1
|
Teng Y, Arbogast K, Junge H, Chen Z. Protocol for generating splice isoform-specific mouse mutants using CRISPR-Cas9 and a minigene splicing reporter. STAR Protoc 2025; 6:103543. [PMID: 39756031 PMCID: PMC11758566 DOI: 10.1016/j.xpro.2024.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Here, we present a protocol to alter the production of alternatively spliced mRNA variants, without affecting the overall gene expression, through CRISPR-Cas9-engineered genomic mutations in mice. We describe steps for designing guide RNA to direct Cas9 endonuclease to consensus splice sites, producing transgenic mice through pronuclear injection, and screening for desired mutations in cultured mammalian cells using a minigene splicing reporter. Splice isoform-specific mouse mutants provide valuable tools for genetic analyses beyond loss-of-function and transgenic alleles. For complete details on the use and execution of this protocol, please refer to Dailey-Krempel et al.1 and Johnson et al.2.
Collapse
Affiliation(s)
- Yudong Teng
- The Genetically Engineered Murine Models Core, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelsey Arbogast
- Colorado Center for Personalized Medicine Biobank, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Harald Junge
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zhe Chen
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Elrick H, Peterson KA, Willis BJ, Lanza DG, Acar EF, Ryder EJ, Teboul L, Kasparek P, Birling MC, Adams DJ, Bradley A, Braun RE, Brown SD, Caulder A, Codner GF, DeMayo FJ, Dickinson ME, Doe B, Duddy G, Gertsenstein M, Goodwin LO, Hérault Y, Lintott LG, Lloyd KCK, Lorenzo I, Mackenzie M, Mallon AM, McKerlie C, Parkinson H, Ramirez-Solis R, Seavitt JR, Sedlacek R, Skarnes WC, Smedley D, Wells S, White JK, Wood JA, Murray SA, Heaney JD, Nutter LMJ. Impact of essential genes on the success of genome editing experiments generating 3313 new genetically engineered mouse lines. Sci Rep 2024; 14:22626. [PMID: 39349521 PMCID: PMC11443006 DOI: 10.1038/s41598-024-72418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
The International Mouse Phenotyping Consortium (IMPC) systematically produces and phenotypes mouse lines with presumptive null mutations to provide insight into gene function. The IMPC now uses the programmable RNA-guided nuclease Cas9 for its increased capacity and flexibility to efficiently generate null alleles in the C57BL/6N strain. In addition to being a valuable novel and accessible research resource, the production of 3313 knockout mouse lines using comparable protocols provides a rich dataset to analyze experimental and biological variables affecting in vivo gene engineering with Cas9. Mouse line production has two critical steps - generation of founders with the desired allele and germline transmission (GLT) of that allele from founders to offspring. A systematic evaluation of the variables impacting success rates identified gene essentiality as the primary factor influencing successful production of null alleles. Collectively, our findings provide best practice recommendations for using Cas9 to generate alleles in mouse essential genes, many of which are orthologs of genes linked to human disease.
Collapse
Affiliation(s)
- Hillary Elrick
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | | | - Brandon J Willis
- Mouse Biology Program, University of California-Davis, Davis, CA, 95618, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetic, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elif F Acar
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Statistics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Edward J Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- LGC Assure, Fordham, CB7 5WW, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon, OX11 0RD, UK
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Marie-Christine Birling
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Allan Bradley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Trinity Lane, Cambridge, CB2 1TN, UK
| | | | | | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon, OX11 0RD, UK
| | - Gemma F Codner
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon, OX11 0RD, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Reproductive and Developmental Biology Laboratory, NIEHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Mary E Dickinson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brendan Doe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | | | - Yann Hérault
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Lauri G Lintott
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - K C Kent Lloyd
- Mouse Biology Program, University of California-Davis, Davis, CA, 95618, USA
- Department of Surgery, School of Medicine, University of California Davis, Davis, CA, 95618, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetic, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew Mackenzie
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon, OX11 0RD, UK
| | | | - Colin McKerlie
- The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Helen Parkinson
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ramiro Ramirez-Solis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- UT Health San Antonio, San Antonio, TX, 78229, USA
| | - John R Seavitt
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Department of Molecular and Human Genetic, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - William C Skarnes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Damien Smedley
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon, OX11 0RD, UK
| | | | - Joshua A Wood
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Mouse Biology Program, University of California-Davis, Davis, CA, 95618, USA
| | | | - Jason D Heaney
- Department of Molecular and Human Genetic, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.
- The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
3
|
Su H, Zhi D, Song Y, Yang Y, Wang D, Li X, Cao G. Exploring the formation mechanism of short-tailed phenotypes in animals using mutant mice with the TBXT gene c.G334T developed by CRISPR/Cas9. Gene 2024; 910:148310. [PMID: 38401832 DOI: 10.1016/j.gene.2024.148310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
With the change in diet structure, individuals prefer to consume mutton with less fat. However, sheep tail has a lot of fat. We identified a breed of low-fat short-tailed sheep (i.e., Hulunbuir short-tailed sheep). It is necessary to develop an animal model that can promote research on the potential mechanisms of the short-tail phenotype in sheep, which results from the TBXT gene c.G334T mutation. To create animal models, we selected mice as experimental animals. Mouse embryos lacking the TBXT protein, which crucially regulates mouse embryonic development, cannot develop normally. We utilized CRISPR/Cas9 gene editing technology to generate site-specific mutation (c.G334T) in the TBXT gene of mice, and found that the mouse TBXT mutation (c.G334T) leads to a short-tail phenotype. Furthermore, we investigated the interaction between TBXT and Wnt signaling pathways. The expressions of TBXT, Axin2, Dkk1, Wnt3, Wnt3a, and Wnt5a were discovered to be significantly different between mutant embryos and wild embryos by obtaining mouse embryos at various developmental stages and examining the expression relationship between the TBXT and Wnt signaling pathway-related components in all of these embryos. Therefore, as a transcription factor, TBXT regulates the expression of the aforementioned Wnt signaling pathway components by forming a regulatory network for the normal development of mouse embryos. This study enriches the research on the functional role of the TBXT in the development of mouse embryos and the mechanism by which the short-tailed phenotype in sheep develops.
Collapse
Affiliation(s)
- Hong Su
- College of Veterinary Medicine, Inner Mongolia Agricultural University, China; Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, China; Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, China.
| | - Dafu Zhi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, China; Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, China; Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, China.
| | - Yongli Song
- College of Life Sciences, Inner Mongolia University, China.
| | - Yanyan Yang
- Inner Mongolia Academy of Agriculture and Animal Husbandry, China.
| | - Daqing Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, China; Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, China; Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, China; Inner Mongolia Academy of Agriculture and Animal Husbandry, China.
| | - Xiunan Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, China; Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, China; Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, China; Inner Mongolia Academy of Agriculture and Animal Husbandry, China.
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, China; Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, China; Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, China.
| |
Collapse
|
4
|
Chirinskaite AV, Rotov AY, Ermolaeva ME, Tkachenko LA, Vaganova AN, Danilov LG, Fedoseeva KN, Kostin NA, Sopova JV, Firsov ML, Leonova EI. Does Background Matter? A Comparative Characterization of Mouse Models of Autosomal Retinitis Pigmentosa rd1 and Pde6b-KO. Int J Mol Sci 2023; 24:17180. [PMID: 38139011 PMCID: PMC10742838 DOI: 10.3390/ijms242417180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Many retinal degenerative diseases result in vision impairment or permanent blindness due to photoreceptor loss or dysfunction. It has been observed that Pde6brd1 mice (rd1), which carry a spontaneous nonsense mutation in the pde6b gene, have a strong phenotypic similarity to patients suffering from autosomal recessive retinitis pigmentosa. In this study, we present a novel mouse model of retinitis pigmentosa generated through pde6b gene knockout using CRISPR/Cas9 technology. We compare this Pde6b-KO mouse model to the rd1 mouse model to gain insights into the progression of retinal degeneration. The functional assessment of the mouse retina and the tracking of degeneration dynamics were performed using electrophysiological methods, while retinal morphology was analyzed through histology techniques. Interestingly, the Pde6b-KO mouse model demonstrated a higher amplitude of photoresponse than the rd1 model of the same age. At postnatal day 12, the thickness of the photoreceptor layer in both mouse models did not significantly differ from that of control animals; however, by day 15, a substantial reduction was observed. Notably, the decline in the number of photoreceptors in the rd1 model occurred at a significantly faster rate. These findings suggest that the C3H background may play a significant role in the early stages of retinal degeneration.
Collapse
Affiliation(s)
- Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia (J.V.S.)
| | - Alexander Yu. Rotov
- Laboratory of Evolution of Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Ave., 44, 194223 St. Petersburg, Russia (M.L.F.)
| | - Mariia E. Ermolaeva
- Laboratory of Evolution of Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Ave., 44, 194223 St. Petersburg, Russia (M.L.F.)
| | - Lyubov A. Tkachenko
- Department of Cytology and Histology, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Lavrentii G. Danilov
- Department of Genetics and biotechnology, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Ksenia N. Fedoseeva
- Resource Center “Molecular and Cell Technologies”, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Nicolay A. Kostin
- Resource Center “Molecular and Cell Technologies”, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Julia V. Sopova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia (J.V.S.)
- Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Michael L. Firsov
- Laboratory of Evolution of Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Ave., 44, 194223 St. Petersburg, Russia (M.L.F.)
| | - Elena I. Leonova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia (J.V.S.)
| |
Collapse
|
5
|
Putman R, Ricciardi AS, Carufe KEW, Quijano E, Bahal R, Glazer PM, Saltzman WM. Nanoparticle-mediated genome editing in single-cell embryos via peptide nucleic acids. Bioeng Transl Med 2023; 8:e10458. [PMID: 37206203 PMCID: PMC10189434 DOI: 10.1002/btm2.10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Through preimplantation genetic diagnosis, genetic diseases can be detected during the early stages of embryogenesis, but effective treatments for many of these disorders are lacking. Gene editing could allow for correction of the underlying mutation during embryogenesis to prevent disease pathogenesis or even provide a cure. Here, we demonstrate that administration of peptide nucleic acids and single-stranded donor DNA oligonucleotides encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to single-cell embryos allows for editing of an eGFP-beta globin fusion transgene. Blastocysts from treated embryos exhibit high levels of editing (~94%), normal physiological development, normal morphology, and no detected off-target genomic effects. Treated embryos reimplanted to surrogate moms show normal growth without gross developmental abnormalities and with no identified off-target effects. Mice from reimplanted embryos consistently show editing, characterized by mosaicism across multiple organs with some organ biopsies showing up to 100% editing. This proof-of-concept work demonstrates for the first time the use of peptide nucleic acid (PNA)/DNA nanoparticles as a means to achieve embryonic gene editing.
Collapse
Affiliation(s)
- Rachael Putman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Adele S. Ricciardi
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of SurgeryUniversity of Pennsylvania Health SystemsPhiladelphiaPennsylvaniaUSA
| | - Kelly E. W. Carufe
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of GeneticsYale UniversityNew HavenConnecticutUSA
| | - Elias Quijano
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of GeneticsYale UniversityNew HavenConnecticutUSA
| | - Raman Bahal
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of Pharmaceutical SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - Peter M. Glazer
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of GeneticsYale UniversityNew HavenConnecticutUSA
| | - W. Mark Saltzman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of Cellular & Molecular PhysiologyYale UniversityNew HavenConnecticutUSA
- Department of Chemical & Environmental EngineeringYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
6
|
Abstract
For four decades, genetically altered laboratory animals have provided invaluable information. Originally, genetic modifications were performed on only a few animal species, often chosen because of the ready accessibility of embryonic materials and short generation times. The methods were often slow, inefficient and expensive. In 2013, a new, extremely efficient technology, namely CRISPR/Cas9, not only made the production of genetically altered organisms faster and cheaper, but also opened it up to non-conventional laboratory animal species. CRISPR/Cas9 relies on a guide RNA as a 'location finder' to target DNA double strand breaks induced by the Cas9 enzyme. This is a prerequisite for non-homologous end joining repair to occur, an error prone mechanism often generating insertion or deletion of genetic material. If a DNA template is also provided, this can lead to homology directed repair, allowing precise insertions, deletions or substitutions. Due to its high efficiency in targeting DNA, CRISPR/Cas9-mediated genetic modification is now possible in virtually all animal species for which we have genome sequence data. Furthermore, modifications of Cas9 have led to more refined genetic alterations from targeted single base-pair mutations to epigenetic modifications. The latter offer altered gene expression without genome alteration. With this ever growing genetic toolbox, the number and range of genetically altered conventional and non-conventional laboratory animals with simple or complex genetic modifications is growing exponentially.
Collapse
|
7
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
8
|
Beck DB, Basar MA, Asmar AJ, Thompson JJ, Oda H, Uehara DT, Saida K, Pajusalu S, Talvik I, D'Souza P, Bodurtha J, Mu W, Barañano KW, Miyake N, Wang R, Kempers M, Tamada T, Nishimura Y, Okada S, Kosho T, Dale R, Mitra A, Macnamara E, Matsumoto N, Inazawa J, Walkiewicz M, Õunap K, Tifft CJ, Aksentijevich I, Kastner DL, Rocha PP, Werner A. Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation. SCIENCE ADVANCES 2021; 7:7/4/eabe2116. [PMID: 33523931 PMCID: PMC7817106 DOI: 10.1126/sciadv.abe2116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/07/2020] [Indexed: 05/09/2023]
Abstract
Reversible modification of proteins with linkage-specific ubiquitin chains is critical for intracellular signaling. Information on physiological roles and underlying mechanisms of particular ubiquitin linkages during human development are limited. Here, relying on genomic constraint scores, we identify 10 patients with multiple congenital anomalies caused by hemizygous variants in OTUD5, encoding a K48/K63 linkage-specific deubiquitylase. By studying these mutations, we find that OTUD5 controls neuroectodermal differentiation through cleaving K48-linked ubiquitin chains to counteract degradation of select chromatin regulators (e.g., ARID1A/B, histone deacetylase 2, and HCF1), mutations of which underlie diseases that exhibit phenotypic overlap with OTUD5 patients. Loss of OTUD5 during differentiation leads to less accessible chromatin at neuroectodermal enhancers and aberrant gene expression. Our study describes a previously unidentified disorder we name LINKED (LINKage-specific deubiquitylation deficiency-induced Embryonic Defects) syndrome and reveals linkage-specific ubiquitin cleavage from chromatin remodelers as an essential signaling mode that coordinates chromatin remodeling during embryogenesis.
Collapse
Affiliation(s)
- David B Beck
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotsugu Oda
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniela T Uehara
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Inga Talvik
- Department of Neurology and Rehabilitation, Tallinn Children's Hospital, Tallinn, Estonia
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joann Bodurtha
- Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Weiyi Mu
- Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Raymond Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA 92967, USA
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tomoko Tamada
- Department of Pediatrics, Hiroshima Prefectural Rehabilitation Center, Hiroshima, Japan
| | - Yutaka Nishimura
- Department of General Perinatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Nagano, Japan
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen Macnamara
- Undiagnosed Diseases Program, The Common Fund, Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Magdalena Walkiewicz
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Cynthia J Tifft
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Undiagnosed Diseases Program, The Common Fund, Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Kastner
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Alghadban S, Bouchareb A, Hinch R, Hernandez-Pliego P, Biggs D, Preece C, Davies B. Electroporation and genetic supply of Cas9 increase the generation efficiency of CRISPR/Cas9 knock-in alleles in C57BL/6J mouse zygotes. Sci Rep 2020; 10:17912. [PMID: 33087834 PMCID: PMC7578782 DOI: 10.1038/s41598-020-74960-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/08/2020] [Indexed: 01/12/2023] Open
Abstract
CRISPR/Cas9 machinery delivered as ribonucleoprotein (RNP) to the zygote has become a standard tool for the development of genetically modified mouse models. In recent years, a number of reports have demonstrated the effective delivery of CRISPR/Cas9 machinery via zygote electroporation as an alternative to the conventional delivery method of microinjection. In this study, we have performed side-by-side comparisons of the two RNP delivery methods across multiple gene loci and conclude that electroporation compares very favourably with conventional pronuclear microinjection, and report an improvement in mutagenesis efficiency when delivering CRISPR via electroporation for the generation of simple knock-in alleles using single-stranded oligodeoxynucleotide (ssODN) repair templates. In addition, we show that the efficiency of knock-in mutagenesis can be further increased by electroporation of embryos derived from Cas9-expressing donor females. The maternal supply of Cas9 to the zygote avoids the necessity to deliver the relatively large Cas9 protein, and high efficiency generation of both indel and knock-in allele can be achieved by electroporation of small single-guide RNAs and ssODN repair templates alone. Furthermore, electroporation, compared to microinjection, results in a higher rate of embryo survival and development. The method thus has the potential to reduce the number of animals used in the production of genetically modified mouse models.
Collapse
Affiliation(s)
- Samy Alghadban
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Amine Bouchareb
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Robert Hinch
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | | | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
10
|
Iyer V, Boroviak K, Thomas M, Doe B, Riva L, Ryder E, Adams DJ. No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet 2018; 14:e1007503. [PMID: 29985941 PMCID: PMC6057650 DOI: 10.1371/journal.pgen.1007503] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/24/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
CRISPR-Cas9 technologies have transformed genome-editing of experimental organisms and have immense therapeutic potential. Despite significant advances in our understanding of the CRISPR-Cas9 system, concerns remain over the potential for off-target effects. Recent studies have addressed these concerns using whole-genome sequencing (WGS) of gene-edited embryos or animals to search for de novo mutations (DNMs), which may represent candidate changes introduced by poor editing fidelity. Critically, these studies used strain-matched, but not pedigree-matched controls and thus were unable to reliably distinguish generational or colony-related differences from true DNMs. Here we used a trio design and whole genome sequenced 8 parents and 19 embryos, where 10 of the embryos were mutagenised with well-characterised gRNAs targeting the coat colour Tyrosinase (Tyr) locus. Detailed analyses of these whole genome data allowed us to conclude that if CRISPR mutagenesis were causing SNV or indel off-target mutations in treated embryos, then the number of these mutations is not statistically distinguishable from the background rate of DNMs occurring due to other processes.
Collapse
Affiliation(s)
- Vivek Iyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Katharina Boroviak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mark Thomas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Brendan Doe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Laura Riva
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|