1
|
Badparvar F, Poursattar Marjani A, Salehi R, Ramezani F, Beyrampour Basmenj H, Talebi M. Dual pH/redox-responsive size-switchable polymeric nano-carrier system for tumor microenvironment DTX release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2220-2249. [PMID: 38944817 DOI: 10.1080/09205063.2024.2371203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Innovation chemotherapeutic nano drug delivery systems (NDDSs) with various pharmacological achievement have become one of the hopeful therapeutic strategies in cancer therapy. This study focused on low pH, and high levels of glutathione (GSH) as two prominent characteristics of the tumor microenvironment (TME) to design a novel TME-targeted pH/redox dual-responsive P (AMA-co-DMAEMA)-b-PCL-SS-PCL-b-P (AMA-co-DMAEMA) nanoparticles (NPs) for deep tumor penetration and targeted anti-tumor therapy. The positively charged NPs exhibit strong electrostatic interactions with negatively charged cell membranes, significantly enhancing cellular uptake. Moreover, these NPs possess the unique size-shrinkable property, transitioning from 98.24 ± 27.78 to 45.56 ± 20.62 nm within the TME. This remarkable size change fosters an impressive uptake of approximately 100% by MDA-MB-231 cells within just 30 min, thereby greatly improving drug delivery efficiency. This size switchability enables passive targeting through the enhanced permeability and retention (EPR) effect, facilitating deep penetration into tumors. The NPs also demonstrate improved pH/redox-triggered drug release (∼70% at 24 h) within the TME and exhibit no toxicity in cell viability test. The cell cycle results of treated cells with docetaxel (DTX)-loaded NPs revealed G2/M (84.6 ± 1.16%) arrest. The DTX-loaded NPs showed more apoptosis (62.6 ± 3.7%) than the free DTX (51.8 ± 3.2%) in treated cells. The western blot and RT-PCR assays revealed that apoptotic genes and proteins expression of treated cells were significantly upregulated with the DTX-loaded NPs vs. the free DTX (Pvalue<.001). In conclusion, these findings suggest that this novel-engineered NPs holds promise as a TME-targeted NDDS.
Collapse
Affiliation(s)
- Fahimeh Badparvar
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | | - Roya Salehi
- Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Mediciene, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour Basmenj
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Department of Applied Cell Science, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
3
|
Xu K, Zhang Y, Cheng H, Chen W, Chen C, Zhang M, Song H, Wang F. Triple-negative breast cancer treatment with core-shell Magnetic@Platinium-Metal organic framework/epirubicin nano-platforms for chemo-photodynamic based combinational therapy: A review. Medicine (Baltimore) 2024; 103:e39845. [PMID: 39331917 PMCID: PMC11441927 DOI: 10.1097/md.0000000000039845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
The combination of chemotherapy and photodynamic therapy (PDT), enabled by core-shell nano-platforms, is a promising method to improve cancer therapy by overcoming hypoxia and boosting drug penetration in breast tumor. Core-shell magnetic (iron oxide: Fe3O4)@platinum-metal organic framework/epirubicin (abbreviated as M@Pt-MOF/EPI) nano-platform is considered an effective cancer therapeutic agent. Relatively small particle size, round shape, and specific response to pH, are the key features of these nanomaterials to be used as promising therapeutic agents. Chemotherapy and photodynamic therapy, when applied in addition to the anticancer effects of nanomaterials, further enhance the therapeutic efficacy. The extensive use, utilization, and efficacy of Core-Shell Magnetic@Platinium-Metal Organic Framework/epirubicin Nano-Platforms for chemo-photodynamic combination therapy in the treatment of several cancers, including triple-negative breast cancer, are examined in this in-depth investigation.
Collapse
Affiliation(s)
- Kangjie Xu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, China
| | - Yanhua Zhang
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, Yancheng, China
| | - Hui Cheng
- Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| | - Weipeng Chen
- Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| | - Cheng Chen
- Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| | - Minglei Zhang
- Department of Oncology, Binhai County People's Hospital, Yancheng, China
| | - He Song
- Department of Rehabilitation Medicine, Kanda College of Nanjing Medical University, Lianyungang, China
| | - Feng Wang
- Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| |
Collapse
|
4
|
Geszke-Moritz M, Moritz M. Biodegradable Polymeric Nanoparticle-Based Drug Delivery Systems: Comprehensive Overview, Perspectives and Challenges. Polymers (Basel) 2024; 16:2536. [PMID: 39274168 PMCID: PMC11397980 DOI: 10.3390/polym16172536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
In the last few decades, there has been a growing interest in the use of biodegradable polymeric nanoparticles (BPNPs) as the carriers for various therapeutic agents in drug delivery systems. BPNPs have the potential to improve the efficacy of numerous active agents by facilitating targeted delivery to a desired site in the body. Biodegradable polymers are especially promising nanocarriers for therapeutic substances characterized by poor solubility, instability, rapid metabolism, and rapid system elimination. Such molecules can be efficiently encapsulated and subsequently released from nanoparticles, which greatly improves their stability and bioavailability. Biopolymers seem to be the most suitable candidates to be used as the nanocarriers in various delivery platforms, especially due to their biocompatibility and biodegradability. Other unique properties of the polymeric nanocarriers include low cost, flexibility, stability, minimal side effects, low toxicity, good entrapment potential, and long-term and controlled drug release. An overview summarizing the research results from the last years in the field of the successful fabrication of BPNPs loaded with various therapeutic agents is provided. The possible challenges involving nanoparticle stability under physiological conditions and the possibility of scaling up production while maintaining quality, as well as the future possibilities of employing BPNPs, are also reviewed.
Collapse
Affiliation(s)
- Małgorzata Geszke-Moritz
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| | - Michał Moritz
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| |
Collapse
|
5
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
6
|
Kameni SL, Dlamini NH, Feugang JM. Exploring the full potential of sperm function with nanotechnology tools. Anim Reprod 2024; 21:e20240033. [PMID: 39176004 PMCID: PMC11340799 DOI: 10.1590/1984-3143-ar2024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
Sperm quality is essential to guarantee the success of assisted reproduction. However, selecting high-quality sperm and maintaining it during (cryo)preservation for high efficiency remains challenging in livestock reproduction. A comprehensive understanding of sperm biology allows for better assessment of sperm quality, which could replace conventional sperm analyses used today to predict fertility with low accuracy. Omics approaches have revealed numerous biomarkers associated with various sperm phenotypic traits such as quality, survival during storage, freezability, and fertility. At the same time, nanotechnology is emerging as a new biotechnology with high potential for use in preparing sperm intended to improve reproduction in livestock. The unique physicochemical properties of nanoparticles make them exciting tools for targeting (e.g., sperm damage and sexing) and non-targeting bioapplications. Recent advances in sperm biology have led to the discovery of numerous biomarkers, making it possible to target specific subpopulations of spermatozoa within the ejaculate. In this review, we explore potential biomarkers associated with sperm phenotypes and highlight the benefits of combining these biomarkers with nanoparticles to further improve sperm preparation and technology.
Collapse
Affiliation(s)
- Serge Leugoué Kameni
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Notsile Hleliwe Dlamini
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Jean Magloire Feugang
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| |
Collapse
|
7
|
Castro NR, Pinto CDSC, Dos Santos EP, Mansur CRE. Nanosystems with potential application as carriers for skin depigmenting actives. NANOTECHNOLOGY 2024; 35:402001. [PMID: 38901412 DOI: 10.1088/1361-6528/ad5a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Hyperpigmentation is a skin disorder characterized by excessive production of melanin in the skin and includes dyschromias such as post-inflammatory hyperchromias, lentigens, melasma and chloasma. Topical products containing depigmenting agents offer a less aggressive treatment option for hyperpigmentation compared to methods like chemical peels and laser sessions. However, some of these agents can cause side effects such as redness and skin irritation. Encapsulating these actives in nanosystems shows promise in mitigating these effects and improving product safety and efficacy. In addition, nanocarriers have the ability to penetrate the skin, potentially allowing for targeted delivery of actives to the affected areas. The most commonly investigated nanosystems are nanoemulsions, vesicular nanosystems and nanoparticles, in which different materials can be used to generate different compositions in order to improve the properties of these nanocarriers. Nanocarriers have already been widely explored, but it is necessary to understand the evolution of these technologies when applied to the treatment of skin hyperchromias. Therefore, this literature review aims to present the state of the art over the last 15 years on the use of nanosystems as a potential strategy for encapsulating depigmenting actives for potential application in cosmetic products for skin hyperchromia. By providing a comprehensive overview of the latest research findings and technological advances, this article can contribute to improving the care and quality of life of people affected by this skin condition.
Collapse
Affiliation(s)
- Natalia Ruben Castro
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Cristal Dos Santos C Pinto
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Elisabete P Dos Santos
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Drugs and Medicines, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Claudia Regina E Mansur
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Liu X, Zhang M, Zhou X, Wan M, Cui A, Xiao B, Yang J, Liu H. Research advances in Zein-based nano-delivery systems. Front Nutr 2024; 11:1379982. [PMID: 38798768 PMCID: PMC11119329 DOI: 10.3389/fnut.2024.1379982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Xuelian Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mengjiao Wan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Aiping Cui
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Arvas B, Ucar B, Acar T, Varli HS, Arvas MB, Aydogan F, Yolacan C. Synthesis of novel coumarin-triazole hybrids and first evaluation of the 4-phenyl substituted hybrid loaded PLGA nanoparticles delivery system to the anticancer activity. NANOTECHNOLOGY 2024; 35:305602. [PMID: 38636487 DOI: 10.1088/1361-6528/ad403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Despite the discovery of many chemotherapeutic drugs that prevent uncontrolled cell division processes in the last century, many studies are still being carried out to develop drugs with higher anticancer efficacy and lower level of side effects. Herein, we designed, synthesized, and characterized six novel coumarin-triazole hybrids, and evaluated for anticancer activity of the one with the highest potential against the breast cancer cell line, MCF-7 and human cervical cancer cell line, human cervical adenocarcinoma (HeLa). Compound21which was the coumarin derivative including phenyl substituent with the lowest IC50 value displayed the highest cytotoxicity against the studied cancer cell line. Furthermore, the potential use of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) prepared by the emulsifying solvent evaporation method as a platform for a drug delivery system was studied on a selected coumarin derivative21. This coumarin derivative-loaded PLGA NPs were produced with an average size of 225.90 ± 2.96 nm, -16.90 ± 0.85 mV zeta potential, and 4.12 ± 0.90% drug loading capacity. The obtained21-loaded PLGA nanoparticles were analyzed spectroscopically and microscopically with FT-IR, UV-vis, and scanning electron microscopy as well as thermogravimetric analysis, Raman, and x-ray diffraction. Thein vitrorelease of21from the nanoparticles exhibited a controlled release profile just over one month following a burst release in the initial six hours and in addition to this a total release ratio of %50 and %85 were obtained at pH 7.4 and 5.5, respectively.21-loaded PLGA nanoparticles displayed remarkably effective anticancer activity than21. The IC50 values were determined as IC50(21-loaded PLGA nanoparticles): 0.42 ± 0.01 mg ml-1and IC50(free21molecule): 5.74 ± 3.82 mg ml-1against MCF-7 cells, and as IC50(21-loaded PLGA nanoparticles): 0.77 ± 0.12 mg ml-1and IC50(free21molecule): 1.32 ± 0.31 mg ml-1against HeLa cells after the incubation period of 24 h. Our findings indicated that triazole-substituted coumarins may be used as an anticancer agent by integrating them into a polymeric drug delivery system providing improved drug loading and effective controlled drug release.
Collapse
Affiliation(s)
- Busra Arvas
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Burcu Ucar
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul, Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Hanife Sevgi Varli
- Science and Technology Application and Research Center, Yildiz Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Melih Besir Arvas
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Feray Aydogan
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Cigdem Yolacan
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
10
|
Iemtsev A, Zumaya ALV, Dinh M, Hassouna F, Fulem M. Towards rational design of API-poly(D, L-lactide-co-glycolide) based micro- and nanoparticles: The role of API-polymer compatibility prediction. Int J Pharm 2024; 650:123724. [PMID: 38123107 DOI: 10.1016/j.ijpharm.2023.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Due to their unique properties, such as controlled drug release and improved bioavailability, polymeric microparticles and nanoparticles (MPs and NPs) have gained considerable interest in the pharmaceutical industry. Nevertheless, the high costs associated with biodegradable polymers and the active pharmaceutical ingredients (APIs) used for treating serious diseases, coupled with the vast number of API-polymer combinations, make the search for effective API-polymer MPs and NPs a costly and time-consuming process. In this work, the correlation between the compatibility of selected model APIs (i.e., ibuprofen, naproxen, paracetamol, and indomethacin) with poly(lactide-co-glycolide) (PLGA) derived from respective binary phase diagrams and characteristics of prepared MPs and NPs, such as the drug loading and solid-state properties, was investigated to probe the possibility of implementing the modeling of API-polymer thermodynamic and kinetic phase behavior as part of rational design of drug delivery systems based on MPs and NPs. API-PLGA-based MPs and NPs were formulated using an emulsion-solvent evaporation technique and were characterized for morphology, mean size, zeta potential, drug loading, and encapsulation efficiency. The solid-state properties of the encapsulated APIs were assessed using differential scanning calorimetry and X-ray powder diffraction. The evaluated compatibility was poor for all considered API-PLGA pairs, which is in alignment with the experimental results showing low drug loading in terms of amorphous API content. At the same time, drug loading of the studied APIs in terms of amorphous content was found to follow the same trend as their solubility in PLGA, indicating a clear correlation between API solubility in PLGA and achievable drug loading. These findings suggest that API-polymer phase behavior modeling and compatibility screening can be employed as an effective preformulation tool to estimate optimum initial API concentration for MP and NP preparation or, from a broader perspective, to tune or select polymeric carriers offering desired drug loading.
Collapse
Affiliation(s)
- Anton Iemtsev
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Dinh
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
11
|
Islam MM, Raikwar S. Enhancement of Oral Bioavailability of Protein and Peptide by Polysaccharide-based Nanoparticles. Protein Pept Lett 2024; 31:209-228. [PMID: 38509673 DOI: 10.2174/0109298665292469240228064739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Oral drug delivery is a prevalent and cost-effective method due to its advantages, such as increased drug absorption surface area and improved patient compliance. However, delivering proteins and peptides orally remains a challenge due to their vulnerability to degradation by digestive enzymes, stomach acids, and limited intestinal membrane permeability, resulting in poor bioavailability. The use of nanotechnology has emerged as a promising solution to enhance the bioavailability of these vital therapeutic agents. Polymeric NPs, made from natural or synthetic polymers, are commonly used. Natural polysaccharides, such as alginate, chitosan, dextran, starch, pectin, etc., have gained preference due to their biodegradability, biocompatibility, and versatility in encapsulating various drug types. Their hydrophobic-hydrophilic properties can be tailored to suit different drug molecules.
Collapse
Affiliation(s)
- Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| |
Collapse
|
12
|
Shanmuganathan R, Nguyen ND, Fathima H A, Devanesan S, Farhat K, Liu X. In vitro analysis of iron oxide (Fe 3O 4) nanoparticle mediated degradation of polycyclic aromatic hydrocarbons (PAHs) and their antimicrobial activity. CHEMOSPHERE 2023; 345:140513. [PMID: 37890794 DOI: 10.1016/j.chemosphere.2023.140513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
To degrade anthracene, magnetite nanoparticles were produced using a simple co-precipitation process. The fabricated nanoparticles have been analyzed for structural and optical properties. XRD examination revealed that the produced Fe3O4 nanoparticles were cubic phase, having a mean crystallite dimension of 18.84 nm. DLS determined the hydrodynamic diameter of Fe3O4 nanoparticles to be 182 nm. UV-Vis research revealed that Fe3O4 nanoparticles absorb at 390 nm. A peak at 895 cm-1 in the FT-IR study indicated the metal-oxygen connection. The synthesized Fe3O4 nanoparticles demonstrated an effective photocatalytic performance towards anthracene degradation and was found to be 86.55%. Furthermore, Fe3O4 nanoparticles showed the highest antimicrobial activity against Bacillus subtilis was 19.43 mm. The present study is the first and foremost study determining the dual role of Fe3O4 nanoparticles towards bioremediation and biomedical applications.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- Institute for Research and Training in Medicine, Biology and Pharmacy, Duy Tan University, Da Nang, Viet Nam; School of Medicine & Pharmacy, Duy Tan University, Da Nang, Viet Nam.
| | - N D Nguyen
- Institute for Research and Training in Medicine, Biology and Pharmacy, Duy Tan University, Da Nang, Viet Nam; School of Medicine & Pharmacy, Duy Tan University, Da Nang, Viet Nam
| | - Aafreen Fathima H
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Karim Farhat
- Department of Urology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
13
|
Handa M, Sanap SN, Bhatta RS, Patil GP, Ghose S, Singh DP, Shukla R. Combining donepezil and memantine via mannosylated PLGA nanoparticles for intranasal delivery: Characterization and preclinical studies. BIOMATERIALS ADVANCES 2023; 154:213663. [PMID: 37865027 DOI: 10.1016/j.bioadv.2023.213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
The current work is focused on developing mannose-coated PLGA nanoparticles for delivering Donepezil and Memantine in one dosage form. The formulated nanoparticles were prepared using a simple emulsification technique. The final coated NPs exhibited 179.4 nm size and - 33.1 mV zeta potential and spherical shape. The concentration of IN-administrated MEM and DPZ mannose coated NPs in brain was ~573 and 207 ng/mL respectively. This amount accounts for 3 times more in comparison to uncoated NPs administered via intranasal and peroral routes. The plasma concentration of coated NPs administered via the intranasal route was various times less in comparison to other groups. In the field of pharmacodynamics, the administration of coated NPs via the IN route has shown superior efficacy in comparison to other groups in various investigations involving neurobehavioral assessments, gene expression analyses and biochemical estimations. The findings indicate that the IN route may be a potential avenue for delivering therapeutic agents using nanoparticles to treat neurological illnesses. This approach shows promise as a viable alternative to traditional dose forms and administration methods.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Gajanan Pratap Patil
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Suchetana Ghose
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Dhirendra Pratap Singh
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India.
| |
Collapse
|
14
|
Varga N, Bélteki R, Juhász Á, Csapó E. Core-Shell Structured PLGA Particles Having Highly Controllable Ketoprofen Drug Release. Pharmaceutics 2023; 15:pharmaceutics15051355. [PMID: 37242597 DOI: 10.3390/pharmaceutics15051355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The non-steroid anti-inflammatory drug ketoprofen (KP) as a model molecule is encapsulated in different poly(lactide-co-glycolide) (PLGA) nanostructured particles, using Tween20 (TWEEN) and Pluronic F127 (PLUR) as stabilizers to demonstrate the design of a biocompatible colloidal carrier particles with highly controllable drug release feature. Based on TEM images the formation of well-defined core-shell structure is highly favorable using nanoprecipitation method. Stabile polymer-based colloids with ~200-210 nm hydrodynamic diameter can be formed by successful optimization of the KP concentration with the right choice of stabilizer. Encapsulation efficiency (EE%) of 14-18% can be achieved. We clearly confirmed that the molecular weight of the stabilizer thus its structure greatly controls the drug release from the PLGA carrier particles. It can be determined that ~20% and ~70% retention is available with the use of PLUR and TWEEN, respectively. This measurable difference can be explained by the fact that the non-ionic PLUR polymer provides a steric stabilization of the carrier particles in the form of a loose shell, while the adsorption of the non-ionic biocompatible TWEEN surfactant results in a more compact and well-ordered shell around the PLGA particles. In addition, the release property can be further tuned by decreasing the hydrophilicity of PLGA by changing the monomer ratio in the range of ~20-60% (PLUR) and 70-90% (TWEEN).
Collapse
Affiliation(s)
- Norbert Varga
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
| | - Rita Bélteki
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
| | - Ádám Juhász
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
| | - Edit Csapó
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
| |
Collapse
|
15
|
Umezawa M, Ueya Y, Ichihashi K, Dung DTK, Soga K. Controlling Molecular Dye Encapsulation in the Hydrophobic Core of Core-Shell Nanoparticles for In Vivo Imaging. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:1-13. [PMID: 37363140 PMCID: PMC10081311 DOI: 10.1007/s44174-023-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/20/2023] [Indexed: 06/28/2023]
Abstract
Polymeric nanoparticles with a hydrophobic core are valuable biomedical materials with potential applications in in vivo imaging and drug delivery. These materials are effective at protecting vulnerable molecules, enabling them to serve their functions in hydrophilic physiological environments; however, strategies that allow the chemical composition and molecular weight of polymers to be tuned, forming nanoparticles to control the functional molecules, are lacking. In this article, we review strategies for designing core-shell nanoparticles that enable the effective and stable encapsulation of functional molecules for biomedical applications. IR-1061, which changes its optical properties in response to the microenvironment are useful for in vitro screening of the in vivo stability of polymeric nanoparticles. An in vitro screening test can be performed by dispersing IR-1061-encapsulated polymer nanoparticles in water, saline, buffer solution, aqueous protein solution, etc., and measuring the absorption spectral changes. Through the screening, the effects of the polarity, molecular weight, and the chiral structure of polymers consisting of polymer nanoparticles on their stability have been revealed. Based on the findings presented here, more methodologies for the effective application of various biomolecules and macromolecules with complex high-dimensional structures are expected to be developed.
Collapse
Affiliation(s)
- Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Yuichi Ueya
- Tsukuba Research Laboratories, JSR Corporation, 25 Miyukigaoka, Tsukuba, Ibaraki 305-0841 Japan
| | - Kotoe Ichihashi
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Doan Thi Kim Dung
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| |
Collapse
|
16
|
Al-Awsi GRL, Alameri AA, Al-Dhalimy AMB, Gabr GA, Kianfar E. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. BRAZ J BIOL 2023; 84:e264946. [PMID: 36722677 DOI: 10.1590/1519-6984.264946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023] Open
Abstract
Infectious diseases are the leading cause of death worldwide. Thus, nanotechnology provides an excellent opportunity to treat drug-resistant microbial infections. Numerous antibiotics have been used to inhibit the growth and kill of microbes, but the development of resistance and the emergence of side effects have severely limited the use of these agents. Due to the development of the nanotechnology, nanoparticles are widely used as antimicrobials. Silver and chitosan nanoparticles have antifungal, antiviral and antibacterial properties, and many studies confirm the antifungal properties of silver nanoparticles. Nowadays, the use of nanoparticles in the diagnosis and treatment of infectious diseases has developed due to less side effects and also the help of these particles in effective drug delivery to the target tissue. Liposomes are also used as carriers of drug delivery, genes, and modeling of cell membranes in both animals and humans. The ability of these liposomes to encapsulate large amounts of drugs, minimize unwanted side effects, high effectiveness and low toxicity has attracted the interest of researchers. This review article examines recent efforts by researchers to identify and treat infectious diseases using antimicrobial nanoparticles and drug nano-carriers.
Collapse
Affiliation(s)
- G R L Al-Awsi
- Al-Mustaqbal University College, Department of Radiological Techniques, Hillah, Babylon, Iraq
| | - A A Alameri
- University of Babylon, College of Science, Department of Chemistry, Babylon, Babylon, Iraq
| | - A M B Al-Dhalimy
- Altoosi University College, Department of Nursing, Najaf, Iraq.,The Islamic University, Islamic University Centre for Scientific Research, Najaf, Iraq
| | - G A Gabr
- Prince Sattam Bin Abdulaziz University, College of Pharmacy, Department of Pharmacology and Toxicology, Al-Kharj, Al-Kharj, Saudi Arabia.,Agricultural Genetic Engineering Research Institute - AGERI, Agricultural Research Center, Giza, Egypt
| | - E Kianfar
- Islamic Azad University, Department of Chemistry, Sousangerd, Iran.,Istanbul Medeniyet University, Department of Mechanical Engineering, Istanbul, Turkey.,Islamic Azad University, Department of Chemical Engineering, Arak, Iran.,Islamic Azad University, Young Researchers and Elite Club, Gachsaran, Iran
| |
Collapse
|
17
|
Nanomedicines Bearing an Alkylating Cytostatic Drug from the Group of 1,3,5-Triazine Derivatives: Development and Characterization. Pharmaceutics 2022; 14:pharmaceutics14112506. [PMID: 36432699 PMCID: PMC9694467 DOI: 10.3390/pharmaceutics14112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer is still one of the major diseases worldwide. The discovery of new drugs and the improvement of existing ones is one of the areas of priority in the fight against cancer. Dioxadet ([5-[[4,6-bis(aziridin-1-yl)-1,3,5-triazin-2-yl]amino]-2,2-dimethyl-1,3-dioxan-5-yl]methanol) represents one of the promising 1,3,5-triazine derivatives and has cytostatic activity towards ovarian cancer. In this study, we first report the development of dioxadet-bearing nanomedicines based on block-copolymers of poly(ethylene glycol) monomethyl ether (mPEG) and poly(D,L-lactic acid) (PLA)/poly(ε-caprolactone) (PCL) and then conduct an investigation into their characteristics and properties. The preparation of narrow-sized nanoparticles with a hydrodynamic diameter of 100−120 nm was optimized using a nanoprecipitation approach. Thoughtful optimization of the preparation of nanomedicines was carried out through adjustments to the polymer’s molecular weight, the pH of the aqueous medium used for nanoprecipitation, the initial drug amount in respect to the polymer, and polymer concentration in the organic phase. Under optimized conditions, spherical-shaped nanomedicines with a hydrodynamic diameter of up to 230 nm (PDI < 0.2) containing up to 592 ± 22 μg of dioxadet per mg of polymer nanoparticles were prepared. Study of the drug’s release in a model medium revealed the release up to 64% and 46% of the drug after 8 days for mPEG-b-PLA and mPEG-b-PCL, respectively. Deep analysis of the release mechanisms was carried out with the use of a number of mathematical models. The developed nanoparticles were non-toxic towards both normal (CHO-K1) and cancer (A2780 and SK-OV-3) ovarian cells. A cell cycle study revealed lesser toxicity of nanomedicines towards normal cells and increased toxicity towards cancer cells. The IC50 values determined for dioxadet nanoformulations were in the range of 0.47−4.98 μg/mL for cancer cells, which is close to the free drug’s efficacy (2.60−4.14 μg/mL). The highest cytotoxic effect was found for dioxadet loaded to mPEG-b-PCL nanoparticles.
Collapse
|
18
|
Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf B Biointerfaces 2022; 221:113002. [PMID: 36370645 DOI: 10.1016/j.colsurfb.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.e., silencing the expression of oncogenic genes responsible for producing abnormal proteins (via messenger RNAs (mRNAs)). However, the future clinical translation of NAT is majorly dependent upon the effective delivery of the exogenous nucleic acids (especially RNAs - e.g., short interfering RNAs (siRNAs) - herein called biological drugs). Moreover, nano-based vehicles (i.e., nanocarriers) are involved in delivering them to prevent degradation and undesired bioaccumulation while enhancing the stability of siRNAs. Herein, we have initially discussed about three major types of self-assembling nanocarriers (liposomes, polymeric nanoparticles and exosomes). Later, we have majorly reviewed recent developments in non-targeted/targeted nanocarriers for delivery of biological drugs (individual/dual) to silence the most important genes/mRNAs accountable for inducing protein abnormality. These proteins include polo-like kinase 1 (PLK1), survivin, vascular endothelial growth factor (VEGF), B-cell lymphoma/leukaemia-2 (Bcl-2) and multi-drug resistance (MDR). Besides, the consequent therapeutic effects on cancer growth, invasion and/or metastasis have also been discussed. Finally, we have comprehensively reviewed the improvements achieved in the cutting-edge cancer therapeutics while delivering siRNAs in combination with clinically approved chemotherapeutic drugs.
Collapse
|
19
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
20
|
Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5766199. [PMID: 35509832 PMCID: PMC9060970 DOI: 10.1155/2022/5766199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
Abstract
Pesticides have been used in agricultural activity for decades because they represent the first defense against pathogens, harmful insects, and parasitic weeds. Conventional pesticides are commonly employed at high dosages to prevent their loss and degradation, guaranteeing effectiveness; however, this results in a large waste of resources and significant environmental pollution. In this regard, the search for biocompatible, biodegradable, and responsive materials has received greater attention in the last years to achieve the obtention of an efficient and green pesticide formulation. Nanotechnology is a useful tool to design and develop “nanopesticides” that limit pest degradation and ensure a controlled release using a lower concentration than the conventional methods. Besides different types of nanoparticles, polymeric nanocarriers represent the most promising group of nanomaterials to improve the agrochemicals’ sustainability due to polymers’ intrinsic properties. Polymeric nanoparticles are biocompatible, biodegradable, and suitable for chemical surface modification, making them attractive for pesticide delivery. This review summarizes the current use of synthetic and natural polymer-based nanopesticides, discussing their characteristics and their most common design shapes. Furthermore, we approached the instability phenomena in polymer-based nanopesticides and strategies to avoid it. Finally, we discussed the environmental risks and future challenges of polymeric nanopesticides to present a comprehensive analysis of this type of nanosystem.
Collapse
|
21
|
Villela Zumaya AL, Mincheva R, Raquez JM, Hassouna F. Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers (Basel) 2022; 14:1188. [PMID: 35335518 PMCID: PMC8955999 DOI: 10.3390/polym14061188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| |
Collapse
|
22
|
Multicomponent crystal compromising dasatinib and selected co-crystals formers: a patent evaluation of EP2861589B1. Pharm Pat Anal 2022; 11:15-21. [PMID: 35172634 DOI: 10.4155/ppa-2021-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cocrystallization has gained significant prominence in pharmaceutical product development because of the enhancement of physical, chemical and pharmacological properties of active pharmaceutical ingredients, such as stability, solubility, dissolution rate, taste, hygroscopicity, mechanical property, bioavailability, permeability and therapeutic activity. Traditionally, co-crystals can be prepared by a grinding, solvent evaporation and slurry method. However, sophisticated methods such as spa drying, hot-melt extrusion, supercritical fluid and laser irradiation are also reported to be used for producing co-crystals. The selected patent describes the development of multicomponent crystals of dasatinib, with an aim to enhance the aqueous solubility of a selected drug. However issues surrounding the toxicity, stability, large scale manufacture, in vivo performance in human beings and regulations require adequate addressal prior to exploring the commercial viability of pharmaceutical co-crystals.
Collapse
|
23
|
Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review. Polymers (Basel) 2022; 14:polym14040752. [PMID: 35215665 PMCID: PMC8878751 DOI: 10.3390/polym14040752] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
A broad spectrum of nanomaterials has been investigated for multiple purposes in recent years. Some of these studied materials are magnetics nanoparticles (MNPs). Iron oxide nanoparticles (IONPs) and superparamagnetic iron oxide nanoparticles (SPIONs) are MNPs that have received extensive attention because of their physicochemical and magnetic properties and their ease of combination with organic or inorganic compounds. Furthermore, the arresting of these MNPs into a cross-linked matrix known as hydrogel has attracted significant interest in the biomedical field. Commonly, MNPs act as a reinforcing material for the polymer matrix. In the present review, several methods, such as co-precipitation, polyol, hydrothermal, microemulsion, and sol-gel methods, are reported to synthesize magnetite nanoparticles with controllable physical and chemical properties that suit the required application. Due to the potential of magnetite-based nanocomposites, specifically in hydrogels, processing methods, including physical blending, in situ precipitation, and grafting methods, are introduced. Moreover, the most common characterization techniques employed to study MNPs and magnetic gel are discussed.
Collapse
|
24
|
Hinz A, Szczęch M, Szczepanowicz K, Bzowska M. Fluorophore Localization Determines the Results of Biodistribution of Core-Shell Nanocarriers. Int J Nanomedicine 2022; 17:577-588. [PMID: 35173431 PMCID: PMC8840834 DOI: 10.2147/ijn.s343266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Alicja Hinz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
- Krzysztof Szczepanowicz, Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8 Street, Kraków, 30-239, Poland, Tel/Fax +48 12 639 51 21, Email
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Correspondence: Monika Bzowska, Department of Cell Biochemistry, Faculty of Biochemistry, Jagiellonian University in Kraków, Biophysics and Biotechnology, 7 Gronostajowa Street, Kraków, 30-387, Poland, Tel/Fax +48 12 664 63 88, Email
| |
Collapse
|
25
|
Ahn GY, Choi I, Song M, Han SK, Choi K, Ryu YH, Oh DH, Kang HW, Choi SW. Fabrication of Microfiber-Templated Microfluidic Chips with Microfibrous Channels for High Throughput and Continuous Production of Nanoscale Droplets. ACS Macro Lett 2022; 11:127-134. [PMID: 35574793 DOI: 10.1021/acsmacrolett.1c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A polydimethylsiloxane (PDMS) microfluidic chip with well-interconnected microfibrous channels was fabricated by using an electrospun poly(ε-caprolactone) (PCL) microfibrous matrix and 3D-printed pattern as templates. The microfiber-templated microfluidic chip (MTMC) was used to produce nanoscale emulsions and spheres through multiple emulsification at many small micro-orifice junctions among microfibrous channels. The emulsion formation mechanisms in the MTMC were the cross-junction dripping or Y-junction splitting at the micro-orifice junctions. We demonstrated the high throughput and continuous production of water-in-oil emulsions and polyethylene glycol-diacrylate (PEG-DA) spheres with controlled size ranges from 2.84 μm to 83.6 nm and 1.03 μm to 45.7 nm, respectively. The average size of the water droplets was tuned by changing the micro-orifice diameter of the MTMC and the flow rate of the continuous phase. The MTMC theoretically produced 58 trillion PEG-DA nanospheres per hour without high shear force. In addition, we demonstrated the higher encapsulation efficiency of the PEG-DA microspheres in the MTMC than that of the microspheres fabricated by ultrasonication. The MTMC can be used as a powerful platform for the large-scale and continuous productions of emulsions and spheres.
Collapse
Affiliation(s)
- Guk-Young Ahn
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Inseong Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Minju Song
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Soo Kyung Han
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kangho Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Young-Hyun Ryu
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Do-Hyun Oh
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hye-Won Kang
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Sung-Wook Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
26
|
Koryakina IG, Afonicheva PK, Arabuli KV, Evstrapov AA, Timin AS, Zyuzin MV. Microfluidic synthesis of optically responsive materials for nano- and biophotonics. Adv Colloid Interface Sci 2021; 298:102548. [PMID: 34757247 DOI: 10.1016/j.cis.2021.102548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Recently, nanomaterials demonstrating optical response under illumination, the so-called optically responsive nanoparticles (NPs), have found their broad application as optical switchers, gas adsorbents, data storage devices, and optical and biological sensors. Unique optical properties of such nanomaterials are strongly related to their chemical composition, geometrical parameters and morphology. Microfluidic approaches for NPs' synthesis allow overcoming the known critical stages in conventional synthesis of NPs due to a high rate of heat/mass transfer and precise regulation of synthesis conditions, which results in reproducible synthesis outcomes with the desired physico-chemical properties. Here, we review the recent advances in microfluidic approach for synthesis of optically responsive nanomaterials (plasmonic, photoluminescent, shape-changeable NPs), highlighting the general background of microfluidics, common considerations in the design of microfluidic chips (MFCs), and theoretical models of the NPs' formation mechanisms. Comparative analysis of microfluidic synthesis with conventional synthesis methods is provided further, along with the recent applications of optically responsive NPs in nano- and biophotonics.
Collapse
|
27
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
28
|
Synergistic combination therapy of lung cancer using lipid-layered cisplatin and oridonin co-encapsulated nanoparticles. Biomed Pharmacother 2021; 141:111830. [PMID: 34146851 DOI: 10.1016/j.biopha.2021.111830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
Lung cancer treatment using cisplatin (DDP) in combination with other drugs are effective for the treatment of non-small cell lung cancer (NSCLC). The aim of this study was to prepare a layer-by-layer nanoparticles (NPs) for the co-loading of DDP and oridonin (ORI) and to evaluate the antitumor activity of the system in vitro and in vivo. Novel DDP and ORI co-loaded layer-by-layer NPs (D/O-NPs) were constructed. The mean diameter, surface change stability and drug release behavior of NPs were evaluated. In vitro cytotoxicity of D/O-NPs was investigated against DDP resistant human lung cancer cell line (A549/DDP cells), and in vivo anti-tumor efficiency of D/O-NPs was tested on mice bearing A549/DDP cells xenografts. D/O-NPs have a diameter of 139.6 ± 4.4 nm, a zeta potential value of +13.8 ± 1.6 mV. D/O-NPs could significantly enhance in vitro cell toxicity and in vivo antitumor effect against A549/DDP cells and lung cancer animal model compared to the single drug loaded NPs and free drugs. The results demonstrated that the D/O-NPs could be used as a promising lung cancer treatment system.
Collapse
|
29
|
Development of Polymer-Assisted Nanoparticles and Nanogels for Cancer Therapy: An Update. Gels 2021; 7:gels7020060. [PMID: 34067587 PMCID: PMC8162331 DOI: 10.3390/gels7020060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
With cancer remaining as one of the main causes of deaths worldwide, many studies are undergoing the effort to look for a novel and potent anticancer drug. Nanoparticles (NPs) are one of the rising fields in research for anticancer drug development. One of the key advantages of using NPs for cancer therapy is its high flexibility for modification, hence additional properties can be added to the NPs in order to improve its anticancer action. Polymer has attracted considerable attention to be used as a material to enhance the bioactivity of the NPs. Nanogels, which are NPs cross-linked with hydrophilic polymer network have also exhibited benefits in anticancer application. The characteristics of these nanomaterials include non-toxic, environment-friendly, and variable physiochemical properties. Some other unique properties of polymers are also attributed by diverse methods of polymer synthesis. This then contributes to the unique properties of the nanodrugs. This review article provides an in-depth update on the development of polymer-assisted NPs and nanogels for cancer therapy. Topics such as the synthesis, usage, and properties of the nanomaterials are discussed along with their mechanisms and functions in anticancer application. The advantages and limitations are also discussed in this article.
Collapse
|
30
|
Srivastava A, Prajapati A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. ASIAN BIOMED 2020; 14:217-242. [PMID: 37551304 PMCID: PMC10373404 DOI: 10.1515/abm-2020-0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The inherent properties of albumin facilitate its effective use as a raw material to prepare a nanosized drug delivery vehicles. Because of the enhanced surface area, biocompatibility, and extended half-life of albumin nanoparticles, a number of drugs have been incorporated in albumin matrices in recent years. Furthermore, its ability to be conjugated to various receptor ligands makes albumin an ideal candidate for the increased delivery of drugs to specific sites. The present review provides an in-depth discussion of production strategies for the preparation of albumin and conjugated albumin nanoparticles and for the targeting of these formulations to specific organs and cancer cells. This review also provides insights into drug loading, release patterns, and cytotoxicity of various drug-loaded albumin nanoparticles.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Department of Chemistry, GLA University, Chaumuhan, Mathura, Uttar Pradesh281406, India
| | - Anjali Prajapati
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh281406, India
| |
Collapse
|
31
|
Szczęch M, Orsi D, Łopuszyńska N, Cristofolini L, Jasiński K, Węglarz WP, Albertini F, Kereïche S, Szczepanowicz K. Magnetically responsive polycaprolactone nanocarriers for application in the biomedical field: magnetic hyperthermia, magnetic resonance imaging, and magnetic drug delivery. RSC Adv 2020; 10:43607-43618. [PMID: 35519668 PMCID: PMC9058288 DOI: 10.1039/d0ra07507h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023] Open
Abstract
There are huge demands on multifunctional nanocarriers to be used in nanomedicine. Herein, we present a simple and efficient method for the preparation of multifunctional magnetically responsive polymeric-based nanocarriers optimized for biomedical applications. The hybrid delivery system is composed of drug-loaded polymer nanoparticles (poly(caprolactone), PCL) coated with a multilayer shell of polyglutamic acid (PGA) and superparamagnetic iron oxide nanoparticles (SPIONs), which are known as bio-acceptable components. The PCL nanocarriers with a model anticancer drug (Paclitaxel, PTX) were formed by the spontaneous emulsification solvent evaporation (SESE) method, while the magnetically responsive multilayer shell was formed via the layer-by-layer (LbL) method. As a result, we obtained magnetically responsive polycaprolactone nanocarriers (MN-PCL NCs) with an average size of about 120 nm. Using the 9.4 T preclinical magnetic resonance imaging (MRI) scanner we confirmed, that obtained MN-PCL NCs can be successfully used as a MRI-detectable drug delivery system. The magnetic hyperthermia effect of the MN-PCL NCs was demonstrated by applying a 25 mT radio-frequency (f = 429 kHz) alternating magnetic field. We found a Specific Absorption Rate (SAR) of 55 W g-1. The conducted research fulfills the first step of investigation for biomedical application, which is mandatory for the planning of any in vitro and in vivo studies.
Collapse
Affiliation(s)
- Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Krakow Poland +48-124251923 +48-126395121
| | - Davide Orsi
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parma Italy
| | - Natalia Łopuszyńska
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Krakow Poland
| | - Luigi Cristofolini
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parma Italy
| | - Krzysztof Jasiński
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Krakow Poland
| | - Władysław P Węglarz
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Krakow Poland
| | - Franca Albertini
- Institute of Materials for Electronics and Magnetism, National Research Council (CNR) Parma Italy
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University Prague Czech Republic
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Krakow Poland +48-124251923 +48-126395121
| |
Collapse
|
32
|
Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. COATINGS 2020. [DOI: 10.3390/coatings10111131] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Originally regarded as auxiliary additives, nanoparticles have become important constituents of polyelectrolyte multilayers. They represent the key components to enhance mechanical properties, enable activation by laser light or ultrasound, construct anisotropic and multicompartment structures, and facilitate the development of novel sensors and movable particles. Here, we discuss an increasingly important role of inorganic nanoparticles in the layer-by-layer assembly—effectively leading to the construction of the so-called hybrid coatings. The principles of assembly are discussed together with the properties of nanoparticles and layer-by-layer polymeric assembly essential in building hybrid coatings. Applications and emerging trends in development of such novel materials are also identified.
Collapse
|
33
|
Shah S, Nene S, Rangaraj N, Raghuvanshi RS, Singh SB, Srivastava S. Bridging the gap: academia, industry and FDA convergence for nanomaterials. Drug Dev Ind Pharm 2020; 46:1735-1746. [DOI: 10.1080/03639045.2020.1821055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shweta Nene
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nagarjun Rangaraj
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | | | - Shashi Bala Singh
- Department of Pharmacology and Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
34
|
Huang WD, Xu X, Wang HL, Huang JX, Zuo XH, Lu XJ, Liu XL, Yu DG. Electrosprayed Ultra-Thin Coating of Ethyl Cellulose on Drug Nanoparticles for Improved Sustained Release. NANOMATERIALS 2020; 10:nano10091758. [PMID: 32899956 PMCID: PMC7557748 DOI: 10.3390/nano10091758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
In nanopharmaceutics, polymeric coating is a popular strategy for modifying the drug release kinetics and, thus, new methods for implementing the nanocoating processes are highly desired. In the present study, a modified coaxial electrospraying process was developed to formulate an ultra-thin layer of ethyl cellulose (EC) on a medicated composite core consisting of tamoxifen citrate (TAM) and EC. A traditional single-fluid blending electrospraying and its monolithic EC-TAM nanoparticles (NPs) were exploited to compare. The modified coaxial processes were demonstrated to be more continuous and robust. The created NPs with EC coating had a higher quality than the monolithic ones in terms of the shape, surface smoothness, and the uniform size distribution, as verified by the SEM and TEM results. XRD patterns suggested that TAM presented in all the NPs in an amorphous state thanks to the fine compatibility between EC and TAM, as indicated by the attenuated total reflection (ATR)-FTIR spectra. In vitro dissolution tests demonstrated that the NPs with EC coating required a time period of 7.58 h, 12.79 h, and 28.74 h for an accumulative release of 30%, 50%, and 90% of the loaded drug, respectively. The protocols reported here open a new way for developing novel medicated nanoparticles with functional coating.
Collapse
Affiliation(s)
- Wei-Dong Huang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China; (W.-D.H.); (X.-H.Z.)
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; (H.-L.W.); (J.-X.H.)
| | - Xizi Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Han-Lin Wang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; (H.-L.W.); (J.-X.H.)
| | - Jie-Xun Huang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; (H.-L.W.); (J.-X.H.)
| | - Xiao-Hua Zuo
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China; (W.-D.H.); (X.-H.Z.)
| | - Xiao-Ju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China; (W.-D.H.); (X.-H.Z.)
- Correspondence: (X.-J.L.); (X.-L.L.); (D.-G.Y.); Tel.: +86-714-6348814 (X.-J.L.); +86-714-6368937 (X.-L.L.); +86-21-55270632 (D.-G.Y.)
| | - Xian-Li Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; (H.-L.W.); (J.-X.H.)
- Correspondence: (X.-J.L.); (X.-L.L.); (D.-G.Y.); Tel.: +86-714-6348814 (X.-J.L.); +86-714-6368937 (X.-L.L.); +86-21-55270632 (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Correspondence: (X.-J.L.); (X.-L.L.); (D.-G.Y.); Tel.: +86-714-6348814 (X.-J.L.); +86-714-6368937 (X.-L.L.); +86-21-55270632 (D.-G.Y.)
| |
Collapse
|
35
|
Szafraniec-Szczęsny J, Janik-Hazuka M, Odrobińska J, Zapotoczny S. Polymer Capsules with Hydrophobic Liquid Cores as Functional Nanocarriers. Polymers (Basel) 2020; 12:E1999. [PMID: 32887444 PMCID: PMC7565928 DOI: 10.3390/polym12091999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Recent developments in the fabrication of core-shell polymer nanocapsules, as well as their current and future applications, are reported here. Special attention is paid to the newly introduced surfactant-free fabrication method of aqueous dispersions of nanocapsules with hydrophobic liquid cores stabilized by amphiphilic copolymers. Various approaches to the efficient stabilization of such vehicles, tailoring their cores and shells for the fabrication of multifunctional, navigable nanocarriers and/or nanoreactors useful in various fields, are discussed. The emphasis is placed on biomedical applications of polymer nanocapsules, including the delivery of poorly soluble active compounds and contrast agents, as well as their use as theranostic platforms. Other methods of fabrication of polymer-based nanocapsules are briefly presented and compared in the context of their biomedical applications.
Collapse
Affiliation(s)
- Joanna Szafraniec-Szczęsny
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Małgorzata Janik-Hazuka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.J.-H.); (J.O.)
| | - Joanna Odrobińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.J.-H.); (J.O.)
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.J.-H.); (J.O.)
| |
Collapse
|
36
|
Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020; 25:E3731. [PMID: 32824172 PMCID: PMC7464532 DOI: 10.3390/molecules25163731] [Citation(s) in RCA: 519] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles (NPs) are particles within the size range from 1 to 1000 nm and can be loaded with active compounds entrapped within or surface-adsorbed onto the polymeric core. The term "nanoparticle" stands for both nanocapsules and nanospheres, which are distinguished by the morphological structure. Polymeric NPs have shown great potential for targeted delivery of drugs for the treatment of several diseases. In this review, we discuss the most commonly used methods for the production and characterization of polymeric NPs, the association efficiency of the active compound to the polymeric core, and the in vitro release mechanisms. As the safety of nanoparticles is a high priority, we also discuss the toxicology and ecotoxicology of nanoparticles to humans and to the environment.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Filipa Carreiró
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Ana M. Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Andreia Neves
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Bárbara Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - D. Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643 001, Tamil Nadu, India;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60–355 Poznań, Poland;
| | - Amélia M. Silva
- Department of Biology and Environment, University of Tras-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|