1
|
Murugesan B, Subramanian A, Bakthavachalam S, Rajendran K, Raju S, Gabriel S. Molecular insights of anticancer potential of usnic acid towards cervical cancer target proteins: An in silico validation for novel anti-cancer compound from lichens. J Biomol Struct Dyn 2024; 42:9475-9493. [PMID: 37697733 DOI: 10.1080/07391102.2023.2252076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/20/2023] [Indexed: 09/13/2023]
Abstract
Usnic acid is a marker compound produced from numerous lichens (symbiotic association of mycobiont and phycobiont) possessing higher bioavailability, potent and selective against cancer cells. Usnic acid is an underutilized and well-documented anti-cancer compound from lichens and its activity is not yet documented against cervical cancer. The main aim of the present research is to screen the anti-cancer potential of usnic acid against cervical cancer target proteins. The drug-likeness validation of usnic acid shows nil violations against all drug-likeness rules when compared with all three screened anti-cancer standard drugs and shows some violation in drug likeness prediction. Further, ADMET screening reveals usnic acids shows effective pharmacokinetic profiles with good bioactivity scores, essential for drug delivery and metabolism. DFT analysis of usnic acid reveals less energy gap (-0.1184), hardness (0.0592 eV), and high softness (16.8918 eV) scores against three anti-cancer drug DFT scores. Molecular docking study shows usnic acid possesses excellent binding affinity with all the nine screened cervical cancer target proteins with docking scores ranging from -6.9 to -9.1 kcal/mol. Three anti-cancer drugs showed docking scores with a range of -5.2 to -8.4 kcal/mol. Further, four top-scored complexes were taken for molecular dynamic simulation study reveal that usnic acid complexes (1KTZ-usnic acid and 2BIM-usnic acid) possess good simulation trajectories with cervical cancer target proteins than the selected anti-cancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Balasubramanian Murugesan
- Department of Biotechnology, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Anandhi Subramanian
- Department of Biotechnology, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Subha Bakthavachalam
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Kavitha Rajendran
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Sowndarya Raju
- Department of Biochemistry, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Subha Gabriel
- Department of Biochemistry, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| |
Collapse
|
2
|
Gimła M, Herman-Antosiewicz A. Multifaceted Properties of Usnic Acid in Disrupting Cancer Hallmarks. Biomedicines 2024; 12:2199. [PMID: 39457512 PMCID: PMC11505503 DOI: 10.3390/biomedicines12102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer, a complex group of diseases marked by uncontrolled cell growth and invasive behavior, is characterized by distinct hallmarks acquired during tumor development. These hallmarks, first proposed by Douglas Hanahan and Robert Weinberg in 2000, provide a framework for understanding cancer's complexity. Targeting them is a key strategy in cancer therapy. It includes inhibiting abnormal signaling, reactivating growth suppressors, preventing invasion and metastasis, inhibiting angiogenesis, limiting replicative immortality, modulating the immune system, inducing apoptosis, addressing genome instability and regulating cellular energetics. Usnic acid (UA) is a natural compound found in lichens that has been explored as a cytotoxic agent against cancer cells of different origins. Although the exact mechanisms remain incompletely understood, UA presents a promising compound for therapeutic intervention. Understanding its impact on cancer hallmarks provides valuable insights into the potential of UA in developing targeted and multifaceted cancer therapies. This article explores UA activity in the context of disrupting hallmarks in cancer cells of different origins based on recent articles that emphasize the molecular mechanisms of this activity.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
3
|
Demir S, Kazaz IO, Mungan SA, Alemdar NT, Perolli N, Demir EA, Mentese A. Usnic acid alleviates testicular ischemia/reperfusion injury in rats by modulating endoplasmic reticulum stress. Reprod Toxicol 2024; 128:108654. [PMID: 38960207 DOI: 10.1016/j.reprotox.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/09/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Testicular torsion (TT) is a urological condition that can result in infertility in men. The etiopathogenesis of TT includes ischemia/reperfusion injury (IRI) characterized by oxidative stress (OS), inflammation and apoptosis resulting from increased levels of free radicals. Usnic acid (UA), a dibenzofuran, is one of the most common metabolites found in lichens and is known to possess powerful antioxidant properties. The aim of this study was to investigate the potential protective activity of UA in an experimental testicular IRI model for the first time. A total of 18 rats were randomly assigned to three groups (n=6): sham control, IRI and IRI+UA. The IRI groups underwent a four-hour period of ischemia and a two-hour period of reperfusion. The OS, inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers in testicular tissue were evaluated using colorimetric methods. Furthermore, tissue samples were subjected to histological examination, with staining using hematoxylin and eosin. Histopathological findings supported by increased OS, inflammation, ERS and apoptosis levels were obtained in IRI group compared with sham control group. However, UA treatment restored these pathological and biochemical changes. Although this study provides the first preliminary evidence that UA may be used as a useful molecule against testicular IRI, further extensive molecular preclinical studies should be performed before clinical use is considered.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye.
| | - Ilke Onur Kazaz
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkiye
| | - Sevdegul Aydin Mungan
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkiye
| | - Nijazi Perolli
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon 61750, Turkiye
| | - Ahmet Mentese
- Department of Medical Services and Techniques, Vocational School of Health Services, Karadeniz Technical University, Trabzon 61080, Turkiye
| |
Collapse
|
4
|
Kofler L, Grundmann L, Gerhalter M, Prattes M, Merl-Pham J, Zisser G, Grishkovskaya I, Hodirnau VV, Vareka M, Breinbauer R, Hauck SM, Haselbach D, Bergler H. The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation. Nat Commun 2024; 15:7511. [PMID: 39209816 PMCID: PMC11362459 DOI: 10.1038/s41467-024-51754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast. We combine biochemical characterization of pre-ribosomal particles with a quantitative single-particle cryo-EM approach to monitor changes in nucleolar particle populations upon drug treatment. Usnic acid rapidly blocks the transition from nucleolar state B to C of Nsa1-associated pre-ribosomes, depleting key maturation factors such as Dbp10 and hindering pre-rRNA processing. This primary nucleolar block rapidly rebounds on earlier stages of the pathway which highlights the regulatory linkages between different steps. In summary, we provide an in-depth characterization of the effect of usnic acid on ribosome biogenesis, which may have implications for its reported anti-cancer activities.
Collapse
Affiliation(s)
- Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Lorenz Grundmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | | | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Juliane Merl-Pham
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
| | | | - Martin Vareka
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Stefanie M Hauck
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria.
| |
Collapse
|
5
|
Liu M, Tian H, Zhu J, Ding H. Antibacterial mechanism of the methanol extract of Thamnolia subuliformis (Ehrh.) W. Culb against Staphylococcus aureus. Lett Appl Microbiol 2024; 77:ovae073. [PMID: 39085052 DOI: 10.1093/lambio/ovae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Thamnolia subuliformis (Ehrh.) W. Culb is a species of lichen with edible and medicinal applications in China. Our previous studies demonstrated that the methanol extract of Thamnolia subuliformis (METS) exhibits broad antibacterial activity and stability against foodborne pathogens. This study aimed to investigate the antibacterial mechanism of METS against Staphylococcus aureus using nontargeted metabolomics, focusing on cell wall and membrane damage. The results revealed that the minimum inhibitory concentration (MIC) was 0.625 mg ml-1 and that METS had good biosafety at this concentration. METS caused significant damage to the cell wall and membrane integrity, based on both morphological observation by electron microscopy and the leakage of alkaline phosphatase, protein, and nucleic acid in the cell cultures. Treatment with METS at the MIC disrupted the lipid metabolism of S. aureus, causing a decrease in the metabolism of various phospholipids and sphingolipids in the cell membrane and an increase in the ratio of saturated fatty acids to unsaturated fatty acids. Moreover, it influenced intracellular amino acid and energy metabolism. These results shed light on the antibacterial mechanism of METS against S. aureus while also serving as a reference for the further development of natural antibacterial compounds derived from Thamnolia subuliformis.
Collapse
Affiliation(s)
- Menglong Liu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Hongqiao Tian
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Jiana Zhu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Haiyan Ding
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| |
Collapse
|
6
|
Chen S, Ren Z, Guo L. Hepatotoxicity of usnic acid and underlying mechanisms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024:1-22. [PMID: 38904414 DOI: 10.1080/26896583.2024.2366737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Since usnic acid was first isolated in 1844 as a prominent secondary lichen metabolite, it has been used for various purposes worldwide. Usnic acid has been claimed to possess numerous therapeutic properties, including antimicrobial, anti-inflammatory, antiviral, anti-proliferative, and antipyretic activities. Approximately two decades ago, crude extracts of usnic acid or pure usnic acid were marketed in the United States as dietary supplements for aiding in weight loss as a "fat-burner" and gained popularity in the bodybuilding community; however, hepatotoxicity was documented for some usnic acid containing products. The US Food and Drug Administration (FDA) received numerous reports of liver toxicity associated with the use of dietary supplements containing usnic acid, leading the FDA to issue a warning letter in 2001 on a product, LipoKinetix. The FDA also sent a recommendation letter to the manufacturer of LipoKinetix, resulting in the withdrawal of LipoKinetix from the market. These events triggered investigations into the hepatotoxicity of usnic acid and its mechanisms. In 2008, we published a review article titled "Usnic Acid and Usnea Barbata Toxicity". This review is an updated version of our previous review article and incorporates additional data published since 2008. The purpose of this review is to provide a comprehensive summary of the understanding of the liver toxicity associated with usnic acid, with a particular focus on the current understanding of the putative mechanisms of usnic acid-related hepatotoxicity.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| |
Collapse
|
7
|
Azhamuthu T, Kathiresan S, Senkuttuvan I, Asath NAA, Ravichandran P, Vasu R. Usnic acid alleviates inflammatory responses and induces apoptotic signaling through inhibiting NF-ĸB expressions in human oral carcinoma cells. Cell Biochem Funct 2024; 42:e4074. [PMID: 38874340 DOI: 10.1002/cbf.4074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Usnic acid (UA) is a unique bioactive substance in lichen with potential anticancer properties. Recently, we have reported that UA can reduce 7,12-dimethylbenz[a] anthracene-induced oral carcinogenesis by inhibiting oxidative stress, inflammation, and cell proliferation in a male golden Syrian hamster in vivo model. The present study aims to explore the relevant mechanism of cell death induced by UA on human oral carcinoma (KB) cell line in an in vitro model. We found that UA can induce apoptosis (cell death) in KB cells by decreasing cell viability, increasing the production of reactive oxygen species (ROS), depolarizing mitochondrial membrane potential (MMP) levels, causing nuclear fragmentation, altering apoptotic morphology, and causing excessive DNA damage. Additionally, UA inhibits the expression of Bcl-2, a protein that promotes cell survival, while increasing the expression of p53, Bax, Cytochrome-c, Caspase-9, and 3 proteins in KB cells. UA also inhibits the expression of nuclear factor-κB (NF-κB), a protein that mediates the activation of pro-inflammatory cytokines such as TNF-α and IL-6, in KB cells. Furthermore, UA promotes apoptosis by enhancing the mitochondrial-mediated apoptotic mechanism through oxidative stress, depletion of cellular antioxidants, and an inflammatory response. Ultimately, the findings of this study suggest that UA may have potential as an anticancer therapeutic agent for oral cancer treatments.
Collapse
Affiliation(s)
- Theerthu Azhamuthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Ilanchitchenni Senkuttuvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | | | - Pugazhendhi Ravichandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Rajeswari Vasu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| |
Collapse
|
8
|
Rosa L, Cutone A, Galla R, Uberti F, Valenti P. Neutralizing activity of Usnic acid and β-cyclodextrins complex against SARS-CoV-2 spike pseudovirus. Nat Prod Res 2024; 38:2129-2134. [PMID: 37436919 DOI: 10.1080/14786419.2023.2235715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
The rapid spread of SARS-CoV-2 and its infection severity require an urgent development of antiviral agents. In this respect, Usnic acid (UA), a natural dibenzofuran derivative, exerts antiviral activity against several viruses, though presenting very low solubility and high cytotoxicity. Here, UA was complexed with β-cyclodextrins (β-CDs), a pharmaceutical excipient used to improve drug solubility. The cytotoxic activity, tested on Vero E6 cells, revealed no effect for β-CDs alone whereas significant cytotoxicity for the UA/β-CDs complex was recorded at concentrations ≥ 0.05%. The neutralizing activity towards the fusion of SARS-CoV-2 Spike Pseudovirus showed no effects for β-CDs alone whereas the UA/β-CDs complex, when pre-incubated with the viral particles, efficiently inhibited the Pseudoviral fusion of about 90 and 82% at non-cytotoxic concentrations of 0.03 and 0.01%, respectively. In conclusion, although further evidences are needed to clarify the exact inhibition mechanism, UA/β-CDs complex could be useful in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Noivita srls, spin-off, Novara, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
9
|
Ning W, Luo X, Zhang Y, Tian P, Xiao Y, Li S, Yang X, Li F, Zhang D, Zhang S, Liu Y. Broad-spectrum nano-bactericide utilizing antimicrobial peptides and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes for sustained protection against persistent bacterial pathogens in crops. Int J Biol Macromol 2024; 265:131042. [PMID: 38521320 DOI: 10.1016/j.ijbiomac.2024.131042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Worldwide crop yields are threatened by persistent pathogenic bacteria that cause significant damage and jeopardize global food security. Chemical pesticides have shown limited effectiveness in protecting crops from severe yield loss. To address this obstacle, there is a growing need to develop environmentally friendly bactericides with broad-spectrum and sustained protection against persistent crop pathogens. Here, we present a method for preparing a nanocomposite that combines antimicrobial peptides (AMPs) and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes (MWCNTs). The nanocomposite exhibited dual antibacterial activity by disrupting bacterial cell membranes and splicing nucleic acids. By functionalizing MWCNTs with small AMPs (sAMPs), we achieved enhanced stability and penetration of the nanocomposite, and improved loading capacity of the Cu-Ag nanoparticles. The synthesized MWCNTs&CuNCs@AgNPs@P nanocomposites demonstrated broad-spectrum lethality against both Gram-positive and Gram-negative bacterial pathogens. Glasshouse pot trials confirmed the efficacy of the nanocomposites in protecting rice crops against bacterial leaf blight and tomato crops against bacterial wilt. These findings highlight the excellent antibacterial properties of the MWCNTs&CuNCs@AgNPs@P nanocomposite and its potential to replace chemical pesticides, offering significant advantages for agricultural applications.
Collapse
Affiliation(s)
- Weimin Ning
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Peijie Tian
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Youlun Xiao
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Shijun Li
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiao Yang
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Fan Li
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Deyong Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Songbai Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yong Liu
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
10
|
Liang X, Chen W, Jiang B, Xiao CJ. Dibenzofurans from nature: Biosynthesis, structural diversity, sources, and bioactivities. Bioorg Chem 2024; 144:107107. [PMID: 38218069 DOI: 10.1016/j.bioorg.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Dibenzofurans are a small class of natural products with versatile biological activities that used to be thought to come mainly from lichens and ascomycetes. In fact, they are also distributed widely in higher plants, especially in the families Rosaceae and Myrtaceae. Dibenzofurans and derivatives from lichens and ascomycetes have been well reviewed, but dibenzofurans from all biological sources in nature have not been reviewed. In this review, dibenzofurans from all natural sources have been comprehensively reviewed, and a total of 211 dibenzofurans isolated and identified from organisms between 1843 and March 2023 are categorized and discussed, including their biosynthesis, structural diversity, sources, and bioactivities.
Collapse
Affiliation(s)
- Xin Liang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China; Institute of Materia Medica & College of Pharmacy, Dali University, Dali 671000, China
| | - Wei Chen
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China; Institute of Materia Medica & College of Pharmacy, Dali University, Dali 671000, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China; Institute of Materia Medica & College of Pharmacy, Dali University, Dali 671000, China
| | - Chao-Jiang Xiao
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China; Institute of Materia Medica & College of Pharmacy, Dali University, Dali 671000, China.
| |
Collapse
|
11
|
Brugnoli B, Perna G, Alfano S, Piozzi A, Galantini L, Axioti E, Taresco V, Mariano A, Scotto d'Abusco A, Vecchio Ciprioti S, Francolini I. Nanostructured Poly-l-lactide and Polyglycerol Adipate Carriers for the Encapsulation of Usnic Acid: A Promising Approach for Hepatoprotection. Polymers (Basel) 2024; 16:427. [PMID: 38337316 DOI: 10.3390/polym16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The present study investigates the utilization of nanoparticles based on poly-l-lactide (PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a potent natural compound with various therapeutic properties including antimicrobial and anticancer activities. The development of these carriers offers an innovative approach to overcome the challenges associated with usnic acid's limited aqueous solubility, bioavailability, and hepatotoxicity. The nanosystems were characterized according to their physicochemical properties (among others, size, zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly, the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the cytotoxicity of usnic acid.
Collapse
Affiliation(s)
- Benedetta Brugnoli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Greta Perna
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Eleni Axioti
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy
| | - Stefano Vecchio Ciprioti
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| |
Collapse
|
12
|
Grover A, Kumar A, Tittal RK, Lal K. Dehydroacetic acid a privileged medicinal scaffold: A concise review. Arch Pharm (Weinheim) 2024; 357:e2300512. [PMID: 37972261 DOI: 10.1002/ardp.202300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
From the last decade, research on dehydroacetic acid (DHA) and its derivatives has increased immensely due to its significant role in various fields, including medicine, cosmetics, food industry, and so on. In the medicinal area, DHA plays an essential role in developing novel action-based drugs, which are helpful for treating various diseases. Besides its plethora of biological applications, its chelating ability offers the easiest synthetic route for synthesizing more active metal complexes. DHA derivatives along with their metal complexes show a number of biological activities and also exhibit various interactions with multiple biological targets. This article summarizes recent medicinal applications (2000-onwards) of DHA-based compounds and their analogs, along with their structure-activity relationship (SAR) analysis. Their interactions with different target enzymes are also discussed. This information derived from SAR analysis would be helpful for medicinal chemists working on the development of drugs based on heterocyclic frameworks, particularly those based on the DHA scaffold.
Collapse
Affiliation(s)
- Anshul Grover
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Aman Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| |
Collapse
|
13
|
Zhang Y, Han Y, Huang Z, Huang Y, Kong J, Sun Y, Cao J, Zhou T. Restoring Colistin Sensitivity and Combating Biofilm Formation: Synergistic Effects of Colistin and Usnic Acid against Colistin-Resistant Enterobacteriaceae. ACS Infect Dis 2023; 9:2457-2470. [PMID: 37944020 DOI: 10.1021/acsinfecdis.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Colistin (COL), the last line of defense in clinical medicine, is an important therapeutic option against multidrug-resistant Gram-negative bacteria. In this context, the emergence of colistin-resistant (COL-R) bacteria mediated by broad-spectrum efflux pumps, mobile genetic elements, and biofilm formation poses a significant public health concern. In response to this challenge, a novel approach of combining COL with usnic acid (UA) has been proposed in this study. UA is a secondary metabolite derived from lichens and is well-known for its anti-inflammatory properties. This study aimed to investigate the synergistic effects of UA and COL against COL-R Enterobacteriaceae both in vitro and in vivo. The exceptional synergistic antibacterial activity exhibited by the combination of COL and UA was demonstrated by performing a comprehensive set of assays, including the checkerboard assay, time-dependent killing assay, and Live/Dead bacterial cell viability assay. Furthermore, crystal violet staining and scanning electron microscopy assays revealed the inhibitory effect of this combination on the biofilm formation. Mechanistically, the combination of UA and COL exacerbated cell membrane rupture, induced DNA damage, and generated a significant amount of reactive oxygen species, which ultimately resulted in bacterial cell death. In addition, erythrocyte hemolysis and cell viability tests confirmed the biocompatibility of the combination. The evaluation of the COL/UA combination in vivo using Galleria mellonella larvae and a mouse infection model showed a significant improvement in the survival rate of the infected larvae as well as a reduction in the bacterial load in the mouse thigh muscle. These findings, for the first time, provide strong evidence for the potential application of COL/UA as an effective alternative therapeutic option to combat infections caused by COL-R Enterobacteriaceae strains.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 32500, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 32500, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| | - Yali Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 32500, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 32500, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| |
Collapse
|
14
|
Rivero-Pino F, Casanova AG. Hepatotoxicity due to dietary supplements: state-of-the-art, gaps and perspectives. Crit Rev Toxicol 2023; 53:601-610. [PMID: 38062980 DOI: 10.1080/10408444.2023.2282415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/23/2023] [Indexed: 12/22/2023]
Abstract
Food supplements are products intended to complement the normal diet and consist of concentrated sources of nutrients or other substances with a nutritional or physiological effect. Although they are generally considered safe if the manufacturer's recommendations are followed, many of them have shown hepatotoxic properties. This can cause many diseases (e.g. steatohepatitis and cirrhosis) characterized by progressive damage and malfunction of the liver that in the long term can lead to death. A review of the literature was carried out to elucidate which dietary supplements have been associated with cases of hepatotoxicity in recent years, with emphasis on those relevant to the consumer and the new trends (e.g. cannabidiol). It has been reported that the supplements described as hepatotoxic are mainly of botanical origin (e.g. green tea or turmeric) and those used in sports (mainly anabolic androgenic steroids). There is a great variability of compounds described as causing liver damage, although sometimes it is not possible to identify them, because they are contaminants or adulterants of the products. In addition, the prevalence of toxic effects after the administration of supplements is difficult to define due to underreporting and the lack of specific studies. Globally regarding hepatotoxicity of dietary supplements, there is a paucity of well-conducted clinical trials on the efficacy of these compounds and the frequency of related liver damage, as the use of these products is largely uncontrolled.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Alfredo G Casanova
- Toxicology Unit, Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| |
Collapse
|
15
|
Stoica Oprea AE, Albuleț D, Bîrcă AC, Iordache F, Ficai A, Grumezescu AM, Vasile BȘ, Andronescu E, Marinescu F, Holban AM. Electrospun Nanofibrous Mesh Based on PVA, Chitosan, and Usnic Acid for Applications in Wound Healing. Int J Mol Sci 2023; 24:11037. [PMID: 37446215 DOI: 10.3390/ijms241311037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries and diseases of the skin require accurate treatment using nontoxic and noninvasive biomaterials, which aim to mimic the natural structures of the body. There is a strong need to develop biodevices capable of accommodating nutrients and bioactive molecules and generating the process of vascularization. Electrospinning is a robust technique, as it can form fibrous structures for tissue engineering and wound dressings. The best way of forming such meshes for wound healing is to choose two polymers that complement each other regarding their properties. On the one hand, PVA is a water-soluble synthetic polymer widely used for the preparation of hydrogels in the field of biomedicine owing to its biocompatibility, water solubility, nontoxicity, and considerable mechanical properties. PVA is easy to subject to electrospinning and can offer strong mechanical stability of the mesh, but it is necessary to improve its biological properties. On the other hand, CS has good biological properties, including biodegradability, nontoxicity, biocompatibility, and antimicrobial properties. Still, it is harder to electrospin and does not possess as good mechanical properties as PVA. As these structures also allow the incorporation of bioactive agents due to their high surface-area-to-volume ratio, the interesting point was to incorporate usnic acid into the structure as it is a natural and suitable alternative agent for burn wounds treatment which avoids an improper or overuse of antibiotics and other invasive biomolecules. Thus, we report the fabrication of an electrospun nanofibrous mesh based on PVA, chitosan, and usnic acid with applications in wound healing. The obtained nanofibers mesh was physicochemically characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). In vitro biological assays were performed to evaluate the antimicrobial properties of the samples using the MIC (minimum inhibitory concentration) assay and evaluating the influence of fabricated meshes on the Staphylococcus aureus biofilm development, as well as their biocompatibility (demonstrated by fluorescence microscopy results, an XTT assay, and a glutathione (GSH) assay).
Collapse
Affiliation(s)
- Alexandra Elena Stoica Oprea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Delia Albuleț
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Florin Iordache
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Str. No. 3, 50044 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 077206 Bucharest, Romania
- Research Center for Advanced Materials, Products and Processes, University of Bucharest, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Florica Marinescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 077206 Bucharest, Romania
| | - Alina Maria Holban
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 077206 Bucharest, Romania
| |
Collapse
|
16
|
Wang H, Xuan M, Diao J, Xu N, Li M, Huang C, Wang C. Metabolism and toxicity of usnic acid and barbatic acid based on microsomes, S9 fraction, and 3T3 fibroblasts in vitro combined with a UPLC-Q-TOF-MS method. Front Pharmacol 2023; 14:1207928. [PMID: 37397492 PMCID: PMC10308081 DOI: 10.3389/fphar.2023.1207928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Usnic acid (UA) and barbatic acid (BA), two typical dibenzofurans and depsides in lichen, have a wide range of pharmacological activities and hepatotoxicity concerns. This study aimed to clarify the metabolic pathway of UA and BA and illuminate the relationship between metabolism and toxicity. Methods: An UPLC-Q-TOF-MS method was developed for metabolite identification of UA and BA in human liver microsomes (HLMs), rat liver microsomes (RLMs), and S9 fraction (RS9). The key metabolic enzymes responsible for UA and BA were identified by enzyme inhibitors combined with recombinant human cytochrome P450 (CYP450) enzymes. The cytotoxicity and metabolic toxicity mechanism of UA and BA were determined by the combination model of human primary hepatocytes and mouse 3T3 fibroblasts. Results: The hydroxylation, methylation, and glucuronidation reactions were involved in the metabolic profiles of UA and BA in RLMs, HLMs, and RS9. CYP2C9, CYP3A4, CYP2C8, and UGT1A1 are key metabolic enzymes responsible for metabolites of UA and CYP2C8, CYP2C9, CYP2C19, CYP1A1, UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 for metabolites of BA. UA and BA did not display evident cytotoxicity in human primary hepatocytes at concentrations of 0.01-25 and 0.01-100 µM, respectively, but showed potential cytotoxicity to mouse 3T3 fibroblasts with 50% inhibitory concentration values of 7.40 and 60.2 µM. Discussion: In conclusion, the attenuated cytotoxicity of BA is associated with metabolism, and UGTs may be the key metabolic detoxification enzymes. The cytotoxicity of UA may be associated with chronic toxicity. The present results provide important insights into the understanding of the biotransformation behavior and metabolic detoxification of UA and BA.
Collapse
Affiliation(s)
- Hanxue Wang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Xuan
- Department of Pharmacy, Qingdao Eighth People’s Hospital, Qingdao, China
| | - Juanjuan Diao
- Analysis and Testing Center, Xinjiang Medical University (Xuelanshan Campus), Urumqi, China
| | - Nan Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Manlin Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Paździora W, Podolak I, Grudzińska M, Paśko P, Grabowska K, Galanty A. Critical Assessment of the Anti-Inflammatory Potential of Usnic Acid and Its Derivatives-A Review. Life (Basel) 2023; 13:life13041046. [PMID: 37109575 PMCID: PMC10146228 DOI: 10.3390/life13041046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammation is a response of the organism to an external factor that disrupts its natural homeostasis, and it helps to eliminate the cause of tissue injury. However, sometimes the body's response is highly inadequate and the inflammation may become chronic. Thus, the search for novel anti-inflammatory agents is still needed. One of the groups of natural compounds that attract interest in this context is lichen metabolites, with usnic acid (UA) as the most promising candidate. The compound reveals a broad spectrum of pharmacological properties, among which anti-inflammatory properties have been studied both in vitro and in vivo. The aim of this review was to gather and critically evaluate the results of the so-far published data on the anti-inflammatory properties of UA. Despite some limitations and shortcomings of the studies included in this review, it can be concluded that UA has interesting anti-inflammatory potential. Further research should be directed at the (i) elucidation of the molecular mechanism of UA; (ii) verification of its safety; (iii) comparison of the efficacy and toxicity of UA enantiomers; (iv) design of UA derivatives with improved physicochemical properties and pharmacological activity; and (v) use of certain forms or delivery carriers of UA, especially in its topical application.
Collapse
Affiliation(s)
- Wojciech Paździora
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Grudzińska
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Karolina Grabowska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
18
|
PCL/Collagen/UA Composite Biomedical Dressing with Ordered Microfiberous Structure Fabricated by a 3D Near-Field Electrospinning Process. Polymers (Basel) 2022; 15:polym15010223. [PMID: 36616572 PMCID: PMC9824864 DOI: 10.3390/polym15010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
In this work, a functionalized polycaprolactone (PCL) composite fiber combining calf-type I collagen (CO) and natural drug usnic acid (UA) was prepared, in which UA was used as an antibacterial agent. Through 3D near-field electrospinning, the mixed solution was prepared into PCL/CO/UA composite fibers (PCUCF), which has a well-defined perfect arrangement structure. The influence of electrospinning process parameters on fiber diameter was investigated, the optimal electrospinning parameters were determined, and the electric field simulation was conducted to verify the optimal parameters. The addition of 20% collagen made the composite fiber have good hydrophilicity and water absorption property. In the presence of PCUCF, 1% UA content significantly inhibited the growth rate of Gram-positive and negative bacteria in the plate culture. The AC-PCUCF (after crosslinking PCUCF) prepared by crosslinking collagen with genipin showed stronger mechanical properties, water absorption property, thermal stability, and drug release performance. Cell proliferation experiments showed that PCUCF and AC-PCUCF had no cytotoxicity and could promote cell proliferation and adhesion. The results show that PCL/CO/UA composite fiber has potential application prospects in biomedical dressing.
Collapse
|