1
|
Popova E, Tikhomirova V, Akhmetova A, Ilina I, Kalinina N, Taliansky M, Kost O. Calcium Phosphate Nanoparticles as Carriers of Low and High Molecular Weight Compounds. Int J Mol Sci 2024; 25:12887. [PMID: 39684598 DOI: 10.3390/ijms252312887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Nanoparticles could improve the bioavailability of active agents of various natures to human, animal, and plant tissues. In this work, we compared two methods on the synthesis of calcium phosphate nanoparticles (CaPs), differed by the synthesis temperature, pH, and concentration of the stabilizing agent, and explored the possibilities of incorporation of a low-molecular-weight peptide analogue enalaprilat, the enzyme superoxide dismutase 1 (SOD1), as well as DNA and dsRNA into these particles, by coprecipitation and sorption. CaPs obtained with and without cooling demonstrated the highest inclusion efficiency for enalaprilat upon coprecipitation: 250 ± 10 μg/mg of CaPs and 340 ± 30 μg/mg of CaPs, respectively. Enalaprilat sorption on the preliminarily formed CaPs was much less effective. SOD1 was only able to coprecipitate with CaPs upon cooling, with SOD1 loading 6.6 ± 2 μg/mg of CaPs. For the incorporation of DNA, the superiority of the sorption method was demonstrated, allowing loading of up to 88 μg/mg of CaPs. The ability of CaPs to incorporate dsRNa by sorption was also demonstrated by electrophoresis and atomic force microscopy. These results could have important implications for the development of the roots for incorporating substances of different natures into CaPs for agricultural and medical applications.
Collapse
Affiliation(s)
- Ekaterina Popova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Assel Akhmetova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Physical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Olga Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Andrée L, Joziasse LS, Adjobo-Hermans MJW, Yang F, Wang R, Leeuwenburgh SCG. Effect of Hydroxyapatite Nanoparticle Crystallinity and Colloidal Stability on Cytotoxicity. ACS Biomater Sci Eng 2024; 10:6964-6973. [PMID: 39373188 PMCID: PMC11558557 DOI: 10.1021/acsbiomaterials.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Hydroxyapatite nanoparticles (nHA) have gained attention as potential intracellular drug delivery vehicles due to their high binding affinity for various biomolecules and pH-dependent solubility. Yet, the dependence of nHA cytocompatibility on their physicochemical properties remains unclear since numerous studies have revealed starkly contrasting results. These discrepancies may be attributed to differences in size, shape, crystallinity, and aggregation state of nHA, which complicates fundamental understanding of the factors driving nHA cytotoxicity. Here, we hypothesize that nHA cytotoxicity is primarily driven by intracellular calcium levels following the internalization of nHA nanoparticles. By investigating the cytotoxicity of spherical nHA with different crystallinity and dispersity, we find that both lower crystallinity and increased agglomeration of nHA raise cytotoxicity, with nanoparticle agglomeration being the more dominant factor. We show that the internalization of nHA enhances intracellular calcium levels and increases the production of reactive oxygen species (ROS). However, only subtle changes in intracellular calcium are observed, and their physiological relevance remains to be confirmed. In conclusion, we show that nHA agglomeration enhances ROS production and the associated cytotoxicity. These findings provide important guidelines for the future design of nHA-containing formulations for biomedical applications, implying that nHA crystallinity and especially agglomeration should be carefully controlled to optimize biocompatibility and therapeutic efficacy.
Collapse
Affiliation(s)
- Lea Andrée
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | - Lucas S. Joziasse
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | | | - Fang Yang
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | - Rong Wang
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| |
Collapse
|
3
|
Andrée L, Egberink RO, Heesakkers R, Suurmond CAE, Joziasse LS, Khalifeh M, Wang R, Yang F, Brock R, Leeuwenburgh SCG. Local mRNA Delivery from Nanocomposites Made of Gelatin and Hydroxyapatite Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50497-50506. [PMID: 39284017 PMCID: PMC11440464 DOI: 10.1021/acsami.4c12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, research on developing suitable biomaterial carriers for the local delivery of mRNA is still scarce. So far, mRNA-nanoparticles (mRNA-NPs) are mainly loaded into traditional polymeric hydrogels. Here, we show that calcium phosphate nanoparticles can be used for both reinforcement of nanoparticle-based hydrogels and the complexation of mRNA. mRNA was incorporated into lipid-coated calcium phosphate nanoparticles (LCPs) formulated with a fusogenic ionizable lipid in the outer layer of the lipid coat. Nanocomposites of gelatin and hydroxyapatite nanoparticles were prepared at various ratios. Higher hydroxyapatite nanoparticle content increased the viscoelastic properties of the nanocomposite but did not affect its self-healing ability. Combination of these nanocomposites with peptide, lipid, and the LCP mRNA formulations achieved local mRNA release as demonstrated by protein expression in cells in contact with the biomaterials. The LCP-based formulation was superior to the other formulations by showing less sensitivity to hydroxyapatite and the highest cytocompatibility.
Collapse
Affiliation(s)
- Lea Andrée
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Rik Oude Egberink
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Renée Heesakkers
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Ceri-Anne E Suurmond
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Lucas S Joziasse
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Masoomeh Khalifeh
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Rong Wang
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | - Sander C G Leeuwenburgh
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| |
Collapse
|
4
|
Ryu JY, Cerecedo-Lopez C, Yang H, Ryu I, Du R. Brain-targeted intranasal delivery of protein-based gene therapy for treatment of ischemic stroke. Theranostics 2024; 14:4773-4786. [PMID: 39239521 PMCID: PMC11373627 DOI: 10.7150/thno.98088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Gene therapy using a protein-based CRISPR system in the brain has practical limitations due to current delivery systems, especially in the presence of arterial occlusion. To overcome these obstacles and improve stability, we designed a system for intranasal administration of gene therapy for the treatment of ischemic stroke. Methods: Nanoparticles containing the protein-based CRISPR/dCas9 system targeting Sirt1 were delivered intranasally to the brain in a mouse model of ischemic stroke. The CRISPR/dCas9 system was encapsulated with calcium phosphate (CaP) nanoparticles to prevent them from being degraded. They were then conjugated with β-hydroxybutyrates (bHb) to target monocarboxylic acid transporter 1 (MCT1) in nasal epithelial cells to facilitate their transfer into the brain. Results: Human nasal epithelial cells were shown to uptake and transfer nanoparticles to human brain endothelial cells with high efficiency in vitro. The intranasal administration of the dCas9/CaP/PEI-PEG-bHb nanoparticles in mice effectively upregulated the target gene, Sirt1, in the brain, decreased cerebral edema and increased survival after permanent middle cerebral artery occlusion. Additionally, we observed no significant in vivo toxicity associated with intranasal administration of the nanoparticles, highlighting the safety of this approach. Conclusion: This study demonstrates that the proposed protein-based CRISPR-dCas9 system targeting neuroprotective genes in general, and SIRT1 in particular, can be a potential novel therapy for acute ischemic stroke.
Collapse
Affiliation(s)
- Jee-Yeon Ryu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Christian Cerecedo-Lopez
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Surgery, Valley Baptist Medical Center, University of Texas Rio Grande Valley, Harlingen, TX 78550, United States
| | - Hongkuan Yang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ilhwan Ryu
- Department of Chemistry, Kookmin University, Seoul 02707, South Korea
- Cooperative Center for Research Facilities, Kookmin University, Seoul 02707, South Korea
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
5
|
Padma HH, Illath K, Dominic D, Chang HY, Nagai M, Ojha R, Kar S, Santra TS. Ultra-low intensity light pulses for large cargo delivery into hard-to-transfect cells using an rGO mixed PDMS microtip device. LAB ON A CHIP 2024; 24:3880-3897. [PMID: 38984422 DOI: 10.1039/d4lc00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Nanoparticle-mediated photoporation has arisen as a universal intracellular delivery tool; however, the direct interaction of nanoparticles and cells hampers its clinical translation. Here, we report a uniform contactless intracellular delivery that transfects a large number of cells within a minute and avoids direct contact of nanoparticles and cells, thereby improving the cell viability. Our platform consists of an array of polydimethylsiloxane (PDMS) mixed reduced graphene oxide (rGO) nanoflakes on pyramidal microtips, uniformly distributed at the apex of the tip. The extraordinary optoelectronic properties of rGO were combined with micro-pyramidal cavities to entrap light in micro-cavities and efficiently convert it into heat through multiple reflections and absorptions. As a result, ultralow infra-red laser pulse irradiation could create cavitation bubbles followed by cell membrane deformation and biomolecular delivery. Using this delivery platform, we have achieved the delivery of small to large cargo (668 Da to 465 kDa) in various mammalian cells, including hard-to-transfect H9C2 cardiomyocytes. The best results were achieved for enzyme (465 kDa) delivery with a transfection efficiency and cell viability of 95% and 98%, respectively, in SiHa cells. The highly efficient cargo delivery tool demonstrated a safe and effective approach for cell therapy and diagnostics.
Collapse
Affiliation(s)
- Hima Harshan Padma
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Donia Dominic
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Taiwan
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Japan
| | - Rajdeep Ojha
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research Tirupati, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
6
|
Gaffar NA, Zahid M, Asghar A, Shafiq MF, Jelani S, Rehan F. Biosynthesized metallic nanoparticles: A new era in cancer therapy. Arch Pharm (Weinheim) 2024; 357:e2300712. [PMID: 38653735 DOI: 10.1002/ardp.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cancer remains a global health crisis, claiming countless lives throughout the years. Traditional cancer treatments like chemotherapy and radiation often bring about severe side effects, underscoring the pressing need for innovative, more efficient, and less toxic therapies. Nanotechnology has emerged as a promising technology capable of producing environmentally friendly anticancer nanoparticles. Among various nanoparticle types, metal-based nanoparticles stand out due to their exceptional performance and ease of use in methods of imaging. The widespread accessibility of biological precursors for synthesis based on plants of metal nanoparticles has made large-scale, eco-friendly production feasible. This evaluation provides a summary of the green strategy for synthesizing metal-based nanoparticles and explores their applications. Moreover, this review delves into the potential of phyto-based metal nanoparticles in combating cancer, shedding light on their probable mechanisms of action. These insights are invaluable for enhancing both biomedical and environmental applications. The study also touches on the numerous potential applications of nanotechnology in the field of medicine. Consequently, this research offers a concise and well-structured summary of nanotechnology, which should prove beneficial to researchers, engineers, and scientists embarking on future research endeavors.
Collapse
Affiliation(s)
- Nabila Abdul Gaffar
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Mavia Zahid
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Akleem Asghar
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | | | - Seemal Jelani
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Farah Rehan
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
7
|
AboulFotouh K, Almanza G, Yu YS, Joyce R, Davenport GJ, Cano C, Williams Iii RO, Zanetti M, Cui Z. Inhalable dry powders of microRNA-laden extracellular vesicles prepared by thin-film freeze-drying. Int J Pharm 2024; 651:123757. [PMID: 38160992 DOI: 10.1016/j.ijpharm.2023.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Extracellular vesicles (EVs) are endogenous vesicles that comprise a variety of submicron vesicular structures. Among these, exosomes have been widely investigated as delivery systems for small and large molecules. Herein, the thin-film freeze-drying technology was utilized to engineer aerosolizable dry powders of miR-335-laden induced EVs (iEV-335) generated in B cells for potential delivery into the lung to treat primary lung cancer and/or pulmonary metastases. The size distribution, structure, and morphology of iEV-335 were preserved after they were subjected to thin-film freeze-drying with the proper excipients. Importantly, iEV-335, in liquid or reconstituted from thin-film freeze-dried powders, were equally effective in downregulating SOX4 gene expression in LM2 human triple-negative mammary cancer cells. The iEV-335 dry powder compositions showed mass median aerodynamic diameters (MMAD) of around 1.2 µm with > 60 % of the emitted doses had an MMAD of ≤ 3 µm, indicating that the powders can potentially achieve efficient deposition within the alveolar region following oral inhalation, which is desirable for treatment of primary lung cancer and pulmonary metastases. Overall, it is concluded that it is feasible to apply thin-film freeze-drying to prepare aerosolizable dry powders of iEVs for pulmonary delivery.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA; FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA
| | - Yu-Sheng Yu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Robert Joyce
- FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA
| | - Gregory J Davenport
- TFF Pharmaceuticals, Inc., 1751 River Run, Suite 400, Fort Worth, TX 76107, USA
| | - Chris Cano
- TFF Pharmaceuticals, Inc., 1751 River Run, Suite 400, Fort Worth, TX 76107, USA
| | - Robert O Williams Iii
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA; FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Qiao F, Zou Y, Bie B, Lv Y. Dual siRNA-Loaded Cell Membrane Functionalized Matrix Facilitates Bone Regeneration with Angiogenesis and Neurogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307062. [PMID: 37824284 DOI: 10.1002/smll.202307062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Vascularization and innervation play irreplaceable roles in bone regeneration and bone defect repair. However, the reconstruction of blood vessels and neural networks is often neglected in material design. This study aims to design a genetically functionalized matrix (GFM) and enable it to regulate angiogenesis and neurogenesis to accelerate the process of bone defect repair. The dual small interfering RNA (siRNA)-polyvinylimide (PEI) (siRP) complexes that locally knocked down soluble vascular endothelial growth factor receptor 1 (sFlt-1) and p75 neurotrophic factor receptor (p75NTR ) are prepared. The hybrid cell membrane (MM) loaded siRP is synthesized as siRNA@MMs to coat on polylactone (PCL) electrospun fibers for mimicking the natural bone matrix. The results indicates that siRNA@MMs could regulate the expression of vascular-related and neuro-related cytokines secreted by mesenchymal stem cells (MSCs). GFMs promote the expression of osteogenic differentiation through paracrine function in vitro. GFMs attenuates inflammation and promotes osseointegration by regulating the coupling of vascularization and innervation in vivo. This study uses the natural hybrid cell membrane to carry genetic material and assist in the vascularization and innervation function of two siRNA. The results present the significance of neuro-vascularized organoid bone and may provide a promising choice for the design of bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Fangyu Qiao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Binglin Bie
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
9
|
Chaturvedi VK, Sharma B, Tripathi AD, Yadav DP, Singh KRB, Singh J, Singh RP. Biosynthesized nanoparticles: a novel approach for cancer therapeutics. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1236107. [PMID: 37521721 PMCID: PMC10374256 DOI: 10.3389/fmedt.2023.1236107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Nanotechnology has become one of the most rapid, innovative, and adaptable sciences in modern science and cancer therapy. Traditional chemotherapy has limits owing to its non-specific nature and adverse side effects on healthy cells, and it remains a serious worldwide health issue. Because of their capacity to specifically target cancer cells and deliver therapeutic chemicals directly to them, nanoparticles have emerged as a viable strategy for cancer therapies. Nanomaterials disclose novel properties based on size, distribution, and shape. Biosynthesized or biogenic nanoparticles are a novel technique with anti-cancer capabilities, such as triggering apoptosis in cancer cells and slowing tumour growth. They may be configured to deliver medications or other therapies to specific cancer cells or tumour markers. Despite their potential, biosynthesized nanoparticles confront development obstacles such as a lack of standardisation in their synthesis and characterization, the possibility of toxicity, and their efficiency against various forms of cancer. The effectiveness and safety of biosynthesized nanoparticles must be further investigated, as well as the types of cancer they are most successful against. This review discusses the promise of biosynthesized nanoparticles as a novel approach for cancer therapeutics, as well as their mode of action and present barriers to their development.
Collapse
Affiliation(s)
- Vivek K. Chaturvedi
- Department of Gastroenterology, I.M.S., Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhaskar Sharma
- Neurobiology Laboratory, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute Technology-BHU, Varanasi, Uttar Pradesh, India
| | - Dawesh P. Yadav
- Department of Gastroenterology, I.M.S., Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| |
Collapse
|
10
|
Chen X, Li H, Ma Y, Jiang Y. Calcium Phosphate-Based Nanomaterials: Preparation, Multifunction, and Application for Bone Tissue Engineering. Molecules 2023; 28:4790. [PMID: 37375345 DOI: 10.3390/molecules28124790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Calcium phosphate is the main inorganic component of bone. Calcium phosphate-based biomaterials have demonstrated great potential in bone tissue engineering due to their superior biocompatibility, pH-responsive degradability, excellent osteoinductivity, and similar components to bone. Calcium phosphate nanomaterials have gained more and more attention for their enhanced bioactivity and better integration with host tissues. Additionally, they can also be easily functionalized with metal ions, bioactive molecules/proteins, as well as therapeutic drugs; thus, calcium phosphate-based biomaterials have been widely used in many other fields, such as drug delivery, cancer therapy, and as nanoprobes in bioimaging. Thus, the preparation methods of calcium phosphate nanomaterials were systematically reviewed, and the multifunction strategies of calcium phosphate-based biomaterials have also been comprehensively summarized. Finally, the applications and perspectives of functionalized calcium phosphate biomaterials in bone tissue engineering, including bone defect repair, bone regeneration, and drug delivery, were illustrated and discussed by presenting typical examples.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Huizhang Li
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yinhua Ma
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Said HA, Mabroum H, Lahcini M, Oudadesse H, Barroug A, Youcef HB, Noukrati H. Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: A review. Int J Biol Macromol 2023:125150. [PMID: 37285882 DOI: 10.1016/j.ijbiomac.2023.125150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Hydroxyapatite (HA) and chitosan (CS) biopolymer are the major materials investigated for biomedical purposes. Both of these components play an important role in the orthopedic field as bone substitutes or drug release systems. Used separately, the hydroxyapatite is quite fragile, while CS mechanical strength is very weak. Therefore, a combination of HA and CS polymer is used, which provides excellent mechanical performance with high biocompatibility and biomimetic capacity. Moreover, the porous structure and reactivity of the hydroxyapatite-chitosan (HA-CS) composite allow their application not only as a bone repair but also as a drug delivery system providing controlled drug release directly to the bone site. These features make biomimetic HA-CS composite a subject of interest for many researchers. Through this review, we provide the important recent achievements in the development of HA-CS composites, focusing on manufacturing techniques, conventional and novel three-dimensional bioprinting technology, and physicochemical and biological properties. The drug delivery properties and the most relevant biomedical applications of the HA-CS composite scaffolds are also presented. Finally, alternative approaches are proposed to develop HA composites with the aim to improve their physicochemical, mechanical, and biological properties.
Collapse
Affiliation(s)
- H Ait Said
- Mohammed VI Polytechnic University (UM6P), High Throughput Multidisciplinary Research laboratory (HTMR-Lab), 43150 Benguerir, Morocco; Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco
| | - H Mabroum
- Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco
| | - M Lahcini
- Cadi Ayyad University, Faculty of Sciences and Technologies, IMED Lab, 40000 Marrakech, Morocco
| | - H Oudadesse
- University of Rennes1, ISCR-UMR, 6226 Rennes, France
| | - A Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco; Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco
| | - H Ben Youcef
- Mohammed VI Polytechnic University (UM6P), High Throughput Multidisciplinary Research laboratory (HTMR-Lab), 43150 Benguerir, Morocco.
| | - H Noukrati
- Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco.
| |
Collapse
|
12
|
Sivamaruthi BS, Thangaleela S, Kesika P, Suganthy N, Chaiyasut C. Mesoporous Silica-Based Nanoplatforms Are Theranostic Agents for the Treatment of Inflammatory Disorders. Pharmaceutics 2023; 15:pharmaceutics15020439. [PMID: 36839761 PMCID: PMC9960588 DOI: 10.3390/pharmaceutics15020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Complete recovery from infection, sepsis, injury, or trauma requires a vigorous response called inflammation. Inflammatory responses are essential in balancing tissue homeostasis to protect the tissue or resolve harmful stimuli and initiate the healing process. Identifying pathologically important inflammatory stimuli is important for a better understanding of the immune pathways, mechanisms of inflammatory diseases and organ dysfunctions, and inflammatory biomarkers and for developing therapeutic targets for inflammatory diseases. Nanoparticles are an efficient medical tool for diagnosing, preventing, and treating various diseases due to their interactions with biological molecules. Nanoparticles are unique in diagnosis and therapy in that they do not affect the surroundings or show toxicity. Modern medicine has undergone further development with nanoscale materials providing advanced experimentation, clinical use, and applications. Nanoparticle use in imaging, drug delivery, and treatment is growing rapidly owing to their spectacular accuracy, bioavailability, and cellular permeability. Mesoporous silica nanoparticles (MSNs) play a significant role in nano therapy with several advantages such as easy synthesis, loading, controllability, bioavailability over various surfaces, functionalization, and biocompatibility. MSNs can be used as theranostics in immune-modulatory nano systems to diagnose and treat inflammatory diseases. The application of MSNs in the preparation of drug-delivery systems has been steadily increasing in recent decades. Several preclinical studies suggest that an MSN-mediated drug-delivery system could aid in treating inflammatory diseases. This review explains the role of nanoparticles in medicine, synthesis, and functional properties of mesoporous silica nanoparticles and their therapeutic role against various inflammatory diseases.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natarajan Suganthy
- Bionanomaterials Research Laboratory, Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India
- Correspondence: (N.S.); (C.C.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.S.); (C.C.)
| |
Collapse
|
13
|
Heng WT, Yew JS, Poh CL. Nanovaccines against Viral Infectious Diseases. Pharmaceutics 2022; 14:2554. [PMID: 36559049 PMCID: PMC9784285 DOI: 10.3390/pharmaceutics14122554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious diseases have always been regarded as one of the greatest global threats for the last century. The current ongoing COVID-19 pandemic caused by SARS-CoV-2 is living proof that the world is still threatened by emerging infectious diseases. Morbidity and mortality rates of diseases caused by Coronavirus have inflicted devastating social and economic outcomes. Undoubtedly, vaccination is the most effective method of eradicating infections and infectious diseases that have been eradicated by vaccinations, including Smallpox and Polio. To date, next-generation vaccine candidates with novel platforms are being approved for emergency use, such as the mRNA and viral vectored vaccines against SARS-CoV-2. Nanoparticle based vaccines are the perfect candidates as they demonstrated targeted antigen delivery, improved antigen presentation, and sustained antigen release while providing self-adjuvanting functions to stimulate potent immune responses. In this review, we discussed most of the recent nanovaccines that have found success in immunization and challenge studies in animal models in comparison with their naked vaccine counterparts. Nanovaccines that are currently in clinical trials are also reviewed.
Collapse
Affiliation(s)
| | | | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| |
Collapse
|
14
|
Qiu C, Wu Y, Guo Q, Shi Q, Zhang J, Meng Y, Xia F, Wang J. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater Today Bio 2022; 17:100501. [DOI: 10.1016/j.mtbio.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
|
15
|
Florea DA, Grumezescu V, Bîrcă AC, Vasile BȘ, Mușat M, Chircov C, Stan MS, Grumezescu AM, Andronescu E, Chifiriuc MC. Design, Characterization, and Antibacterial Performance of MAPLE-Deposited Coatings of Magnesium Phosphate-Containing Silver Nanoparticles in Biocompatible Concentrations. Int J Mol Sci 2022; 23:ijms23147910. [PMID: 35887261 PMCID: PMC9321465 DOI: 10.3390/ijms23147910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023] Open
Abstract
Bone disorders and traumas represent a common type of healthcare emergency affecting men and women worldwide. Since most of these diseases imply surgery, frequently complicated by exogenous or endogenous infections, there is an acute need for improving their therapeutic approaches, particularly in clinical conditions requiring orthopedic implants. Various biomaterials have been investigated in the last decades for their potential to increase bone regeneration and prevent orthopedic infections. The present study aimed to develop a series of MAPLE-deposited coatings composed of magnesium phosphate (Mg3(PO4)2) and silver nanoparticles (AgNPs) designed to ensure osteoblast proliferation and anti-infective properties simultaneously. Mg3(PO4)2 and AgNPs were obtained through the cooling bath reaction and chemical reduction, respectively, and then characterized through X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Selected Area Electron Diffraction (SAED). Subsequently, the obtained coatings were evaluated by Infrared Microscopy (IRM), Fourier-Transform Infrared Spectroscopy (FT-IR), and Scanning Electron Microscopy (SEM). Their biological properties show that the proposed composite coatings exhibit well-balanced biocompatibility and antibacterial activity, promoting osteoblasts viability and proliferation and inhibiting the adherence and growth of Staphylococcus aureus and Pseudomonas aeruginosa, two of the most important agents of orthopedic implant-associated infections.
Collapse
Affiliation(s)
- Denisa Alexandra Florea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Mihaela Mușat
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Miruna S. Stan
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania;
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania;
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania;
- Correspondence:
| | - Mariana Carmen Chifiriuc
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania;
- Department of Microbiology, Faculty of Biology, University of Bucharest, Aleea Portocalelor Str. 1-3, District 5, 060101 Bucharest, Romania
- The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| |
Collapse
|
16
|
Tang R, Shao C, Chen L, Yi L, Zhang B, Tang J, Ma W. A novel CKIP-1 SiRNA slow-release coating on porous titanium implants for enhanced osseointegration. BIOMATERIALS ADVANCES 2022; 137:212864. [PMID: 35929282 DOI: 10.1016/j.bioadv.2022.212864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Osseointegration between implants and bone tissue lays the foundation for the long-term stability of implants. The incorporation of a porous structure and local slow release of siRNA to silence casein kinase-2 interacting protein-1 (CKIP-1), a downregulator of bone formation, is expected to promote osseointegration. Here, porous implants with a porous outer layer and dense inner core were prepared by metal coinjection molding (MIM). Mg-doped calcium phosphate nanoparticles (CaPNPs)-grafted arginine-glycine-aspartate cell adhesion sequence (RGD) and transcribed activator (TAT) (MCPRT)/CKIP-1 siRNA complex and polylysine (PLL) were coated onto the surface of the porous implants by layer-by-layer (LBL) self-deposition. The in vitro results showed that the MCPRT-siRNA coating promoted MG63 cell adhesion and proliferation, enhanced the protein expressions (ALP and OC) and bone formation-related gene expression (OPN, OC and COL-1α) in vitro. The in vivo results demonstrated that the porous structure enhanced bone ingrowth and that the local slow release of MCPRT-siRNA accelerated new bone formation at the early stage. The porous structure coupled with local CKIP-1 siRNA delivery constitutes a promising approach to achieve faster and stronger osseointegration for dental implants.
Collapse
Affiliation(s)
- Ruimin Tang
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Chunsheng Shao
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Liangjian Chen
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China.
| | - Li Yi
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Bo Zhang
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Jiangjie Tang
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Weina Ma
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| |
Collapse
|
17
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
18
|
Giselbrecht J, Pinnapireddy SR, Alioglu F, Sami H, Sedding D, Erdmann F, Janich C, Schulz-Siegmund M, Ogris M, Bakowsky U, Langner A, Bussmann J, Wölk C. Investigating 3R In Vivo Approaches for Bio-Distribution and Efficacy Evaluation of Nucleic Acid Nanocarriers: Studies on Peptide-Mimicking Ionizable Lipid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107768. [PMID: 35355412 DOI: 10.1002/smll.202107768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Formulations based on ionizable amino-lipids have been put into focus as nucleic acid delivery systems. Recently, the in vitro efficacy of the lipid formulation OH4:DOPE has been explored. However, in vitro performance of nanomedicines cannot correctly predict in vivo efficacy, thereby considerably limiting pre-clinical translation. This is further exacerbated by limited access to mammalian models. The present work proposes to close this gap by investigating in vivo nucleic acid delivery within simpler models, but which still offers physiologically complex environments and also adheres to the 3R guidelines (replace/reduce/refine) to improve animal experiments. The efficacy of OH4:DOPE as a delivery system for nucleic acids is demonstrated using in vivo approaches. It is shown that the formulation is able to transfect complex tissues using the chicken chorioallantoic membrane model. The efficacy of DNA and mRNA lipoplexes is tested extensively in the zebra fish (Danio rerio) embryo which allows the screening of biodistribution and transfection efficiency. Effective transfection of blood vessel endothelial cells is seen, especially in the endocardium. Both model systems allow an efficacy screening according to the 3R guidelines bypassing the in vitro-in vivo gap. Pilot studies in mice are performed to correlate the efficacy of in vivo transfection.
Collapse
Affiliation(s)
- Julia Giselbrecht
- Department of Medicinal Chemistry/Department of Pharmacology, Institute of Pharmacy Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
- CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041, Marburg, Germany
| | - Fatih Alioglu
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Haider Sami
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Daniel Sedding
- Internal Medicine III, Medical Faculty of Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Frank Erdmann
- Department of Medicinal Chemistry/Department of Pharmacology, Institute of Pharmacy Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Christopher Janich
- Department of Medicinal Chemistry/Department of Pharmacology, Institute of Pharmacy Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Medical Faculty, University Leipzig, Eilenburger Straße 15a, 04317, Leipzig, Germany
| | - Manfred Ogris
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Andreas Langner
- Department of Medicinal Chemistry/Department of Pharmacology, Institute of Pharmacy Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Jeroen Bussmann
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Christian Wölk
- Pharmaceutical Technology, Medical Faculty, University Leipzig, Eilenburger Straße 15a, 04317, Leipzig, Germany
| |
Collapse
|
19
|
Meevassana J, Nacharoenkul P, Wititsuwannakul J, Kitkumthorn N, Hamill K, Angspatt A, Mutirangura A. B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats. Biomed Rep 2022; 16:20. [PMID: 35251607 PMCID: PMC8850962 DOI: 10.3892/br.2022.1503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
The accumulation of DNA damage in burn wounds delays wound healing. DNA methylation by short interspersed nuclear element (SINE) small interfering (si)RNA prevents DNA damage and promotes cell proliferation. Therefore, SINE siRNA may be able to promote burn wound healing. Here, a SINE B1 siRNA was used to treat burn wounds in rats. Second-degree burn wounds were introduced on the backs of rats. The rats were then divided into three groups: a B1 siRNA-treated, saline-treated control, and saline + calcium phosphate-nanoparticle-treated control group (n=15/group). The wounds were imaged on days 0, 7, 14, 21 and 28 post-injury. The tissue sections were processed for methylation, histological and immunohistochemical examination, and scored based on the overall expression of histone H2AX phosphorylated on serine 139 (γH2AX) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Burn wound closure improved in the B1 siRNA-treated group compared with that in the control group, especially from days 14-28 post-injury (P<0.001). The overall pathological score and degree of B1 methylation in the B1 siRNA-treated group improved significantly at days 14-28 post-injury, with the maximum improvement observed on day 14 (P<0.01) compared with the NSS and Ca-P nanoparticle groups. Immunohistochemical staining revealed lower expression of γH2AX and 8-OHdG in the B1 siRNA-treated group than in the control groups at days 14-28 post-injury; the maximum improvement was observed on days 14 and 21. These data imply that administering SINE siRNA is a promising therapeutic option for managing second-degree burns.
Collapse
Affiliation(s)
- Jiraroch Meevassana
- Department of Anatomy, Center of Excellence in Molecular Genetics of Cancer and Human Disease, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Nacharoenkul
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jade Wititsuwannakul
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Kevin Hamill
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, United Kingdom
| | - Apichai Angspatt
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apiwat Mutirangura
- Department of Anatomy, Center of Excellence in Molecular Genetics of Cancer and Human Disease, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
van Rijt S, de Groot K, Leeuwenburgh SCG. Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Eng Part A 2022; 28:461-477. [PMID: 35107351 DOI: 10.1089/ten.tea.2021.0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bulk calcium phosphates and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale calcium phosphate and silicate-based particles of increased specific surface area, chemical reactivity and solubility which offer specific advantages as compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of calcium phosphate and silicate-based nanoparticles within the fields of i) local delivery of therapeutic agents, ii) functionalization of biomaterial scaffolds or implant coatings, and iii) bio-imaging applications.
Collapse
Affiliation(s)
- Sabine van Rijt
- Maastricht University, 5211, MERLN Institute-Instructive Biomaterial Engineering, Maastricht, Limburg, Netherlands;
| | - Klaas de Groot
- Vrije Universiteit Amsterdam, 1190, Academic Center for Dentistry Amsterdam (ACTA)-Department of Oral Implantology and Prosthetic Dentistry, Amsterdam, Noord-Holland, Netherlands;
| | - Sander C G Leeuwenburgh
- Radboudumc, 6034, Dept. of Dentistry-Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands;
| |
Collapse
|
21
|
Sutthavas P, Tahmasebi Birgani Z, Habibovic P, van Rijt S. Calcium Phosphate-Coated and Strontium-Incorporated Mesoporous Silica Nanoparticles Can Effectively Induce Osteogenic Stem Cell Differentiation. Adv Healthc Mater 2022; 11:e2101588. [PMID: 34751004 PMCID: PMC11468810 DOI: 10.1002/adhm.202101588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/01/2021] [Indexed: 01/16/2023]
Abstract
Ceramic (nano)materials are promising materials for bone regeneration applications. The addition of bioinorganics such as strontium (Sr) and zinc (Zn) is a popular approach to further improve their biological performance. However, control over ion delivery is important to prevent off-target effects. Mesoporous silica nanoparticles (MSNs) are popular nanomaterials that can be designed to incorporate and controllably deliver multiple ions to steer specific regenerative processes. In this work, MSNs loaded with Sr (MSNSr ) and surface coated with a pH-sensitive calcium phosphate (MSNSr -CaP) or calcium phosphate zinc layer (MSNSr -CaZnP) are developed. The ability of the MSNs to promote osteogenesis in human mesenchymal stromal cells (hMSCs) under basic cell culture conditions is explored and compared to ion administration directly to the cell culture media. Here, it is shown that MSN-CaPs can effectively induce alkaline phosphatase (ALP) levels and osteogenic gene expression in the absence of other osteogenic stimulants, where an improved effect is observed for MSNs surface coated with multiple ions. Moreover, comparatively lower ion doses are needed when using MSNs as delivery vehicles compared to direct ion administration in the medium. In summary, the MSNs developed here represent promising vehicles to deliver (multiple) bioinorganics and promote hMSC osteogenesis in basic conditions.
Collapse
Affiliation(s)
- Pichaporn Sutthavas
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityP.O. Box 616Maastricht6200 MDthe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityP.O. Box 616Maastricht6200 MDthe Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityP.O. Box 616Maastricht6200 MDthe Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityP.O. Box 616Maastricht6200 MDthe Netherlands
| |
Collapse
|
22
|
Cui Y, Li H, Li Y, Mao L. Novel insights into nanomaterials for immunomodulatory bone regeneration. NANOSCALE ADVANCES 2022; 4:334-352. [PMID: 36132687 PMCID: PMC9418834 DOI: 10.1039/d1na00741f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 05/02/2023]
Abstract
Bone defect repair caused by trauma, congenital malformation, tumors, infection or systemic diseases remains the focus of attention in regeneration medicine. Recent advances in osteoimmunology indicate that immune cells and correlative cytokines modulate the delicate balance between osteoblasts and osteoclasts and induce a favorable microenvironment for bone regeneration. With superior attributes that imitate the three-dimensional architecture of natural bone, excellent fabricability, mechanical and biological properties, nanomaterials (NMs) are becoming attractive in the field of bone tissue engineering. Particularly, it could be an effective strategy for immunomodulatory bone regeneration by engineering NMs involved in composition nature, nanoarchitectural morphology, surface chemistry, topography and biological molecules, whose mechanisms potentially refer to regulating the phenotype of high-plastic immune cells and inducing cytokine secretion to accelerate osteogenesis. Despite these prominent achievements, the employment of NMs is poorly translated into clinical trials due to the lack of knowledge about the interaction between NMs and the immune system. For this reason, we sketch out the hierarchical structure of bone and its natural healing process, followed by discussion about the effects of immune cells on bone regeneration. Novel horizons focusing on recent progressions in the architectural and physicochemical performances of NMs and their impacts on the body defence mechanism are also emphasized, hoping to provide novel insights for the fabrication of bone graft materials in tissue engineering.
Collapse
Affiliation(s)
- Ya Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology Shanghai China
| | - Hairui Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology Shanghai China
| | - Yaxin Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology Shanghai China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology Shanghai China
| |
Collapse
|
23
|
Barros NR, Chen Y, Hosseini V, Wang W, Nasiri R, Mahmoodi M, Yalcintas EP, Haghniaz R, Mecwan MM, Karamikamkar S, Dai W, Sarabi SA, Falcone N, Young P, Zhu Y, Sun W, Zhang S, Lee J, Lee K, Ahadian S, Dokmeci MR, Khademhosseini A, Kim HJ. Recent developments in mussel-inspired materials for biomedical applications. Biomater Sci 2021; 9:6653-6672. [PMID: 34550125 DOI: 10.1039/d1bm01126j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the decades, researchers have strived to synthesize and modify nature-inspired biomaterials, with the primary aim to address the challenges of designing functional biomaterials for regenerative medicine and tissue engineering. Among these challenges, biocompatibility and cellular interactions have been extensively investigated. Some of the most desirable characteristics for biomaterials in these applications are the loading of bioactive molecules, strong adhesion to moist areas, improvement of cellular adhesion, and self-healing properties. Mussel-inspired biomaterials have received growing interest mainly due to the changes in mechanical and biological functions of the scaffold due to catechol modification. Here, we summarize the chemical and biological principles and the latest advancements in production, as well as the use of mussel-inspired biomaterials. Our main focus is the polydopamine coating, the conjugation of catechol with other polymers, and the biomedical applications that polydopamine moieties are used for, such as matrices for drug delivery, tissue regeneration, and hemostatic control. We also present a critical conclusion and an inspired view on the prospects for the development and application of mussel-inspired materials.
Collapse
Affiliation(s)
| | - Yi Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China.,Guangzhou Redsun Gas Appliance CO., Ltd, Guangzhou 510460, P. R. China
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Weiyue Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | | | | | - Wei Dai
- Department of Research and Design, Beijing Biosis Healing Biological Technology Co., Ltd, Daxing District, Biomedical Base, Beijing 102600, P. R. China
| | - Shima A Sarabi
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Wujin Sun
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Shiming Zhang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,Department of Electrical and Electronic Engineering, The University of Hong Kong, China
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Kangju Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, South Korea
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
24
|
Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C, Ding B, Pierini F. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. SMALL METHODS 2021; 5:e2100402. [PMID: 34514087 PMCID: PMC8420172 DOI: 10.1002/smtd.202100402] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Indexed: 05/07/2023]
Abstract
In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists' enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Pawel Nakielski
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Xiaoran Li
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Anna Liguori
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
| | - Francesca Petronella
- Institute of Crystallography CNR‐ICNational Research Council of ItalyVia Salaria Km 29.300Monterotondo – Rome00015Italy
| | - Dario Presutti
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Qiusheng Wang
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Marco Costantini
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Luciano De Sio
- Department of Medico‐Surgical Sciences and BiotechnologiesResearch Center for BiophotonicsSapienza University of RomeCorso della Repubblica 79Latina04100Italy
- CNR‐Lab. LicrylInstitute NANOTECArcavacata di Rende87036Italy
| | - Chiara Gualandi
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials TechnologyCIRI‐MAMUniversity of BolognaViale Risorgimento 2Bologna40136Italy
| | - Bin Ding
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Filippo Pierini
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| |
Collapse
|
25
|
Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration. Int J Mol Sci 2021; 22:7724. [PMID: 34299344 PMCID: PMC8306037 DOI: 10.3390/ijms22147724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Bone damage leading to bone loss can arise from a wide range of causes, including those intrinsic to individuals such as infections or diseases with metabolic (diabetes), genetic (osteogenesis imperfecta), and/or age-related (osteoporosis) etiology, or extrinsic ones coming from external insults such as trauma or surgery. Although bone tissue has an intrinsic capacity of self-repair, large bone defects often require anabolic treatments targeting bone formation process and/or bone grafts, aiming to restore bone loss. The current bone surrogates used for clinical purposes are autologous, allogeneic, or xenogeneic bone grafts, which although effective imply a number of limitations: the need to remove bone from another location in the case of autologous transplants and the possibility of an immune rejection when using allogeneic or xenogeneic grafts. To overcome these limitations, cutting edge therapies for skeletal regeneration of bone defects are currently under extensive research with promising results; such as those boosting endogenous bone regeneration, by the stimulation of host cells, or the ones driven exogenously with scaffolds, biomolecules, and mesenchymal stem cells as key players of bone healing process.
Collapse
Affiliation(s)
- Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
- University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| |
Collapse
|
26
|
Suspension of Amorphous Calcium Phosphate Nanoparticles Impact Commitment of Human Adipose-Derived Stem Cells In Vitro. BIOLOGY 2021; 10:biology10070675. [PMID: 34356530 PMCID: PMC8301486 DOI: 10.3390/biology10070675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
Amorphous calcium phosphate (aCaP) nanoparticles may trigger the osteogenic commitment of adipose-derived stem cells (ASCs) in vitro. The ASCs of three human donors are investigated using basal culture medium DMEM to either 5 or 50 µg/mL aCaP nanoparticles suspension (control: no nanoparticles). After 7 or 14 days, stem cell marker genes, as well as endothelial, osteogenic, chondrogenic, and adipogenic genes, are analyzed by qPCR. Free calcium and phosphate ion concentrations are assessed in the cell culture supernatant. After one week and 5 µg/mL aCaP, downregulation of osteogenic markers ALP and Runx2 is found, and averaged across the three donors. Our results show that after two weeks, ALP is further downregulated, but Runx2 is upregulated. Endothelial cell marker genes, such as CD31 and CD34, are upregulated with 50 µg/mL aCaP and a 2-week exposure. Inter-donor variability is high: Two out of three donors show a significant upregulation of ALP and Runx2 at day 14 with 50 µg/mL aCaP compared to 5 µg/mL aCaP. Notably, all changes in stem cell commitment are obtained in the absence of an osteogenic medium. While the chemical composition of the culture medium and the saturation status towards calcium phosphate phases remain approximately the same for all conditions, gene expression of ASCs changes considerably. Hence, aCaP nanoparticles show the potential to trigger osteogenic and endothelial commitment in ASCs.
Collapse
|
27
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
28
|
Sizikov AA, Kharlamova MV, Nikitin MP, Nikitin PI, Kolychev EL. Nonviral Locally Injected Magnetic Vectors for In Vivo Gene Delivery: A Review of Studies on Magnetofection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1078. [PMID: 33922066 PMCID: PMC8143545 DOI: 10.3390/nano11051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Magnetic nanoparticles have been widely used in nanobiomedicine for diagnostics and the treatment of diseases, and as carriers for various drugs. The unique magnetic properties of "magnetic" drugs allow their delivery in a targeted tumor or tissue upon application of a magnetic field. The approach of combining magnetic drug targeting and gene delivery is called magnetofection, and it is very promising. This method is simple and efficient for the delivery of genetic material to cells using magnetic nanoparticles controlled by an external magnetic field. However, magnetofection in vivo has been studied insufficiently both for local and systemic routes of magnetic vector injection, and the relevant data available in the literature are often merely descriptive and contradictory. In this review, we collected and systematized the data on the efficiency of the local injections of magnetic nanoparticles that carry genetic information upon application of external magnetic fields. We also investigated the efficiency of magnetofection in vivo, depending on the structure and coverage of magnetic vectors. The perspectives of the development of the method were also considered.
Collapse
Affiliation(s)
- Artem A. Sizikov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Marianna V. Kharlamova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 117942 Moscow, Russia
| | - Eugene L. Kolychev
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| |
Collapse
|
29
|
Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B 2021; 8:9404-9427. [PMID: 32970087 DOI: 10.1039/d0tb01379j] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regulatory role of the immune system in maintaining bone homeostasis and restoring its functionality, when disturbed due to trauma or injury, has become evident in recent years. The polarization of macrophages, one of the main constituents of the immune system, into the pro-inflammatory or anti-inflammatory phenotype has great repercussions for cellular crosstalk and the subsequent processes needed for proper bone regeneration such as angiogenesis and osteogenesis. In certain scenarios, the damaged osseous tissue requires the placement of synthetic bone grafts to facilitate the healing process. Inorganic biomaterials such as bioceramics or bioactive glasses are the most widely used due to their resemblance to the mineral phase of bone and superior osteogenic properties. The immune response of the host to the inorganic biomaterial, which is of an exogenous nature, might determine its fate, leading either to active bone regeneration or its failure. Therefore, various strategies have been employed, like the modification of structural/chemical features or the incorporation of bioactive molecules, to tune the interplay with the immune cells. Understanding how these particular modifications impact the polarization of macrophages and further osteogenic and osteoclastogenic events is of great interest in view of designing a new generation of osteoimmunomodulatory materials that support the regeneration of osseous tissue during all stages of bone healing.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, 08019 Barcelona, Spain. and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
30
|
Lishchynskyi O, Stetsyshyn Y, Raczkowska J, Awsiuk K, Orzechowska B, Abalymov A, Skirtach AG, Bernasik A, Nastyshyn S, Budkowski A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO 3 Nanoparticles on Different Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1417. [PMID: 33804043 PMCID: PMC8001162 DOI: 10.3390/ma14061417] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
In the present work, we have successfully prepared and characterized novel nanocomposite material exhibiting temperature-dependent surface wettability changes, based on grafted brush coatings of non-fouling poly(di(ethylene glycol)methyl ether methacrylate) (POEGMA) with the embedded CaCO3 nanoparticles. Grafted polymer brushes attached to the glass surface were prepared in a three-step process using atom transfer radical polymerization (ATRP). Subsequently, uniform CaCO3 nanoparticles (NPs) embedded in POEGMA-grafted brush coatings were synthesized using biomineralized precipitation from solutions of CaCl2 and Na2CO3. An impact of the low concentration of the embedded CaCO3 NPs on cell adhesion and growth depends strongly on the type of studied cell line: keratinocytes (HaCaT), melanoma (WM35) and osteoblastic (MC3T3-e1). Based on the temperature-responsive properties of grafted brush coatings and CaCO3 NPs acting as biologically active substrate, we hope that our research will lead to a new platform for tissue engineering with modified growth of the cells due to the release of biologically active substances from CaCO3 NPs and the ability to detach the cells in a controlled manner using temperature-induced changes of the brush.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Yurij Stetsyshyn
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Joanna Raczkowska
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Anatolii Abalymov
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andre G. Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland;
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| |
Collapse
|
31
|
Levingstone T, Ali B, Kearney C, Dunne N. Hydroxyapatite sonosensitization of ultrasound-triggered, thermally responsive hydrogels: An on-demand delivery system for bone repair applications. J Biomed Mater Res B Appl Biomater 2021; 109:1622-1633. [PMID: 33600064 DOI: 10.1002/jbm.b.34820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
While bones have the innate capability to physiologically regenerate, in certain cases regeneration is suboptimal, too slow, or does not occur. Biomaterials-based growth factor delivery systems have shown potential for the treatment of challenging bone defects, however, achieving controlled growth factor release remains a challenge. The objective of this study was to develop a thermally responsive hydrogel for bone regeneration capable of ultrasound-triggered on-demand delivery of therapeutic agents. Furthermore, it was hypothesized that incorporation of hydroxyapatite (HA) into the hydrogel could increase sonosensitization, augmenting ultrasound sensitivity to enable controlled therapeutic release to the target tissue. Alginate thermally responsive P(Alg-g-NIPAAm) hydrogels were fabricated and varying quantities of HA (1, 3, 5, and 7% wt./vol.) incorporated. All hydrogels were highly injectable (maximum injection force below 6.5 N) and rheological characterization demonstrated their ability to gel at body temperature. The study demonstrated the ultrasound-triggered release of sodium fluorescein (NaF), bovine serum albumin (BSA), and bone morphogenetic protein 2 (BMP-2) from the hydrogels. Release rates of BSA and BMP-2 were significantly enhanced in the HA containing hydrogels, confirming for the first time the role of HA as a son sensitizer. Together these results demonstrate the potential of these ultrasound-triggered thermally responsive hydrogels for on-demand delivery of therapeutic agents for bone regeneration.
Collapse
Affiliation(s)
- Tanya Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Badriah Ali
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cathal Kearney
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.,School of Pharmacy, Queen's University Belfast, Belfast, UK.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021; 11:614-648. [PMID: 33391496 PMCID: PMC7738854 DOI: 10.7150/thno.47007] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 genome editing has gained rapidly increasing attentions in recent years, however, the translation of this biotechnology into therapy has been hindered by efficient delivery of CRISPR/Cas9 materials into target cells. Direct delivery of CRISPR/Cas9 system as a ribonucleoprotein (RNP) complex consisting of Cas9 protein and single guide RNA (sgRNA) has emerged as a powerful and widespread method for genome editing due to its advantages of transient genome editing and reduced off-target effects. In this review, we summarized the current Cas9 RNP delivery systems including physical approaches and synthetic carriers. The mechanisms and beneficial roles of these strategies in intracellular Cas9 RNP delivery were reviewed. Examples in the development of stimuli-responsive and targeted carriers for RNP delivery are highlighted. Finally, the challenges of current Cas9 RNP delivery systems and perspectives in rational design of next generation materials for this promising field will be discussed.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiangtao Shen
- The Second People's Hospital of Taizhou affiliated to Yangzhou University, Taizhou, 225500, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| |
Collapse
|
33
|
O’Doherty M, Mulholland EJ, Chambers P, Pentlavalli S, Ziminska M, Chalanqui MJ, Pauly HM, Sathy BN, Donahue TH, Kelly DJ, Dunne N, McCarthy HO. Improving the Intercellular Uptake and Osteogenic Potency of Calcium Phosphate via Nanocomplexation with the RALA Peptide. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2442. [PMID: 33297306 PMCID: PMC7762210 DOI: 10.3390/nano10122442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
Calcium phosphate-base materials (e.g., alpha tri-calcium phosphate (α-TCP)) have been shown to promote osteogenic differentiation of stem/progenitor cells, enhance osteoblast osteogenic activity and mediate in vivo bone tissue formation. However, variable particle size and hydrophilicity of the calcium phosphate result in an extremely low bioavailability. Therefore, an effective delivery system is required that can encapsulate the calcium phosphate, improve cellular entry and, consequently, elicit a potent osteogenic response in osteoblasts. In this study, collagenous matrix deposition and extracellular matrix mineralization of osteoblast lineage cells were assessed to investigate osteogenesis following intracellular delivery of α-TCP nanoparticles. The nanoparticles were formed via condensation with a novel, cationic 30 mer amphipathic peptide (RALA). Nanoparticles prepared at a mass ratio of 5:1 demonstrated an average particle size of 43 nm with a zeta potential of +26 mV. The average particle size and zeta potential remained stable for up to 28 days at room temperature and across a range of temperatures (4-37 °C). Cell viability decreased 24 h post-transfection following RALA/α-TCP nanoparticle treatment; however, recovery ensued by Day 7. Immunocytochemistry staining for Type I collagen up to Day 21 post-transfection with RALA/α-TCP nanoparticles (NPs) in MG-63 cells exhibited a significant enhancement in collagen expression and deposition compared to an untreated control. Furthermore, in porcine mesenchymal stem cells (pMSCs), there was enhanced mineralization compared to α-TCP alone. Taken together these data demonstrate that internalization of RALA/α-TCP NPs elicits a potent osteogenic response in both MG-63 and pMSCs.
Collapse
Affiliation(s)
- Michelle O’Doherty
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.O.); (E.J.M.); (P.C.); (S.P.); (M.Z.); (M.J.C.)
| | - Eoghan J. Mulholland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.O.); (E.J.M.); (P.C.); (S.P.); (M.Z.); (M.J.C.)
| | - Philip Chambers
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.O.); (E.J.M.); (P.C.); (S.P.); (M.Z.); (M.J.C.)
| | - Sreekanth Pentlavalli
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.O.); (E.J.M.); (P.C.); (S.P.); (M.Z.); (M.J.C.)
| | - Monika Ziminska
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.O.); (E.J.M.); (P.C.); (S.P.); (M.Z.); (M.J.C.)
| | - Marine J. Chalanqui
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.O.); (E.J.M.); (P.C.); (S.P.); (M.Z.); (M.J.C.)
| | - Hannah M. Pauly
- Department of Biomedical Engineering, University Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523, USA; (H.M.P.); (T.H.D.)
| | - Binulal N. Sathy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; (B.N.S.); (D.J.K.)
| | - Tammy H. Donahue
- Department of Biomedical Engineering, University Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523, USA; (H.M.P.); (T.H.D.)
- School of Biomedical Engineering, University of Massachusetts Amherst, 130 Natural Resources Road, Amherst, MA 01003, USA
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; (B.N.S.); (D.J.K.)
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Nicholas Dunne
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.O.); (E.J.M.); (P.C.); (S.P.); (M.Z.); (M.J.C.)
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; (B.N.S.); (D.J.K.)
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.O.); (E.J.M.); (P.C.); (S.P.); (M.Z.); (M.J.C.)
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
34
|
Non-viral delivery systems of DNA into stem cells: Promising and multifarious actions for regenerative medicine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
36
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|