1
|
Huang B, Lu S, Li F. A difunctional NMR&CD probe for specific detection and enantiomeric recognition of biothiols in complex mixtures. Anal Chim Acta 2024; 1328:343186. [PMID: 39266201 DOI: 10.1016/j.aca.2024.343186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Biothiols are important for numerous cellular processes, such as resisting oxidative stress and protecting cell health. Their abnormal levels and molecular configurations have been associated with various diseases. So, establishing an effective and reliable method for the specific detection and enantiomeric discrimination of diverse biothiols is highly meaningful. RESULTS We have developed a new NMR and CD probe using 1,4-dinitroimidazole, specifically targeting the thiol group. This probe allows for the specific detection and enantiomeric recognition of biothiols in complex mixtures. We achieved this by identifying the distinguishable 1H NMR signals of 2nd in imidazole-ring of the resulting 4NI-biothiols in the downfield region at 7-8 ppm and newly discovered induced CD signals within 290-430 nm. Using this probe, the limits of detection of Cys, GSH, and Hcy, the recovery rates, and the concentration of GSH extracted from HEK293T cells were determined by measuring the unique downfield 1H NMR signals. Moreover, Cys, GSH, and Hcy can be discriminated simultaneously in complicated samples at a pH range of 2-3.5. Furthermore, this probe can also be utilized to sense chiral thiol-drugs. SIGNIFICANCE This method offers a cost-effective and accurate sensing solution for the specific detection of biothiols in complex mixtures, with stereochemical recognition.
Collapse
Affiliation(s)
- Biling Huang
- Institute of Drug Discovery Technology, Health Science Center, Ningbo University, Ningbo, 315211, PR China.
| | - Shuyi Lu
- Institute of Drug Discovery Technology, Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Fulai Li
- Institute of Drug Discovery Technology, Health Science Center, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
2
|
Adeyemi OS, Johnson T, Maduakolam-Aniobi T, Kato K. Molecular modelling and experimental validation identified a new therapeutic inhibitor of toxoplasmosis. Comput Biol Med 2024; 183:109236. [PMID: 39378576 DOI: 10.1016/j.compbiomed.2024.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Toxoplasmosis is a widespread parasitic disease, caused by Toxoplasma gondii, that affects nearly one-third of the human population. The lack of effective treatments drives the demand for novel anti-toxoplasmosis therapeutic options. In the present study, we used computational approaches and experimental validation to identify therapeutic inhibitors of toxoplasmosis. Initially, using the structure of the co-crystallized ligand of T. gondii calcium-dependent protein kinase 1 (TgCDPK1), we retrieved 3000 compounds from the database of COCONUT (COlleCtion of Open Natural ProdUcTs). These compounds were docked against the crystal structure of TgCDPK1 on the Glide Ligand Docking panel of Maestro 12.5 (Schrödinger Suite 2020-3). Based on the docking scores, we assessed promising molecules for toxicity potential on the ProTox-II online server, while the ADME profiling was done on the SwissADME server. Following the computational studies, we selected nine promising compounds for experimental validation against T. gondii in vitro. Of the compounds, C4, C5, C6, and C8 exhibited dose-dependent anti-T. gondii action with EC50 values ranging from 3.3 to 120.2 μg/mL. Host toxicity profiling revealed differential cytotoxic action with a selectivity index (SI) of <1 for the compounds except C5, which had an SI of 1.8. To validate our screening assay, we used sulfadiazine, a standard drug for toxoplasmosis and showed that it inhibited parasite growth. Further experiments showed that C5, an imidazole-based natural compound, has strong but reversible anti-parasitic action that peaks within the first 8 h. In addition, C5 exhibited similar toxic tendencies towards T. gondii within (intracellular) and outside (extracellular) the host, suggesting it likely has a parasite target(s). C5 showed no effect on host invasion but strongly impeded parasite replication and growth, thereby affecting the T. gondii lytic cycle. Furthermore, C5 treatment raised the reactive oxygen species level, but this may be a secondary effect because augmentation with Trolox antioxidant failed to block C5 anti-T. gondii action. In addition, molecular dynamics simulations of C5 and TgCDPK1 complex revealed relative stability within 100 ns run time. Collectively, our findings support the potential of imidazole-based compounds as novel, alternative anti-parasitic agents.
Collapse
Affiliation(s)
- Oluyomi Stephen Adeyemi
- Medicinal Biochemistry and Toxicology Laboratory, Department of Biochemistry, Bowen University, Iwo, 232101, Osun State, Nigeria; Laboratory of Sustainable Animal Environment Systems, Graduate School of Agricultural Sciences, Tohoku University, Japan
| | - Titilayo Johnson
- Department of Biochemistry, University of Jos, Jos, Plateau State, Nigeria
| | | | - Kentaro Kato
- Laboratory of Sustainable Animal Environment Systems, Graduate School of Agricultural Sciences, Tohoku University, Japan.
| |
Collapse
|
3
|
Ben A, Hoelm M, Chęcińska L. Supramolecular architectures in multicomponent crystals of imidazole-based drugs and trithiocyanuric acid. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:S2052520624005055. [PMID: 38958685 PMCID: PMC11301895 DOI: 10.1107/s2052520624005055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
The structures of three multicomponent crystals formed with imidazole-based drugs, namely metronidazole, ketoconazole and miconazole, in conjunction with trithiocyanuric acid are characterized. Each of the obtained adducts represents a different category of crystalline molecular forms: a cocrystal, a salt and a cocrystal of salt. The structural analysis revealed that in all cases, the N-H...N hydrogen bond is responsible for the formation of acid-base pairs, regardless of whether proton transfer occurs or not, and these molecular pairs are combined to form unique supramolecular motifs by centrosymmetric N-H...S interactions between acid molecules. The complex intermolecular forces acting in characteristic patterns are discussed from the geometric and energetic perspectives, involving Hirshfeld surface analysis, pairwise energy estimation, and natural bond orbital calculations.
Collapse
Affiliation(s)
- Anna Ben
- University of Lodz, Doctoral School of Exact and Natural Sciences, Narutowicza 68, 90-136Łódź, Poland
- University of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236Łódź, Poland
| | - Marta Hoelm
- University of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236Łódź, Poland
| | - Lilianna Chęcińska
- University of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236Łódź, Poland
| |
Collapse
|
4
|
Masand VH, Al-Hussain S, Alzahrani AY, Al-Mutairi AA, Sultan Alqahtani A, Samad A, Alafeefy AM, Jawarkar RD, Zaki MEA. Unveiling dynamics of nitrogen content and selected nitrogen heterocycles in thrombin inhibitors: a ceteris paribus approach. Expert Opin Drug Discov 2024; 19:991-1009. [PMID: 38898679 DOI: 10.1080/17460441.2024.2368743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors. RESEARCH DESIGN AND METHODS A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed. RESULTS The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors. CONCLUSIONS The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, India
| | - Sami Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Asser, Saudi Arabia
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Ahmed M Alafeefy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Universiti Teknologi MARA [UiTM], Bandar Puncak Alam, Selangor, Malaysia
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Stefan SM, Rafehi M. Medicinal polypharmacology-a scientific glossary of terminology and concepts. Front Pharmacol 2024; 15:1419110. [PMID: 39092220 PMCID: PMC11292611 DOI: 10.3389/fphar.2024.1419110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
Medicinal polypharmacology is one answer to the complex reality of multifactorial human diseases that are often unresponsive to single-targeted treatment. It is an admittance that intrinsic feedback mechanisms, crosstalk, and disease networks necessitate drugs with broad modes-of-action and multitarget affinities. Medicinal polypharmacology grew to be an independent research field within the last two decades and stretches from basic drug development to clinical research. It has developed its own terminology embedded in general terms of pharmaceutical drug discovery and development at the intersection of medicinal chemistry, chemical biology, and clinical pharmacology. A clear and precise language of critical terms and a thorough understanding of underlying concepts is imperative; however, no comprehensive work exists to this date that could support researchers in this and adjacent research fields. In order to explore novel options, establish interdisciplinary collaborations, and generate high-quality research outputs, the present work provides a first-in-field glossary to clarify the numerous terms that have originated from various individual disciplines.
Collapse
Affiliation(s)
- Sven Marcel Stefan
- Medicinal Chemistry and Systems Polypharmacology, Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein (UKSH), Lübeck, Germany
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical Education, Augsburg University Medicine, Augsburg, Germany
| |
Collapse
|
6
|
Saeedian Moghadam E, Bonyasi F, Bayati B, Sadeghi Moghadam M, Amini M. Recent Advances in Design and Development of Diazole and Diazine Based Fungicides (2014-2023). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15427-15448. [PMID: 38967261 DOI: 10.1021/acs.jafc.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
7
|
Zanakhov TO, Galenko EE, Novikov MS, Khlebnikov AF. Cyclocondensation of 2-(α-Diazoacyl)-2 H-azirines with Amidines in Diazo Synthesis of Functionalized Naphtho[1,2- d]imidazoles. J Org Chem 2024; 89:8641-8655. [PMID: 38847418 DOI: 10.1021/acs.joc.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A diazo approach toward functionalized naphtho[1,2-d]imidazole derivatives has been developed. It involved a new reaction of arylamidines with 2-(α-diazoacyl)-2H-azirines giving 5-aryl-4-(α-diazoacyl)-1H-imidazoles under mild conditions in good yields. The mechanism of annulation of azirines with amidines is discussed based on DFT calculations. The reaction proceeds in an unusual manner by cleavage of the azirine C-C bond, allowing for the transfer of the aryl substituent from the arylamidine to the proper position of the key intermediate of naphtho[1,2-d]imidazole synthesis. Under thermolysis conditions, 5-aryl-4-(α-diazoacyl)-1H-imidazoles undergo Wolff rearrangement followed by the selective 6π-cyclization of transient ketene to form 3H-naphtho[1,2-d]imidazoles bearing various substituents in the positions 2,3,4,5,7,8,9. Additionally, variation of the substituents at position 5 of naphtho[1,2-d]imidazoles is possible through the formation of triflates and subsequent cross-coupling reactions. One more heterocyclic pharmacophoric skeleton, 3H-furo[3',2':3,4]naphtho[1,2-d]imidazole, was easily constructed from methyl 5-hydroxy-3H-naphtho[1,2-d]imidazole-4-carboxylates in a one-pot mode using O-alkylation with phenacyl bromides followed by base-induced intramolecular acyl substitution at room temperature with high yields.
Collapse
Affiliation(s)
- Timur O Zanakhov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Ekaterina E Galenko
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| |
Collapse
|
8
|
Alsieni M, Esmat A, Bazuhair MA, Altayb HN. Fragment-based drug design of novel inhibitors targeting lipoprotein (a) kringle domain KIV-10-mediated cardiovascular disease. J Bioenerg Biomembr 2024; 56:247-259. [PMID: 38483739 DOI: 10.1007/s10863-024-10013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 05/24/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, attributed to a complex etiology involving metabolic, genetic, and protein-related factors. Lipoprotein(a) (Lp(a)), identified as a genetic risk factor, exhibits elevated levels linked to an increased risk of cardiovascular diseases. The lipoprotein(a) kringle domains have recently been identified as a potential target for the treatment of CVDs, in this study we utilized a fragment-based drug design approach to design a novel, potent, and safe inhibitor for lipoprotein(a) kringle domain. With the use of fragment library (61,600 fragments) screening, combined with analyses such as MM/GBSA, molecular dynamics simulation (MD), and principal component analysis, we successfully identified molecules effective against the kringle domains of Lipoprotein(a). The hybridization process (Breed) of the best fragments generated a novel 249 hybrid molecules, among them 77 exhibiting superior binding affinity (≤ -7 kcal/mol) compared to control AZ-02 (-6.9 kcal/mol), Importantly, the top ten molecules displayed high similarity to the control AZ-02. Among the top ten molecules, BR1 exhibited the best docking energy (-11.85 kcal/mol ), and higher stability within the protein LBS site, demonstrating the capability to counteract the pathophysiological effects of lipoprotein(a) [Lp(a)]. Additionally, principal component analysis (PCA) highlighted a similar trend of motion during the binding of BR1 and the control compound (AZ-02), limiting protein mobility and reducing conformational space. Moreover, ADMET analysis indicated favorable drug-like properties, with BR1 showing minimal violations of Lipinski's rules. Overall, the identified compounds hold promise as potential therapeutics, addressing a critical need in cardiovascular medicine. Further preclinical and clinical evaluations are needed to validate their efficacy and safety, potentially ushering in a new era of targeted therapies for CVDs.
Collapse
Affiliation(s)
- Mohammed Alsieni
- Department of Clinical Pharmacology Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed Esmat
- Department of Clinical Pharmacology Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed A Bazuhair
- Department of Clinical Pharmacology Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 23589, Saudi Arabia.
| |
Collapse
|
9
|
Uvarova ES, Kutasevich AV, Lipatov ES, Pytskii IS, Raitman OA, Selivantev YM, Mityanov VS. Three-component cascade reaction of 3-ketonitriles, 2-unsubstituted imidazole N-oxides, and aldehydes. Org Biomol Chem 2024; 22:4297-4308. [PMID: 38717323 DOI: 10.1039/d4ob00353e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A three-component condensation of 2-unsubstituted imidazole N-oxides, 3-ketonitriles, and aldehydes is described. The reaction proceeds via sequential Knoevenagel condensation/Michael addition under mild, catalyst-free conditions with various substrates. Furthermore, the corresponding 2-functionalized imidazole N-oxides can be further dehydrated to (Z)-2-aroyl-3-(1H-imidazol-2-yl)-acrylonitriles, which may also be directly prepared by changing the reaction conditions as a cascade of Knoevenagel condensation/Michael addition/dehydration.
Collapse
Affiliation(s)
- Ekaterina S Uvarova
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Anton V Kutasevich
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Egor S Lipatov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilov str. 28/1, 119334 Moscow, Russian Federation
- Higher Chemical College of Russian Academy of Sciences, D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russian Federation
| | - Ivan S Pytskii
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Academy of Sciences, Leninsky Prospect 31 bldg. 4, 119071 Moscow, Russian Federation
| | - Oleg A Raitman
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Yuriy M Selivantev
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Vitaly S Mityanov
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| |
Collapse
|
10
|
Zhang C, Yu J, Deng M, Zhang Q, Jin F, Chen L, Li Y, He B. Development of a Fluorescent Assay and Imidazole-Containing Inhibitors by Targeting SARS-CoV-2 Nsp13 Helicase. Molecules 2024; 29:2301. [PMID: 38792162 PMCID: PMC11124022 DOI: 10.3390/molecules29102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Nsp13, a non-structural protein belonging to the coronavirus family 1B (SF1B) helicase, exhibits 5'-3' polarity-dependent DNA or RNA unwinding using NTPs. Crucially, it serves as a key component of the viral replication-transcription complex (RTC), playing an indispensable role in the coronavirus life cycle and thereby making it a promising target for broad-spectrum antiviral therapies. The imidazole scaffold, known for its antiviral potential, has been proposed as a potential scaffold. In this study, a fluorescence-based assay was designed by labeling dsDNA substrates with a commercial fluorophore and monitoring signal changes upon Nsp13 helicase activity. Optimization and high-throughput screening validated the feasibility of this approach. In accordance with the structural characteristics of ADP, we employed a structural-based design strategy to synthesize three classes of imidazole-based compounds through substitution reaction. Through in vitro activity research, pharmacokinetic parameter analysis, and molecular docking simulation, we identified compounds A16 (IC50 = 1.25 μM) and B3 (IC50 = 0.98 μM) as potential lead antiviral compounds for further targeted drug research.
Collapse
Affiliation(s)
- Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
11
|
Bera D, Sarkar R, Dhar T, Saha P, Ghosh P, Mukhopadhyay C. DMSO promoted catalyst-free oxidative C-N/C-O couplings towards synthesis of imidazoles and oxazoles. Org Biomol Chem 2024; 22:3684-3692. [PMID: 38624070 DOI: 10.1039/d4ob00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Dimethyl sulfoxide (DMSO)-promoted catalyst-free oxidative C-N coupling and C-O coupling under oxidant-free conditions are outlined. This protocol is operationally simple and leads to various functionalized substituted imidazoles or oxazoles in good yields. To date, a very limited number of oxidation protocols have been established, where DMSO acts solely as a catalyst or an oxidant or both. In this report, DMSO is not only used as a C-N/C-O coupling agent but is also used as the oxidant required for these oxidative transformations. Hence, our demonstrated DMSO-promoted catalyst-free coupling transformation has the ability to lead to a new dimension in the field of oxidative coupling.
Collapse
Affiliation(s)
- Debasish Bera
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Rajib Sarkar
- Department of Chemistry, Prabhu Jagatbandhu College, Jhorehat, Andul-Mouri, Howrah-711302, India
| | - Tiyasa Dhar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Pinaki Saha
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| |
Collapse
|
12
|
Geedkar D, Kumar A, Sharma P. Synthesis and in silico inhibitory action studies of azo-anchored imidazo[4,5-b]indole scaffolds against the COVID-19 main protease (M pro). Sci Rep 2024; 14:10419. [PMID: 38710746 PMCID: PMC11074333 DOI: 10.1038/s41598-024-57795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/21/2024] [Indexed: 05/08/2024] Open
Abstract
The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.
Collapse
Affiliation(s)
- Deepika Geedkar
- School of Chemical Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Ashok Kumar
- School of Chemical Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Pratibha Sharma
- School of Chemical Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India.
| |
Collapse
|
13
|
Sun X, Zhang J, Han X, Li S, Zhang X, Bi X. Preparation of imidazole-modified paper membrane for selective extraction of gallic acid and its structural and functional analogues from Pomegranate Peel. RSC Adv 2024; 14:14202-14213. [PMID: 38690107 PMCID: PMC11058456 DOI: 10.1039/d3ra08576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
In the search for pharmaceutically active compounds from natural products, it is crucial and challenging to develop separation methods that target not only structurally similar compounds but also a class of compounds with desired pharmaceutical functions. To achieve both structure-oriented and function-oriented selectivity, the choice of functional monomers with broad interactions or even biomimetic roles towards targeted compounds is essential. In this work, an imidazole (IM)-functionalized paper membrane was synthesized to realize selectivity. The IM was selected based on its capability to provide multiple interactions, participation in several bioprocesses, and experimental verification of adsorption performance. Using gallic acid as a representative component of Pomegranate Peel, the preparation conditions and extraction parameters were systematically investigated. The optimal membrane solid-phase extraction (MSPE) method allowed for enrichment of gallic acid from the complex matrix of Pomegranate Peel, enabling facile quantitative analysis with a limit of detection (LOD) of 0.1 ng mL-1. Furthermore, with the aid of cheminformatics, the extracted compounds were found to be similar in both their structures and pharmaceutical functions. This work offers a novel approach to preparing a readily synthesized extraction membrane capable of isolating compounds with similar structures and pharmaceutical effects, and provides an MSPE-based analytical method for natural products.
Collapse
Affiliation(s)
- Xiaoxue Sun
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Jingyu Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Xiaohui Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Shumin Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Xuerui Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Xiaodong Bi
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
- Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences) Jinan 250117 Shandong China
| |
Collapse
|
14
|
Silva RC, De Freitas A, Vicente B, Midlej V, Dos Santos MS. Exploring novel pyrazole-nitroimidazole hybrids: Synthesis and antiprotozoal activity against the human pathogen trichomonas vaginalis. Bioorg Med Chem 2024; 102:117679. [PMID: 38461555 DOI: 10.1016/j.bmc.2024.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Trichomoniasis, a prevalent sexually transmitted infection (STI) caused by the protozoan Trichomonas vaginalis, has gained increased significance globally. Its relevance has grown in recent years due to its association with a heightened risk of acquiring and transmitting the human immunodeficiency virus (HIV) and other STIs. In addition, many publications have revealed a potential link between trichomoniasis and certain cancers. Metronidazole (MTZ), a nitroimidazole compound developed over 50 years ago, remains the first-choice drug for treatment. However, reports of genotoxicity and side effects underscore the necessity for new compounds to address this pressing global health concern. In this study, we synthesized ten pyrazole-nitroimidazoles 1(a-j) and 4-nitro-1-(hydroxyethyl)-1H-imidazole 2, an analog of metronidazole (MTZ), and assessed their trichomonacidal and cytotoxic effects. All compounds 1(a-j) and 2 exhibited IC50 values ≤ 20 μM and ≤ 41 μM, after 24 h and 48 h, respectively. Compounds 1d (IC50 5.3 μM), 1e (IC50 4.8 μM), and 1i (IC50 5.2 μM) exhibited potencies equivalent to MTZ (IC50 4.9 μM), the reference drug, after 24 h. Notably, compound 1i showed high anti-trichomonas activity after 24 h (IC50 5.2 μM) and 48 h (IC50 2.1 μM). Additionally, all compounds demonstrated either non-cytotoxic to HeLa cells (CC50 > 100 μM) or low cytotoxicity (CC50 between 69 and 100 μM). These findings suggest that pyrazole-nitroimidazole derivatives represent a promising heterocyclic system, serving as a potential lead for further optimization in trichomoniasis chemotherapy.
Collapse
Affiliation(s)
- Rafaela Corrêa Silva
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Institute of Physics and Chemistry, Federal University of Itajubá, 1303 BPS Avenue, Pinheirinho, Itajubá-MG, 37500-903, Brazil
| | - Anna De Freitas
- Laboratório de Biologia Estrutural (LBE), Oswaldo Cruz Institute, Fiocruz, 4365 Brasil Avenue, Manguinhos, Rio de Janeiro-RJ, 21040-900, Brazil; Programa de Pós-graduação em Biologia Parasitária, Oswaldo Cruz Institute- Fiocruz, Brazil
| | - Bruno Vicente
- Laboratório de Biologia Estrutural (LBE), Oswaldo Cruz Institute, Fiocruz, 4365 Brasil Avenue, Manguinhos, Rio de Janeiro-RJ, 21040-900, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Oswaldo Cruz Institute-Fiocruz, Brazil
| | - Victor Midlej
- Laboratório de Biologia Estrutural (LBE), Oswaldo Cruz Institute, Fiocruz, 4365 Brasil Avenue, Manguinhos, Rio de Janeiro-RJ, 21040-900, Brazil
| | - Maurício Silva Dos Santos
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Institute of Physics and Chemistry, Federal University of Itajubá, 1303 BPS Avenue, Pinheirinho, Itajubá-MG, 37500-903, Brazil.
| |
Collapse
|
15
|
Kim HE, Lee JY, Yoo DH, Park HH, Choi EJ, Nam KH, Park J, Choi JK. Imidazole propionate ameliorates atopic dermatitis-like skin lesions by inhibiting mitochondrial ROS and mTORC2. Front Immunol 2024; 15:1324026. [PMID: 38533495 PMCID: PMC10964488 DOI: 10.3389/fimmu.2024.1324026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Background Imidazole propionate (IMP) is a histidine metabolite produced by some gut microorganisms in the human colon. Increased levels of IMP are associated with intestinal inflammation and the development and progression of cardiovascular disease and diabetes. However, the anti-inflammatory activity of IMP has not been investigated. This study aimed to elucidate the role of IMP in treating atopic dermatitis (AD). Methods To understand how IMP mediates immunosuppression in AD, IMP was intraperitoneally injected into a Dermatophagoides farinae extract (DFE)/1-chloro-2,4 dinitrochlorobenzene (DNCB)-induced AD-like skin lesions mouse model. We also characterized the anti-inflammatory mechanism of IMP by inducing an AD response in keratinocytes through TNF-α/IFN-γ or IL-4 stimulation. Results Contrary to the prevailing view that IMP is an unhealthy microbial metabolite, we found that IMP-treated AD-like skin lesions mice showed significant improvement in their clinical symptoms, including ear thickness, epidermal and dermal thickness, and IgE levels. Furthermore, IMP antagonized the expansion of myeloid (neutrophils, macrophages, eosinophils, and mast cells) and Th cells (Th1, Th2, and Th17) in mouse skin and prevented mitochondrial reactive oxygen species production by inhibiting mitochondrial energy production. Interestingly, we found that IMP inhibited AD by reducing glucose uptake in cells to suppress proinflammatory cytokines and chemokines in an AD-like in vitro model, sequentially downregulating the PI3K and mTORC2 signaling pathways centered on Akt, and upregulating DDIT4 and AMPK. Discussion Our results suggest that IMP exerts anti-inflammatory effects through the metabolic reprogramming of skin inflammation, making it a promising therapeutic candidate for AD and related skin diseases.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jong Yeong Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dong-Hoon Yoo
- Department of Sports Rehabilitation and Exercise Management, University of Gyeongnam Geochang, Geochang-gun, Republic of Korea
| | - Hyo-Hyun Park
- Department of Clinical Pathology, Daegu Health College, Daegu, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, College of Education, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Kyung-Hwa Nam
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Park
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
16
|
Salvan da Rosa J, Bramorski Mohr ET, Lubschinski TL, Vieira GN, Rossa TA, Mandolesi Sá M, Dalmarco EM. Interference in Macrophage Balance (M1/M2): The Mechanism of Action Responsible for the Anti-Inflammatory Effect of a Fluorophenyl-Substituted Imidazole. Mediators Inflamm 2024; 2024:9528976. [PMID: 38405621 PMCID: PMC10894048 DOI: 10.1155/2024/9528976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
Traditionally, the treatment of inflammatory conditions has focused on the inhibition of inflammatory mediator production; however, many conditions are refractory to this classical approach. Recently, an alternative has been presented by researchers to solve this problem: The immunomodulation of cells closely related to inflammation. Hence, macrophages, a critical key in both innate and acquired immunity, have been presented as an alternative target for the development of new medicines. In this work, we tested the fluorophenyl-imidazole for its anti-inflammatory activity and possible immunomodulatory effect on RAW 264.7 macrophages. We also evaluated the anti-inflammatory effect of the compound, and the macrophage repolarization to M2 was confirmed by the ability of the compound to reduce the M1 markers TNF-α, IL-6, MCP-1, IL-12p70, IFN-γ, and TLR4, the high levels of p65 phosphorylated, iNOS and COX-2 mRNA expression, and the fact that the compound was not able to induce the production of M1 markers when used in macrophages without lipopolysaccharide (LPS) stimulation. Moreover, fluorophenyl-imidazole had the ability to increase the M2 markers IL-4, IL-13, CD206, apoptosis and phagocytosis levels, arginase-1, and FIZZ-1 mRNA expression before LPS stimulation. Similarly, it was also able to induce the production of these same M2 markers in macrophages without being induced with LPS. These results reinforce the affirmation that the fluorophenyl-imidazole has an important anti-inflammatory effect and demonstrates that this effect is due to immunomodulatory activity, having the ability to trigger a repolarization of macrophages from M1 to M2a. These facts suggest that this molecule could be used as an alternative scaffold for the development of a new medicine to treat inflammatory conditions, where the anti-inflammatory and proregenerative properties of M2a macrophages are desired.
Collapse
Affiliation(s)
- Julia Salvan da Rosa
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Eduarda Talita Bramorski Mohr
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Tainá Larissa Lubschinski
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Guilherme Nicácio Vieira
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Thais Andreia Rossa
- Department of Chemistry, Center for Physical and Mathematical Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Marcus Mandolesi Sá
- Department of Chemistry, Center for Physical and Mathematical Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Eduardo Monguilhott Dalmarco
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| |
Collapse
|
17
|
Zhao MN, Yang ZM, Li LQ. DMF as an amine source: iron-catalyzed cyclization of 2 H-azirines to imidazoles. Chem Commun (Camb) 2024. [PMID: 38258986 DOI: 10.1039/d3cc06147g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A novel method has been developed for the synthesis of 1-methyl-4,5-diaryl-1H-imidazoles through Fe(II)-catalyzed cyclization of 2H-azirines and N,N-dimethylformamide (DMF) as an amine source. This transformation involves the cleavage of C-N and CN double bonds and the construction of new C-N and CN double bonds. The reaction has readily available starting materials, a wide range of substrates and mild reaction conditions. In addition, the reaction also facilitated the convenient synthesis of 1-methyl-2,4,5-triaryl-1H-imidazoles.
Collapse
Affiliation(s)
- Mi-Na Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| | - Zi-Mo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Lian-Qing Li
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| |
Collapse
|
18
|
Dindi UMR, Sadiq SP, Al-Ghamdi S, Alrudian NA, Dayel SB, Abuderman AA, Shahid M, Ramesh T, Vilwanathan R. In-silico and in-vitro functional validation of imidazole derivatives as potential sirtuin inhibitor. Front Med (Lausanne) 2023; 10:1282820. [PMID: 38020163 PMCID: PMC10662127 DOI: 10.3389/fmed.2023.1282820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Epigenetic enzymes can interact with a wide range of genes that actively participate in the progression or repression of a diseased condition, as they are involved in maintaining cellular homeostasis. Sirtuins are a family of Class III epigenetic modifying enzymes that regulate cellular processes by removing acetyl groups from proteins. They rely on NAD+ as a coenzyme in contrast to classical histone deacetylases (HDACs) (Class I, II, and IV) that depend on Zn+ for their activation, linking their function to cellular energy levels. There are seven mammalian sirtuin isoforms (Sirt1-7), each located in different subcellular compartments. Sirtuins have emerged as a promising target, given that inhibitors of natural and synthetic sources are highly warranted. Imidazole derivatives are often investigated as sirtuin regulators due to their ability to interact with the binding site and modulate their activity. Imidazole bestows many possible substitutions on its ring and neighboring atoms to design and synthesize derivatives with specific target selectivity and improved pharmacokinetic properties, optimizing drug development. Materials and methods Ligand preparation, protein preparation, molecular docking, molecular dynamics, density function theory (DFT) analysis, and absorption, distribution, metabolism, and excretion (ADME) analysis were performed to understand the interacting potential and effective stability of the ligand with the protein. RT-PCR and Western blot analyses were performed to understand the impact of ligands on the gene and protein expression of Class III HDAC enzymes. Results and discussion We evaluated the sirtuin inhibition activity of our in-house compound comprised of imidazole derivatives by docking the molecules with the protein data bank. ADME properties of all the compounds used in the study were evaluated, and it was found that all fall within the favorable range of being a potential drug. The molecule with the highest docking score was analyzed using DFT, and the specific compound was used to treat the non-small cell lung cancer (NSCLC) cell lines A549 and NCI-H460. The gene and protein expression data support the in-silico finding that the compound Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl) acetate has an inhibitory effect on nuclear sirtuins. In conclusion, targeting sirtuins is an emerging strategy to combat carcinogenesis. In this study, we establish that Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl) acetate possesses a strong inhibitory effect on nuclear sirtuins in NSCLC cell lines.
Collapse
Affiliation(s)
- Uma Maheswara Rao Dindi
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Suhadha Parveen Sadiq
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sameer Al-Ghamdi
- Department of Family and Community Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Naif Abdurhman Alrudian
- Department of Family and Community Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salman Bin Dayel
- Dermatology Unit, Internal Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulwahab Ali Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ravikumar Vilwanathan
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
19
|
Moradi S, Ardeshiri HH, Gholami A, Ghafuri H. Synthesis and characterization of new biocatalyst based on LDH functionalized with l-asparagine amino acid for the synthesis of tri-substituted derivatives of 2, 4, 5-(H1)-imidazoles. Heliyon 2023; 9:e22185. [PMID: 38053897 PMCID: PMC10694169 DOI: 10.1016/j.heliyon.2023.e22185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
In this study, a new and recyclable biocatalyst (MgAl CO3-LDH@Asn) was synthesized by immobilizing l-asparagine amino acid (Asn) on the surface of 3-(chloropropyl)-trimethoxysilane modified MgAl CO3-layered double hydroxide (LDH). The physicochemical properties of the samples were identified by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and thermogravimetric analysis (TGA) techniques. The MgAl CO3-LDH@Asn was employed in the multi-component assembly process for the synthesis of tri-substituted derivatives of 2,4,5-(H1)-imidazoles from benzyl, various benzaldehyde derivatives, and ammonium acetate. For optimizing the reaction, the main factors, including the amount of MgAl CO3-LDH@Asn, type of solvent, reaction time, and temperature were evaluated. The optimum conditions of the model reaction were achieved using 20 mg of MgAl CO3-LDH@Asn biocatalyst in ethanol solvent after 20 min at reflux temperature. According to the findings above, the results indicated that high-yield products are achieved within a short time frame. Moreover, the high catalytic activity of the MgAl CO3-LDH@Asn was maintained for four cycles without significantly diminishing its performance.
Collapse
Affiliation(s)
- Shahram Moradi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hadi Hassani Ardeshiri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Alireza Gholami
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
20
|
Eslami Moghadam M, Rezaeisadat M, Shahryari E, Mansouri-Torshizi H, Heydari M. Biological interaction of Pt complex with imidazole derivative as an anticancer compound with DNA: Experimental and theoretical studies. Int J Biol Macromol 2023; 249:126097. [PMID: 37543270 DOI: 10.1016/j.ijbiomac.2023.126097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
This investigation is applied to find out interesting information on DNA binding mode with Pt(II) derivative of two N, N bidentate ligands in treating cancer. Thus, one new water-soluble platinum complex with FIP and phen with a new formula of [Pt(phen)(FIP)](NO3)2 was prepared and specified. DFT data can be used to evaluate geometry parameters. Based on the ADMET prediction, this complex can be considered a drug-like agent. Cytotoxicity property was evaluated against some human cancerous MCF7, A549, and HCT116 cell lines. Accumulation of Pt complex, cisplatin, and oxaliplatin in each cancerous cell was determined, which is probably related to their lipophilicity and solubility properties. The binding mode of the complex to ct-DNA was investigated by fluorescence spectroscopy, circular dichroism, and molecular docking simulation. The viscosity of DNA by different concentrations of EB and Pt complex titration shows Pt complex interacts with DNA via groove binding like the spectroscopic binding result. In the MD study, DNA helix, RMSD, and RMSF analysis showed that DNA stability decreased and that the majority of residues left the initial state. DNA increased residual deviations and flexibility are linked to an increase in its gyratory radius, which is consistent with the findings of the experiments.
Collapse
Affiliation(s)
| | | | - Elaheh Shahryari
- Department of Physical Sciences, Emporia State University, Campus Box, 4030, KS, USA
| | | | - Maryam Heydari
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
21
|
Bagán A, Rodriguez-Arévalo S, Taboada-Jara T, Griñán-Ferré C, Pallàs M, Brocos-Mosquera I, Callado LF, Morales-García JA, Pérez B, Diaz C, Fernández-Godino R, Genilloud O, Beljkas M, Oljacic S, Nikolic K, Escolano C. Preclinical Evaluation of an Imidazole-Linked Heterocycle for Alzheimer's Disease. Pharmaceutics 2023; 15:2381. [PMID: 37896141 PMCID: PMC10610545 DOI: 10.3390/pharmaceutics15102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Humanity is facing a vast prevalence of neurodegenerative diseases, with Alzheimer's disease (AD) being the most dominant, without efficacious drugs, and with only a few therapeutic targets identified. In this scenario, we aim to find molecular entities that modulate imidazoline I2 receptors (I2-IRs) that have been pointed out as relevant targets in AD. In this work, we explored structural modifications of well-established I2-IR ligands, giving access to derivatives with an imidazole-linked heterocycle as a common key feature. We report the synthesis, the affinity in human I2-IRs, the brain penetration capabilities, the in silico ADMET studies, and the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of this new bunch of I2-IR ligands. Selected compounds showed neuroprotective properties and beneficial effects in an in vitro model of Parkinson's disease, rescued the human dopaminergic cell line SH-SY5Y from death after treatment with 6-hydroxydopamine, and showed crucial anti-inflammatory effects in a cellular model of neuroinflammation. After a preliminary pharmacokinetic study, we explored the action of our representative 2-(benzo[b]thiophen-2-yl)-1H-imidazole LSL33 in a mouse model of AD (5xFAD). Oral administration of LSL33 at 2 mg/Kg for 4 weeks ameliorated 5XFAD cognitive impairment and synaptic plasticity, as well as reduced neuroinflammation markers. In summary, this new I2-IR ligand that promoted beneficial effects in a well-established AD mouse model should be considered a promising therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Andrea Bagán
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (A.B.); (S.R.-A.)
| | - Sergio Rodriguez-Arévalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (A.B.); (S.R.-A.)
| | - Teresa Taboada-Jara
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (T.T.-J.); (C.G.-F.); (M.P.)
| | - Christian Griñán-Ferré
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (T.T.-J.); (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Mercè Pallàs
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (T.T.-J.); (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain; (I.B.-M.); (L.F.C.)
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain; (I.B.-M.); (L.F.C.)
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - José A. Morales-García
- Department of Cell Biology, School of Medicine, Complutense University (UCM), 28040 Madrid, Spain;
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, 08193 Cerdanyola, Spain;
| | - Caridad Diaz
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Spain; (C.D.); (R.F.-G.); (O.G.)
| | - Rosario Fernández-Godino
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Spain; (C.D.); (R.F.-G.); (O.G.)
| | - Olga Genilloud
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Spain; (C.D.); (R.F.-G.); (O.G.)
| | - Milan Beljkas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (S.O.); (K.N.)
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (S.O.); (K.N.)
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (S.O.); (K.N.)
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (A.B.); (S.R.-A.)
| |
Collapse
|
22
|
Abdullah S, Ganguly S. An overview of imidazole and its analogues as potent anticancer agents. Future Med Chem 2023; 15:1621-1646. [PMID: 37727960 DOI: 10.4155/fmc-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The quest for novel, physiologically active imidazoles remains an exciting topic of research among medicinal chemists. The imidazole ring is a five-membered aromatic heterocycle that is found in both natural and synthesized compounds. Multiple anticancer drug classes are currently available on the market, but concerns including toxicity, limited efficacy and solubility have lowered the overall therapeutic index. Therefore, the hunt for new potential chemotherapeutic agents persists. The development of imidazole as a reliable and safer alternative to anticancer treatment is generating much attention among experts. Tubulin or microtubule polymerization inhibition and changes in the structure and function of DNA, VEGF, topoisomerase, kinases, histone deacetylases and certain other proteins that affect gene expression are among the putative targets.
Collapse
Affiliation(s)
- Salik Abdullah
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Swastika Ganguly
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| |
Collapse
|
23
|
Goel KK, Thapliyal S, Kharb R, Joshi G, Negi A, Kumar B. Imidazoles as Serotonin Receptor Modulators for Treatment of Depression: Structural Insights and Structure-Activity Relationship Studies. Pharmaceutics 2023; 15:2208. [PMID: 37765177 PMCID: PMC10535231 DOI: 10.3390/pharmaceutics15092208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Serotoninergic signaling is identified as a crucial player in psychiatric disorders (notably depression), presenting it as a significant therapeutic target for treating such conditions. Inhibitors of serotoninergic signaling (especially selective serotonin reuptake inhibitors (SSRI) or serotonin and norepinephrine reuptake inhibitors (SNRI)) are prominently selected as first-line therapy for the treatment of depression, which benefits via increasing low serotonin levels and norepinephrine by blocking serotonin/norepinephrine reuptake and thereby increasing activity. While developing newer heterocyclic scaffolds to target/modulate the serotonergic systems, imidazole-bearing pharmacophores have emerged. The imidazole-derived pharmacophore already demonstrated unique structural characteristics and an electron-rich environment, ultimately resulting in a diverse range of bioactivities. Therefore, the current manuscript discloses such a specific modification and structural activity relationship (SAR) of attempted derivatization in terms of the serotonergic efficacy of the resultant inhibitor. We also featured a landscape of imidazole-based development, focusing on SAR studies against the serotoninergic system to target depression. This study covers the recent advancements in synthetic methodologies for imidazole derivatives and the development of new molecules having antidepressant activity via modulating serotonergic systems, along with their SAR studies. The focus of the study is to provide structural insights into imidazole-based derivatives as serotonergic system modulators for the treatment of depression.
Collapse
Affiliation(s)
- Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India
| | - Somesh Thapliyal
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
| | - Rajeev Kharb
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
| | - Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
- Department of Chemistry, Graphic Era (Deemed to Be University), Dehradun 248002, Uttarakhand, India
| |
Collapse
|
24
|
Treuer AV, Faúndez M, Ebensperger R, Hovelmeyer E, Vergara-Jaque A, Perera-Sardiña Y, Gutierrez M, Fuentealba R, González DR. New NADPH Oxidase 2 Inhibitors Display Potent Activity against Oxidative Stress by Targeting p22 phox-p47 phox Interactions. Antioxidants (Basel) 2023; 12:1441. [PMID: 37507978 PMCID: PMC10376059 DOI: 10.3390/antiox12071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
NADPH oxidase (NOX2) is responsible for reactive oxygen species (ROS) production in neutrophils and has been recognized as a key mediator in inflammatory and cardiovascular pathologies. Nevertheless, there is a lack of specific NOX2 pharmacological inhibitors. In medicinal chemistry, heterocyclic compounds are essential scaffolds for drug design, and among them, indole is a very versatile pharmacophore. We tested the hypothesis that indole heteroaryl-acrylonitrile derivatives may serve as NOX2 inhibitors by evaluating the capacity of 19 of these molecules to inhibit NOX2-derived ROS production in human neutrophils (HL-60 cells). Of these compounds, C6 and C14 exhibited concentration-dependent inhibition of NOX2 (IC50~1 µM). These molecules also reduced NOX2-derived oxidative stress in cardiomyocytes and prevented cardiac damage induced by ischemia-reperfusion. Compound C6 significantly reduced the membrane translocation of p47phox, a cytosolic subunit that is required for NOX2 activation. Molecular docking analyses of the binding modes of these molecules with p47phox indicated that C6 and C14 interact with specific residues in the inner part of the groove of p47phox, the binding cavity for p22phox. This combination of methods showed that novel indole heteroaryl acrylonitriles represent interesting lead compounds for developing specific and potent NOX2 inhibitors.
Collapse
Affiliation(s)
- Adriana V Treuer
- Department of Basic Biomedical Sciences, School of Health Sciences, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Mario Faúndez
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Roberto Ebensperger
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Erwin Hovelmeyer
- Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Yunier Perera-Sardiña
- Department of Basic Biomedical Sciences, School of Health Sciences, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Margarita Gutierrez
- Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of Chemistry of Natural Resources, Universidad de Talca, Talca 3460000, Chile
| | - Roberto Fuentealba
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Talca 3460000, Chile
| | - Daniel R González
- Department of Basic Biomedical Sciences, School of Health Sciences, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| |
Collapse
|
25
|
Babijczuk K, Warżajtis B, Starzyk J, Mrówczyńska L, Jasiewicz B, Rychlewska U. Synthesis, Structure and Biological Activity of Indole-Imidazole Complexes with ZnCl 2: Can Coordination Enhance the Functionality of Bioactive Ligands? Molecules 2023; 28:molecules28104132. [PMID: 37241873 DOI: 10.3390/molecules28104132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The ability of the indole-imidazole hybrid ligands to coordinate with the Zn(II) ion and the resulting structures of this new class of coordination compounds were analyzed in order to determine their structural properties and biological functionalities. For this purpose, six novel Zn(II) complexes, [Zn(InIm)2Cl2] (1), [Zn(InMeIm)2Cl2] (2), [Zn(IniPrIm)2Cl2] (3), [Zn(InEtMeIm)2Cl2] (4), [Zn(InPhIm)2Cl2] (5) and [Zn2(InBzIm)2Cl2] (6) (where InIm is 3-((1H-imidazol-1-yl)methyl)-1H-indole), were synthesized by the reactions of ZnCl2 and the corresponding ligand in a 1:2 molar ratio in methanol solvent at an ambient temperature. The structural and spectral characterization of these complexes was performed using NMR, FT-IR and ESI-MS spectrometry and elemental analysis, and the crystal structures of 1-5 were determined using single-crystal X-ray diffraction. Complexes 1-5 form polar supramolecular aggregates by utilizing, for this purpose, the N-H(indole)∙∙∙Cl(chloride) intermolecular hydrogen bonds. The assemblies thus formed differ depending on the distinctive molecular shape, which can be either compact or extended. All complexes were screened for their hemolytic, cytoprotective, antifungal, and antibacterial activities. The results show that the cytoprotective activity of the indole/imidazole ligand significantly increases upon its complexation with ZnCl2 up to a value comparable with the standard antioxidant Trolox, while the response of its substituted analogues is diverse and less pronounced.
Collapse
Affiliation(s)
- Karolina Babijczuk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Beata Warżajtis
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Justyna Starzyk
- Department of Soil Science and Microbiology, Faculty of Agronomy, Horticulture, and Bioengineering, University of Life Science, Szydłowska 50, 60-656 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Beata Jasiewicz
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Urszula Rychlewska
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
26
|
Neves D, Figueiredo A, Maia M, Laczko E, Pais MS, Cravador A. A Metabolome Analysis and the Immunity of Phlomis purpurea against Phytophthora cinnamomi. PLANTS (BASEL, SWITZERLAND) 2023; 12:1929. [PMID: 37653845 PMCID: PMC10223286 DOI: 10.3390/plants12101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Phlomis purpurea grows spontaneously in the southern Iberian Peninsula, namely in cork oak (Quercus suber) forests. In a previous transcriptome analysis, we reported on its immunity against Phytophthora cinnamomi. However, little is known about the involvement of secondary metabolites in the P. purpurea defense response. It is known, though, that root exudates are toxic to this pathogen. To understand the involvement of secondary metabolites in the defense of P. purpurea, a metabolome analysis was performed using the leaves and roots of plants challenged with the pathogen for over 72 h. The putatively identified compounds were constitutively produced. Alkaloids, fatty acids, flavonoids, glucosinolates, polyketides, prenol lipids, phenylpropanoids, sterols, and terpenoids were differentially produced in these leaves and roots along the experiment timescale. It must be emphasized that the constitutive production of taurine in leaves and its increase soon after challenging suggests its role in P. purpurea immunity against the stress imposed by the oomycete. The rapid increase in secondary metabolite production by this plant species accounts for a concerted action of multiple compounds and genes on the innate protection of Phlomis purpurea against Phytophthora cinnamomi. The combination of the metabolome with the transcriptome data previously disclosed confirms the mentioned innate immunity of this plant against a devastating pathogen. It suggests its potential as an antagonist in phytopathogens' biological control. Its application in green forestry/agriculture is therefore possible.
Collapse
Affiliation(s)
- Dina Neves
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Marisa Maia
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Endre Laczko
- Functional Genomics Center, UZH/ETHZ, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Maria Salomé Pais
- Academia das Ciências de Lisboa, R. da Academia das Ciências de Lisboa, 19, 1200-168 Lisboa, Portugal
| | - Alfredo Cravador
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
27
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Synergistic Antimicrobial Activity of Silver Nanoparticles with an Emergent Class of Azoimidazoles. Pharmaceutics 2023; 15:pharmaceutics15030926. [PMID: 36986787 PMCID: PMC10053004 DOI: 10.3390/pharmaceutics15030926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The combination of two or more agents capable of acting in synergy has been reported as a valuable tool to fight against pathogens. Silver nanoparticles (AgNPs) present a strong antimicrobial action, although their cytotoxicity for healthy cells at active concentrations is a major concern. Azoimidazole moieties exhibit interesting bioactivities, including antimicrobial activity. In this work, a class of recently described azoimidazoles with strong antifungal activity was conjugated with citrate or polyvinylpyrrolidone-stabilized AgNPs. Proton nuclear magnetic resonance was used to confirm the purity of the compounds before further tests and atomic absorption spectroscopy to verify the concentration of silver in the prepared dispersions. Other analytical techniques elucidate the morphology and stability of AgNPs and corresponding conjugates, namely ultraviolet–visible spectrophotometry, scanning transmission electron microscopy and dynamic light scattering analysis. The synergistic antimicrobial activity of the conjugates was assessed through a checkerboard assay against yeasts (Candida albicans and Candida krusei) and bacteria (Staphylococcus aureus and Escherichia coli). The conjugates showed improved antimicrobial activity against all microorganisms, in particular towards bacteria, with concentrations below their individual minimal inhibitory concentration (MIC). Furthermore, some combinations were found to be non-cytotoxic towards human HaCaT cells.
Collapse
|