1
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
2
|
Bregonzio M, Bernasconi A, Pinoli P. Advancing healthcare through data: the BETTER project's vision for distributed analytics. Front Med (Lausanne) 2024; 11:1473874. [PMID: 39416867 PMCID: PMC11480012 DOI: 10.3389/fmed.2024.1473874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Data-driven medicine is essential for enhancing the accessibility and quality of the healthcare system. The availability of data plays a crucial role in achieving this goal. Methods We propose implementing a robust data infrastructure of FAIRification and data fusion for clinical, genomic, and imaging data. This will be embedded within the framework of a distributed analytics platform for healthcare data analysis, utilizing the Personal Health Train paradigm. Results This infrastructure will ensure the findability, accessibility, interoperability, and reusability of data, metadata, and results among multiple medical centers participating in the BETTER Horizon Europe project. The project focuses on studying rare diseases, such as intellectual disability and inherited retinal dystrophies. Conclusion The anticipated impacts will benefit a wide range of healthcare practitioners and potentially influence health policymakers.
Collapse
Affiliation(s)
| | - Anna Bernasconi
- Department of Information, Electronics, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Pietro Pinoli
- Department of Information, Electronics, and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
3
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
4
|
Ammar A, Evelo C, Willighagen E. FAIR assessment of nanosafety data reusability with community standards. Sci Data 2024; 11:503. [PMID: 38755173 PMCID: PMC11099147 DOI: 10.1038/s41597-024-03324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Nanomaterials hold great promise for improving our society, and it is crucial to understand their effects on biological systems in order to enhance their properties and ensure their safety. However, the lack of consistency in experimental reporting, the absence of universally accepted machine-readable metadata standards, and the challenge of combining such standards hamper the reusability of previously produced data for risk assessment. Fortunately, the research community has responded to these challenges by developing minimum reporting standards that address several of these issues. By converting twelve published minimum reporting standards into a machine-readable representation using FAIR maturity indicators, we have created a machine-friendly approach to annotate and assess datasets' reusability according to those standards. Furthermore, our NanoSafety Data Reusability Assessment (NSDRA) framework includes a metadata generator web application that can be integrated into experimental data management, and a new web application that can summarize the reusability of nanosafety datasets for one or more subsets of maturity indicators, tailored to specific computational risk assessment use cases. This approach enhances the transparency, communication, and reusability of experimental data and metadata. With this improved FAIR approach, we can facilitate the reuse of nanosafety research for exploration, toxicity prediction, and regulation, thereby advancing the field and benefiting society as a whole.
Collapse
Affiliation(s)
- Ammar Ammar
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands.
| | - Chris Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Egon Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Neves A, Cuesta I, Hjerde E, Klemetsen T, Salgado D, van Helden J, Rahman N, Fatima N, Karathanasis N, Zmora P, Åkerström WN, Grellscheid SN, Waheed Z, Blomberg N. FAIR+E pathogen data for surveillance and research: lessons from COVID-19. Front Public Health 2023; 11:1289945. [PMID: 38074768 PMCID: PMC10703184 DOI: 10.3389/fpubh.2023.1289945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
The COVID-19 pandemic has exemplified the importance of interoperable and equitable data sharing for global surveillance and to support research. While many challenges could be overcome, at least in some countries, many hurdles within the organizational, scientific, technical and cultural realms still remain to be tackled to be prepared for future threats. We propose to (i) continue supporting global efforts that have proven to be efficient and trustworthy toward addressing challenges in pathogen molecular data sharing; (ii) establish a distributed network of Pathogen Data Platforms to (a) ensure high quality data, metadata standardization and data analysis, (b) perform data brokering on behalf of data providers both for research and surveillance, (c) foster capacity building and continuous improvements, also for pandemic preparedness; (iii) establish an International One Health Pathogens Portal, connecting pathogen data isolated from various sources (human, animal, food, environment), in a truly One Health approach and following FAIR principles. To address these challenging endeavors, we have started an ELIXIR Focus Group where we invite all interested experts to join in a concerted, expert-driven effort toward sustaining and ensuring high-quality data for global surveillance and research.
Collapse
Affiliation(s)
- Aitana Neves
- SIB Swiss Institute of Bioinformatics, Clinical Bioinformatics, Geneva, Switzerland
| | - Isabel Cuesta
- Bioinformatics Unit, Institute of Health Carlos III, Madrid, Spain
| | - Erik Hjerde
- Institute of Chemistry, The Arctic University of Norway, Tromsø, Norway
| | - Terje Klemetsen
- Institute of Chemistry, The Arctic University of Norway, Tromsø, Norway
| | - David Salgado
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Jacques van Helden
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
- Aix-Marseille Univ, INSERM, Lab. Theory and Approaches of Genome Complexity (TAGC), Marseille, France
| | - Nadim Rahman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nazeefa Fatima
- ELIXIR Norway, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Nestoras Karathanasis
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pawel Zmora
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Wolmar Nyberg Åkerström
- NBIS National Bioinformatics Infrastructure Sweden, SciLifeLab, Uppsala University, Uppsala, Sweden
| | | | - Zahra Waheed
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Niklas Blomberg
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, United Kingdom
| |
Collapse
|
6
|
Martens M, Stierum R, Schymanski EL, Evelo CT, Aalizadeh R, Aladjov H, Arturi K, Audouze K, Babica P, Berka K, Bessems J, Blaha L, Bolton EE, Cases M, Damalas DΕ, Dave K, Dilger M, Exner T, Geerke DP, Grafström R, Gray A, Hancock JM, Hollert H, Jeliazkova N, Jennen D, Jourdan F, Kahlem P, Klanova J, Kleinjans J, Kondic T, Kone B, Lynch I, Maran U, Martinez Cuesta S, Ménager H, Neumann S, Nymark P, Oberacher H, Ramirez N, Remy S, Rocca-Serra P, Salek RM, Sallach B, Sansone SA, Sanz F, Sarimveis H, Sarntivijai S, Schulze T, Slobodnik J, Spjuth O, Tedds J, Thomaidis N, Weber RJ, van Westen GJ, Wheelock CE, Williams AJ, Witters H, Zdrazil B, Županič A, Willighagen EL. ELIXIR and Toxicology: a community in development. F1000Res 2023; 10:ELIXIR-1129. [PMID: 37842337 PMCID: PMC10568213 DOI: 10.12688/f1000research.74502.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.
Collapse
Affiliation(s)
- Marvin Martens
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Rob Stierum
- Risk Analysis for Products In Development (RAPID), Netherlands Organisation for applied scientific research TNO, Utrecht, 3584 CB, The Netherlands
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6229 EN, The Netherlands
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Hristo Aladjov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Kasia Arturi
- Department Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600, Switzerland
| | | | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Palacky University Olomouc, Olomouc, 77146, Czech Republic
| | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Dimitrios Ε. Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Kirtan Dave
- School of Science, GSFC University, Gujarat, 391750, India
| | - Marco Dilger
- Forschungs- und Beratungsinstitut Gefahrstoffe (FoBiG) GmbH, Freiburg im Breisgau, 79106, Germany
| | | | - Daan P. Geerke
- AIMMS Division of Molecular Toxicology, Vrije Universiteit, Amsterdam, 1081 HZ, The Netherlands
| | - Roland Grafström
- Department of Toxicology, Misvik Biology, Turku, 20520, Finland
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Alasdair Gray
- Department of Computer Science, Heriot-Watt University, Edinburgh, UK
| | | | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Goethe-University, Frankfurt, D-60438, Germany
| | | | - Danyel Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Fabien Jourdan
- MetaboHUB, French metabolomics infrastructure in Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, Toulouse, France
| | - Pascal Kahlem
- Scientific Network Management SL, Barcelona, 08015, Spain
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Todor Kondic
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Boï Kone
- Faculty of Pharmacy, Malaria Research and Training Center, Bamako, BP:1805, Mali
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu, 50411, Estonia
| | | | - Hervé Ménager
- Institut Français de Bioinformatique, Evry, F-91000, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, F-75015, France
| | - Steffen Neumann
- Research group Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, A-6020, Austria
| | - Noelia Ramirez
- Institut d'Investigacio Sanitaria Pere Virgili-Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | | | - Philippe Rocca-Serra
- Data Readiness Group, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Reza M. Salek
- International Agency for Research on Cancer, World Health Organisation, Lyon, 69372, France
| | - Brett Sallach
- Department of Environment and Geography, University of York, UK, York, YO10 5NG, UK
| | | | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | | | | | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany
| | | | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, SE-75124, Sweden
| | - Jonathan Tedds
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Ralf J.M. Weber
- School of Biosciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Gerard J.P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden, 2333 CC, The Netherlands
| | - Craig E. Wheelock
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm SE-141-86, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Antony J. Williams
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Barbara Zdrazil
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Anže Županič
- Department Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Egon L. Willighagen
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
7
|
Blekos K, Chairetakis K, Lynch I, Marcoulaki E. Principles and requirements for nanomaterial representations to facilitate machine processing and cooperation with nanoinformatics tools. J Cheminform 2023; 15:44. [PMID: 37046286 PMCID: PMC10099932 DOI: 10.1186/s13321-022-00669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/10/2022] [Indexed: 04/14/2023] Open
Abstract
Efficient and machine-readable representations are needed to accurately identify, validate and communicate information of chemical structures. Many such representations have been developed (as, for example, the Simplified Molecular-Input Line-Entry System and the IUPAC International Chemical Identifier), each offering advantages specific to various use-cases. Representation of the multi-component structures of nanomaterials (NMs), though, remains out of scope for all the currently available standards, as the nature of NMs sets new challenges on formalizing the encoding of their structure, interactions and environmental parameters. In this work we identify a set of principles that a NM representation should adhere to in order to provide "machine-friendly" encodings of NMs, i.e. encodings that facilitate machine processing and cooperation with nanoinformatics tools. We illustrate our principles by showing how the recently introduced InChI-based NM representation, might be augmented, in principle, to also encode morphology and mixture properties, distributions of properties, and also to capture auxiliary information and allow data reuse.
Collapse
Affiliation(s)
- Kostas Blekos
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research "Demokritos", 15341, Agia Paraskevi, Greece
| | - Kostas Chairetakis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research "Demokritos", 15341, Agia Paraskevi, Greece
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Effie Marcoulaki
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research "Demokritos", 15341, Agia Paraskevi, Greece.
| |
Collapse
|
8
|
Singh AV, Varma M, Laux P, Choudhary S, Datusalia AK, Gupta N, Luch A, Gandhi A, Kulkarni P, Nath B. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch Toxicol 2023; 97:963-979. [PMID: 36878992 PMCID: PMC10025217 DOI: 10.1007/s00204-023-03471-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
The use of nanomaterials in medicine depends largely on nanotoxicological evaluation in order to ensure safe application on living organisms. Artificial intelligence (AI) and machine learning (MI) can be used to analyze and interpret large amounts of data in the field of toxicology, such as data from toxicological databases and high-content image-based screening data. Physiologically based pharmacokinetic (PBPK) models and nano-quantitative structure-activity relationship (QSAR) models can be used to predict the behavior and toxic effects of nanomaterials, respectively. PBPK and Nano-QSAR are prominent ML tool for harmful event analysis that is used to understand the mechanisms by which chemical compounds can cause toxic effects, while toxicogenomics is the study of the genetic basis of toxic responses in living organisms. Despite the potential of these methods, there are still many challenges and uncertainties that need to be addressed in the field. In this review, we provide an overview of artificial intelligence (AI) and machine learning (ML) techniques in nanomedicine and nanotoxicology to better understand the potential toxic effects of these materials at the nanoscale.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Mansi Varma
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Lucknow, 229001, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Sunil Choudhary
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashok Kumar Datusalia
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Lucknow, 229001, India
| | - Neha Gupta
- Department of Radiation Oncology, Apex Hospital, Varanasi, 221005, India
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Anusha Gandhi
- Elisabeth-Selbert-Gymnasium, Tübinger Str. 71, 70794, Filderstadt, Germany
| | - Pranav Kulkarni
- Seeta Nursing Home, Shivaji Nagar, Nashik, Maharashtra, 422002, India
| | - Banashree Nath
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Raebareli, Uttar Pradesh, 229405, India
| |
Collapse
|
9
|
Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS NANO 2022; 16:9994-10041. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Worldwide nanotechnology development and application have fueled many scientific advances, but technophilic expectations and technophobic demands must be counterbalanced in parallel. Some of the burning issues today are the following: (1) Where is nano today? (2) How good are the communication and investment networks between academia/research and governments? (3) Is there any spotlight application for nanotechnology? Nanomedicine is a particular arm of nanotechnology within the healthcare landscape, focused on diagnosis, treatment, and monitoring of emerging (such as coronavirus disease 2019, COVID-19) and contemporary (including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer) diseases. However, it may only represent the bright side of the coin. In fact, in the recent past, the concept of nanotoxicology has emerged to address the dark shadows of nanomedicine. The nanomedicine field requires more nanotoxicological studies to identify undesirable effects and guarantee safety. Here, we provide an overall perspective on nanomedicine and nanotoxicology as central pieces of the giant puzzle of nanotechnology. First, the impact of nanotechnology on education and research is highlighted, followed by market trends and scientific output tendencies. In the next section, the nanomedicine and nanotoxicology dilemma is addressed through the interplay of in silico, in vitro, and in vivo models with the support of omics and microfluidic approaches. Lastly, a reflection on the regulatory issues and clinical trials is provided. Finally, some conclusions and future perspectives are proposed for a clearer and safer translation of nanomedicines from the bench to the bedside.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Santos
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ivana Jarak
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Barbosa
- Univ. Coimbra, Faculty of Pharmacy, Phamaceutical Chemistry Laboratory, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Saarimäki LA, Melagraki G, Afantitis A, Lynch I, Greco D. Prospects and challenges for FAIR toxicogenomics data. NATURE NANOTECHNOLOGY 2022; 17:17-18. [PMID: 34949777 DOI: 10.1038/s41565-021-01049-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Laura A Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Lynch I, Nymark P, Doganis P, Gulumian M, Yoon TH, Martinez DST, Afantitis A. Methods, models, mechanisms and metadata: Introducing the Nanotoxicology collection at F1000Research. F1000Res 2021; 10:1196. [PMID: 34853679 PMCID: PMC8613506 DOI: 10.12688/f1000research.75113.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Nanotoxicology is a relatively new field of research concerning the study and application of nanomaterials to evaluate the potential for harmful effects in parallel with the development of applications. Nanotoxicology as a field spans materials synthesis and characterisation, assessment of fate and behaviour, exposure science, toxicology / ecotoxicology, molecular biology and toxicogenomics, epidemiology, safe and sustainable by design approaches, and chemoinformatics and nanoinformatics, thus requiring scientists to work collaboratively, often outside their core expertise area. This interdisciplinarity can lead to challenges in terms of interpretation and reporting, and calls for a platform for sharing of best-practice in nanotoxicology research. The F1000Research Nanotoxicology collection, introduced via this editorial, will provide a place to share accumulated best practice, via original research reports including no-effects studies, protocols and methods papers, software reports and living systematic reviews, which can be updated as new knowledge emerges or as the domain of applicability of the method, model or software is expanded. This editorial introduces the Nanotoxicology Collection in
F1000Research. The aim of the collection is to provide an open access platform for nanotoxicology researchers, to support an improved culture of
data sharing and documentation of evolving protocols, biological and computational models, software tools and datasets, that can be applied and built upon to develop predictive models and move towards
in silico nanotoxicology and nanoinformatics. Submissions will be assessed for fit to the collection and subjected to the F1000Research open peer review process.
Collapse
Affiliation(s)
- Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, 17 177, Sweden
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, Athens, 10682, Greece
| | - Mary Gulumian
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg, 2192, South Africa.,Haematology and Molecular Medicine, University of the Witwatersrand, 1 Jan Smuts Ave, Johannesburg, 2000, South Africa.,Water Research Group, Unit for Environmental Sciences and Management Potchefstroom, North West University, Potchefstroom, South Africa
| | - Tae-Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea.,Institute of Next Generation Material Design, Hanyang University, Seoul, 04763, South Korea
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas,, Sao Paulo, CEP 13083-970, Brazil
| | | |
Collapse
|
12
|
Devaraju A, Huber R. An automated solution for measuring the progress toward FAIR research data. PATTERNS (NEW YORK, N.Y.) 2021; 2:100370. [PMID: 34820651 PMCID: PMC8600246 DOI: 10.1016/j.patter.2021.100370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/29/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023]
Abstract
With a rising number of scientific datasets published and the need to test their Findable, Accessible, Interoperable, and Reusable (FAIR) compliance repeatedly, data stakeholders have recognized the importance of an automated FAIR assessment. This paper presents a programmatic solution for assessing the FAIRness of research data. We describe the translation of the FAIR data principles into measurable metrics and the application of the metrics in evaluating FAIR compliance of research data through an open-source tool we developed. For each metric, we conceptualized and implemented practical tests drawn upon prevailing data curation and sharing practices, and the paper discusses their rationales. We demonstrate the work by evaluating multidisciplinary datasets from trustworthy repositories, followed by recommendations and improvements. We believe our experience in developing and applying the metrics in practice and the lessons we learned from it will provide helpful information to others developing similar approaches to assess different types of digital objects and services.
Collapse
Affiliation(s)
- Anusuriya Devaraju
- Terrestrial Ecosystem Research Network (TERN), The University of Queensland, Long Pocket Precinct, Level 5 Foxtail Building #1019, 80 Meiers Road, Indooroopilly, QLD 4068 Australia
| | - Robert Huber
- Center for Marine Environmental Sciences (MARUM), University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
| |
Collapse
|
13
|
Bossa C, Andreoli C, Bakker M, Barone F, De Angelis I, Jeliazkova N, Nymark P, Battistelli CL. FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: A case study on in vitro Comet assay genotoxicity data. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:100190. [PMID: 34820591 PMCID: PMC8591730 DOI: 10.1016/j.comtox.2021.100190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022]
Abstract
(Quantitative) structure-activity relationship ([Q]SAR) methodologies are widely applied to predict the (eco)toxicological effects of chemicals, and their use is envisaged in different regulatory frameworks for filling data gaps of untested substances. However, their application to the risk assessment of nanomaterials is still limited, also due to the scarcity of large and curated experimental datasets. Despite a great amount of nanosafety data having been produced over the last decade in international collaborative initiatives, their interpretation, integration and reuse has been hampered by several obstacles, such as poorly described (meta)data, non-standard terminology, lack of harmonized reporting formats and criteria. Recently, the FAIR (Findable, Accessible, Interoperable, and Reusable) principles have been established to guide the scientific community in good data management and stewardship. The EU H2020 Gov4Nano project, together with other international projects and initiatives, is addressing the challenge of improving nanosafety data FAIRness, for maximizing their availability, understanding, exchange and ultimately their reuse. These efforts are largely supported by the creation of a common Nanosafety Data Interface, which connects a row of project-specific databases applying the eNanoMapper data model. A wide variety of experimental data relating to characterization and effects of nanomaterials are stored in the database; however, the methods, protocols and parameters driving their generation are not fully mature. This article reports the progress of an ongoing case study in the Gov4nano project on the reuse of in vitro Comet genotoxicity data, focusing on the issues and challenges encountered in their FAIRification through the eNanoMapper data model. The case study is part of an iterative process in which the FAIRification of data supports the understanding of the phenomena underlying their generation and, ultimately, improves their reusability.
Collapse
Key Words
- (Q)SAR approaches
- (Q)SAR, (Quantitative) structure-activity relationship
- AOP, Adverse Outcome Pathway
- ECHA, European Chemicals Agency
- FAIR principles
- FAIR, Findable, Accessible, Interoperable, and Reusable
- Fpg, Formamido pyrimidine glycosilase
- Genotoxicity
- IATA, Integrated Approaches to Testing and Assessment
- ISA–Tab, Investigation/Study/Assay Tab-delimited
- JRC, Joint Research Centre
- MIRCA, Minimum Information for Reporting Comet Assay
- NMBP, Horizon 2020 Advisory Group for Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing
- NMBP-13-2018 projects, Gov4Nano, NANORIGO and RiskGONE
- NMs, nanomaterials
- Nano-EHS, Nano Environment, Health and Safety
- Nanomaterials
- Nanosafety data
- OECD, Organisation for Economic Co-operation and Development
- OTM, Olive tail moment
- REACH, Registration, Evaluation Authorisation and Restriction of Chemicals
- SCGE, Single Cell Gel Electrophoresis
- SOPs, Standard Operating Procedures
- in vitro Comet assay
Collapse
Affiliation(s)
- Cecilia Bossa
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Andreoli
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Martine Bakker
- Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Flavia Barone
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella De Angelis
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | | | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
14
|
Jeliazkova N, Apostolova MD, Andreoli C, Barone F, Barrick A, Battistelli C, Bossa C, Botea-Petcu A, Châtel A, De Angelis I, Dusinska M, El Yamani N, Gheorghe D, Giusti A, Gómez-Fernández P, Grafström R, Gromelski M, Jacobsen NR, Jeliazkov V, Jensen KA, Kochev N, Kohonen P, Manier N, Mariussen E, Mech A, Navas JM, Paskaleva V, Precupas A, Puzyn T, Rasmussen K, Ritchie P, Llopis IR, Rundén-Pran E, Sandu R, Shandilya N, Tanasescu S, Haase A, Nymark P. Towards FAIR nanosafety data. NATURE NANOTECHNOLOGY 2021; 16:644-654. [PMID: 34017099 DOI: 10.1038/s41565-021-00911-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio-nano interaction, human toxicity, omics, ecotoxicological and exposure data. Overall, we illustrate a much-needed path towards standards for the optimized use of existing data, which avoids duplication of efforts, and provides a multitude of options to promote safe and sustainable nanotechnology.
Collapse
Affiliation(s)
| | - Margarita D Apostolova
- Medical and Biological Research Laboratory, Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | - Andrew Barrick
- Mer Molécules Santé, Université Catholique de l'Ouest, Angers, France
| | | | | | - Alina Botea-Petcu
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Amélie Châtel
- Mer Molécules Santé, Université Catholique de l'Ouest, Angers, France
| | | | - Maria Dusinska
- Department of Environmental Chemistry, Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department of Environmental Chemistry, Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Daniela Gheorghe
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Anna Giusti
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Roland Grafström
- Department of Toxicology, Misvik Biology, Turku, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maciej Gromelski
- Group of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
- QSAR Lab Ltd, Gdańsk, Poland
| | | | | | | | - Nikolay Kochev
- Ideaconsult Ltd, Sofia, Bulgaria
- Faculty of Chemistry, Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Pekka Kohonen
- Department of Toxicology, Misvik Biology, Turku, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Manier
- Expertise and Assays in Ecotoxicology Unit, French National Institute for Industrial Environment and Risks, Verneuil-en-Halatte, France
| | - Espen Mariussen
- Department of Environmental Chemistry, Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Agnieszka Mech
- Joint Research Centre, European Commission, Ispra, Italy
| | - José María Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Vesselina Paskaleva
- Ideaconsult Ltd, Sofia, Bulgaria
- Faculty of Chemistry, Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Aurica Precupas
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Tomasz Puzyn
- Group of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
- QSAR Lab Ltd, Gdańsk, Poland
| | | | | | | | - Elise Rundén-Pran
- Department of Environmental Chemistry, Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Romica Sandu
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Neeraj Shandilya
- Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Speranta Tanasescu
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Penny Nymark
- Department of Toxicology, Misvik Biology, Turku, Finland.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Saarimäki LA, Federico A, Lynch I, Papadiamantis AG, Tsoumanis A, Melagraki G, Afantitis A, Serra A, Greco D. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials. Sci Data 2021; 8:49. [PMID: 33558569 PMCID: PMC7870661 DOI: 10.1038/s41597-021-00808-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Toxicogenomics (TGx) approaches are increasingly applied to gain insight into the possible toxicity mechanisms of engineered nanomaterials (ENMs). Omics data can be valuable to elucidate the mechanism of action of chemicals and to develop predictive models in toxicology. While vast amounts of transcriptomics data from ENM exposures have already been accumulated, a unified, easily accessible and reusable collection of transcriptomics data for ENMs is currently lacking. In an attempt to improve the FAIRness of already existing transcriptomics data for ENMs, we curated a collection of homogenized transcriptomics data from human, mouse and rat ENM exposures in vitro and in vivo including the physicochemical characteristics of the ENMs used in each study.
Collapse
Affiliation(s)
- Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
- NovaMechanics Ltd, P.O Box 26014 1666, Nicosia, Cyprus
| | | | | | | | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- BioMediTech Institute, Tampere University, Tampere, Finland.
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Finnish Centre for Alternative Methods (FICAM), Faculty of Medicine and Heath Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
16
|
Lynch I, Afantitis A, Greco D, Dusinska M, Banares MA, Melagraki G. Editorial for the Special Issue From Nanoinformatics to Nanomaterials Risk Assessment and Governance. NANOMATERIALS 2021; 11:nano11010121. [PMID: 33430326 PMCID: PMC7825746 DOI: 10.3390/nano11010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Iseult Lynch
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence:
| | - Antreas Afantitis
- Department of Cheminformatics, NovaMechanics Ltd., Nicosia 1065, Cyprus; (A.A.); (G.M.)
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
| | - Maria Dusinska
- Environmental Chemistry Department, Norwegian Institute for Air Research, 2027 Kjeller, Norway;
| | - Miguel A. Banares
- Institute for Catalysis, ICP-CSIC, Marie Curie 2, E-28049 Madrid, Spain;
| | - Georgia Melagraki
- Department of Cheminformatics, NovaMechanics Ltd., Nicosia 1065, Cyprus; (A.A.); (G.M.)
| |
Collapse
|
17
|
Halappanavar S, Ede JD, Mahapatra I, Krug HF, Kuempel ED, Lynch I, Vandebriel RJ, Shatkin JA. A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment. Nanotoxicology 2020; 15:289-310. [PMID: 33317378 DOI: 10.1080/17435390.2020.1851419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant advances have been made in the development of Adverse Outcome Pathways (AOPs) over the last decade, mainly focused on the toxicity mechanisms of chemicals. These AOPs, although relevant to manufactured nanomaterials (MNs), do not currently capture the reported roles of size-associated properties of MNs on toxicity. Moreover, some AOs of relevance to airborne exposures to MNs such as lung inflammation and fibrosis shown in animal studies may not be targeted in routine regulatory decision making. The primary objective of the present study was to establish an approach to advance the development of AOPs of relevance to MNs using existing, publicly available, nanotoxicology literature. A systematic methodology was created for curating, organizing and applying the available literature for identifying key events (KEs). Using a case study approach, the study applied the available literature to build the biological plausibility for 'tissue injury', a KE of regulatory relevance to MNs. The results of the analysis reveal the various endpoints, assays and specific biological markers used for assessing and reporting tissue injury. The study elaborates on the limitations and opportunities of the current nanotoxicology literature and provides recommendations for the future reporting of nanotoxicology results that will expedite not only the development of AOPs for MNs but also aid in application of existing data for decision making.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Indrani Mahapatra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Harald F Krug
- Retired International Research Cooperation Manager, Empa - Swiss Federal Laboratories for Science and Materials Technology, St. Gallen, Switzerland.,NanoCASE GmbH, Engelburg, Switzerland
| | - Eileen D Kuempel
- National Institute for Occupational Safety and Health, Nanotechnology Research Center, Cincinnati, OH, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | |
Collapse
|