1
|
Zhu Y, Li X, Lei X, Tang L, Wen D, Zeng B, Zhang X, Huang Z, Guo Z. The potential mechanism and clinical application value of remote ischemic conditioning in stroke. Neural Regen Res 2025; 20:1613-1627. [PMID: 38845225 DOI: 10.4103/nrr.nrr-d-23-01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 08/07/2024] Open
Abstract
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Liu J, Zhao W, Guo J, Kang K, Li H, Yang X, Li J, Wang Q, Qiao H. Electroacupuncture alleviates motor dysfunction by regulating neuromuscular junction disruption and neuronal degeneration in SOD1 G93A mice. Brain Res Bull 2024; 216:111036. [PMID: 39084570 DOI: 10.1016/j.brainresbull.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the progressive destruction of the neuromuscular junction (NMJ) and the degeneration of motor neurons, eventually leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. NMJs, synaptic connections between motor neurons and skeletal muscle fibers, are extremely fragile in ALS. To determine the effects of early electroacupuncture (EA) intervention on nerve reinnervation and regeneration following injury, a model of sciatic nerve injury (SNI) was first established using SOD1G93A mice, and early electroacupuncture (EA) intervention was conducted at Baihui (DU20), and bilateral Zusanli (ST36). The results revealed that EA increased the Sciatic nerve Functional Index, the structural integrity of the gastrocnemius muscles, and the cross-sectional area of muscle fibers, as well as up-regulated the expression of acetylcholinesterase and facilitated the co-location of α7 nicotinic acetate choline receptors and α-actinin. Overall, these results suggested that EA can promote the repair and regeneration of injured nerves and delay NMJ degeneration in SOD1G93A-SNI mice. Moreover, analysis of the cerebral cortex demonstrated that EA alleviated cortical motor neuron damage in SOD1G93A mice, potentially attributed to the inhibition of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and the release of interferon-β suppressing the activation of natural killer cells and the secretion of interferon-γ, thereby further inhibiting microglial activation and the expression of inflammatory factors. In summary, EA delayed the degeneration of NMJ and mitigated the loss of cortical motor neurons, thus delaying disease onset, accompanied by alleviation of muscle atrophy and improvements in motor function in SOD1G93A mice.
Collapse
Affiliation(s)
- Junyang Liu
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Weijia Zhao
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jie Guo
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Kaiwen Kang
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hua Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaohang Yang
- Shaanxi Provincial Key Laboratory of Acupuncture and Drug Combination, Xianyang 712046, China
| | - Jie Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qiang Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Haifa Qiao
- Shaanxi Provincial Key Laboratory of Acupuncture and Drug Combination, Xianyang 712046, China.
| |
Collapse
|
3
|
Wang L, Cai Z, Gu Q, Xu C. cGAS Deficiency Regulates the Phenotypic Polarization and Glycolysis of Microglia Through Lactylation in Hypoxic-Ischemic Encephalopathy Cell Model. Biochem Genet 2024; 62:3961-3976. [PMID: 38246965 DOI: 10.1007/s10528-023-10631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Promoting the M2 phenotype polarization of microglia is of great significance in alleviating hypoxic-ischemic encephalopathy (HIE). The umbilical artery blood sample was collected to evaluate the expression of cGAS, and the aberrant expressed cGAS was verified in the oxygen glucose deprivation (OGD) microglia which was established to mimic HIE in vitro. Then the regulating role of cGAS on the transformation of microglia M2 phenotype polarization and glycolysis was investigated. Moreover, the lactylation of cGAS in OGD treated microglia was evaluated by western blot. cGAS was found to be highly expressed in umbilical artery blood of HIE group, and OGD treated microglia. OGD interference activated microglia into M1 phenotype by enhancing CD86 and suppressing CD206 levels; meanwhile, the microglia in OGD group highly expressed IL-1β, iNOS and TNF-α, and lowly expressed IL-4, IL-10, and Arg-1. Inhibition of cGAS promotes the transformation of microglia from M1 to M2 phenotype. Meanwhile, OGD increased ECAR and decreased OCR to regulate glycolysis, cGAS deficiency inhibits glycolysis in OGD treated microglia. Moreover, the pan lysine lactylation (Pan-Kla) levels and lactated cGAS levels in microglia were upregulated in the OGD group. Lactate reversed the effects of cGAS knockdown on microglia polarization and glycolysis. The present study reveals that the cGAS-mediated neuron injury is associated with high level of cGAS lactylation. Inhibition of cGAS promotes the M2 phenotype polarization of microglia and suppress glycolysis. Thereby, targeting cGAS provides a new strategy for the development of therapeutic agents against HIE.
Collapse
Affiliation(s)
- Lisheng Wang
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China
| | - Zhonghua Cai
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China
| | - Qi Gu
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China
| | - Changli Xu
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China.
| |
Collapse
|
4
|
Shi Y, Ma Y, Liao J. Advancements in the mechanisms of Naotai formula in treating stroke: A multi-target strategy. Heliyon 2024; 10:e36748. [PMID: 39296232 PMCID: PMC11408019 DOI: 10.1016/j.heliyon.2024.e36748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Stroke represents a significant global health challenge, characterized by high incidence, mortality, disability, and recurrence rates, leading to substantial socioeconomic burdens. Despite advancements in acute management and prevention, effective post-stroke recovery strategies remain limited. Naotai Formula (NTF), a traditional Chinese medicine compound, has garnered attention for its potential in stroke treatment, encompassing both ischemic and hemorrhagic types. This review synthesizes recent advancements in basic and clinical research on NTF, focusing on its mechanisms of action in stroke therapy. The formula's multifaceted effects include promoting neuronal regeneration, combating oxidative stress, regulating lipid metabolism, and modulating iron homeostasis. Through a multi-target approach, NTF addresses the complex pathophysiology of stroke, suggesting a promising complementary strategy for stroke recovery. Despite promising findings, further research is required to elucidate its active components, potential side effects, and optimized therapeutic protocols. The integration of traditional Chinese medicine, like NTF, with conventional treatments may enhance stroke management strategies, urging the need for high-quality clinical trials and evidence-based guidelines.
Collapse
Affiliation(s)
- Yongmei Shi
- Anatomy Teaching Center of Hunan University of Traditional Chinese Medicine, China
| | - Yingmin Ma
- Department of Otolaryngology, Head and Neck Surgery, Changsha Hospital Affiliated to University of South China, China
| | - Jun Liao
- Anatomy Teaching Center of Hunan University of Traditional Chinese Medicine, China
| |
Collapse
|
5
|
Sun Y, Sun W, Liu J, Zhang B, Zheng L, Zou W. The dual role of microglia in intracerebral hemorrhage. Behav Brain Res 2024; 473:115198. [PMID: 39128628 DOI: 10.1016/j.bbr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Intracerebral hemorrhage has the characteristics of high morbidity, disability and mortality, which has caused a heavy burden to families and society. Microglia are resident immune cells in the central nervous system, and their activation plays a dual role in tissue damage after intracerebral hemorrhage. The damage in cerebral hemorrhage is embodied in the following aspects: releasing inflammatory factors and inflammatory mediators, triggering programmed cell death, producing glutamate induced excitotoxicity, and destroying blood-brain barrier; The protective effect is reflected in the phagocytosis and clearance of harmful substances by microglia, and the secretion of anti-inflammatory and neurotrophic factors. This article summarizes the function of microglia and its dual regulatory mechanism in intracerebral hemorrhage. In the future, drugs, acupuncture and other clinical treatments can be used to intervene in the activation state of microglia, so as to reduce the harm of microglia.
Collapse
Affiliation(s)
- Yue Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Wentao Sun
- Faculty of Chinese Medicine Sciense Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Baiwen Zhang
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lei Zheng
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
6
|
Dingyi L, Libin H, Jifeng P, Ding Z, Yulong L, Zhangyi W, Yunong Y, Qinghua W, Feng L. Silencing CXCL16 alleviate neuroinflammation and M1 microglial polarization in mouse brain hemorrhage model and BV2 cell model through PI3K/AKT pathway. Exp Brain Res 2024; 242:1917-1932. [PMID: 38896294 DOI: 10.1007/s00221-024-06875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Neuroinflammation and microglia polarization play pivotal roles in brain injury induced by intracerebral hemorrhage (ICH). Despite the well-established involvement of CXC motif chemokine ligand 16 (CXCL16) in regulating inflammatory responses across various diseases, its specific functions in the context of neuroinflammation and microglial polarization following ICH remain elusive. In this study, we investigated the impact of CXCL16 on neuroinflammation and microglia polarization using both mouse and cell models. Our findings revealed elevated CXCL16 expression in mice following ICH and in BV2 cells after lipopolysaccharide (LPS) stimulation. Specific silencing of CXCL16 using siRNA led to a reduction in the expression of neuroinflammatory factors, including IL-1β and IL-6, as well as decreased expression of the M1 microglia marker iNOS. Simultaneously, it enhanced the expression of anti-inflammatory factors such as IL-10 and the M2 microglia marker Arg-1. These results were consistent across both mouse and cell models. Intriguingly, co-administration of the PI3K-specific agonist 740 Y-P with siRNA in LPS-stimulated cells reversed the effects of siRNA. In conclusion, silencing CXCL16 can positively alleviate neuroinflammation and M1 microglial polarization in BV2 inflammation models and ICH mice. Furthermore, in BV2 cells, this beneficial effect is mediated through the PI3K/Akt pathway. Inhibition of CXCL16 could be a novel approach for treating and diagnosing cerebral hemorrhage.
Collapse
Affiliation(s)
- Lv Dingyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Hu Libin
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Piao Jifeng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhiquan Ding
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Li Yulong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wu Zhangyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yin Yunong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wang Qinghua
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Li Feng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
7
|
Jia P, Peng Q, Fan X, Zhang Y, Xu H, Li J, Sonita H, Liu S, Le A, Hu Q, Zhao T, Zhang S, Wang J, Zille M, Jiang C, Chen X, Wang J. Immune-mediated disruption of the blood-brain barrier after intracerebral hemorrhage: Insights and potential therapeutic targets. CNS Neurosci Ther 2024; 30:e14853. [PMID: 39034473 PMCID: PMC11260770 DOI: 10.1111/cns.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
AIMS Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response. DISCUSSION A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH. However, the precise immunological influence of BBB disruption has yet to be richly ascertained, especially at various stages of ICH. CONCLUSION This review summarizes the changes in different cell types and molecular components of the BBB associated with immune-inflammatory responses during ICH. Furthermore, it highlights promising immunoregulatory therapies to protect the integrity of the BBB after ICH. By offering a comprehensive understanding of the mechanisms behind BBB damage linked to cellular and molecular immunoinflammatory responses after ICH, this article aimed to accelerate the identification of potential therapeutic targets and expedite further translational research.
Collapse
Affiliation(s)
- Peijun Jia
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qinfeng Peng
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Xiaochong Fan
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yumeng Zhang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Hanxiao Xu
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jiaxin Li
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Houn Sonita
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Simon Liu
- David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Anh Le
- George Washington School of Medicine and Health SciencesWashingtonDCUSA
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouHenanChina
| | - Ting Zhao
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shijie Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Marietta Zille
- Division of Pharmacology and Toxicology, Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuemei Chen
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jian Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
8
|
Shang Y, Zheng L, Du Y, Shang T, Liu X, Zou W. Role of Regulatory T Cells in Intracerebral Hemorrhage. Mol Neurobiol 2024:10.1007/s12035-024-04281-7. [PMID: 38877366 DOI: 10.1007/s12035-024-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease that can lead to severe neurological dysfunction in surviving patients, resulting in a heavy burden on patients and their families. When ICH occurs, the blood‒brain barrier is disrupted, thereby promoting immune cell migration into damaged brain tissue. As important immunosuppressive T cells, regulatory T (Treg) cells are involved in the maintenance of immune homeostasis and the suppression of immune responses after ICH. Treg cells mitigate brain tissue damage after ICH in a variety of ways, such as inhibiting the neuroinflammatory response, protecting against blood‒brain barrier damage, reducing oxidative stress damage and promoting nerve repair. In this review, we discuss the changes in Treg cells in ICH clinical patients and experimental animals, the mechanisms by which Treg cells regulate ICH and treatments targeting Treg cells in ICH, aiming to support new therapeutic strategies for clinical treatment.
Collapse
Affiliation(s)
- Yaxin Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Yunpeng Du
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Tong Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Xueting Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Wang J, Gu D, Jin K, Shen H, Qian Y. Egr1 promotes Nlrc4-dependent neuronal pyroptosis through phlda1 in an in-vitro model of intracerebral hemorrhage. Neuroreport 2024; 35:590-600. [PMID: 38652514 DOI: 10.1097/wnr.0000000000002035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Intracerebral hemorrhage (ICH) is a fatal brain injury, but the current treatments for it are inadequate to reduce the severity of secondary brain injury. Our study aims to explore the molecular mechanism of Egr1 and Phlda1 in regulating hemin-induced neuronal pyroptosis, and hope to provide novel therapeutic targets for ICH treatment. Mouse hippocampal neuron cells treated with hemin were used to simulate an in-vitro ICH model. Using qRT-PCR and western blot to evaluate mRNA and protein concentrations. MTT assay was utilized to assess cell viability. LDH levels were determined by lactate Dehydrogenase Activity Assay Kit. IL-1β and IL-18 levels were examined by ELISA. The interaction of Egr1 and Phlda1 promoter was evaluated using chromatin immunoprecipitation and dual-luciferase reporter assays. Egr1 and Phlda1 were both upregulated in HT22 cells following hemin treatment. Hemin treatment caused a significant reduction in HT22 cell viability, an increase in Nlrc4 and HT22 cell pyroptosis, and heightened inflammation. However, knocking down Egr1 neutralized hemin-induced effects on HT22 cells. Egr1 bound to the promoter of Phlda1 and transcriptionally activated Phlda1. Silencing Phlda1 significantly reduced Nlrc4-dependent neuronal pyroptosis. Conversely, overexpressing Phlda1 mitigated the inhibitory effects of Egr1 knockdown on Nlrc4 and neuronal pyroptosis during ICH. Egr1 enhanced neuronal pyroptosis mediated by Nlrc4 under ICH via transcriptionally activating Phlda1.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurosurgery, Taicang Hospital of Traditional Chinese Medicine, Taicang, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
10
|
Wang XP, Guo W, Chen YF, Hong C, Ji J, Zhang XY, Dong YF, Sun XL. PD-1/PD-L1 axis is involved in the interaction between microglial polarization and glioma. Int Immunopharmacol 2024; 133:112074. [PMID: 38615383 DOI: 10.1016/j.intimp.2024.112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The tumor microenvironment plays a vital role in glioblastoma growth and invasion. PD-1 and PD-L1 modulate the immunity in the brain tumor microenvironment. However, the underlying mechanisms remain unclear. In the present study, in vivo and in vitro experiments were conducted to reveal the effects of PD-1/PD-L1 on the crosstalk between microglia and glioma. Results showed that glioma cells secreted PD-L1 to the peritumoral areas, particularly microglia containing highly expressed PD-1. In the early stages of glioma, microglia mainly polarized into the pro-inflammatory subtype (M1). Subsequently, the secreted PD-L1 accumulated and bound to PD-1 on microglia, facilitating their polarization toward the microglial anti-inflammatory (M2) subtype primarily via the STAT3 signaling pathway. The role of PD-1/PD-L1 in M2 polarization of microglia was partially due to PD-1/PD-L1 depletion or application of BMS-1166, a novel inhibitor of PD-1/PD-L1. Consistently, co-culturing with microglia promoted glioma cell growth and invasion, and blocking PD-1/PD-L1 significantly suppressed these processes. Our findings reveal that the PD-1/PD-L1 axis engages in the microglial M2 polarization in the glioma microenvironment and promotes tumor growth and invasion.
Collapse
Affiliation(s)
- Xi-Peng Wang
- Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Wei Guo
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ye-Fan Chen
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Chen Hong
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xi-Yue Zhang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xiu-Lan Sun
- Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Zhang P, Gao C, Guo Q, Yang D, Zhang G, Lu H, Zhang L, Zhang G, Li D. Single-cell RNA sequencing reveals the evolution of the immune landscape during perihematomal edema progression after intracerebral hemorrhage. J Neuroinflammation 2024; 21:140. [PMID: 38807233 PMCID: PMC11131315 DOI: 10.1186/s12974-024-03113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Perihematomal edema (PHE) after post-intracerebral hemorrhage (ICH) has complex pathophysiological mechanisms that are poorly understood. The complicated immune response in the post-ICH brain constitutes a crucial component of PHE pathophysiology. In this study, we aimed to characterize the transcriptional profiles of immune cell populations in human PHE tissue and explore the microscopic differences between different types of immune cells. METHODS 9 patients with basal ganglia intracerebral hemorrhage (hematoma volume 50-100 ml) were enrolled in this study. A multi-stage profile was developed, comprising Group1 (n = 3, 0-6 h post-ICH, G1), Group2 (n = 3, 6-24 h post-ICH, G2), and Group3 (n = 3, 24-48 h post-ICH, G3). A minimal quantity of edematous tissue surrounding the hematoma was preserved during hematoma evacuation. Single cell RNA sequencing (scRNA-seq) was used to map immune cell populations within comprehensively resected PHE samples collected from patients at different stages after ICH. RESULTS We established, for the first time, a comprehensive landscape of diverse immune cell populations in human PHE tissue at a single-cell level. Our study identified 12 microglia subsets and 5 neutrophil subsets in human PHE tissue. What's more, we discovered that the secreted phosphoprotein-1 (SPP1) pathway served as the basis for self-communication between microglia subclusters during the progression of PHE. Additionally, we traced the trajectory branches of different neutrophil subtypes. Finally, we also demonstrated that microglia-produced osteopontin (OPN) could regulate the immune environment in PHE tissue by interacting with CD44-positive cells. CONCLUSIONS As a result of our research, we have gained valuable insight into the immune-microenvironment within PHE tissue, which could potentially be used to develop novel treatment modalities for ICH.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Cong Gao
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Qiang Guo
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Dongxu Yang
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guangning Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Lu
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Liman Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guorong Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Daojing Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
12
|
Huang Q, Wang Y, Chen S, Liang F. Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging Dis 2024; 15:1155-1175. [PMID: 37611905 PMCID: PMC11081147 DOI: 10.14336/ad.2023.0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Neurodegenerative diseases (ND) are conditions defined by progressive deterioration of the structure and function of the nervous system. Some major examples include Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). These diseases lead to various dysfunctions, like impaired cognition, memory, and movement. Chronic neuroinflammation may underlie numerous neurodegenerative disorders. Microglia, an important immunocell in the brain, plays a vital role in defending against neuroinflammation. When exposed to different stimuli, microglia are activated and assume different phenotypes, participating in immune regulation of the nervous system and maintaining tissue homeostasis. The immunological activity of activated microglia is affected by glucose metabolic alterations. However, in the context of chronic neuroinflammation, specific alterations of microglial glucose metabolism and their mechanisms of action remain unclear. Thus, in this paper, we review the glycometabolic reprogramming of microglia in ND. The key molecular targets and main metabolic pathways are the focus of this research. Additionally, this study explores the mechanisms underlying microglial glucose metabolism reprogramming in ND and offers an analysis of the most recent therapeutic advancements. The ultimate aim is to provide insights into the development of potential treatments for ND.
Collapse
Affiliation(s)
- Qi Huang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Yanfu Wang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
13
|
Charoensaensuk V, Huang BR, Huang ST, Lin C, Xie SY, Chen CW, Chen YC, Cheng HT, Liu YS, Lai SW, Shen CK, Lin HJ, Yang LY, Lu DY. LPS priming-induced immune tolerance mitigates LPS-stimulated microglial activation and social avoidance behaviors in mice. J Pharmacol Sci 2024; 154:225-235. [PMID: 38485340 DOI: 10.1016/j.jphs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sian-Ting Huang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Han-Tsung Cheng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Hui-Jung Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan; Laboratory for Neural Repair, China Medical University Hospital, Taichung, 404327, Taiwan; Biomedical Technology R&D Center, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
14
|
Tang W, Peng J, Chen L, Yu C, Wang Y, Zou F, Zheng G, Meng X. Lead inhibits microglial cell migration via suppression of store-operated calcium entry. Toxicol Lett 2024; 393:69-77. [PMID: 38281554 DOI: 10.1016/j.toxlet.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Lead (Pb) is a non-biodegradable environmental pollutant that can lead to neurotoxicity by inducing neuroinflammation. Microglial activation plays a key role in neuroinflammation, and microglial migration is one of its main features. However, whether Pb affects microglial migration has not yet been elucidated. Herein, the effect of Pb on microglial migration was investigated using BV-2 microglial cells and primary microglial cells. The results showed that cell activation markers (TNF-α and CD206) in BV-2 cells were increased after Pb treatment. The migration ability of microglia was inhibited by Pb. Both store-operated calcium entry (SOCE) and the Ca2+ release-activated Ca2+ (CRAC) current were downregulated by microglia treatment with Pb in a dose-dependent manner. However, there was no statistical difference in the protein levels of stromal interaction molecule (STIM) 1, STIM2, or Ca2+ release-activated Ca2+ channel protein (Orai) 1 in microglia. The external Ca2+ influx and cell migration ability were restored to a certain extent after overexpression of either STIM1 or its CRAC activation domain in microglia. These results indicated that Pb inhibits microglial migration by downregulation of SOCE and impairment of the function of STIM1.
Collapse
Affiliation(s)
- Wei Tang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiawen Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Changhui Yu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Yuhao Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Zheng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
15
|
Gao M, Li Y, Ho W, Chen C, Chen Q, Li F, Tang M, Fan Q, Wan J, Yu W, Xu X, Li P, Zhang XQ. Targeted mRNA Nanoparticles Ameliorate Blood-Brain Barrier Disruption Postischemic Stroke by Modulating Microglia Polarization. ACS NANO 2024; 18:3260-3275. [PMID: 38227975 DOI: 10.1021/acsnano.3c09817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The ischemic stroke is a major global health concern, with high mortality and disability rates. Unfortunately, there is a dearth of effective clinical interventions for managing poststroke neuroinflammation and blood-brain barrier (BBB) disruption that are crucial for the brain injury evolving and neurological deficits. By leveraging the pathological progression of an ischemic stroke, we developed an M2 microglia-targeting lipid nanoparticle (termed MLNP) approach that can selectively deliver mRNA encoding phenotype-switching interleukin-10 (mIL-10) to the ischemic brain, creating a beneficial feedback loop that drives microglial polarization toward the protective M2 phenotypes and augments the homing of mIL-10-loaded MLNPs (mIL-10@MLNPs) to ischemic regions. In a transient middle cerebral artery occlusion (MCAO) mouse model of an ischemic stroke, our findings demonstrate that intravenously injected mIL-10@MLNPs induce IL-10 production and enhance the M2 polarization of microglia. The resulting positive loop reinforces the resolution of neuroinflammation, restores the impaired BBB, and prevents neuronal apoptosis after stroke. Using a permanent distal MCAO mouse model of an ischemic stroke, the neuroprotective effects of mIL-10@MLNPs have been further validated by the attenuation of the sensorimotor and cognitive neurological deficits. Furthermore, the developed mRNA-based targeted therapy has great potential to extend the therapeutic time window at least up to 72 h poststroke. This study depicts a simple and versatile LNP platform for selective delivery of mRNA therapeutics to cerebral lesions, showcasing a promising approach for addressing an ischemic stroke and associated brain conditions.
Collapse
Affiliation(s)
- Mingzhu Gao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy (Shanghai Jiao Tong University), Shanghai 200240, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200127, China
| | - William Ho
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Chen Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200127, China
| | - Qijing Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy (Shanghai Jiao Tong University), Shanghai 200240, China
| | - Fengshi Li
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200127, China
- Department of Neurosurgery, Center of Cerebrovascular Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Maoping Tang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy (Shanghai Jiao Tong University), Shanghai 200240, China
| | - Qiuyue Fan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200127, China
| | - Jieqing Wan
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200127, China
- Department of Neurosurgery, Center of Cerebrovascular Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200127, China
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200127, China
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy (Shanghai Jiao Tong University), Shanghai 200240, China
| |
Collapse
|
16
|
Cui J, Wang H, Liu S, Zhao Y. New Insights into Roles of IL-7R Gene as a Therapeutic Target Following Intracerebral Hemorrhage. J Inflamm Res 2024; 17:399-415. [PMID: 38260810 PMCID: PMC10802176 DOI: 10.2147/jir.s438205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Background Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke leading to high rates of morbidity and mortality in adults. Recent studies showed that immune and inflammatory responses might play essential roles in secondary brain injury. The purpose of this article was to provide a reference for further therapeutic strategies for ICH patients. Methods GSE206971 and GSE216607 datasets from the gene expression omnibus (GEO) database were used to screen the highly immune-related differentally expressed genes (IRDEGs). We used the CIBERSORT algorithm to assess the level of immune signatures infiltration and got the possible function of IRDEGs which was analyzed through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) networks and six hub genes were identified in the Cytoscape plug-in. GSVA algorithm was performed to evaluate the potential pathways of six hub genes in ICH samples. The expression level of IL-7R chosen from six hub genes was further validated by Western blotting. The cell models of ICH were established for the research of IL-7/IL-7R signaling way. Results A total of six hub genes (ITGAX, ITGAM, CCR2, CD28, SELL, and IL-7R) were identified. IL-7R was highly expressed in the mice ICH group, as shown by immunoblotting. Next, we constructed ICH cell models in RAW264.7 cells and BV2 cells. After treatment with IL-7, iNOS expression (M1 marker) was greatly inhibited while Arg-1(M2 marker) was enhanced, and it might function via the JAK3/STAT5 signaling pathway. Conclusion The hypothesis is proposed that the IL-7/IL-7R signaling pathway might regulate the inflammatory process following ICH by regulating microglia polarization. Our study is limited and requires more in-depth experimental confirmation.
Collapse
Affiliation(s)
- Jie Cui
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Hongbin Wang
- Department of Emergency, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, 214400, People’s Republic of China
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
| | - Shiyao Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| |
Collapse
|
17
|
Lei P, Li Z, Hua Q, Song P, Gao L, Zhou L, Cai Q. Ursolic Acid Alleviates Neuroinflammation after Intracerebral Hemorrhage by Mediating Microglial Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway. Int J Mol Sci 2023; 24:14771. [PMID: 37834220 PMCID: PMC10572659 DOI: 10.3390/ijms241914771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The neuroinflammatory response after intracerebral hemorrhage (ICH) causes a large amount of neuronal loss, and inhibiting the inflammatory response can improve the prognosis. In previous laboratory studies and clinical trials, ursolic acid (UA) inhibited the inflammatory response, but whether it can be administered to inhibit the neuroinflammatory response after cerebral hemorrhage is unknown. The aim of this study was to investigate the effects of ursolic acid after cerebral hemorrhage. Online databases were used to obtain potential therapeutic targets of ursolic acid for the treatment of cerebral hemorrhage, and possible mechanisms were analyzed by KEGG, GO, and molecular docking. A rat model of cerebral hemorrhage was established using collagenase, and an in vitro cerebral hemorrhage model was constructed by adding hemin to BV2 cell culture medium. Enzyme-linked immunosorbent assay (ELISA), Western blotting (WB), immunofluorescence, TUNEL staining, and calcein/PI staining were used to investigate the degree of microglial M1 polarization, changes in the levels of inflammatory factors, activation of the NF-κB pathway, and changes in the indicators of cellular death after ursolic acid treatment. In addition, phorbol 12-myristate 13-acetate (PMA) was used to activate the NF-κB pathway to verify that ursolic acid exerts its anti-neuroinflammatory effects by regulating the NF-κB/NLRP3/GSDMD pathway. Network pharmacology and bioinformatics analyses revealed that ursolic acid may exert its therapeutic effects on cerebral hemorrhage through multiple pathways. Together, in vivo and in vitro experiments showed that ursolic acid inhibited microglial M1 polarization and significantly reduced the levels of p-NF-κB, GSDMD-N, cleaved caspase-1, TNF-α, IL-6, and IL-1β, which were significantly inhibited by the use of PMA. Ursolic acid inhibits microglial pyroptosis via the NF-κB/NLRP3/GSDMD pathway to alleviate neuroinflammatory responses after cerebral hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | | | - Long Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (P.L.); (Z.L.); (Q.H.); (P.S.); (L.G.)
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (P.L.); (Z.L.); (Q.H.); (P.S.); (L.G.)
| |
Collapse
|
18
|
Identification of CCL20 as a Key Biomarker of Inflammatory Responses in the Pathogenesis of Intracerebral Hemorrhage. Inflammation 2023:10.1007/s10753-023-01807-4. [PMID: 36939977 DOI: 10.1007/s10753-023-01807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
Inflammatory responses after intracerebral hemorrhage (ICH) contribute to severe secondary brain injury, leading to poor clinical outcomes. However, the responsible genes for effective anti-inflammation treatment in ICH remain poorly elucidated. The differentially expressed genes (DEGs) of human ICH were explored by online GEO2R. Go and KEGG were used to explore the biological function of DEGs. Protein-protein interactions (PPI) were built in the String database. Critical modules of PPI were identified by a molecular complex detection algorithm (MCODE). Cytohubba was used to determine the hub genes. The mRNA-miRNA interaction network was built in the miRWalk database. The rat ICH model was applied to validate the key genes. A total of 776 DEGs were identified in ICH. Go and KEGG analyses indicated that DEGs were mainly involved in neutrophil activation and the TNF signaling pathway. GSEA analysis presented that DEGs were significantly enriched in TNF signaling and inflammatory response. PPI network was constructed in the 48 differentially expressed inflammatory response-related genes. The critical module of the PPI network was constructed by 7 MCODE genes and functioned as the inflammatory response. The top 10 hub genes with the highest degrees were identified in the inflammatory response after ICH. CCL20 was confirmed as a key gene and mainly expressed in neurons in the rat ICH model. The regulatory network between CCL20 and miR-766 was built, and the miR-766 decrease was confirmed in a human ICH dataset. CCL20 is a key biomarker of inflammatory response after intracerebral hemorrhage, providing a potential target for inflammatory intervention in ICH.
Collapse
|