1
|
Sun H, Liu X, Xu C, Xu L, Chen Y, Yang H, Yang X, Rao P, Sun S, Zhao L. Synergic Effect of N and Se Facilitates Photoelectric Performance in Co-Hyperdoped Silicon. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1591. [PMID: 39404318 PMCID: PMC11478113 DOI: 10.3390/nano14191591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Femtosecond-laser-fabricated black silicon has been widely used in the fields of solar cells, photodetectors, semiconductor devices, optical coatings, and quantum computing. However, the responsive spectral range limits its application in the near- to mid-infrared wavelengths. To further increase the optical responsivity in longer wavelengths, in this work, silicon (Si) was co-hyperdoped with nitrogen (N) and selenium (Se) through the deposition of Se films on Si followed by femtosecond (fs)-laser irradiation in an atmosphere of NF3. The optical and crystalline properties of the Si:N/Se were found to be influenced by the precursor Se film and laser fluence. The resulting photodetector, a product of this innovative approach, exhibited an impressive responsivity of 24.8 A/W at 840 nm and 19.8 A/W at 1060 nm, surpassing photodetectors made from Si:N, Si:S, and Si:S/Se (the latter two fabricated in SF6). These findings underscore the co-hyperdoping method's potential in significantly improving optoelectronic device performance.
Collapse
Affiliation(s)
- Haibin Sun
- Key Laboratory of Intelligent Infrared Perception Chinese Academy Science (CAS), Shanghai Institute of Technical Physics, Chinese Academy Science (CAS), Shanghai 200043, China; (H.S.)
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, Vuorimiehentie 5, FI-02150 Espoo, Finland
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
| | - Xiaolong Liu
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150 Espoo, Finland
| | - Caixia Xu
- School of Primary Education, Chongqing Normal University, Chongqing 400700, China
| | - Long Xu
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Yuwei Chen
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, Vuorimiehentie 5, FI-02150 Espoo, Finland
- State Key Laboratory of Pulsed Power Laser Technology, Electronic Countermeasure Institute, National University of Defense Technology, Hefei 230037, China
| | - Haima Yang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xing Yang
- State Key Laboratory of Pulsed Power Laser Technology, Electronic Countermeasure Institute, National University of Defense Technology, Hefei 230037, China
| | - Peng Rao
- Key Laboratory of Intelligent Infrared Perception Chinese Academy Science (CAS), Shanghai Institute of Technical Physics, Chinese Academy Science (CAS), Shanghai 200043, China; (H.S.)
| | - Shengli Sun
- Key Laboratory of Intelligent Infrared Perception Chinese Academy Science (CAS), Shanghai Institute of Technical Physics, Chinese Academy Science (CAS), Shanghai 200043, China; (H.S.)
| | - Li Zhao
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Matveevskii K, Nikolaev KV, Fallica R, Beckers D, Gateshki M, Kharchenko A, Spanjer B, Rogachev A, Yakunin S, Ackermann M, Makhotkin IA. Laboratory-based 3D X-ray standing-wave analysis of nanometre-scale gratings. J Appl Crystallogr 2024; 57:1288-1298. [PMID: 39387070 PMCID: PMC11460397 DOI: 10.1107/s1600576724007179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/19/2024] [Indexed: 10/12/2024] Open
Abstract
The increasing structural complexity and downscaling of modern nanodevices require continuous development of structural characterization techniques that support R&D and manufacturing processes. This work explores the capability of laboratory characterization of periodic planar nanostructures using 3D X-ray standing waves as a promising method for reconstructing atomic profiles of planar nanostructures. The non-destructive nature of this metrology technique makes it highly versatile and particularly suitable for studying various types of samples. Moreover, it eliminates the need for additional sample preparation before use and can achieve sub-nanometre reconstruction resolution using widely available laboratory setups, as demonstrated on a diffractometer equipped with a microfocus X-ray tube with a copper anode.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bart Spanjer
- University of TwenteDrienerlolaan 5Enschde7522 NBThe Netherlands
| | | | | | | | | |
Collapse
|
3
|
Padrez Y, Golubewa L. Black Silicon Surface-Enhanced Raman Spectroscopy Biosensors: Current Advances and Prospects. BIOSENSORS 2024; 14:453. [PMID: 39451667 PMCID: PMC11505860 DOI: 10.3390/bios14100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Black silicon was discovered by accident and considered an undesirable by-product of the silicon industry. A highly modified surface, consisting of pyramids, needles, holes, pillars, etc., provides high light absorption from the UV to the NIR range and gives black silicon its color-matte black. Although black silicon has already attracted some interest as a promising material for sensitive sensors, the potential of this material has not yet been fully exploited. Over the past three decades, black silicon has been actively introduced as a substrate for surface-enhanced Raman spectroscopy (SERS)-a molecule-specific vibrational spectroscopy technique-and successful proof-of-concept experiments have been conducted. This review focuses on the current progress in black silicon SERS biosensor fabrication, the recent advances in the design of the surface morphology and an analysis of the relation of surface micro-structuring and SERS efficiency and sensitivity. Much attention is paid to problems of non-invasiveness of the technique and biocompatibility of black silicon, its advantages over other SERS biosensors, cost-effectiveness and reproducibility, as well as the expansion of black silicon applications. The question of existing limitations and ways to overcome them is also addressed.
Collapse
Affiliation(s)
| | - Lena Golubewa
- Department of Molecular Compounds Physics, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
4
|
Hashemiesfahan M, Christiaens JW, Maisto A, Gelin P, Gardeniers H, De Malsche W. Characterizing Acoustic Behavior of Silicon Microchannels Separated by a Porous Wall. MICROMACHINES 2024; 15:868. [PMID: 39064377 PMCID: PMC11279238 DOI: 10.3390/mi15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Lateral flow membrane microdevices are widely used for chromatographic separation processes and diagnostics. The separation performance of microfluidic lateral membrane devices is determined by mass transfer limitations in the membrane, and in the liquid phase, mass transfer resistance is dependent on the channel dimensions and transport properties of the species separated by the membrane. We present a novel approach based on an active bulk acoustic wave (BAW) mixing method to enhance lateral transport in micromachined silicon devices. BAWs have been previously applied in channels for mixing and trapping cells and particles in single channels, but this is, to the best of our knowledge, the first instance of their application in membrane devices. Our findings demonstrate that optimal resonance is achieved with minimal influence of the pore configuration on the average lateral flow. This has practical implications for the design of microfluidic devices, as the channels connected through porous walls under the acoustic streaming act as 760 µm-wide channels rather than two 375 µm-wide channels in the context of matching the standing pressure wave criteria of the piezoelectric transducer. However, the roughness of the microchannel walls does seem to play a significant role in mixing. A roughened (black silicon) wall results in a threefold increase in average streaming flow in BAW mode, suggesting potential avenues for further optimization.
Collapse
Affiliation(s)
- Mehrnaz Hashemiesfahan
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Jo Wim Christiaens
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Antonio Maisto
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
| | - Pierre Gelin
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Wim De Malsche
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
| |
Collapse
|
5
|
Miakonkikh A, Kuzmenko V. Formation of Black Silicon in a Process of Plasma Etching with Passivation in a SF 6/O 2 Gas Mixture. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:945. [PMID: 38869570 PMCID: PMC11173432 DOI: 10.3390/nano14110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
This article discusses a method for forming black silicon using plasma etching at a sample temperature range from -20 °C to +20 °C in a mixture of oxygen and sulfur hexafluoride. The surface morphology of the resulting structures, the autocorrelation function of surface features, and reflectivity were studied depending on the process parameters-the composition of the plasma mixture, temperature and other discharge parameters (radical concentrations). The relationship between these parameters and the concentrations of oxygen and fluorine radicals in plasma is shown. A novel approach has been studied to reduce the reflectance using conformal bilayer dielectric coatings deposited by atomic layer deposition. The reflectivity of the resulting black silicon was studied in a wide spectral range from 400 to 900 nm. As a result of the research, technologies for creating black silicon on silicon wafers with a diameter of 200 mm have been proposed, and the structure formation process takes no more than 5 min. The resulting structures are an example of the self-formation of nanostructures due to anisotropic etching in a gas discharge plasma. This material has high mechanical, chemical and thermal stability and can be used as an antireflective coating, in structures requiring a developed surface-photovoltaics, supercapacitors, catalysts, and antibacterial surfaces.
Collapse
Affiliation(s)
- Andrey Miakonkikh
- Valiev Institute of Physics and Technology of RAS, Nakhimovsky av. 34, 117218 Moscow, Russia;
| | | |
Collapse
|
6
|
Dos Santos IFS, Edwards HGM, de Faria DLA. Hematite colour revisited: Particle size and electronic transitions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 310:123810. [PMID: 38232630 DOI: 10.1016/j.saa.2023.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Hematite has been used as a pigment since ancient times, due to its natural abundance and colour that ranges from vivid red to purple. Caput mortuum is a purple α-Fe2O3 whose colour has been ascribed as originating from particle size. In this work, submicrometric synthetic, natural and commercial hematites were investigated by diffuse reflectance spectroscopy (DRS), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and Raman microscopy aiming to clarify the origin of the purple colour. From the results it was concluded that the purple colour is associated with crystallinity, that promotes a significant decrease in absorption below 500 nm and, simultaneously, an increase in the 6A1(6S) → 4T1(4G) d-d transition at ca. 880 nm. The behaviour of the ca. 880 nm band can be explained by the more extensive magnetic interaction between adjacent Fe3+ ions in crystalline samples but cannot explain the spectral behaviour in the green-blue region considering only the d-d transitions. A plausible explanation is that in the distorted FeO6 octahedra, both the Fe-O distances and the Fe-O-Fe angles area are affected, thus interfering in the low energy oxygen-to-iron charge transfer transition, whose tail span the 400 nm - 500 nm region and is more intense than the d-d transitions in hematite nanoparticles, nanofilms and defective (red) Fe2O3 samples. The decrease in the intensity of the charge transfer band as a consequence of the FeO6 octahedral distortion is yet to be confirmed by further experiments, but the experimental results clearly show that the purple colour of hematite is due to a decrease in optical absorption below 500 nm.
Collapse
Affiliation(s)
- Isabela F S Dos Santos
- Paulista Museum, University of São Paulo, 04263-000 São Paulo - SP, Brazil; Institute of Chemistry, University of São Paulo, 05508-000 São Paulo - SP, Brazil.
| | - Howell G M Edwards
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Dalva L A de Faria
- Institute of Chemistry, University of São Paulo, 05508-000 São Paulo - SP, Brazil; Museum of Archeology and Ethnology, Interunit Postgraduate Program in Museology (PPGMus), University of São Paulo, 05508-970 São Paulo - SP, Brazil
| |
Collapse
|
7
|
Bardalen E, Bouchouri A, Akram MN, Nguyen HV. Black Silicon as Anti-Reflective Structure for Infrared Imaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:20. [PMID: 38202476 PMCID: PMC10780790 DOI: 10.3390/nano14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
For uncooled infrared cameras based on microbolometers, silicon caps are often utilized to maintain a vacuum inside the packaged bolometer array. To reduce Fresnel reflection losses, anti-reflection coatings are typically applied on both sides of the silicon caps.This work investigates whether black silicon may be used as an alternative to conventional anti-reflective coatings. Reactive ion etching was used to etch the black silicon layer and deep cavities in silicon. The effects of the processed surfaces on optical transmission and image quality were investigated in detail by Fourier transform infrared spectroscopy and with modulated transfer function measurements. The results show that the etched surfaces enable similar transmission to the state-of-the-artanti-reflection coatings in the 8-12 µm range and possibly obtain wider bandwidth transmission up to 24 µm. No degradation in image quality was found when using the processed wafers as windows. These results show that black silicon can be used as an effective anti-reflection layer on silicon caps used in the vacuum packaging of microbolometer arrays.
Collapse
Affiliation(s)
| | | | | | - Hoang-Vu Nguyen
- Department of Microsystems, University of South-Eastern Norway, Raveien 205, 3184 Borre, Norway; (A.B.); (M.N.A.)
| |
Collapse
|
8
|
Gorshkov VN, Stretovych MO, Semeniuk VF, Kruglenko MP, Semeniuk NI, Styopkin VI, Gabovich AM, Boiger GK. Hierarchical Structuring of Black Silicon Wafers by Ion-Flow-Stimulated Roughening Transition: Fundamentals and Applications for Photovoltaics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2715. [PMID: 37836356 PMCID: PMC10574651 DOI: 10.3390/nano13192715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Ion-flow-stimulated roughening transition is a phenomenon that may prove useful in the hierarchical structuring of nanostructures. In this work, we have investigated theoretically and experimentally the surface texturing of single-crystal and multi-crystalline silicon wafers irradiated using ion-beam flows. In contrast to previous studies, ions had relatively low energies, whereas flow densities were high enough to induce a quasi-liquid state in the upper silicon layers. The resulting surface modifications reduced the wafer light reflectance to values characteristic of black silicon, widely used in solar energetics. Features of nanostructures on different faces of silicon single crystals were studied numerically based on the mesoscopic Monte Carlo model. We established that the formation of nano-pyramids, ridges, and twisting dune-like structures is due to the stimulated roughening transition effect. The aforementioned variety of modified surface morphologies arises due to the fact that the effects of stimulated surface diffusion of atoms and re-deposition of free atoms on the wafer surface from the near-surface region are manifested to different degrees on different Si faces. It is these two factors that determine the selection of the allowable "trajectories" (evolution paths) of the thermodynamic system along which its Helmholtz free energy, F, decreases, concomitant with an increase in the surface area of the wafer and the corresponding changes in its internal energy, U (dU>0), and entropy, S (dS>0), so that dF=dU - TdS<0, where T is the absolute temperature. The basic theoretical concepts developed were confirmed in experimental studies, the results of which showed that our method could produce, abundantly, black silicon wafers in an environmentally friendly manner compared to traditional chemical etching.
Collapse
Affiliation(s)
- Vyacheslav N. Gorshkov
- Igor Sikorsky Kyiv Polytechnic Institute, National Technical University of Ukraine, Prospect Beresteiskyi, 37, 03056 Kyiv, Ukraine;
- G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 36 Academician Vernadsky Boulevard, 03142 Kyiv, Ukraine
- Department of Mechanical and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Mykola O. Stretovych
- Igor Sikorsky Kyiv Polytechnic Institute, National Technical University of Ukraine, Prospect Beresteiskyi, 37, 03056 Kyiv, Ukraine;
| | - Valerii F. Semeniuk
- Institute of Physics of the Ukrainian National Academy of Sciences, Nauka Avenue, 46, 03028 Kyiv, Ukraine; (V.F.S.); (M.P.K.); (V.I.S.); (A.M.G.)
- GreSem Innovation LLC, Vyzvolyteliv Avenue, 13, 02660 Kyiv, Ukraine;
| | - Mikhail P. Kruglenko
- Institute of Physics of the Ukrainian National Academy of Sciences, Nauka Avenue, 46, 03028 Kyiv, Ukraine; (V.F.S.); (M.P.K.); (V.I.S.); (A.M.G.)
- GreSem Innovation LLC, Vyzvolyteliv Avenue, 13, 02660 Kyiv, Ukraine;
| | | | - Victor I. Styopkin
- Institute of Physics of the Ukrainian National Academy of Sciences, Nauka Avenue, 46, 03028 Kyiv, Ukraine; (V.F.S.); (M.P.K.); (V.I.S.); (A.M.G.)
| | - Alexander M. Gabovich
- Institute of Physics of the Ukrainian National Academy of Sciences, Nauka Avenue, 46, 03028 Kyiv, Ukraine; (V.F.S.); (M.P.K.); (V.I.S.); (A.M.G.)
| | - Gernot K. Boiger
- ICP Institute of Computational Physics, ZHAW Zürich University of Applied Sciences, Wildbachstrasse 21, CH-8401 Winterthur, Switzerland
| |
Collapse
|
9
|
Zhu Y, Cai P, Zhang W, Meng T, Tang Y, Yi Z, Wei K, Li G, Tang B, Yi Y. Ultra-Wideband High-Efficiency Solar Absorber and Thermal Emitter Based on Semiconductor InAs Microstructures. MICROMACHINES 2023; 14:1597. [PMID: 37630133 PMCID: PMC10456737 DOI: 10.3390/mi14081597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Since the use of chemical fuels is permanently damaging the environment, the need for new energy sources is urgent for mankind. Given that solar energy is a clean and sustainable energy source, this study investigates and proposes a six-layer composite ultra-wideband high-efficiency solar absorber with an annular microstructure. It achieves this by using a combination of the properties of metamaterials and the quantum confinement effects of semiconductor materials. The substrate is W-Ti-Al2O3, and the microstructure is an annular InAs-square InAs film-Ti film combination. We used Lumerical Solutions' FDTD solution program to simulate the absorber and calculate the model's absorption, field distribution, and thermal radiation efficiency (when it is used as a thermal emitter), and further explored the physical mechanism of the model's ultra-broadband absorption. Our model has an average absorption of 95.80% in the 283-3615 nm band, 95.66% in the 280-4000 nm band, and a weighted average absorption efficiency of 95.78% under AM1.5 illumination. Meanwhile, the reflectance of the model in the 5586-20,000 nm band is all higher than 80%, with an average reflectance of 94.52%, which has a good thermal infrared suppression performance. It is 95.42% under thermal radiation at 1000 K. It has outstanding performance when employed as a thermal emitter as well. Additionally, simulation results show that the absorber has good polarization and incidence angle insensitivity. The model may be applied to photodetection, thermophotovoltaics, bio-detection, imaging, thermal ion emission, and solar water evaporation for water purification.
Collapse
Affiliation(s)
- Yanying Zhu
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (Y.Z.); (W.Z.); (Y.T.)
| | - Pinggen Cai
- Department of Applied Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Wenlong Zhang
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (Y.Z.); (W.Z.); (Y.T.)
| | - Tongyu Meng
- Leicester International Institute, Dalian University of Technology, Dalian 124221, China;
| | - Yongjian Tang
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (Y.Z.); (W.Z.); (Y.T.)
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (Y.Z.); (W.Z.); (Y.T.)
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Kaihua Wei
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gongfa Li
- Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Bin Tang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China;
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China;
| |
Collapse
|
10
|
Liang LY, Kung YH, Hsiao VKS, Chu CC. Reduction of Nitroaromatics by Gold Nanoparticles on Porous Silicon Fabricated Using Metal-Assisted Chemical Etching. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111805. [PMID: 37299708 DOI: 10.3390/nano13111805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the use of porous silicon (PSi) fabricated using metal-assisted chemical etching (MACE) as a substrate for the deposition of Au nanoparticles (NPs) for the reduction of nitroaromatic compounds. PSi provides a high surface area for the deposition of Au NPs, and MACE allows for the fabrication of a well-defined porous structure in a single step. We used the reduction of p-nitroaniline as a model reaction to evaluate the catalytic activity of Au NPs on PSi. The results indicate that the Au NPs on the PSi exhibited excellent catalytic activity, which was affected by the etching time. Overall, our results highlighted the potential of PSi fabricated using MACE as a substrate for the deposition of metal NPs for catalytic applications.
Collapse
Affiliation(s)
- Ling-Yi Liang
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yu-Han Kung
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou 54561, Taiwan
| | - Vincent K S Hsiao
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou 54561, Taiwan
| | - Chih-Chien Chu
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
11
|
Mi G, Lv J, Que L, Tan C, Huang J, Liu Z, Zhao L. Improvement in near-infrared absorbance attenuation by using nanometer black silicon composited with gold nanoparticles. DISCOVER NANO 2023; 18:82. [PMID: 37382766 DOI: 10.1186/s11671-023-03847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 06/30/2023]
Abstract
In order to solve the problem of near-infrared (NIR) absorbance attenuation of silicon, a method of preparing gold nanoparticles (AuNPs) on the micro-nano-structured black silicon (B-Si) is proposed. In this study, the local surface plasmon resonance (LSPR) of AuNPs excited by a light field is used to achieve B-Si materials with broad spectrum and high absorption. The results show that nanometer B-Si composited with 25-nm AuNPs has an average absorption of 98.6% in the spectral range of 400-1100 nm and 97.8% in the spectral range of 1100-2500 nm. Compared with ordinary B-Si, the absorption spectrum is broadened from 400-1100 nm to 400-2500 nm, and the absorption is increased from 90.1 to 97.8% at 1100-2500 nm. It is possible to use the B-Si materials in the field of NIR-enhanced photoelectric detection and micro-optical night vision imaging due to the low cost, high compatibility, and reliability.
Collapse
Affiliation(s)
- Guanyu Mi
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jian Lv
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Longcheng Que
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cheng Tan
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jian Huang
- China Electronics Technology Group Corporation Chongqing Acoustic Optic Electronic CO., LT, Chongqing, 401332, China
| | - Zhongyuan Liu
- China Electronics Technology Group Corporation Chongqing Acoustic Optic Electronic CO., LT, Chongqing, 401332, China
| | - Lintong Zhao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
12
|
Golubewa L, Klimovich A, Timoshchenko I, Padrez Y, Fetisova M, Rehman H, Karvinen P, Selskis A, Adomavičiu̅tė-Grabusovė S, Matulaitienė I, Ramanavicius A, Karpicz R, Kulahava T, Svirko Y, Kuzhir P. Stable and Reusable Lace-like Black Silicon Nanostructures Coated with Nanometer-Thick Gold Films for SERS-Based Sensing. ACS APPLIED NANO MATERIALS 2023; 6:4770-4781. [PMID: 37006910 PMCID: PMC10043874 DOI: 10.1021/acsanm.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
We propose a simple, fast, and low-cost method for producing Au-coated black Si-based SERS-active substrates with a proven enhancement factor of 106. Room temperature reactive ion etching of silicon wafer followed by nanometer-thin gold sputtering allows the formation of a highly developed lace-type Si surface covered with homogeneously distributed gold islands. The mosaic structure of deposited gold allows the use of Au-uncovered Si domains for Raman peak intensity normalization. The fabricated SERS substrates have prominent uniformity (with less than 6% SERS signal variations over large areas, 100 × 100 μm2). It has been found that the storage of SERS-active substrates in an ambient environment reduces the SERS signal by less than 3% in 1 month and not more than 40% in 20 months. We showed that Au-coated black Si-based SERS-active substrates can be reused after oxygen plasma cleaning and developed relevant protocols for removing covalently bonded and electrostatically attached molecules. Experiments revealed that the Raman signal of 4-MBA molecules covalently bonded to the Au coating measured after the 10th cycle was just 4 times lower than that observed for the virgin substrate. A case study of the reusability of the black Si-based substrate was conducted for the subsequent detection of 10-5 M doxorubicin, a widely used anticancer drug, after the reuse cycle. The obtained SERS spectra of doxorubicin were highly reproducible. We demonstrated that the fabricated substrate permits not only qualitative but also quantitative monitoring of analytes and is suitable for the determination of concentrations of doxorubicin in the range of 10-9-10-4 M. Reusable, stable, reliable, durable, low-cost Au-coated black Si-based SERS-active substrates are promising tools for routine laboratory research in different areas of science and healthcare.
Collapse
Affiliation(s)
- Lena Golubewa
- Department
of Molecular Compound Physics, State Research
Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, Vilnius LT-10257, Lithuania
- Department
of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, Joensuu FI-80101, Finland
| | - Aliona Klimovich
- Department
of Organic Chemistry, State Research Institute
Center for Physical Sciences and Technology, Sauletekio Av. 3, Vilnius LT-10257, Lithuania
| | - Igor Timoshchenko
- Department
of Molecular Compound Physics, State Research
Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, Vilnius LT-10257, Lithuania
| | - Yaraslau Padrez
- Department
of Molecular Compound Physics, State Research
Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, Vilnius LT-10257, Lithuania
| | - Marina Fetisova
- Department
of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, Joensuu FI-80101, Finland
| | - Hamza Rehman
- Department
of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, Joensuu FI-80101, Finland
| | - Petri Karvinen
- Department
of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, Joensuu FI-80101, Finland
| | - Algirdas Selskis
- Department
of Characterization of Materials Structure, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, Vilnius LT-10257, Lithuania
| | | | - Ieva Matulaitienė
- Department
of Organic Chemistry, State Research Institute
Center for Physical Sciences and Technology, Sauletekio Av. 3, Vilnius LT-10257, Lithuania
| | - Arunas Ramanavicius
- Department
of Physical Chemistry, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
| | - Renata Karpicz
- Department
of Molecular Compound Physics, State Research
Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, Vilnius LT-10257, Lithuania
| | - Tatsiana Kulahava
- Department
of Molecular Compound Physics, State Research
Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, Vilnius LT-10257, Lithuania
| | - Yuri Svirko
- Department
of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, Joensuu FI-80101, Finland
| | - Polina Kuzhir
- Department
of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, Joensuu FI-80101, Finland
| |
Collapse
|
13
|
Wu S, Chen Q, Zhang L, Ren H, Zhou H, Hu L, Tan CS. Wafer-scale nanostructured black silicon with morphology engineering via advanced Sn-assisted dry etching for sensing and solar cell applications. NANOSCALE 2023; 15:4843-4851. [PMID: 36805597 DOI: 10.1039/d2nr06493f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Black-Si (b-Si) providing broadband light antireflection has become a versatile substrate for photodetectors, photo-electric catalysis, sensors, and photovoltaic devices. However, the conventional fabrication methods suffer from single morphology, low yield, or frangibility. In this work, we present a high-yield CMOS-compatible technique to produce 6-inch wafer-scale b-Si with diverse random nanostructures. b-Si is achieved by O2/SF6 plasma-based reactive ion etching (RIE) of the Si wafer which is coated with a GeSn layer. A stable grid of the SnOxFy layer, formed during the initial GeSn etching, acts as a self-assembled hard mask for the formation of subwavelength Si nanostructures. b-Si wafers with diverse surface morphologies, such as the nanopore, nanocone, nanohole, nanohillock, and nanowire were achieved. Furthermore, the responsivity of the b-Si metal-semiconductor-metal (MSM) photodetector in the near-infrared (NIR) wavelength range (1000-1200 nm) is 40-200% higher than that of a planar-Si MSM photodetector with the same level of dark current, which is beneficial for applications in photon detectors, solar cells, and photocatalysis. This work not only demonstrates a new non-lithography method to fabricate wafer-scale b-Si wafers, but may also provide a novel strategy to fabricate other nanostructured surface materials (e.g., Ge or III-V based compounds) with morphology engineering.
Collapse
Affiliation(s)
- Shaoteng Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | - Qimiao Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| | - Lin Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| | - Huixue Ren
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | - Hao Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| | - Liangxing Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| | - Chuan Seng Tan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
- Institute of Microelectronics, A*STAR, 117685, Singapore
| |
Collapse
|
14
|
Radfar B, Chen K, Setälä OE, Vähänissi V, Savin H, Liu X. Optoelectronic properties of black silicon fabricated by femtosecond laser in ambient air: exploring a large parameter space. OPTICS LETTERS 2023; 48:1224-1227. [PMID: 36857254 DOI: 10.1364/ol.481890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
We study the surface morphology, optical absorption (400-1100 nm), and carrier lifetime of black silicon fabricated by femtosecond (fs) laser in air. We explore a large laser parameter space, for which we adopt a single parameter ξ to describe the cumulative fluence delivered to the sample. We also study the laser-oxidized surface layer by measuring its photoluminescence spectra and comparing its effect on the aforementioned properties. Our study in a broad range of ξ is instructive in choosing laser parameters when targeting different applications.
Collapse
|
15
|
Golubewa L, Rehman H, Padrez Y, Basharin A, Sumit S, Timoshchenko I, Karpicz R, Svirko Y, Kuzhir P. Black Silicon: Breaking through the Everlasting Cost vs. Effectivity Trade-Off for SERS Substrates. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1948. [PMID: 36903063 PMCID: PMC10004710 DOI: 10.3390/ma16051948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Black silicon (bSi) is a highly absorptive material in the UV-vis and NIR spectral range. Photon trapping ability makes noble metal plated bSi attractive for fabrication of surface enhanced Raman spectroscopy (SERS) substrates. By using a cost-effective room temperature reactive ion etching method, we designed and fabricated the bSi surface profile, which provides the maximum Raman signal enhancement under NIR excitation when a nanometrically-thin gold layer is deposited. The proposed bSi substrates are reliable, uniform, low cost and effective for SERS-based detection of analytes, making these materials essential for medicine, forensics and environmental monitoring. Numerical simulation revealed that painting bSi with a defected gold layer resulted in an increase in the plasmonic hot spots, and a substantial increase in the absorption cross-section in the NIR range.
Collapse
Affiliation(s)
- Lena Golubewa
- Department of Molecular Compound Physics, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, 10257 Vilnius, Lithuania
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Hamza Rehman
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Yaraslau Padrez
- Department of Molecular Compound Physics, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, 10257 Vilnius, Lithuania
| | - Alexey Basharin
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Sumit Sumit
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Igor Timoshchenko
- Department of Molecular Compound Physics, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, 10257 Vilnius, Lithuania
| | - Renata Karpicz
- Department of Molecular Compound Physics, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, 10257 Vilnius, Lithuania
| | - Yuri Svirko
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Polina Kuzhir
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| |
Collapse
|
16
|
Energy Transfer in Supramolecular Calix[4]arene – Perylene Bisimide Dye Light Harvesting Building Blocks: Resolving Loss Processes with Simultaneous Target Analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Shevlyagin AV, Il’yaschenko VM, Kuchmizhak AA, Mitsai EV, Amosov AV, Balagan SA, Kulinich SA. Textured Stainless Steel as a Platform for Black Mg 2Si/Si Heterojunction Solar Cells with Advanced Photovoltaic Performance. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6637. [PMID: 36233979 PMCID: PMC9573594 DOI: 10.3390/ma15196637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
This paper reports on a facile bottom-up method for the direct integration of a silicon (Si)-magnesium silicide (Mg2Si) heterojunction solar cell (HSC) with a textured rear reflector made of stainless steel (SS). Modified wet chemical etching and post processing of SS substrates resulted in the formation of both a rough surface texture and diffusion barrier layer, consisting of magnetite (Fe3O4) with reduced optical reflection. Then, Si, Mg2Si and CaSi2 layers were stepwise thermally evaporated onto the textured SS surface. No traces of Fe and Cr silicide phases were detected by Raman spectroscopy, confirming effective suppression of impurity diffusion from the SS to the upper layers at least at temperatures required for Si deposition, as well as Mg2Si and CaSi2 formation. The obtained black-SS/Fe3O4/Si/Mg2Si/CaSi2 sample preserved, to some extent, its underlying textured morphology and demonstrated an averaged reflection of 15% over the spectral range of 200-1800 nm, while its prototype HSC possessed a wideband photoresponse with a photoelectric conversion efficiency of 7.5% under AM1.5 illumination. Moreover, Si layers deposited alone onto a black-SS substrate demonstrated competitive antireflection properties compared with black Si (b-Si) obtained by traditional top-down etching approaches, and hybrid b-Si/textured-SS structures with a glue-bonded interlayer.
Collapse
Affiliation(s)
- Alexander V. Shevlyagin
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Vladimir M. Il’yaschenko
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Aleksandr A. Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
- Pacific Quantum Center, Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Eugeny V. Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Andrey V. Amosov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Semyon A. Balagan
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Sergei A. Kulinich
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
- Research Institute of Science & Technology, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
| |
Collapse
|
18
|
Kim HK, Cho YS, Park HH. PEGDMA-Based Pillar-Shape Nanostructured Antibacterial Films Having Mechanical Robustness. ACS APPLIED BIO MATERIALS 2022; 5:3006-3012. [PMID: 35609304 DOI: 10.1021/acsabm.2c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibacterial surfaces are one of the most important surfaces in the medical and marine industries. Many researchers are studying antibacterial surfaces to kill bacteria or prevent adhesions. Various materials and structures are applied to the surface to inhibit the adhesion of bacteria or kill the adhered bacteria. Nowadays, a dual strategy is preferred rather than a single strategy. In this study, nanopillar structures were fabricated using polyethylene glycol dimethacrylate (PEGDMA), which has an antifouling effect. Afterward, the fabricated nanostructured PEGDMA was assessed to confirm the intrinsic antibacterial effect and mechanically induced antibacterial functions. The adhesion of Gram-negative and Gram-positive bacteria can be effectively reduced by the PEG hydration layer formation, steric repulsion, and flexible chain, and the nanostructure can damage the bacterial membrane. In addition, we performed antibacterial experiments on a nanopillar-structured surface made of PEGDMA. Furthermore, we revealed that the mechanical robustness of the nanopillared surface was superior to that of the nanocone-structured surface using computational analysis. Nanopillar structures fabricated using PEGDMA are promising candidates for antifouling and antibacterial surfaces and can be applied in various industries.
Collapse
Affiliation(s)
- Hee-Kyeong Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Young-Sam Cho
- Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.,MECHABIO Group, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.,MECHABIO Group, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
19
|
Prochukhan N, O'Brien SA, Davó-Quiñonero A, Trubetskaya A, Cotter E, Selkirk A, Senthamaraikannan R, Ruether M, McCloskey D, Morris MA. Room Temperature Fabrication of Macroporous Lignin Membranes for the Scalable Production of Black Silicon. Biomacromolecules 2022; 23:2512-2521. [PMID: 35506692 PMCID: PMC9198978 DOI: 10.1021/acs.biomac.2c00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Rising global demand
for biodegradable materials and green sources
of energy has brought attention to lignin. Herein, we report a method
for manufacturing standalone lignin membranes without additives for
the first time to date. We demonstrate a scalable method for macroporous
(∼100 to 200 nm pores) lignin membrane production using four
different organosolv lignin materials under a humid environment (>50%
relative humidity) at ambient temperatures (∼20 °C). A
range of different thicknesses is reported with densely porous films
observed to form if the membrane thickness is below 100 nm. The fabricated
membranes were readily used as a template for Ni2+ incorporation
to produce a nickel oxide membrane after UV/ozone treatment. The resultant
mask was etched via an inductively coupled plasma reactive ion etch
process, forming a silicon membrane and as a result yielding black
silicon (BSi) with a pore depth of >1 μm after 3 min with
reflectance
<3% in the visible light region. We anticipate that our lignin
membrane methodology can be readily applied to various processes ranging
from catalysis to sensing and adapted to large-scale manufacturing.
Collapse
Affiliation(s)
- Nadezda Prochukhan
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland
| | - Stephen A O'Brien
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Arantxa Davó-Quiñonero
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Anna Trubetskaya
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Eoin Cotter
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew Selkirk
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Ramsankar Senthamaraikannan
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Manuel Ruether
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - David McCloskey
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Michael A Morris
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
20
|
Huang HJ, Chang HW, Lee CY, Shiao MH, Chiu YL, Lee PY, Lin YS. Effect of synthesis time on plasmonic properties of Ag dendritic nanoforests. IUCRJ 2022; 9:355-363. [PMID: 35546804 PMCID: PMC9067114 DOI: 10.1107/s2052252522002901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The effects of synthesis time on the plasmonic properties of Ag dendritic nanoforests on Si substrate (Ag-DNF/Si) samples synthesized through the fluoride-assisted galvanic replacement reaction were investigated. The Ag-DNF/Si samples were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, reflection spectroscopy, X-ray diffraction and surface-enhanced Raman spectroscopy (SERS). The prolonged reaction time led to the growth of an Ag-DNF layer and etched Si hole array. SEM images and variations in the fractal dimension index indicated that complex-structure, feather-like leaves became coral-like branches between 30 and 60 min of synthesis. The morphological variation during the growth of the Ag DNFs resulted in different optical responses to light illumination, especially those of light harvest and energy transformation. The sample achieved the most desirable light-to-heat conversion efficiency and SERS response with a 30 min growth time. A longer synthesis time or thicker Ag-DNF layer on the Si substrate did not have superior plasmonic properties.
Collapse
Affiliation(s)
- Hung Ji Huang
- Department of Electra-Optical Engineering, National Formosa University, Yunlin 632301, Taiwan
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
| | - Chia-Yen Lee
- Department of Electrical Engineering, National United University, Miaoli 360302, Taiwan
| | - Ming-Hua Shiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan
| | - Yen-Ling Chiu
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
| | - Pee-Yew Lee
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yung-Sheng Lin
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- PhD Program in Materials and Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
21
|
Silica- and Silicon-Based Nanostructures. NANOMATERIALS 2022; 12:nano12081270. [PMID: 35457975 PMCID: PMC9025556 DOI: 10.3390/nano12081270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022]
|
22
|
Boron compounds for catalytic applications. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Plasmon-Enhanced Photoresponse of Self-Powered Si Nanoholes Photodetector by Metal Nanowires. NANOMATERIALS 2021; 11:nano11092460. [PMID: 34578780 PMCID: PMC8471470 DOI: 10.3390/nano11092460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
In this work, we report the development of self-powered photodetectors that integrate silicon nanoholes (SiNHs) and four different types of metal nanowires (AgNWs, AuNWs, NiNWs, PtNWs) applied on the SiNHs’ surface using the solution processing method. The effectiveness of the proposed architectures is evidenced through extensive experimental and simulation analysis. The AgNWs/SiNHs device showed the highest photo-to-dark current ratio of 2.1 × 10−4, responsivity of 30 mA/W and detectivity of 2 × 1011 Jones along with the lowest noise equivalent power (NEP) parameter of 2.4 × 10−12 WHz−1/2 in the blue light region. Compared to the bare SiNHs device, the AuNWs/SiNHs device had significantly enhanced responsivity up to 15 mA/W, especially in the red and near-infrared spectral region. Intensity-modulated photovoltage spectroscopy (IMVS) measurements revealed that the AgNWs/SiNHs device generated the longest charge carrier lifetime at 470 nm, whereas the AuNWs/SiNHs showed the slowest recombination rate at 627 nm. Furthermore, numerical simulation confirmed the local field enhancement effects at the MeNWs and SiNHs interface. The study demonstrates a cost-efficient and scalable strategy to combine the superior light harvesting properties of SiNHs with the plasmonic absorption of metallic nanowires (MeNWs) towards enhanced sensitivity and spectral-selective photodetection induced by the local surface plasmon resonance effects.
Collapse
|
24
|
Zhou Y, Tu B, Weng Y, Zheng F, Su X, You L, Fang L. Copper-assisted catalyzed etching for nanotextured black silicon with enhanced photoelectric-conversion properties. OPTICS EXPRESS 2021; 29:20395-20405. [PMID: 34266130 DOI: 10.1364/oe.431062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Black silicon contains high-aspect-ratio micro/nanostructures with greatly suppressed front-surface reflection, thus possessing superior property in photoelectric devices. In this report, by a two-step copper-assisted chemical etching method, we have fabricated pyramid n+p-black silicon with optimized morphology and anti-reflectance capability, through systematically tuning the concentration of both copper ions and reducing agents, as well as the etching time. The improved optical absorption and superior charge transfer kinetics validate n+p-black silicon as a highly active photocathode in photoelectrochemical cells. The onset potential of 0.21 V vs. RHE and the saturation photocurrent density of 32.56 mA/cm2 are achieved in the optimal n+p-black silicon. In addition, the nanoporous structure with lower reflectance is also achieved in planar p-silicon via the same etching method. Moreover, the photodetectors based on planar p-black silicon show significantly enhanced photoresponsivity over a broad spectral range. This study offers a low-cost and scalable strategy to improve the photoelectric-conversion efficiency in silicon-based devices.
Collapse
|
25
|
Vaezi Z, Bortolotti A, Luca V, Perilli G, Mangoni ML, Khosravi-Far R, Bobone S, Stella L. Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183107. [PMID: 31678022 DOI: 10.1016/j.bbamem.2019.183107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 01/02/2023]
Abstract
Host defense peptides selectively kill bacterial and cancer cells (including those that are drug-resistant) by perturbing the permeability of their membranes, without being significantly toxic to the host. Coulombic interactions between these cationic and amphipathic peptides and the negatively charged membranes of pathogenic cells contribute to the selective toxicity. However, a positive charge is not sufficient for selectivity, which can be achieved only by a finely tuned balance of electrostatic and hydrophobic driving forces. A common property of amphipathic peptides is the formation of aggregated structures in solution, but the role of this phenomenon in peptide activity and selectivity has received limited attention. Our data on the anticancer peptide killerFLIP demonstrate that aggregation strongly increases peptide selectivity, by reducing the effective peptide hydrophobicity and thus the affinity towards membranes composed of neutral lipids (like the outer layer of healthy eukaryotic cell membranes). Aggregation is therefore a useful tool to modulate the selectivity of membrane active peptides and peptidomimetics.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Bortolotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Luca
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Giulia Perilli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Roya Khosravi-Far
- BiomaRx Inc, Cambridge, MA, USA; Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|