase and salivary amylase through molecular docking and molecular dynamics simulations. Further, density functional theory calculations are used to investigate the delocalization of electron density on the molecule as well as study ADME properties of the molecules take. A QSAR model has been developed using the binding energy obtained using molecular docking and thermodynamic parameters from DFT calculations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Siwat Pongpaiboon
- Neerja Modi School, Shipra Path, Mansarovar, Jaipur, Rajasthan, India
| | - Rohit Bhatia
- Ndeavours Research, Mansarovar, Jaipur, Rajasthan, India
| | | | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Durgesh Kumar
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Modinagar, India
| | - Mansi Sagar
- Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Sebastião F, Vaz DC, Pires CL, Cruz PF, Moreno MJ, Brito RMM, Cotrim L, Oliveira N, Costa A, Fonseca A, Rodrigues M, Ispolnov K, Bernardino R, Vieira J. Nutrient-efficient catfish-based aquaponics for producing lamb's lettuce at two light intensities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6541-6552. [PMID: 38520251 DOI: 10.1002/jsfa.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Aquaponic systems are sustainable processes of managing water and nutrients for food production. An innovate nutrient-efficient catfish-based (Clarias gariepinus) aquaponics system was implemented for producing two cultivars of two leafy vegetables largely consumed worldwide: lamb's lettuce (Valerianella locusta var. Favor and Valerianella locusta var. de Hollande) and arugula (Eruca vesicaria var. sativa and Eruca sativa). Different growing treatments (4 × 2 factorial design) were applied to plants of each cultivar, grown at two light intensities (120 and 400 μmol m-2 s-1). During growth, several morphological characteristics (root length, plant height, leaf number, foliage diameter and biggest leaf length) were measured. At harvest, plants were weighed and examined qualitatively in terms of greenness and health status. Additionally, leaf extracts were obtained and used to determine total phenolic contents, antioxidant capacities, and levels of cytotoxicity to Caco-2 intestinal model cells. RESULTS After a 5-week growth period, both lamb's lettuce cultivars presented high levels of greenness and health status, at both light intensities, particularly the var. de Hollande that also showed higher average performance in terms of plant morphology. In turn, arugula cultivars showed lower levels of greenness and health status, especially the cultivar E. vesicaria var. sativa submitted to direct sunlight during growth. In addition, plant specimens submitted to higher levels of light intensity showed higher contents in antioxidants/polyphenols. Cultivars with a higher content in antioxidants/polyphenols led to higher Caco-2 cell viability. CONCLUSION For successful industrial implementation of the aquaponics technology, different and optimized acclimatizing conditions must be applied to different plant species and cultivars. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernando Sebastião
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Daniela C Vaz
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
- School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
| | - Cristiana L Pires
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Pedro F Cruz
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Rui M M Brito
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Luis Cotrim
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Nelson Oliveira
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Ana Costa
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
| | - André Fonseca
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Maria Rodrigues
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Kirill Ispolnov
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Raul Bernardino
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Tourism and Marine Technology, Polytechnic of Leiria, Peniche, Portugal
| | - Judite Vieira
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
7
|
Sarkar S, Modak D, Roy SK, Biswas A, Islam M, Baishya R, Bose S, Georrge JJ, Bhattacharjee S. In silico, in vitro, and in vivo acute and sub-acute toxicity profiling of whole plant methanol extract of Equisetum diffusum D. Don from the sub-Himalayan West Bengal, India, having ethnobotanical uses. BMC Complement Med Ther 2024; 24:324. [PMID: 39215267 PMCID: PMC11365236 DOI: 10.1186/s12906-024-04606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Equisetum diffusum D. Don commonly known as 'Himalayan horsetail', has been traditionally used in the treatment of back pain, bone fracture and dislocation, and arthritis by various tribal communities of India. Our previous study confirmed the anti-inflammatory efficacy of the plant through in silico, in vitro, and in vivo model studies. Therefore, the current research is focused on safety dose evaluation for the first-time of the whole-plant methanol extract (EDME) of E. diffusum through appropriate in silico, in vitro, and in vivo approaches. METHOD The whole plant, along with its rhizomes, was collected, and the methanol extract was prepared. The in silico ADMET study was performed to predict the pharmacokinetics profile and toxicity of all the identified phyto-compounds of EDME previously screened by GC-MS study. In vitro cytotoxicity study of EDME was performed using two cell lines: kidney (HEK293) and liver (Huh7) cell lines. The in vivo toxicity study of EDME was validated by the acute toxicity (OECD 423, 2002) and sub-acute toxicity assays (OECD 407, 2008) in the Wistar Albino rat model. RESULTS The in silico ADMET study of all 47 bioactives predicted good pharmacokinetic and low toxicity profiles. In vitro cytotoxicity showed higher IC50 values of EDME viz., 672 ± 15.7 μg/mL and 1698 ± 6.54 μg/mL for both kidney (HEK293) and liver (Huh7) cell lines, respectively, which were considered as low-toxic. Based on acute oral toxicity, the LD50 value of the extract was considered "non-toxic" up to a feeding range of 2000 mg/kg of body weight. The regular consumption of the extract for an extended period (28 days) was also qualified as safe based on the body and organ weight, hematological, biochemical, and histoarchitecture results in the sub-acute toxicity assay. CONCLUSION The detailed in silico, in vitro, in vivo (acute and sub-acute oral toxicity) studies gave us a new insight to the safety dose evaluation of Equisetum diffusum, which may serve as a reliable documentation for undertaking the experimental validation of the ethnobotanical uses of the plant which would help in the field of drug development for the treatment of inflammation related complications.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Debabrata Modak
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sudipta Kumar Roy
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Anupam Biswas
- Chemical Science and Technology Division, Pharmacology Lab, Natural Products Chemistry Group, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Mafidul Islam
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Rinku Baishya
- Chemical Science and Technology Division, Pharmacology Lab, Natural Products Chemistry Group, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - John J Georrge
- Department of Bioinformatics, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Soumen Bhattacharjee
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
8
|
Samad N, Ejaz U, Kousar S, Al-Mutairi AA, Khalid A, Amin ZS, Bashir S, Al-Hussain SA, Irfan A, Zaki MEA. A novel approach to assessing the antioxidant and anti-diabetic potential of synthesized calcium carbonate nanoparticles using various extracts of Ailanthus altissima. Front Chem 2024; 12:1345950. [PMID: 38887700 PMCID: PMC11182424 DOI: 10.3389/fchem.2024.1345950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
Calcium carbonate nanoparticles (CaCO3) have been found to exhibit unique properties that show their potential to be used in various therapies. Green synthesis of CaCO3 has been progressively gaining ac-ceptance due to its cost-effectiveness and energy-efficient nature. In the current study, different extracts of Ailanthus altissima were used to synthesize the calcium carbonate nanoparticles the synthesis and characterization of CCNPs were confirmed by using Fourier Transform Infra-Red spectroscopy, UV-Vis spectroscopy, and Scanning Electron Microscopy (SEM). The antioxidant activities (hydrogen peroxide, phosphomolydbenum, and ferric reducing) of calcium carbonate nanoparticles were affirmed by a good range of percentages of inhibition against free radical scavenging. The antidebate assays of CCNPs were observed by in-vitro and in silico approaches in a range at various concentrations while maximum inhibition occurred. In conclusion, the current study depicted that conjugated CaCO3 with A. altissima has a good potential to cure oxidative stress and Type II diabetes and could be used in the future as biogenic nanomedicine for the treatment of other metabolic diseases.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Umer Ejaz
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Saba Kousar
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Aamal A. Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Arslan Khalid
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Zeemal Seemab Amin
- Department of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, Pakistan
| | - Shahzad Bashir
- Department of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Yasheshwar, Gaurav, Ekkbal R, Gupta P, Gyawali R. System Pharmacological Approach to Investigate and Validate Multitargeted and Therapeutic Effect of Furocoumarins of Apium graveolens L. for Treatment of Kidney Disease. Adv Pharmacol Pharm Sci 2024; 2024:5543561. [PMID: 38660689 PMCID: PMC11042912 DOI: 10.1155/2024/5543561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/24/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background System pharmacological approaches play important roles in drug discovery and development and in biomolecular exploration to investigate the multitarget therapeutic effects of phytochemicals for the treatment of acute and chronic ailments. Objectives The aim of the study was to apply a system pharmacological approach to investigate the multitarget therapeutic effects of furocoumarins of Apium graveolens L. for the treatment of kidney disease. Methods Several furocoumarins of Apium graveolens were screened from online databases. Network biology and poly-pharmacology analyses were performed to investigate the multitarget therapeutic effect of furocoumarins. The potential metabolites that showed significant interactions with various genes were selected for in silico docking analysis with CASP-3 and SOD proteins. In silico ADME analysis was also performed to investigate the pharmacokinetic behavior of targeted furocoumarins. Results Out of thirteen furocoumarins selected for analysis, six showed partial or significant interaction with SOD and CASP-3 proteins. These metabolites may alleviate kidney dysfunction by reducing oxidative and inflammatory stress, regulating apoptosis, slowing down the progression of diabetic nephropathy, and reducing hypertension and glomerular vascular rigidity. In silico docking analysis revealed bergapten as a potential therapeutic agent for kidney disease treatment. In silico docking analysis showed anglicine, imperatorin, and sphondin exhibited strong interaction with CASP-3 and SOD with binding energy -6.5, -7.2, -6.5 and -6.8, -6.2 -5.7 kcal/mol, respectively. These components exhibited greater conventional hydrogen bonding with CASP-3 and SOD than other furocoumarins. Furthermore, in silico ADME analysis of metabolites showed that all furocoumarins have a highly lipophilic nature, good skin permeability, and GI absorption, as well as good blood-brain permeability (BBB). Conclusion Furocoumarins reduce kidney dysfunction and associated pathophysiological complications via the reduction of glomerular vascular rigidity, diabetic nephropathy, and oxidative and inflammatory stress. However, further biomolecular and clinical examinations are necessary to validate and enhance the credibility of present findings.
Collapse
Affiliation(s)
- Yasheshwar
- Department of Botany, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - Gaurav
- Department of Research and Development, Hamdard Laboratories (Medicine), D-38, Industrial Area, Meerut Road, Ghaziabad 201002, Uttar Pradesh, India
| | - Rustam Ekkbal
- Department of Research and Development, Hamdard Laboratories (Medicine), D-38, Industrial Area, Meerut Road, Ghaziabad 201002, Uttar Pradesh, India
| | - Prem Gupta
- Modern Diagnostic and Research Centre, 363/4 Jawahar Nagar, Sector-12, Gurugram 122001, Haryana, India
| | | |
Collapse
|
10
|
Pakbin B, Allahyari S, Dibazar SP, Peymani A, Haghverdi MK, Taherkhani K, Javadi M, Mahmoudi R. Anticancer Properties of Saccharomyces boulardii Metabolite Against Colon Cancer Cells. Probiotics Antimicrob Proteins 2024; 16:224-232. [PMID: 36547769 DOI: 10.1007/s12602-022-10030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Saccharomyces cerevisiae var. boulardii has been used as a probiotic yeast in the medical and food industries. Colon cancers have been known as the third most common cancer type worldwide. Nowadays, cell-free extract and metabolites of probiotics have been employed for the treatment or prevention of different cancer diseases. This study investigates the anticancer properties of S. boulardii metabolites against human colon carcinoma. We evaluated cytotoxicity, apoptosis induction, and suppression of survivin, IL-8, and NFƙB gene expression effects of SBM against caco-2 cells after 24 and 48 h. IC50 concentrations of SBM were measured at 815 and 1411 µg/mL for 24 and 48 h treatments, respectively. The total proportion of apoptotic caco-2 cells treated with SBM after 24 and 48 h were calculated at 62.23 and 88.7%, respectively. Also, relative expression of survivin, IL-8, and NFƙB genes were significantly suppressed in caco-2 cells treated with SBM after 24 and 48 h. In conclusion, we found that SBM induced apoptosis, inhibited the growth rate, and suppressed the expression of the survivin, IL-8, and NFƙB genes in human colorectal cancer cells and it can be considered as a perspective supplement or drug for the treatment or prevention of colon cancer in humans.
Collapse
Affiliation(s)
- Babak Pakbin
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Samaneh Allahyari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Shaghayegh Pishkhan Dibazar
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Mozhdeh Khajeh Haghverdi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Khadijeh Taherkhani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Maryam Javadi
- Children Growth and Development Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran.
| |
Collapse
|
11
|
Park J, Choi W, Kim J, Kim HW, Lee JY, Lee J, Kim B. Quantitative Analysis and Molecular Docking Simulation of Flavonols from Eruca sativa Mill. and Their Effect on Skin Barrier Function. Curr Issues Mol Biol 2024; 46:398-408. [PMID: 38248327 PMCID: PMC10814921 DOI: 10.3390/cimb46010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Eruca sativa is a commonly used edible plant in Italian cuisine. E. sativa 70% ethanol extract (ES) was fractionated with five organic solvents, including n-hexane (EHex), chloroform (ECHCl3), ethyl acetate (EEA), n-butyl alcohol (EBuOH), and water (EDW). Ethyl acetate fraction (EEA) had the highest antioxidant activity, which was correlated with the total polyphenol and flavonoid content. ES and EEA acted as PPAR-α ligands by PPAR-α competitive binding assay. EEA significantly increased cornified envelope formation as a keratinocyte terminal differentiation marker in HaCaT cells. Further, it significantly reduced nitric oxide and pro-inflammatory cytokines (IL-6 and TNF-α) in lipopolysaccharide-stimulated RAW 264.7 cells. The main flavonol forms detected in high amounts from EEA are mono-and di-glycoside of each aglycone. The main flavonol form of EEA is the mono-glycoside of each aglycone detected, and the most abundant flavonol mono-glycoside is kaempferol 3-glucoside 7.4%, followed by quercetin-3-glucoside 2.3% and isorhamnetin 3-glucoside 1.4%. Flavonol mono-glycosides were shown to be a potent PPAR-α ligand using molecular docking simulation and showed the inhibition of nitric oxide. These results suggest that the flavonol composition of E. sativa is suitable for use in improving skin barrier function and inflammation in skin disorders, such as atopic dermatitis.
Collapse
Affiliation(s)
- Jihye Park
- Department of Chemistry, The Graduate School, Mokwon University, Daejeon 35349, Republic of Korea; (J.P.); (J.K.); (H.W.K.)
| | - Wonchul Choi
- Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jayoung Kim
- Department of Chemistry, The Graduate School, Mokwon University, Daejeon 35349, Republic of Korea; (J.P.); (J.K.); (H.W.K.)
| | - Hye Won Kim
- Department of Chemistry, The Graduate School, Mokwon University, Daejeon 35349, Republic of Korea; (J.P.); (J.K.); (H.W.K.)
| | - Jee-Young Lee
- Structure Based Drug Design Laboratory, New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (K-Medi Hub), Daegu 41061, Republic of Korea;
| | - Jongsung Lee
- Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Bora Kim
- Department of Chemistry, The Graduate School, Mokwon University, Daejeon 35349, Republic of Korea; (J.P.); (J.K.); (H.W.K.)
- Department of Cosmetics Engineering, Mokwon University, Daejeon 35349, Republic of Korea
| |
Collapse
|
12
|
Kumar S, Swamy N, Tuli HS, Rani S, Garg A, Mishra D, Abdulabbas HS, Sandhu SS. Myricetin: a potential plant-derived anticancer bioactive compound-an updated overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2179-2196. [PMID: 37083713 DOI: 10.1007/s00210-023-02479-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
The globe is currently confronting a global fight against the deadliest cancer sickness. Chemotherapy, hormonal therapy, surgery, and radiation therapy are among cancer treatment options. Still, these treatments can induce patient side effects, including recurrence, multidrug resistance, fever, and weakness. As a result, the scientific community is always working on natural phytochemical substances. Numerous phytochemical compounds, including taxol analogues, vinca alkaloids such as vincristine and vinblastine, and podophyllotoxin analogues, are currently undergoing testing and have shown promising results against a number of the deadliest diseases, as well as considerable advantages due to their safety and low cost. According to research, secondary plant metabolites such as myricetin, a flavonoid in berries, herbs, and walnuts, have emerged as valuable bio-agents for cancer prevention. Myricetin and its derivatives have antiinflammatory, anticancer, apoptosis-inducing, and anticarcinogenic properties and can prevent cancer cell proliferation. Multiple studies have found that myricetin has anticancer characteristics in various malignancies, including colon, breast, prostate, bladder, and pancreatic cancers. Current knowledge of the anticancer effects of myricetin reveals its promise as a potentially bioactive chemical produced from plants for the prevention and treatment of cancer. This review aimed to study the numerous bioactivities, mode of action, and modification of several cellular processes that myricetin possesses to impede the spread of cancer cells. This review also addresses the challenges and future prospects of using myricetin as a anticancer drug.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Botany, Government Girls College Khargone, 451001, Khargone, Madhya Pradesh, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Seema Rani
- Department of Chemistry, Government M. H. College of Home Science & Science for Women, Autonomous, Jabalpur, 482002, Madhya Pradesh, India
| | - Abhijeet Garg
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Deepa Mishra
- Department of Biotechnology, Mata Gujri Mahila Mahavidyalaya Jabalpur, 482001, Jabalpur, Madhya Pradesh, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India.
| |
Collapse
|
13
|
Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 2023; 13:13398. [PMID: 37592012 PMCID: PMC10435576 DOI: 10.1038/s41598-023-40160-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
Molecular docking is a computational technique that predicts the binding affinity of ligands to receptor proteins. Although it has potential uses in nutraceutical research, it has developed into a formidable tool for drug development. Bioactive substances called nutraceuticals are present in food sources and can be used in the management of diseases. Finding their molecular targets can help in the creation of disease-specific new therapies. The purpose of this review was to explore molecular docking's application to the study of dietary supplements and disease management. First, an overview of the fundamentals of molecular docking and the various software tools available for docking was presented. The limitations and difficulties of using molecular docking in nutraceutical research are also covered, including the reliability of scoring functions and the requirement for experimental validation. Additionally, there was a focus on the identification of molecular targets for nutraceuticals in numerous disease models, including those for sickle cell disease, cancer, cardiovascular, gut, reproductive, and neurodegenerative disorders. We further highlighted biochemistry pathways and models from recent studies that have revealed molecular mechanisms to pinpoint new nutraceuticals' effects on disease pathogenesis. It is convincingly true that molecular docking is a useful tool for identifying the molecular targets of nutraceuticals in the management of diseases. It may offer information about how nutraceuticals work and support the creation of new therapeutics. Therefore, molecular docking has a bright future in nutraceutical research and has a lot of potentials to lead to the creation of brand-new medicines for the treatment of disease.
Collapse
Affiliation(s)
- P C Agu
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria.
- Department of Science Laboratory Technology (Biochemistry Option), Our Savior Institute of Science, Agriculture, and Technology, Enugu, Nigeria.
| | - C A Afiukwa
- Department of Biotechnology, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - O U Orji
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - E M Ezeh
- Department of Chemical Engineering, Faculty of Engineering, Caritas University, Amorji-Nike, Enugu, Nigeria
| | - I H Ofoke
- Department of Biochemistry, Faculty of Sciences, Madonna University, Elele, Rivers State, Nigeria
| | - C O Ogbu
- Department of Biochemistry, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - E I Ugwuja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - P M Aja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria.
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Ishaka, Uganda.
| |
Collapse
|
14
|
Elkhalifa AEO, Al-Shammari E, Kuddus M, Adnan M, Sachidanandan M, Awadelkareem AM, Qattan MY, Khan MI, Abduljabbar SI, Sarwar Baig M, Ashraf SA. Structure-Based Multi-Targeted Molecular Docking and Dynamic Simulation of Soybean-Derived Isoflavone Genistin as a Potential Breast Cancer Signaling Proteins Inhibitor. Life (Basel) 2023; 13:1739. [PMID: 37629596 PMCID: PMC10455564 DOI: 10.3390/life13081739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Globally, breast cancer (BC), the second-biggest cause of cancer death, occurs due to unregulated cell proliferation leading to metastasis to other parts of the human organ. Recently, the exploration of naturally derived anticancer agents has become popular due to their fewer adverse effects. Among the natural products, soybean is a very well-known legume that contains important bioactive compounds such as diadazine, glycetin, genistein, and genistin. Therefore, keeping its therapeutic potential in mind, multi-targeted molecular docking and simulation studies were conducted to explore the potential role of soybean-derived isoflavone genistin against several breast cancer-signaling proteins (ER-alpha, ER-Beta, collapsin response mediator protein 2, CA 15-3, human epidermal growth factor receptor 2). A comparative study of the genistin-protein docked complex was explored to investigate its potential role in BC. The molecular binding energy (∆G) of the docked complex was calculated along with ADMET properties. The molecular docking score of genistin with ubiquitin-like protein activation complex-a type of Cancer Antigen (CA) 15.3 (PDB ID-2NVU, 5T6P, and 1YX8) showed the highest binding energy, ranging from -9.5 to -7.0 Kcal/mol, respectively. Furthermore, the highest docking scores of the complex were additionally put through molecular dynamics (MD) simulation analysis. MD simulations of the selected complex were performed at 100 ns to study the stability of the genistin-ubiquitin-like protein CA 15.3 complex, which appeared to be quite stable. Additionally, the ADMET study demonstrated that genistin complies with all drug-likeness standards, including Lipinski, Egan, Veber, Ghose, and Muegge. Therefore, based on the results, genistin can be considered as one of the potential drugs for the management and treatment of BC. In addition, the obtained results suggest that genistin could pave the way for new drug discovery to manage breast cancer and has potential in the development of nutraceuticals.
Collapse
Affiliation(s)
- Abd Elmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (A.E.O.E.); (E.A.-S.); (A.M.A.)
| | - Eyad Al-Shammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (A.E.O.E.); (E.A.-S.); (A.M.A.)
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia;
| | - Manojkumar Sachidanandan
- Department of Oral Maxillofacial Surgery and Diagnostics, College of Dentistry, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia;
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (A.E.O.E.); (E.A.-S.); (A.M.A.)
| | - Malak Yahia Qattan
- Health Sciences Departments, College of Applied Studies and Community Service, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Sanaa Ismael Abduljabbar
- Microbial and Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India;
| | - Mirza Sarwar Baig
- Center for Virology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (A.E.O.E.); (E.A.-S.); (A.M.A.)
| |
Collapse
|
15
|
Samajdar S, Mondal P. In silico studies on the phytochemical components of Lagenaria siceraria targeting aromatase receptors against breast cancer. In Silico Pharmacol 2023; 11:19. [PMID: 37525849 PMCID: PMC10387019 DOI: 10.1007/s40203-023-00155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
In India, breast cancer is the most common cause of mortality for women and has the potential to spread to other body organs. As a transcription factor, interactions with the estrogen receptor (ER) alpha are primarily responsible for the development of malignant tumors. Aromatase inhibitors are the most often used treatment for ER(+) breast cancer. Various synthetic compounds have been developed over the years to block the aromatase receptor, however, the majority of them are hazardous and cause multidrug resistance. So, combating these natural drugs can be prioritized. The current study was conducted to investigate the anticancer potential of Lagenaria siceraria phytoconstituents against breast cancer target protein (PDB ID: 3EQM) based on a literature review. In this study, 34 Lagenaria siceraria ligands were chosen, and the structure of the human aromatase receptor was acquired from the protein data bank. For those natural chemicals, molecular docking, drug-likeness, toxicity, and molecular dynamics were used to evaluate and analyse their anti-breast cancer activity. Five substances, 2,3-Diphenyl quinoxaline, 17-Acetoxy pregnolone, Benzyl-d-glucoside, Ergostenol acetate, and Stigmast-7-en-3-ol, shown higher binding affinity than Tamoxifen, signaling their potential use in breast cancer treatment.
Collapse
Affiliation(s)
- Saptarshi Samajdar
- Department of Pharmaceutical Technology, Brainware University, 328, Ramkrishnapur Road, Kolkata, India
| | - Prasenjit Mondal
- Department of Pharmaceutical Technology, Brainware University, 328, Ramkrishnapur Road, Kolkata, India
| |
Collapse
|
16
|
Sindhu HA, Afzal M, Shahid I. Pharmacological Activities and In-Silico Studies of Bioactive Compounds Identified in Organic Fractions of the Methanolic Extract of Citrullus Colocynthis. Dose Response 2023; 21:15593258231187357. [PMID: 37435595 PMCID: PMC10331210 DOI: 10.1177/15593258231187357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Medicinal plants have been extensively exploited for their immense pharmacological and immune-supporting potential. Fruit of Citrullus colocynthis has several active secondary metabolites such as phenolics, flavonoids, and essential oils that are used in traditional medicines as antidiabetic, anti-inflammatory, antioxidant, and antimicrobial agents. In this study, phytoconstituents in organic fractions (n-hexane, chloroform, and ethyl acetate) of the methanolic extract of C. colocynthis were analyzed and identified by FT-IR, HPLC, and GC-MS analysis. Ethyl acetate fraction showed the highest antioxidant scavenging (76 ± .769%) and anti-inflammatory (40 ± .473%) activities at the concentration of 3 mg/mL. Similarly, antidiabetic effect was measured by inhibition of α-amylase where, ethyl acetate fraction (77 ± .844%) exhibited the highest antidiabetic activity. Among all organic fractions, ethyl acetate exhibited strong antimicrobial potential followed by n-hexane and chloroform fractions against selected pathogenic bacteria. Various concentrations of the ethyl acetate extract were tested in-vivo for cytotoxicity and results indicated minor morphological changes in liver cells including ballooning, fatty droplets, and slight accumulation of extracellular matrix even at concentrations of 400 mg/kg. In-silico study showed that stigmasta-7,16-dien-3-ol had a strong interaction with COX-1 and COX-2 to reduce inflammation. The abovementioned results indicate the pharmacological strengths of C. colocynthis to fight several diseases.
Collapse
Affiliation(s)
- Haseeb Akram Sindhu
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Afzal
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Izzah Shahid
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
Al-Momani H, Almasri M, Al Balawi D, Hamed S, Albiss BA, Aldabaibeh N, Ibrahim L, Albalawi H, Al Haj Mahmoud S, Khasawneh AI, Kilani M, Aldhafeeri M, Bani-Hani M, Wilcox M, Pearson J, Ward C. The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Sci Rep 2023; 13:8876. [PMID: 37264060 DOI: 10.1038/s41598-023-35919-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
The high antibiotic resistance of Pseudomonas aeruginosa (PA) makes it critical to develop alternative antimicrobial agents that are effective and affordable. One of the many applications of silver nanoparticles (Ag NPs) is their use as an antimicrobial agent against bacteria resistant to common antibiotics. The key purpose of this research was to assess the antibacterial and antibiofilm effectiveness of biosynthesized Ag NPs against six biofilm-forming clinically isolated strains of PA and one reference strain (ATCC 27853). Ag NPs were biosynthesized using a seed extract of Peganum harmala as a reducing agent. Ag NPs were characterized by Ultraviolet-visible (UV-Vis) spectroscopy and scanning transmission electron microscopy (STEM). The effect of Ag NPs on biofilm formation and eradication was examined through micro-titer plate assays, and the minimal inhibitory (MIC) and minimum bactericidal (MBC) concentrations determined. In addition, real-time polymerase chain reactions (RT-PCR) were performed to examine the effects of Ag NPs on the expression of seven PA biofilm-encoding genes (LasR, LasI, LssB, rhIR, rhII, pqsA and pqsR). The biosynthesized Ag NPs were spherically-shaped with a mean diameter of 11 nm. The MIC for each PA strain was 15.6 µg/ml, while the MBC was 31.25 µg/ml. All PA strains exposed to Ag NPs at sub-inhibitory concentrations (0.22-7.5 µg/ml) showed significant inhibitory effects on growth and biofilm formation. Biomass and biofilm metabolism were reduced dependent on Ag NP concentration. The expression of the quorum-sensing genes of all strains were significantly reduced at an Ag NP concentration of 7.5 µg/ml. The results demonstrate the extensive in-vitro antibacterial and antibiofilm performance of Ag NPs and their potential in the treatment of PA infection. It is recommended that future studies examine the possible synergy between Ag NPs and antibiotics.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan.
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'A Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Saja Hamed
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Nour Aldabaibeh
- Supervisor of Microbiology Laboratory, Laboratory Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa' Applied University, AL-Salt, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan
| | - Muna Kilani
- Department of Pediatrics, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Muneef Aldhafeeri
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Muayyad Bani-Hani
- Department of Plant Production and Protection, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Matthew Wilcox
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jeffrey Pearson
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
18
|
Bello I, Smimmo M, d'Emmanuele di Villa Bianca R, Bucci M, Cirino G, Panza E, Brancaleone V. Erucin, an H 2S-Releasing Isothiocyanate, Exerts Anticancer Effects in Human Triple-Negative Breast Cancer Cells Triggering Autophagy-Dependent Apoptotic Cell Death. Int J Mol Sci 2023; 24:ijms24076764. [PMID: 37047736 PMCID: PMC10095418 DOI: 10.3390/ijms24076764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequent form of cancer occurring in women of any age. Among the different types, the triple-negative breast cancer (TNBC) subtype is recognized as the most severe form, being associated with the highest mortality rate. Currently, there are no effective treatments for TNBC. For this reason, the research of novel therapeutics is urgently needed. Natural products and their analogs have historically made a major contribution to pharmacotherapy and the treatment of various human diseases, including cancer. In this study, we explored the potential anti-cancer effects of erucin, the most abundant H2S-releasing isothiocyanate present in arugula (Eruca sativa) in MDA-MB-231 cells, a validated in vitro model of TNBC. We found that erucin, in a concentration-dependent manner, significantly inhibited MDA-MB-231 cell proliferation by inducing apoptosis and autophagy. Additionally, erucin prevented intracellular ROS generation promoting the expression of key antioxidant genes and halted MDA-MB-231 cell migration, invasion, and colony formation. In conclusion, using a cellular and molecular biology approach, we show that the consumption of erucin could represent a novel and promising strategy for intervention against TNBC.
Collapse
Affiliation(s)
- Ivana Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Martina Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | |
Collapse
|
19
|
Salt-Affected Rocket Plants as a Possible Source of Glucosinolates. Int J Mol Sci 2023; 24:ijms24065510. [PMID: 36982584 PMCID: PMC10056271 DOI: 10.3390/ijms24065510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Soil salinity can have various negative consequences on agricultural products, from their quality and production to their aesthetic traits. In this work, the possibility to use salt-affected vegetables, that otherwise would be discarded, as a source of nutraceuticals was explored. To this aim, rocket plants, a vegetable featuring bioactive compounds such as glucosinolates, were exposed to increasing NaCl concentrations in hydroponics and analysed for their content in bioactive compounds. Salt levels higher than 68 mM produced rocket plants that did not comply with European Union regulations and would therefore be considered a waste product. Anyway, our findings, obtained by Liquid Chromatography-High Resolution Mass Spectrometry, demonstrated a significant increase in glucosinolates levels in such salt-affected plants. opening the opportunity for a second life of these market discarded products to be recycled as glucosinolates source. Furthermore, an optimal situation was found at NaCl 34 mM in which not only were the aesthetic traits of rocket plants not affected, but also the plants revealed a significant enrichment in glucosinolates. This can be considered an advantageous situation in which the resulting vegetables still appealed to the market and showed improved nutraceutical aspects.
Collapse
|
20
|
Patel M, Bazaid AS, Azhar EI, Gattan HS, Binsaleh NK, Patel M, Surti M, Adnan M. Novel phytochemical inhibitors targeting monkeypox virus thymidine and serine/threonine kinase: integrating computational modeling and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:13679-13695. [PMID: 36852556 DOI: 10.1080/07391102.2023.2179547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
Due to the rapid spread of the monkeypox virus and rise in the number of cases, there is an urgent need for the development of effective drugs against the infection. Serine/threonine protein kinase (Ser/Thr kinase) and Thymidine Kinase (TK) plays an imperative role in the replication and virulence of monkeypox virus and thus is deliberated as an attractive target in anti-viral drug development. In the present study, the 3D structure of monkeypox virus Ser/Thr kinase and TK was generated via molecular modeling techniques and performed their thorough structural analysis. We have screened potent anti-viral phytochemicals from the literature to inhibit Ser/Thr kinase and TK. As part of the initial screening, the physicochemical properties of the compounds were examined. Following this, a structure-based molecular docking technique was used to select compounds based on their binding affinity towards Ser/Thr kinase and TK. In order to find more potent hits against Ser/Thr kinase and TK, further examinations of ADMET properties, PAINS patterns and blood-brain barrier permeability were conducted. As a result, thalimonine and galanthamine were identified from the screening process bearing appreciable binding affinity towards Ser/Thr kinase and TK respectively, which showed a worthy set of drug-like properties. In the end, molecular dynamics simulations were performed for 100 ns, which showed decent stability of both protein-ligand complex throughout the trajectory. Due to the possibility that both monkeypox virus target proteins may be inhibited by thalimonine and galanthamine, our study highlights the need to investigate in vivo effects of thalimonine and galanthamine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Esam I Azhar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
| | - Naif K Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Mirav Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Malvi Surti
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mohd Adnan
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
21
|
Singh S, Singh G, Attri S, Kaur P, Rashid F, Bedi N, Haque S, Janahi EM, Arora S. Development and optimization of nanoparticles loaded with erucin, a dietary isothiocyanate isolated from Eruca sativa: Antioxidant and antiproliferative activities in ehrlich-ascites carcinoma cell line. Front Pharmacol 2023; 13:1080977. [PMID: 36761468 PMCID: PMC9905727 DOI: 10.3389/fphar.2022.1080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
The study on Erucin (ER) has gained interest of nutraceutical and pharmaceutical industries because of its anti-cancer properties. Erucin is an isothiocyanate obtained from the seeds of Eruca sativa which possess certain drawbacks such as poor aqueous solubility and bioavailability. Therefore, the present study aimed at developing ER-cubosomes (CUB) by solvent evaporation technique followed by applying Central Composite Design to optimize ER loaded cubosomes. For this purpose, independent variables selected were Monoolein (MO) as lipid and Pluronic-84 (P-84) as a stabilizer whereas dependent variables were particle size, percentage of ER loading and percentage of its entrapment efficiency. The cubosomal nanocarriers exhibited particle size in the range of 26 nm, entrapment efficiency of 99.12 ± 0.04% and drug loading of 3.96 ± 0.0001%. Furthermore, to investigate the antioxidant potential, we checked the effect of ER and ER-CUB by DNA nicking assay, DDPH assay and Phosphomolybdate assay, and results showed significant improvement in antioxidant potential for ER-CUB than ER. Similarly, ER-CUB showed enhanced anticancer activity with a marked reduction in IC50 value than ER in MTT assay. These results suggested that ER-CUB produced notable escalation in antioxidant potential and enhanced anticancer activity than ER.
Collapse
Affiliation(s)
- Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Janzan, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | | | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
22
|
Bacteriocin-Nanoconjugates (Bac10307-AgNPs) Biosynthesized from Lactobacillus acidophilus-Derived Bacteriocins Exhibit Enhanced and Promising Biological Activities. Pharmaceutics 2023; 15:pharmaceutics15020403. [PMID: 36839725 PMCID: PMC9967518 DOI: 10.3390/pharmaceutics15020403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The proteinaceous compounds produced by lactic acid bacteria are called bacteriocins and have a wide variety of bioactive properties. However, bacteriocin's commercial availability is limited due to short stability periods and low yields. Therefore, the objective of this study was to synthesize bacteriocin-derived silver nanoparticles (Bac10307-AgNPs) extracted from Lactobacillus acidophilus (L. acidophilus), which may have the potential to increase the bioactivity of bacteriocins and overcome the hurdles. It was found that extracted and purified Bac10307 had a broad range of stability for both temperature (20-100 °C) and pH (3-12). Further, based on Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, its molecular weight was estimated to be 4.2 kDa. The synthesized Bac10307-AgNPs showed a peak of surface plasmon resonance at 430 nm λmax. Fourier transform infrared (FTIR) confirmed the presence of biological moieties, and transmission electron microscopy (TEM) coupled with Energy dispersive X-Ray (EDX) confirmed that AgNPs were spherical and irregularly shaped, with a size range of 9-20 nm. As a result, the Bac10307-AgNPs displayed very strong antibacterial activity with MIC values as low as 8 μg/mL for Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), when compared to Bac10307 alone. In addition, Bac10307-AgNPs demonstrated promising in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 116.04 μg/mL) and in vitro cytotoxicity against human liver cancer cells (HepG2) (IC50 = 135.63 μg/mL), more than Bac10307 alone (IC50 = 139.82 μg/mL against DPPH and 158.20 μg/mL against HepG2). Furthermore, a protein-protein molecular docking simulation study of bacteriocins with target proteins of different biological functions was also carried out in order to ascertain the interactions between bacteriocins and target proteins.
Collapse
|
23
|
Chen Q, Zu M, Gong H, Ma Y, Sun J, Ran S, Shi X, Zhang J, Xiao B. Tea leaf-derived exosome-like nanotherapeutics retard breast tumor growth by pro-apoptosis and microbiota modulation. J Nanobiotechnology 2023; 21:6. [PMID: 36600299 DOI: 10.1186/s12951-022-01755-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
While several artificial nanodrugs have been approved for clinical treatment of breast tumor, their long-term applications are restricted by unsatisfactory therapeutic outcomes, side reactions and high costs. Conversely, edible plant-derived natural nanotherapeutics (NTs) are source-widespread and cost-effective, which have been shown remarkably effective in disease treatment. Herein, we extracted and purified exosome-like NTs from tea leaves (TLNTs), which had an average diameter of 166.9 nm and a negative-charged surface of - 28.8 mV. These TLNTs contained an adequate slew of functional components such as lipids, proteins and pharmacologically active molecules. In vitro studies indicated that TLNTs were effectively internalized by breast tumor cells (4T1 cells) and caused a 2.5-fold increase in the amount of intracellular reactive oxygen species (ROS) after incubation for 8 h. The high levels of ROS triggered mitochondrial damages and arrested cell cycles, resulting in the apoptosis of tumor cells. The mouse experiments revealed that TLNTs achieved good therapeutic effects against breast tumors regardless of intravenous injection and oral administration through direct pro-apoptosis and microbiota modulation. Strikingly, the intravenous injection of TLNTs, not oral administration, yielded obvious hepatorenal toxicity and immune activation. These findings collectively demonstrate that TLNTs can be developed as a promising oral therapeutic platform for the treatment of breast cancer.
Collapse
Affiliation(s)
- Qiubing Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China.,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Jianfeng Sun
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington, OX3 7LD, Oxford, UK
| | - Susan Ran
- Loomis Chaffee School, Windsor, CT, 06095, USA
| | - Xiaoxiao Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
24
|
Antiproliferative and Proapoptotic Effects of Erucin, a Diet-Derived H 2S Donor, on Human Melanoma Cells. Antioxidants (Basel) 2022; 12:antiox12010041. [PMID: 36670903 PMCID: PMC9854590 DOI: 10.3390/antiox12010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Melanoma is the most dangerous form of skin cancer and is characterized by chemotherapy resistance and recurrence despite the new promising therapeutic approaches. In the last years, erucin (ERU), the major isothiocyanate present in Eruca sativa, commonly known as rocket salads, has demonstrated great efficacy as an anticancer agent in different in vitro and in vivo models. More recently, the chemopreventive effects of ERU have been associated with its property of being a H2S donor in human pancreatic adenocarcinoma. Here, we investigated the effects of ERU in modulating proliferation and inducing human melanoma cell death by using multiple in vitro approaches. ERU significantly reduced the proliferation of different human melanoma cell lines. A flow cytometry analysis with annexin V/PI demonstrated that ERU was able to induce apoptosis and cell cycle arrest in A375 melanoma cells. The proapoptotic effect of ERU was associated with the modulation of the epithelial-to-mesenchymal transition (EMT)-related cadherins and transcription factors. Moreover, ERU thwarted the migration, invasiveness and clonogenic abilities of A375 melanoma cells. These effects were associated with melanogenesis impairment and mitochondrial fitness modulation. Therefore, we demonstrated that ERU plays an important role in inhibiting the progression of melanoma and could represent a novel add-on therapy for the treatment of human melanoma.
Collapse
|
25
|
Kumar N, Kaur B, Shukla S, Patel MK, Thakur MS, Kumar R, Chaurasia OP, Khatri M, Saxena S. Comparative analysis of phytochemical composition and anti-oxidant and anti-inflammatory benefits of Eruca sativa grown at high altitude than at lower altitude. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Wang Y, Zhang Z, Sun W, Zhang J, Xu Q, Zhou X, Mao L. Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomed Pharmacother 2022; 153:113524. [PMID: 36076606 DOI: 10.1016/j.biopha.2022.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
|
27
|
Awadelkareem AM, Al-Shammari E, Elkhalifa AO, Adnan M, Siddiqui AJ, Patel M, Khan MI, Mehmood K, Ashfaq F, Badraoui R, Ashraf SA. Biosynthesized Silver Nanoparticles from Eruca sativa Miller Leaf Extract Exhibits Antibacterial, Antioxidant, Anti-Quorum-Sensing, Antibiofilm, and Anti-Metastatic Activities. Antibiotics (Basel) 2022; 11:antibiotics11070853. [PMID: 35884107 PMCID: PMC9311509 DOI: 10.3390/antibiotics11070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Worldwide, the primary problem today is the proliferation of cancer and secondary bacterial infections caused by biofilms, as they are the principal causes of death due to the lack of effective drugs. A great deal of biological activities of silver nanoparticles (AgNPs) have made them a brilliant choice for the development of new drugs in recent years. The present study was conducted to evaluate the anticancer, antibacterial, anti-QS, and antibiofilm effects of AgNPs synthesized from Eruca sativa (E. sativa) leaf extract. The ultraviolet–visible (UV–Vis) spectra showed a peak of surface plasmon resonance at 424 nm λmax, which corresponded to AgNP formation. The Fourier transform infrared spectroscopy (FT-IR) confirmed that biological moieties are involved for the development of AgNPs. Moreover, transmission electron microscopy (TEM) analyses confirmed the spherical shape and uniform size (8.11 to 15 nm) of the AgNPs. In human lung cancer cells (A549), the anticancer potential of AgNPs was examined by the MTT [3-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, scratch assay, and invasion assay. The results indicated that AgNPs inhibit the migration of A549 cells. The synthesized AgNPs showed MIC values of 12.5 µg/mL against Chromobacterium violaceum (C. violaceum) and 25 µg/mL against Pseudomonas aeruginosa (P. aeruginosa), which demonstrated their antibacterial abilities. Biological compounds that disable the QS system are being investigated as potential strategies for preventing bacterial infections. Thus, we analyzed the potential effectiveness of synthesized AgNPs in inhibiting QS-regulated virulence factors and biofilm formation in both strains of bacteria. In C. violaceum, the synthesized AgNPs significantly inhibited both violacein (85.18% at 1/2 × MIC) and acyl homoserine lactone (78.76% at 1/2 × MIC). QS inhibitory activity was also demonstrated in P. aeruginosa at a sub-MIC concentration (1/2 × MIC) by a reduction in pyocyanin activity (68.83%), total protease (68.50%), LasA activity (63.91%), and LasB activity (56.40%). Additionally, the exopolysaccharide production was significantly reduced in both C. violaceum (65.79% at 1/2 × MIC) and P. aeruginosa (57.65% at 1/2 × MIC). The formation of biofilm was also significantly inhibited at 1/2 × MIC in C. violaceum (76.49%) and in P. aeruginosa (65.31%). Moreover, a GC–MS analysis confirmed the presence of different classes of bioactive phytochemical constituents present in the leaf extract of E. sativa. On the basis of our results, we conclude that biologically synthesized AgNPs showed numerous multifunctional properties and have the potential to be used against human cancer and bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Eyad Al-Shammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (R.B.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (R.B.)
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India;
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Buraydah 58883, Saudi Arabia;
| | - Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (R.B.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
- Correspondence:
| |
Collapse
|
28
|
New Insights on Acanthus ebracteatus Vahl: UPLC-ESI-QTOF-MS Profile, Antioxidant, Antimicrobial and Anticancer Activities. Molecules 2022; 27:molecules27061981. [PMID: 35335344 PMCID: PMC8954823 DOI: 10.3390/molecules27061981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022] Open
Abstract
This study investigated the antioxidant, antimicrobial, anticancer, and phytochemical profiling of extracts from the leaves and stem/root of Acanthus ebracteatus (AE). The total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical-scavenging activity, 2, 2′-azino-Bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activity, metal chelating activities (MCA), ferric reducing antioxidant power (FRAP) and oxygen radical antioxidant capacity (ORAC) were used for antioxidant assessment. The ethanolic extracts of the leaves (AEL-nor) and stem/root (AEWP-nor) without chlorophyll removal and those with chlorophyll removal, using sedimentation process (AEL-sed and AEWP-sed), were prepared. Generally, AEL-sed showed the highest antioxidant activity (FRAP: 1113.2 µmol TE/g; ORAC: 11.52 µmol TE/g; MCA: 47.83 µmol EDTA/g; ABTS 67.73 µmol TE/g; DPPH 498.8 µmol TE/g; TPC: 140.50 mg/GAE g and TFC: 110.40 mg/CE g) compared with other extracts. Likewise, AEL-sed also showed the highest bacteriostatic (MIC) and bactericidal (MBC) effects, as well as the highest anticancer and antiproliferative activity against oral squamous carcinoma (CLS-354/WT) cells. UPLC-ESI-QTOF/MS analysis of AEL-sed and AEWP-sed tentatively identified several bioactive compounds in the extracts, including flavonoids, phenols, iridoids, and nucleosides. Our results provide a potentially valuable application for A. ebracteatus, especially in further exploration of the plant in oxidative stress-related disorders, as well as the application of the plant as potential nutraceuticals and cosmeceuticals.
Collapse
|