1
|
Đulović A, Manase MJ, Čulić VČ, Burčul F, Rollin P, Blažević I. Glucosinolate Profiles of Capparis spp. and Maerua baillonii (Capparaceae) and Cytotoxicity of Methyl Isothiocyanate-Rich Isolates From Capparis spinosa subsp. rupestris. Chem Biodivers 2024:e202402573. [PMID: 39570197 DOI: 10.1002/cbdv.202402573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
This study investigates the glucosinolate profiles of various Capparis spp. and Maerua baillonii, from the Capparaceae family, and evaluates the cytotoxic potential of volatile isolates from Capparis spinosa subsp. rupestris. Using UHPLC-DAD-MS/MS, GSLs were identified and quantified across different plant tissues. Glucocapparin, predominant glucosinolate in C. spinosa subsp. spinosa, C. spinosa subsp. rupestris, and M. baillonii, were isolated and analyzed by NMR in its desulfo-form. Notably, glucosinolates were absent in C. richardii and specific tissues of M. baillonii (e.g., leaves and stems), underscoring species and/or tissue-specific variability within Capparaceae. Less common glucosinolates for Capparaceae plants, such as glucocochlearin, glucohirsutin, and glucoarabin were also detected. Methyl isothiocyanate was found to be the main volatile in all isolates obtained through various isolation methods, comprising ca. 80%-90% of the total volatiles. Methyl isothiocyanate-rich volatile isolates were tested for cytotoxicity against human breast cancer (MDA-MB-231) and bladder cancer (T24) cell lines using the MTT assay, showing significant activity with IC50 values of 3.81 and 5.95 µg/mL, respectively. These findings underscore the anticancer potential of glucocapparin-bearing plants from the Capparaceae family.
Collapse
Affiliation(s)
- Azra Đulović
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | | | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Split, Croatia
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | | | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| |
Collapse
|
2
|
Tossetta G, Fantone S, Togni L, Santarelli A, Olivieri F, Marzioni D, Rippo MR. Modulation of NRF2/KEAP1 Signaling by Phytotherapeutics in Periodontitis. Antioxidants (Basel) 2024; 13:1270. [PMID: 39456522 PMCID: PMC11504014 DOI: 10.3390/antiox13101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Periodontitis affects up to 40% of adults over 60 years old and is a consequence of gingivitis. Periodontitis is characterized by a chronic inflammation, periodontal damage, and alveolar bone resorption. The nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2)/Kelch-like ECH-Associated Protein 1 (KEAP1) (NRF2/KEAP1) signaling pathway plays a key role in periodontitis by modulating redox balance and inflammation of the periodontium. However, NRF2 expression is decreased in gingival tissues of patients with periodontitis while oxidative stress is significantly increased in this pathology. Oxidative stress and lipopolysaccharide (LPS) produced by gram-negative bacteria favor the production of inflammatory causing periodontal inflammation and favoring alveolar bone. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating the NRF2/KEAP1 pathway in in vitro and in vivo models of periodontitis in order to evaluate new potential treatments of periodontitis that can improve the outcome of this disease.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sonia Fantone
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
| | - Lucrezia Togni
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
| | - Andrea Santarelli
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, 60126 Ancona, Italy
| | - Fabiola Olivieri
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
- IRCCS INRCA, 60124 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
3
|
Campagna R, Mazzanti L, Pompei V, Alia S, Vignini A, Emanuelli M. The Multifaceted Role of Endothelial Sirt1 in Vascular Aging: An Update. Cells 2024; 13:1469. [PMID: 39273039 PMCID: PMC11394039 DOI: 10.3390/cells13171469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAD+-dependent deacetylase sirtuin-1 (Sirt1) belongs to the sirtuins family, known to be longevity regulators, and exerts a key role in the prevention of vascular aging. By aging, the expression levels of Sirt1 decline with a severe impact on vascular function, such as the rise of endothelial dysfunction, which in turn promotes the development of cardiovascular diseases. In this context, the impact of Sirt1 activity in preventing endothelial senescence is particularly important. Given the key role of Sirt1 in counteracting endothelial senescence, great efforts have been made to deepen the knowledge about the intricate cross-talks and interactions of Sirt1 with other molecules, in order to set up possible strategies to boost Sirt1 activity to prevent or treat vascular aging. The aim of this review is to provide a proper background on the regulation and function of Sirt1 in the vascular endothelium and to discuss the recent advances regarding the therapeutic strategies of targeting Sirt1 to counteract vascular aging.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Laura Mazzanti
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Fondazione Salesi, Ospedale G. Salesi, 60100 Ancona, Italy
| | - Veronica Pompei
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Sonila Alia
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| |
Collapse
|
4
|
Tossetta G, Inversetti A. Special Issue "Ovarian Cancer: Advances on Pathophysiology and Therapies". Int J Mol Sci 2024; 25:5282. [PMID: 38791323 PMCID: PMC11121163 DOI: 10.3390/ijms25105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Ovarian cancer is a gynecologic cancer with a high mortality rate, and its incidence has increased significantly over the past 50 years [...].
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
5
|
Tossetta G. Special Issue "Physiology and Pathophysiology of Placenta 2.0". Int J Mol Sci 2024; 25:4586. [PMID: 38731805 PMCID: PMC11083717 DOI: 10.3390/ijms25094586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
We are pleased to present this Special Issue of the International Journal of Molecular Sciences, entitled "Physiology and Pathophysiology of Placenta 2 [...].
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
6
|
Gong Z, Xue L, Li H, Fan S, van Hasselt CA, Li D, Zeng X, Tong MCF, Chen GG. Targeting Nrf2 to treat thyroid cancer. Biomed Pharmacother 2024; 173:116324. [PMID: 38422655 DOI: 10.1016/j.biopha.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Oxidative stress (OS) is recognized as a contributing factor in the development and progression of thyroid cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor involved in against OS generated by excessive reactive oxygen species (ROS). It governs the expression of a wide array of genes implicated in detoxification and antioxidant pathways. However, studies have demonstrated that the sustained activation of Nrf2 can contribute to tumor progression and drug resistance in cancers. The expression of Nrf2 was notably elevated in papillary thyroid cancer tissues compared to normal tissues, indicating that Nrf2 may play an oncogenic role in the development of papillary thyroid cancer. Nrf2 and its downstream targets are involved in the progression of thyroid cancer by impacting the prognosis and ferroptosis. Furthermore, the inhibition of Nrf2 can increase the sensitivity of target therapy in thyroid cancer. Therefore, Nrf2 appears to be a potential therapeutic target for the treatment of thyroid cancer. This review summarized current data on Nrf2 expression in thyroid cancer, discussed the function of Nrf2 in thyroid cancer, and analyzed various strategies to inhibit Nrf2.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Lingbin Xue
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Charles Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Dongcai Li
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Xianhai Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| |
Collapse
|
7
|
Tossetta G. Special Issue "Physiology and Pathophysiology of the Placenta". Int J Mol Sci 2024; 25:3594. [PMID: 38612405 PMCID: PMC11011824 DOI: 10.3390/ijms25073594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The placenta is a transient but essential organ for normal in utero development, playing several essential functions in normal pregnancy [...].
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
8
|
Campagna R, Serritelli EN, Salvolini E, Schiavoni V, Cecati M, Sartini D, Pozzi V, Emanuelli M. Contribution of the Paraoxonase-2 Enzyme to Cancer Cell Metabolism and Phenotypes. Biomolecules 2024; 14:208. [PMID: 38397445 PMCID: PMC10886763 DOI: 10.3390/biom14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Paraoxonase-2 (PON2) is a ubiquitously expressed intracellular protein that is localized in the perinuclear region, the endoplasmic reticulum (ER), and mitochondria, and is also associated with the plasma membrane. PON2 functions as an antioxidant enzyme by reducing the levels of reactive oxygen species (ROS) in the mitochondria and ER through different mechanisms, thus having an anti-apoptotic effect and preventing the formation of atherosclerotic lesions. While the antiatherogenic role played by this enzyme has been extensively explored within endothelial cells in association with vascular disorders, in the last decade, great efforts have been made to clarify its potential involvement in both blood and solid tumors, where PON2 was reported to be overexpressed. This review aims to deeply and carefully examine the contribution of this enzyme to different aspects of tumor cells by promoting the initiation, progression, and spread of neoplasms.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Emma Nicol Serritelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
9
|
Fantone S, Piani F, Olivieri F, Rippo MR, Sirico A, Di Simone N, Marzioni D, Tossetta G. Role of SLC7A11/xCT in Ovarian Cancer. Int J Mol Sci 2024; 25:587. [PMID: 38203758 PMCID: PMC10779187 DOI: 10.3390/ijms25010587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic cancers worldwide and has a high fatality rate due to diagnosis at an advanced stage of the disease as well as a high recurrence rate due to the occurrence of chemotherapy resistance. In fact, chemoresistance weakens the therapeutic effects, worsening the outcome of this pathology. Solute Carrier Family 7 Member 11 (SLC7A11, also known as xCT) is the functional subunit of the Xc- system, an anionic L-cystine/L-glutamate antiporter expressed on the cell surface. SLC7A11 expression is significantly upregulated in several types of cancers in which it can inhibit ferroptosis and favor cancer cell proliferation, invasion and chemoresistance. SLC7A11 expression is also increased in ovarian cancer tissues, suggesting a possible role of this protein as a therapeutic target. In this review, we provide an overview of the current literature regarding the role of SLC7A11 in ovarian cancer to provide new insights on SLC7A11 modulation and evaluate the potential role of SLC7A11 as a therapeutic target.
Collapse
Affiliation(s)
- Sonia Fantone
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
| | - Federica Piani
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Fabiola Olivieri
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Angelo Sirico
- Obstetrics and Gynecology Unit, Sant’Anna e San Sebastiano Hospital, 81100 Caserta, Italy;
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
10
|
Morresi C, Luccarini A, Marcheggiani F, Ferretti G, Damiani E, Bacchetti T. Modulation of paraoxonase-2 in human dermal fibroblasts by UVA-induced oxidative stress: A new potential marker of skin photodamage. Chem Biol Interact 2023; 384:110702. [PMID: 37717644 DOI: 10.1016/j.cbi.2023.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Paraoxonase-2 (PON2) is an intracellular protein, that exerts a protective role against cell oxidative stress and apoptosis. Genetic and environmental factors (i.e. dietary factors, cigarette smoke, drugs) are able to modulate cellular PON2 levels. The effect of ultraviolet A radiation (UVA), the oxidizing component of sunlight, on PON2 in human dermal fibroblasts (HuDe) has not been previously explored. Excessive UVA radiation is known to cause direct and indirect skin damage by influencing intracellular signalling pathways through oxidative stress mediated by reactive oxygen species (ROS) that modulate the expression of downstream genes involved in different processes, e.g. skin photoaging and cancer. The aim of this study was, therefore, to investigate the modulation of PON2 in terms of protein expression and enzyme activity in HuDe exposed to UVA (270 kJ/m2). Our results show that PON2 is up-regulated immediately after UVA exposure and that its levels and activity decrease in the post-exposure phase, in a time-dependent manner (2-24 h). The trend in PON2 levels mirror the time-course study of UVA-induced ROS. To confirm this, experiments were also performed in the presence of a SPF30 sunscreen used as shielding agent to revert modulation of PON2 at 0 and 2 h post-UVA exposure where other markers of photo-oxidative stress were also examined (NF-KB, γH2AX, advanced glycation end products). Overall, our results show that the upregulation of PON2 might be related to the increase in intracellular ROS and may play an important role in mitigation of UVA-mediated damage and in the prevention of the consequences of UV exposure, thus representing a new marker of early-response to UVA-induced damage in skin fibroblasts.
Collapse
Affiliation(s)
- Camilla Morresi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Alessia Luccarini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy.
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy.
| |
Collapse
|
11
|
Kuhn E, Natacci F, Corbo M, Pisani L, Ferrero S, Bulfamante G, Gambini D. The Contribution of Oxidative Stress to NF1-Altered Tumors. Antioxidants (Basel) 2023; 12:1557. [PMID: 37627552 PMCID: PMC10451967 DOI: 10.3390/antiox12081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The neurofibromatosis-1 gene (NF1) was initially characterized because its germline mutation is responsible for an inherited syndromic disease predisposing tumor development, in particular neurofibromas but also various malignancies. Recently, large-scale tumor sequencing efforts have demonstrated NF1 as one of the most frequently mutated genes in human cancer, being mutated in approximately 5-10% of all tumors, especially in malignant peripheral nerve sheath tumors and different skin tumors. NF1 acts as a tumor suppressor gene that encodes neurofibromin, a large protein that controls neoplastic transformation through several molecular mechanisms. On the other hand, neurofibromin loss due to NF1 biallelic inactivation induces tumorigenic hyperactivation of Ras and mTOR signaling pathways. Moreover, neurofibromin controls actin cytoskeleton structure and the metaphase-anaphase transition. Consequently, neurofibromin deficiency favors cell mobility and proliferation as well as chromosomal instability and aneuploidy, respectively. Growing evidence supports the role of oxidative stress in NF1-related tumorigenesis. Neurofibromin loss induces oxidative stress both directly and through Ras and mTOR signaling activation. Notably, innovative therapeutic approaches explore drug combinations that further increase reactive oxygen species to boost the oxidative unbalance of NF1-altered cancer cells. In our paper, we review NF1-related tumors and their pathogenesis, highlighting the twofold contribution of oxidative stress, both tumorigenic and therapeutic.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Natacci
- Medical Genetics Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Human Pathology and Molecular Pathology, TOMA Advanced Biomedical Assays S.p.A., 21052 Busto Arsizio, Italy
| | - Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| |
Collapse
|
12
|
Tossetta G, Inversetti A. Ovarian Cancer: Advances in Pathophysiology and Therapies. Int J Mol Sci 2023; 24:ijms24108930. [PMID: 37240277 DOI: 10.3390/ijms24108930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
We are pleased to present this Special Issue of the International Journal of Molecular Sciences, entitled "Ovarian Cancer: Advances in Pathophysiology and Therapies" [...].
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
13
|
Tossetta G, Fantone S, Goteri G, Giannubilo SR, Ciavattini A, Marzioni D. The Role of NQO1 in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24097839. [PMID: 37175546 PMCID: PMC10178676 DOI: 10.3390/ijms24097839] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic malignancies showing a high fatality rate because of late diagnosis and relapse occurrence due to chemoresistance onset. Several researchers reported that oxidative stress plays a key role in ovarian cancer occurrence, growth and development. The NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that, using NADH or NADPH as substrates to reduce quinones to hydroquinones, avoids the formation of the highly reactive semiquinones, then protecting cells against oxidative stress. In this review, we report evidence from the literature describing the effect of NQO1 on ovarian cancer onset and progression.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
14
|
Effect of Sphingomyelinase-Treated LDLs on HUVECs. Molecules 2023; 28:molecules28052100. [PMID: 36903354 PMCID: PMC10004656 DOI: 10.3390/molecules28052100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Low-density lipoproteins (LDLs) exert a key role in the transport of esterified cholesterol to tissues. Among the atherogenic modifications of LDLs, the oxidative modification has been mainly investigated as a major risk factor for accelerating atherogenesis. Since LDL sphingolipids are also emerging as important regulators of the atherogenic process, increasing attention is devoted to the effects of sphingomyelinase (SMase) on LDL structural and atherogenic properties. The aims of the study were to investigate the effect of SMase treatment on the physical-chemical properties of LDLs. Moreover, we evaluated cell viability, apoptosis, and oxidative and inflammatory status in human umbilical vein endothelial cells (HUVECs) treated with either ox-LDLs or SMase-treated LDLs (SMase-LDLs). Both treatments were associated with the accrual of the intracellular ROS and upregulation of the antioxidant Paraoxonase 2 (PON2), while only SMase-LDLs induced an increase of superoxide dismutase 2 (SOD2), suggesting the activation of a feedback loop to restrain the detrimental effects of ROS. The increased caspase-3 activity and reduced viability observed in cells treated with SMase-LDLs and ox-LDLs suggest a pro-apoptotic effect of these modified lipoproteins on endothelial cells. Moreover, a strong proinflammatory effect of SMase-LDLs compared to ox-LDLs was confirmed by an increased activation of NF-κB and consequent increased expression of its downstream cytokines IL-8 and IL-6 in HUVECs.
Collapse
|
15
|
Redox Regulation of Autophagy in Cancer: Mechanism, Prevention and Therapy. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010098. [PMID: 36676047 PMCID: PMC9863886 DOI: 10.3390/life13010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS), products of normal cellular metabolism, play an important role in signal transduction. Autophagy is an intracellular degradation process in response to various stress conditions, such as nutritional deprivation, organelle damage and accumulation of abnormal proteins. ROS and autophagy both exhibit double-edged sword roles in the occurrence and development of cancer. Studies have shown that oxidative stress, as the converging point of these stimuli, is involved in the mechanical regulation of autophagy process. The regulation of ROS on autophagy can be roughly divided into indirect and direct methods. The indirect regulation of autophagy by ROS includes post-transcriptional and transcriptional modulation. ROS-mediated post-transcriptional regulation of autophagy includes the post-translational modifications and protein interactions of AMPK, Beclin 1, PI3K and other molecules, while transcriptional regulation mainly focuses on p62/Keap1/Nrf2 pathway. Notably, ROS can directly oxidize key autophagy proteins, such as ATG4 and p62, leading to the inhibition of autophagy pathway. In this review, we will elaborate the molecular mechanisms of redox regulation of autophagy in cancer, and discuss ROS- and autophagy-based therapeutic strategies for cancer treatment.
Collapse
|