1
|
Jain K, Takuli A, Gupta TK, Gupta D. Rethinking Nanoparticle Synthesis: A Sustainable Approach vs. Traditional Methods. Chem Asian J 2024; 19:e202400701. [PMID: 39126206 DOI: 10.1002/asia.202400701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This review portrays a comparison between green protocols and conventional nanoparticle (NP) synthesis strategies, highlighting each method's advantages and limitations. Various top-down and bottom-up methods in NP synthesis are described in detail. The green chemistry principles are emphasized for designing safe processes for nanomaterial synthesis. Among the green biogenic sources plant extracts, vitamins, enzymes, polysaccharides, fungi (Molds and mushrooms), bacteria, yeast, algae, and lichens are discussed. Limitations in the reproducibility of green protocols in terms of availability of raw material, variation in synthetic protocol, and selection of material due to geographical differences are elaborated. Finally, a conclusion is drawn utilizing green chemical principles, & a circular economy strategy to minimize waste generation, offering a promising framework for the synthesis of NPs emphasizing sustainability.
Collapse
Affiliation(s)
- Kavya Jain
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Anshika Takuli
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Tejendra K Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| |
Collapse
|
2
|
Rezghi Rami M, Meskini M, Ebadi Sharafabad B. Fungal-mediated nanoparticles for industrial applications: synthesis and mechanism of action. J Infect Public Health 2024; 17:102536. [PMID: 39276432 DOI: 10.1016/j.jiph.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
The advancement of safe, eco-friendly, and cost-efficient techniques for nanoparticle production is a crucial objective in nanotechnology. Among the various sustainable methods, the biological synthesis of nanoparticles utilizing fungi, bacteria, yeasts, and plants stands out. Fungi, in particular, are well suited for this task because of their capacity to secrete numerous enzymes and streamline subsequent processes. Using fungal strains for nanoparticle biosynthesis is both technologically appealing and economically viable. The utilization of fungal strains for nanoparticle biosynthesis is both technologically appealing and economically viable. Fungi have long been acknowledged as adept natural engineers capable of creating a wide array of nanoparticles with distinct properties and applications. This article provides an overview of fungus-mediated nanoparticle development, shedding light on the underlying mechanisms of their synthesis and the factors influencing their characteristics. Furthermore, the potential of fungus-mediated nanoparticles in the industrial domain has been explored. These findings emphasize the importance of different fungal species in nanoparticle synthesis, as well as the biocompatibility and environmental friendliness of fungus-mediated nanoparticles. By underscoring the essential role of fungi in connecting natural knowledge with innovative industrial applications, recent progress in enhancing nanoparticle production and optimizing synthesis conditions through fungi has been examined to underscore the feasibility of extensive industrial nanoparticle utilization via fungi.
Collapse
Affiliation(s)
- Mina Rezghi Rami
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran.
| | - Maryam Meskini
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| | - Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Can A, Kızılbey K. Green Synthesis of ZnO Nanoparticles via Ganoderma Lucidum Extract: Structural and Functional Analysis in Polymer Composites. Gels 2024; 10:576. [PMID: 39330178 PMCID: PMC11431147 DOI: 10.3390/gels10090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Metallic nanoparticles are of growing interest due to their broad applications. This study presents the green synthesis of zinc oxide (ZnO) nanoparticles (ZnNPs) using Ganoderma Lucidum mushroom extract, characterized by DLS, SEM, XRD, and FTIR spectroscopy analyses. The synthesis parameters, including extract/salt ratio and mixing time, significantly influenced nanoparticle yield, size, and polydispersity, with longer mixing times leading to larger, more varied particles. Specifically, the sizes of ZnNPs synthesized at a 1:1 extract/ZnCl2 ratio after 3 h and 24 h were 90.0 nm and 243.3 nm, with PDI values of 48.69% and 51.91%, respectively. At a 1:2 ratio, the sizes were 242.3 nm at 3 h (PDI: 43.19%) and a mixture of 1.5 nm, 117.4 nm, and 647.9 nm at 24 h (PDI: 2.72%, 10.97%, and 12.43%). Polymer films incorporating PVA, chitosan, and ZnNPs were analyzed for their morphological, spectroscopic, and mechanical properties. Chitosan reduced tensile strength and elongation due to its brittleness, while ZnNPs further increased film brittleness and structural degradation. A comparison of the tensile strength of films A and C revealed that the addition of chitosan to the PVA film resulted in an approximately 10.71% decrease in tensile strength. Similarly, the analysis of films B1 and B2 showed that the tensile strength of the B2 film decreased by 10.53%. Swelling tests showed that ZnNPs initially enhanced swelling, but excessive amounts led to reduced capacity due to aggregation. This pioneering study demonstrates the potential of Ganoderma Lucidum extract in nanoparticle synthesis and provides foundational insights for future research, especially in wound dressing applications.
Collapse
Affiliation(s)
- Ayça Can
- Biomedical Engineering Department, Graduate School of Natural and Applied Sciences, Acıbadem University, İstanbul 34752, Türkiye
| | - Kadriye Kızılbey
- Department of Natural Sciences, Faculty of Engineering and Natural Sciences, Acıbadem University, İstanbul 34752, Türkiye
| |
Collapse
|
4
|
Yusuf BO, Umar M, Kotob E, Abdulhakam A, Taialla OA, Awad MM, Hussain I, Alhooshani KR, Ganiyu SA. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects. Chem Asian J 2024; 19:e202300641. [PMID: 37740712 DOI: 10.1002/asia.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
As energy demand continues to rise and the global population steadily grows, there is a growing interest in exploring alternative, clean, and renewable energy sources. The search for alternatives, such as green hydrogen, as both a fuel and an industrial feedstock, is intensifying. Methane steam reforming (MSR) has long been considered a primary method for hydrogen production, despite its numerous advantages, the activity and stability of the conventional Ni catalysts are major concerns due to carbon formation and metal sintering at high temperatures, posing significant drawbacks to the process. In recent years, significant attention has been given to bimetallic catalysts as a potential solution to overcome the challenges associated with methane steam reforming. Thus, this review focuses on the recent advancements in bimetallic catalysts for hydrogen production through methane steam reforming. The review explores various aspects including reactor type, catalyst selection, and the impact of different operating parameters such as reaction temperature, pressure, feed composition, reactor configuration, and feed and sweep gas flow rates. The analysis and discussion revolve around key performance indicators such as methane conversion, hydrogen recovery, and hydrogen yield.
Collapse
Affiliation(s)
- Basiru O Yusuf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Mustapha Umar
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Esraa Kotob
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Abdullahi Abdulhakam
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Omer Ahmed Taialla
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Mohammed Mosaad Awad
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Ijaz Hussain
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Khalid R Alhooshani
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Saheed A Ganiyu
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Mishra S, Gantayat S, Dhara C, Bhatt A, Singh M, Vijayakumar S, Rajput M. Advances in bioinspired nanomaterials managing microbial biofilms and virulence: A critical analysis. Microb Pathog 2024; 193:106738. [PMID: 38857710 DOI: 10.1016/j.micpath.2024.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Microbial virulence and biofilm formation stand as a big concern against the goal of achieving a green and sustainable future. Microbial pathogenesis is the process by which the microbes (bacterial, fungal, and viral) cause illness in their respective host organism. 'Nanotechnology' is a state-of-art discipline to address this problem. The use of conventional techniques against microbial proliferation has been challenging against the environment. To tackle this problem, there has been a revolution in this multi-disciplinary field, to address the aspect of bioinspired nanomaterials in the antibiofilm and antimicrobial sector. Bioinspired nanomaterials prove to be a potential antibiofilm and antimicrobial agent as they are non-hazardous to the environment and mostly synthesized using a single-step reduction protocol. They exhibit synergistic effects against bacterial, fungal, and viral pathogens and thereby, control the virulence. In this literature review, we have elucidated the potential of bioinspired nanoparticles as well as nanomaterials as a promising anti-microbial treatment pedagogy and throw light on the advancements in how smart photo-switchable platforms have been designed to exhibit both bacterial releasing as well as bacterial-killing properties. Certain limitations and possible outcomes of these bio-based nanomaterials have been discussed in the hope of achieving a green and sustainable ecosystem.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India.
| | - Saumyatika Gantayat
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India
| | - Chandrajeet Dhara
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India
| | - Ayush Bhatt
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India
| | - Monika Singh
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Arcadia Grant, P.O., Chandanwari, Dehradun, 248007, India
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, China, 264209
| | - Minakshi Rajput
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Arcadia Grant, P.O., Chandanwari, Dehradun, 248007, India; Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, 249404, India.
| |
Collapse
|
6
|
Ibrahim FM, El-Liethy MA, Abouzeid R, Youssef AM, Mahdy SZA, El Habbasha ES. Preparation and characterization of pectin/hydroxyethyl cellulose/clay/TiO 2 bionanocomposite films for microbial pathogen removal from contaminated water. Int J Biol Macromol 2024; 274:133511. [PMID: 38944095 DOI: 10.1016/j.ijbiomac.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Some of conventional wastewater disinfectants can have a harmful influence on the environment as well as human health. The aim of this investigation was synthesis and characterizes ecofriendly pectin/hydroxyethyl cellulose (HEC)/clay and pectin/HEC/clay incorporated with titanium dioxide nanoparticles (TiO2NPs) and use the prepared bionanocomposite as microbial disinfectants for real wastewater. Pectin/HEC/clay and pectin/HEC/clay/TiO2 bionanocomposite were characterized by various methods including X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA). Mechanical properties and water vapor permeability (WVP) were carried out. The results of SEM showed that, the prepared bionanocomposite had a smooth surface. Additionally, TiO2 nanoparticles to the pectin/HEC/clay composites may lead to changes in the FTIR spectrum. The intensity of XRD peaks indicated that, TiO2NPs was small size crystallite. TGA illustrated that pectin has moderate thermal stability, while HEC generally exhibits good thermal stability. The TEM showed that, TiO2 nanoparticles have diameters <25 nm. On the other hand, antimicrobial activities of pectin/HEC/clay against Escherichia coli (E. coli), Staphylococcus aureus and Candida albicans have been enhanced by adding TiO2NPs. The minimum inhibitory concentration (MIC) of pectin/HEC/clay/TiO2 against E. coli was 200 mg/mL. Moreover, complete eradication of E. coli, Salmonella and Candida spp. from real wastewater was observed by using pectin/HEC/clay/TiO2 bionanocomposite. Finally, it can be concluded that, the synthesized bionanocomposite is environmentally friendly and considered an excellent disinfectant matter for removal of the microbial pathogens from wastewater to safely reuse.
Collapse
Affiliation(s)
- Faten Mohamed Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622 Giza, Egypt.
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Sara Z A Mahdy
- Chemistry Department, Faculty of Science, Benha University, Cairo, Egypt
| | - El Sayed El Habbasha
- Field crops Research Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
7
|
Wang Y, Feng S, Wang X, Tao C, Liu Y, Wang Y, Gao Y, Zhao J, Song Y. Microfluidic synthesis of hemin@ZIF-8 nanozyme with applications in cellular reactive oxygen species detection and anticancer drug screening. LAB ON A CHIP 2024; 24:3521-3527. [PMID: 38939907 DOI: 10.1039/d4lc00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) encapsulating enzymatically active biomolecules has emerged as a novel biocompatible nanozyme and offers significant implications for bioanalysis of various biomarkers towards early diagnosis of severe diseases such as cancers. However, the rapid, continuous and scalable synthesis of these nanozymes still remains challenging. In this work, we proposed a novel microfluidic approach for rapid and continuous synthesis of hemin@ZIF-8 nanozyme. By employing a distinctive combination of zigzag-shaped channel and spiral channel with sudden expansion structures, we have enhanced the mixing efficiency within the chip and achieved effective encapsulation of hemin in ZIF-8. The resulting hemin@ZIF-8 nanoparticles exhibit peroxidase-like activity and are capable of detecting free H2O2 with a limit of detection (LOD) as low as 45 nM, as well as H2O2 secreted by viable cells with a detection threshold of approximately 10 cells per mL. By leveraging this method, we achieved successful detection of cancer cells and effective screening of anticancer drugs that induce oxidative stress injury in cancer cells. This innovative microfluidic strategy offers a new avenue for synthesizing functional nanocomposites to facilitate the development of next-generation diagnostic tools for early disease detection and personalized medicine.
Collapse
Affiliation(s)
- Yanping Wang
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China.
| | - Shujun Feng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Xuyuan Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Chungui Tao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China.
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Yanyi Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China.
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Jinsong Zhao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China.
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Saud A, Gupta S, Allal A, Preud’homme H, Shomar B, Zaidi SJ. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS OMEGA 2024; 9:29088-29113. [PMID: 39005778 PMCID: PMC11238215 DOI: 10.1021/acsomega.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 07/16/2024]
Abstract
Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution. The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach. The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.
Collapse
Affiliation(s)
- Asif Saud
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Soumya Gupta
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | - Ahmed Allal
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | | | - Basem Shomar
- Environmental
Science Center, Qatar University, , P.O. Box 2713, Doha, Qatar
| | - Syed Javaid Zaidi
- UNESCO
Chair on Desalination and Water Treatment, Center for Advanced Materials
(CAM), Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Irede EL, Awoyemi RF, Owolabi B, Aworinde OR, Kajola RO, Hazeez A, Raji AA, Ganiyu LO, Onukwuli CO, Onivefu AP, Ifijen IH. Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Adv 2024; 14:20992-21034. [PMID: 38962092 PMCID: PMC11220610 DOI: 10.1039/d4ra02452d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
This paper presents a comprehensive review of recent advancements in utilizing zinc oxide nanoparticles (ZnO NPs) to enhance antimicrobial and UV protective properties in healthcare solutions. It delves into the synthesis techniques of ZnO NPs and elucidates their antimicrobial efficacy, exploring the underlying mechanisms governing their action against a spectrum of pathogens. Factors impacting the antimicrobial performance of ZnO NPs, including size, surface characteristics, and environmental variables, are extensively analyzed. Moreover, recent studies showcasing the effectiveness of ZnO NPs against diverse pathogens are critically examined, underscoring their potential utility in combatting microbial infections. The study further investigates the UV protective capabilities of ZnO NPs, elucidating the mechanisms by which they offer UV protection and reviewing recent innovations in leveraging them for UV-blocking applications in healthcare. It also dissects the factors influencing the UV shielding performance of ZnO NPs, such as particle size, dispersion quality, and surface coatings. Additionally, the paper addresses challenges associated with integrating ZnO NPs into healthcare products and presents future perspectives for overcoming these hurdles. It emphasizes the imperative for continued research efforts and collaborative initiatives to fully harness the potential of ZnO NPs in developing advanced healthcare solutions with augmented antimicrobial and UV protective attributes. By advancing our understanding and leveraging innovative approaches, ZnO NPs hold promise for addressing pressing healthcare needs and enhancing patient care outcomes.
Collapse
Affiliation(s)
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University Starkville Mississippi MS 39762 USA
| | - Babatunde Owolabi
- Department of Civil Engineering, University of Alabama Tuscaloosa Alabama AL 35487 USA
| | | | - Rofiat Odunayo Kajola
- Department of Biomedical Engineering, University of Rochester 500 Joseph C. Wilson Blvd. Rochester NY 14627 USA
| | - Ajibola Hazeez
- Department of Urban and Regional Planning, University of Lagos Lagos Nigeria
| | - Ayuba Adawale Raji
- Department of Surveying and Geo-Informatics, Bells University of Technology Ota Ogun State Nigeria
| | | | - Chimezie O Onukwuli
- Department of Chemistry, Eastern New Mexico University Portales New Mexico USA
| | - Asishana Paul Onivefu
- Department of Chemistry and Biochemistry, University of Delaware Newark DE 19716 USA
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| |
Collapse
|
10
|
Sarfi S, Azaryan E, Hanafi-Bojd MY, Emadian Razavi F, Naseri M. Green synthesis of nanohydroxyapatite with Elaeagnus angustifolia L. extract as a metronidazole nanocarrier for in vitro pulpitis model treatment. Sci Rep 2024; 14:14702. [PMID: 38926433 PMCID: PMC11208562 DOI: 10.1038/s41598-024-65582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study is to introduce a dental capping agent for the treatment of pulp inflammation (pulpitis). Nanohydroxyapatite with Elaeagnus angustifolia L. extract (nHAEA) loaded with metronidazole (nHAEA@MTZ) was synthesized and evaluated using a lipopolysaccharide (LPS) in vitro model of pulpitis. nHAEA was synthesized through sol-gel method and analyzed using Scanning Electron Microscopy, Transmission Electron Microscopy, and Brunauer Emmett Teller. Inflammation in human dental pulp stem cells (HDPSCs) induced by LPS. A scratch test assessed cell migration, RT PCR measured cytokines levels, and Alizarin red staining quantified odontogenesis. The nHAEA nanorods were 17-23 nm wide and 93-146 nm length, with an average pore diameter of 27/312 nm, and a surface area of 210.89 m2/g. MTZ loading content with controlled release, suggesting suitability for therapeutic applications. nHAEA@MTZ did not affect the odontogenic abilities of HDPSCs more than nHAEA. However, it was observed that nHAEA@MTZ demonstrated a more pronounced anti-inflammatory effect. HDPSCs treated with nanoparticles exhibited improved migration compared to other groups. These findings demonstrated that nHAEA@MTZ could be an effective material for pulp capping and may be more effective than nHAEA in reducing inflammation and activating HDPSCs to enhance pulp repair after pulp damage.
Collapse
Affiliation(s)
- Sepideh Sarfi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsaneh Azaryan
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
11
|
Arshad F, Naikoo GA, Hassan IU, Chava SR, El-Tanani M, Aljabali AA, Tambuwala MM. Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective. Appl Biochem Biotechnol 2024; 196:3636-3669. [PMID: 37668757 PMCID: PMC11166857 DOI: 10.1007/s12010-023-04719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Silver nanoparticles (AgNPs) possess unmatched chemical, biological, and physical properties that make them unique compounds as antimicrobial, antifungal, antiviral, and anticancer agents. With the increasing drug resistance, AgNPs serve as promising entities for targeted drug therapy against several bacterial, fungal, and viral components. In addition, AgNPs also serve as successful anticancer agents against several cancers, including breast, prostate, and lung cancers. Several works in recent years have been done towards the development of AgNPs by using plant extracts like flowers, leaves, bark, root, stem, and whole plant parts. The green method of AgNP synthesis thus has several advantages over chemical and physical methods, especially the low cost of synthesis, no toxic byproducts, eco-friendly production pathways, can be easily regenerated, and the bio-reducing potential of plant derived nanoparticles. Furthermore, AgNPs are biocompatible and do not harm normally functioning human or host cells. This review provides an exhaustive overview and potential of green synthesized AgNPs that can be used as antimicrobial, antifungal, antiviral, and anticancer agents. After a brief introduction, we discussed the recent studies on the development of AgNPs from different plant extracts, including leaf parts, seeds, flowers, stems, bark, root, and whole plants. In the following section, we highlighted the different therapeutic actions of AgNPs against various bacteria, fungi, viruses, and cancers, including breast, prostate, and lung cancers. We then highlighted the general mechanism of action of AgNPs. The advantages of the green synthesis method over chemical and physical methods were then discussed in the article. Finally, we concluded the review by providing future perspectives on this promising field in nanotechnology.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Israr U Hassan
- College of Engineering, Dhofar University, Salalah, PC 211, Oman
| | | | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
12
|
Rajput P, Singh A, Agrawal S, Ghazaryan K, Rajput VD, Movsesyan H, Mandzhieva S, Minkina T, Alexiou A. Effects of environmental metal and metalloid pollutants on plants and human health: exploring nano-remediation approach. STRESS BIOLOGY 2024; 4:27. [PMID: 38777953 PMCID: PMC11111642 DOI: 10.1007/s44154-024-00156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.
Collapse
Affiliation(s)
- Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia.
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Hasmik Movsesyan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| |
Collapse
|
13
|
Velgosova O, Dolinská S, Podolská H, Mačák L, Čižmárová E. Impact of Plant Extract Phytochemicals on the Synthesis of Silver Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2252. [PMID: 38793321 PMCID: PMC11123381 DOI: 10.3390/ma17102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
This work aims to analyze the influence of selected plants on the synthesis of silver nanoparticles (AgNPs). Six plants were chosen for the experiment, from which extracts were prepared: maclura fruit, spruce and ginkgo needles, green algae (Ch. kessleri), and mushrooms, namely Collybia nuda, and Macrolepiota procera. The composition of the extracts and colloids after preparation of the nanoparticles was analyzed using FTIR analysis. The composition of the extracts affected not only the rate of the synthesis but also the shape of the nanoparticles. TEM analysis confirmed the synthesis of mainly spherical nanoparticles (size range: 10-25 nm). However, triangular prisms and polyhedral nanoparticles synthesized by the extracts containing mainly flavonoids, terpenes, and phenols (the main compounds of resins) were also confirmed. EDS analysis was used to analyze the composition of the nanoparticles. It was proven that by choosing the right plant extract and using the appropriate technology with extract treatment, it is possible to prepare nanoparticles of different shapes.
Collapse
Affiliation(s)
- Oksana Velgosova
- Institute of Materials and Quality Engineering, Faculty of Materials Metallurgy and Recycling, Technical University of Košice, Letná 9/A, 042 00 Košice, Slovakia; (H.P.); (L.M.)
| | - Silvia Dolinská
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia;
| | - Helena Podolská
- Institute of Materials and Quality Engineering, Faculty of Materials Metallurgy and Recycling, Technical University of Košice, Letná 9/A, 042 00 Košice, Slovakia; (H.P.); (L.M.)
| | - Lívia Mačák
- Institute of Materials and Quality Engineering, Faculty of Materials Metallurgy and Recycling, Technical University of Košice, Letná 9/A, 042 00 Košice, Slovakia; (H.P.); (L.M.)
| | - Elena Čižmárová
- Department of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo nám. 13, 121 32 Prague, Czech Republic;
| |
Collapse
|
14
|
Jha PK, Jaidumrong T, Rokaya D, Ovatlarnporn C. Callistemon viminalis leaf extract phytochemicals modified silver-ruthenium bimetallic zinc oxide nanocomposite biosynthesis: application on nanocoating photocatalytic Escherichia coli disinfection. RSC Adv 2024; 14:11017-11026. [PMID: 38586445 PMCID: PMC10995692 DOI: 10.1039/d4ra01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Antibiotics are of great interest due to antibiotic-resistant problems around the globe due to bacterial resistance to conventional antibiotics. In this study, a novel green biosynthesis of silver-ruthenium bimetallic zinc oxide nanocomposite using Callistemon viminalis leaf extract as a reducing agent using zinc nitrate hexahydrate, silver nitrate, and ruthenium(iii) chloride as capping agents was reported. The results demonstrated that the surface morphology of the prepared bimetallic nanocomposite by scanning electron microscopy was hexagonal in shape for zinc nanoparticle, rectangular in shape for silver nanoparticle, and tetragonal in shape for ruthenium nanoparticle, having an average surface size 25, 35, and 55 nm, respectively. Fourier transform infrared analysis confirmed the presence of compounds containing alkene, halo-, sulfoxide, phenol, nitro-, phenyl-ester, carboxylic acid, amines, and alcohols which act as functional groups attached to the surface of nanocomposites. Results from X-ray diffraction analysis found 81.12% crystallinity and hexagonal structure of zinc nanoparticles, rectangular structure of silver nanoparticles, and tetragonal structure of ruthenium nanoparticles, which are also similar to the results from transmission electron microscopy analysis. The average size distribution by dynamic light scattering of silver-ruthenium bimetallic zinc oxide nanocomposite was 255 nm, which confirms the biosynthesis of non-uniform size. Photo-disinfection activity of a silver-ruthenium bimetallic zinc oxide nanocomposite against Escherichia coli bacteria isolated from hospital wastewater under dark and ultraviolet-A irradiation conditions was observed. The antibacterial activity was calculated at 2.42704239, ensuring the silver-ruthenium bimetallic zinc oxide nanomaterials have photo-disinfection properties. The results from this study revealed that the developed novel antibacterial nanocomposite of silver-ruthenium bimetallic zinc oxide is useful in nanocoating photocatalytic Escherichia coli disinfection and can be applied to disinfect surfaces.
Collapse
Affiliation(s)
- Pankaj Kumar Jha
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Drug Delivery System Excellence Center, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Tunyakamon Jaidumrong
- Faculty of Environmental Management, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Dinesh Rokaya
- Department of Prosthodontics, Faculty of Dentistry, Zarqa University Zarqa 13110 Jordan
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Drug Delivery System Excellence Center, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
15
|
Saied E, Abdel-Maksoud MA, Alfuraydi AA, Kiani BH, Bassyouni M, Al-Qabandi OA, Bougafa FHE, Badawy MSEM, Hashem AH. Endophytic Aspergillus hiratsukae mediated biosynthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. Front Microbiol 2024; 15:1345423. [PMID: 38533339 PMCID: PMC10964773 DOI: 10.3389/fmicb.2024.1345423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
In the current study, endophytic Aspergillus hiratsukae was used for the biosynthesis of silver nanoparticles (Ag-NPs) for the first time. The characterizations were performed using X ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and UV-Vis spectroscopy. The obtained results demonstrated the successful formation of crystalline, spherical Ag-NPs with particle diameters ranging from 16 to 31 nm. The FT-IR studied and displayed the various functional groups involved, which played a role in capping and reducing agents for Ag-NPs production. The SEM-EDX revealed that the main constituent of the AS-formed sample was primarily Ag, with a weight percentage of 64.2%. The mycosynthesized Ag-NPs were assessed for antimicrobial as well as photocatalytic activities. The antimicrobial results indicated that the synthesized Ag-NPs possess notable antibacterial efficacy against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli, with minimum inhibitory concentrations (MICs) of Ag-NPs ranging from 62.5 to 250 μg/mL. Moreover, the biosynthesized Ag-NPs demonstrated weak antifungal activity against Aspergillus brasiliensis and Candida albicans, with MICs of 500 and 1,000 μg/mL, respectively. In addition, the mycosynthesized Ag-NPs exhibited photocatalytic activity toward acid black 2 (nigrosine) dye under both light and dark stimulation. Notably, After 300 min exposure to light, the nigrosine dye was degraded by 93%. In contrast, 51% degradation was observed after 300 min in darkness. In conclusion, Ag-NPs were successfully biosynthesized using endophytic A. hiratsukae and also exhibited antimicrobial and photocatalytic activities that can be used in environmental applications.
Collapse
Affiliation(s)
- Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akram A. Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Mohamed Bassyouni
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said, Egypt
- Center of Excellence in Membrane-Based Water Desalination Technology for Testing and Characterization (CEMTC), Port Said University, Port Said, Egypt
| | - Osama A. Al-Qabandi
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Fathia H. E. Bougafa
- Department of Microbiology, Faculty of Science, Tobruk University, Tobruk, Libya
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
16
|
Afsharpour M, Behtooei HR, Firooz AA, Beheshtian J. Green in situ synthesis of sandwich-like W-bridged siligraphene (g-SiC@WC@g-SiC) heterostructure from Saccharum Ravennae gum for ultrahigh-rate photodegradation of acetaminophen. CHEMOSPHERE 2024; 352:141301. [PMID: 38307333 DOI: 10.1016/j.chemosphere.2024.141301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Herein, the sandwich-like W-bridged siligraphene (W/g-SiC) as a heterojunction of WC and siligraphene nanosheets have been first accomplished via a simple green synthesis using Saccharum Ravennae gum as a natural Si and W sources and gelatin as a natural C and N sources. In a magnesiothermic process, Si and C atoms bond together and form a graphene-like structure where half of the C atoms are replaced by Si atoms. The presence of W in the natural precursor creates a W-doped siligraphene structure. Tungsten in the form of carbide (WC) creates a heterojunction with g-SiC, which reduces the bandgap. According to the experimental and computational data, the proposed structure of W/g-SiC was predicted by replacing the W atoms with Si atoms and bonding with C atoms in the siligraphene structure. The W-C bond in this structure is elongated and the W atom comes out of the siligraphene sheet and is placed between two siligraphene layers to interact with three carbons from the next layer. Under visible light irradiation, holes are generated on the g-SiC layers and electrons in the WC interlayer, which makes it a highly efficient photocatalyst with ultrafast charge separation and active surface for the removal of Acetaminophen.
Collapse
Affiliation(s)
- Maryam Afsharpour
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| | - Hamid Reza Behtooei
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Azam Anaraki Firooz
- Department of Chemistry, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Javad Beheshtian
- Department of Chemistry, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
17
|
Aly Khalil AM, Saied E, Mekky AE, Saleh AM, Al Zoubi OM, Hashem AH. Green biosynthesis of bimetallic selenium-gold nanoparticles using Pluchea indica leaves and their biological applications. Front Bioeng Biotechnol 2024; 11:1294170. [PMID: 38274007 PMCID: PMC10809157 DOI: 10.3389/fbioe.2023.1294170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Increasing bacterial resistance and the negative impact of currently used antibacterial agents have produced the need for novel antibacterial agents and anticancer drugs. In this regard, nanotechnology could provide safer and more efficient therapeutic agents. The main methods for nanoparticle production are chemical and physical approaches that are often costly and environmentally unsafe. In the current study, Pluchea indica leaf extract was used for the biosynthesis of bimetallic selenium-gold nanoparticles (Se-Au BNPs) for the first time. Phytochemical examinations revealed that P. indica leaf extract includes 90.25 mg/g dry weight (DW) phenolics, 275.53 mg/g DW flavonoids, and 26.45 mg/g DW tannins. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques were employed to characterize Se-Au BNPs. Based on UV-vis spectra, the absorbance of Se-Au BNPs peaked at 238 and 374 nm. In SEM imaging, Se-Au BNPs emerged as bright particles, and both Au and Se were uniformly distributed throughout the P. indica leaf extract. XRD analysis revealed that the average size of Se-Au BNPs was 45.97 nm. The Se-Au BNPs showed antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis, with minimum inhibitory concentrations (MICs) of 31.25, 15.62, 31.25, and 3.9 μg/mL, respectively. Surprisingly, a cytotoxicity assay revealed that the IC50 value toward the Wi 38 normal cell line was 116.8 μg/mL, implying that all of the MICs described above could be used safely. More importantly, Se-Au BNPs have shown higher anticancer efficacy against human breast cancer cells (MCF7), with an IC50 value of 13.77 μg/mL. In conclusion, this paper is the first to provide data on the effective utilization of P. indica leaf extract in the biosynthesis of biologically active Se-Au BNPs.
Collapse
Affiliation(s)
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alsayed E. Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed M. Saleh
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Omar Mahmoud Al Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Amr H. Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
18
|
Chormey DS, Zaman BT, Borahan Kustanto T, Erarpat Bodur S, Bodur S, Tekin Z, Nejati O, Bakırdere S. Biogenic synthesis of novel nanomaterials and their applications. NANOSCALE 2023; 15:19423-19447. [PMID: 38018389 DOI: 10.1039/d3nr03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye
- İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Omid Nejati
- İstinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye
| |
Collapse
|
19
|
Fernandes R, Costa C, Fernandes R, Barros AN. Inflammation in Prostate Cancer: Exploring the Promising Role of Phenolic Compounds as an Innovative Therapeutic Approach. Biomedicines 2023; 11:3140. [PMID: 38137361 PMCID: PMC10740737 DOI: 10.3390/biomedicines11123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cátia Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rúben Fernandes
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, 4249-004 Porto, Portugal;
- CECLIN, Centro de Estudos Clínicos, Hospital Fernando Pessoa, 4420-096 Gondomar, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
20
|
Díaz-García V, Haensgen A, Inostroza L, Contreras-Trigo B, Oyarzun P. Novel Microsynthesis of High-Yield Gold Nanoparticles to Accelerate Research in Biosensing and Other Bioapplications. BIOSENSORS 2023; 13:992. [PMID: 38131752 PMCID: PMC10742281 DOI: 10.3390/bios13120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit unique properties that make them appealing for applications in biosensing and other emerging fields. Despite the availability of numerous synthesis methods, important questions remain to be addressed regarding the volume effect on the synthesis yield and quality of AuNPs in the light of biosensing research. The present study addresses these issues by developing a novel microvolumetric citrate-reduction method to improve the synthesis of AuNPs, which were characterized by electronic microscopy, energy dispersive spectroscopy, zeta potential and colorimetric analysis. A comparison of the novel microsynthesis method with the standard Turkevich method demonstrated its superior performance in terms of yield, monodispersity, rapidity (in one step), reproducibility, and stability. The analytical behavior of AuNPs-based aptasensors prepared by microsynthesis was investigated using kanamycin detection and showed higher reproducibility and improved detection limits (3.4 times) compared to those of Turkevich AuNPs. Finally, the effect of pH was studied to demonstrate the suitability of the method for the screening of AuNP synthesis parameters that are of direct interest in biosensing research; the results showed an optimal pH range between 5.0 and 5.5. In summary, the approach described herein has the potential to improve research capabilities in biosensing, with the added benefits of lowering costs and minimizing waste generation in line with current trends in green nanotechnology.
Collapse
Affiliation(s)
- Víctor Díaz-García
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| | | | | | | | - Patricio Oyarzun
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| |
Collapse
|
21
|
Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci 2023; 24:15397. [PMID: 37895077 PMCID: PMC10607471 DOI: 10.3390/ijms242015397] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.
Collapse
Affiliation(s)
- Denisa-Maria Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| |
Collapse
|
22
|
Parihar A, Sharma P, Choudhary NK, Khan R, Gupta A, Sen RK, Prasad HC, Ashiq M. Green Synthesis of CdS and CdS/rGO Nanocomposites: Evaluation of Electrochemical, Antimicrobial, and Photocatalytic Properties. ACS APPLIED BIO MATERIALS 2023; 6:3706-3716. [PMID: 37674302 DOI: 10.1021/acsabm.3c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The green approach has been employed for the synthesis of various types of nanomaterials including metal nanoparticles, metal oxides, and carbon-based nanomaterials. These processes involve natural sources that contain bioactive compounds that act as reducing, stabilizing, and capping agents for the formation and stabilization of nanomaterials. This study reports the green synthesis of CdS and CdS/rGO nanocomposites using Lactobacillus bacteria. The UV-visible spectrophotometer, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy spectra confirm the synthesis of the nanocomposite. The electrochemical characterization using cyclic voltammetry, differential pulse voltammetry, and EIS revealed that the CdS/rGO nanocomposites showed a higher electron transfer rate compared with CdS nanoparticles, indicating the potential of the nanocomposites for biosensing applications. The zone of inhibition revealed significant antimicrobial activity against Escherichia coli and Staphylococcus aureus for both CdS nanoparticles and CdS/rGO nanocomposites. Additionally, CdS/rGO nanoparticles exhibited high photocatalytic activity for the degradation of methylene blue dye. Overall, this study demonstrates that the synthesized CdS and CdS/rGO nanocomposites have good electrochemical properties, photocatalytic, and antimicrobial activity and, therefore, can be employed for various applications such as biosensing, photocatalysis, and antimicrobial activity.
Collapse
Affiliation(s)
- Arpana Parihar
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India
| | - Palak Sharma
- NIMS Institute of Allied Medical Sciences and Technology, NIMS University, Jaipur 303121, Rajasthan, India
| | - Nishant Kumar Choudhary
- NIMS Institute of Allied Medical Sciences and Technology, NIMS University, Jaipur 303121, Rajasthan, India
| | - Raju Khan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ayush Gupta
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462020, Madhya Pradesh, India
| | - Raj Kumar Sen
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harish Chandra Prasad
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Ashiq
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Chakroborty S, Pal K, Nath N, Singh V, Barik A, Soren S, Panda P, Asthana N, Kyzas GZ. Sustainable synthesis of multifunctional nanomaterials from rice wastes: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95039-95053. [PMID: 37580476 PMCID: PMC10482793 DOI: 10.1007/s11356-023-29235-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
More than 60% of India's population relies on agriculture as their primary source of income, making it the nation's most important economic sector. Rice husk (often abbreviated as RH) is one of the most typical by-products of agricultural production. Every five tonnes of rice that is harvested results in the production of one tonne of husk. The concept of recycling and reusing waste from agricultural production has received interest from a variety of environmental and industrial perspectives. A wide variety of nanomaterials, including nano-zeolite, nanocarbon, and nano-silica, have been discovered in agro-waste. From rice cultivation to the finished product, there was a by-product consisting of husk that comprised 20% of the overall weight, or RH. The percentage of silica in RH ash ranges from 60 to 40%, with the remaining percentage consisting of various minerals. As a direct consequence of this, several distinct approaches to generating and extracting nanomaterial from rice husk have been developed. Because it contains a significant amount of cellulose and lignin, RH is an excellent and economical source of carbon precursor. The goal of this chapter is to produce carbon-based nanomaterials from RH.
Collapse
Affiliation(s)
- Subhendu Chakroborty
- Department of Basic Sciences, IITM, IES University, Madhya Pradesh, Bhopal, 462044, India
| | - Kaushik Pal
- Department of Physics, University Centre for Research and Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Nibedita Nath
- Department of Chemistry, D.S. Degree College, Laida, Sambalpur, Odisha, India, 768214
| | - Varun Singh
- Department of Chemistry, University Institute of Science (UIS), Chandigarh University, Mohali, Punjab, 140413, India
| | - Arundhati Barik
- CIPET: Institute of Petrochemicals Technology [IPT], Bhubaneswar, Odisha, India
| | - Siba Soren
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Pravati Panda
- Department of Basic Sciences, RIE, Bhubaneswar, India
| | | | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, Greece.
| |
Collapse
|
24
|
Kheskwani U, Ahammed MM. Removal of water pollutants using plant-based nanoscale zero-valent iron: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1207-1231. [PMID: 37771223 PMCID: wst_2023_270 DOI: 10.2166/wst.2023.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Nanotechnology has been increasingly explored for the treatment of various waste streams. Among different nanoparticles, nanoscale zerovalent iron (nZVI) has been extensively investigated due to its high reactivity and strong reducing power. However, conventional methods for the synthesis of nZVI particles have several limitations and led to the green synthesis of nZVI using plant-based materials. Plant extracts contain various reducing agents that can be used for nZVI synthesis, eliminating the need for toxic chemicals, and reducing energy consumption. Additionally, each plant species used for nZVI synthesis results in unique physicochemical properties of the nanoparticles. This review paper provides an overview of plant-based nZVI particle synthesis, its characteristics, and its application for the removal of different classes of pollutants such as dyes, heavy metals, nutrients, and trace organic pollutants from water. The review shows that continued research on plant-based nZVI particles to fully understand its potential in wastewater treatment, especially for the removal of a wider variety of pollutants, and for improving sustainability and reducing the cost and environmental impact of the process, is necessary.
Collapse
Affiliation(s)
- Urvashi Kheskwani
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India E-mail:
| | - M Mansoor Ahammed
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India
| |
Collapse
|
25
|
Nassar ARA, Atta HM, Abdel-Rahman MA, El Naghy WS, Fouda A. Myco-synthesized copper oxide nanoparticles using harnessing metabolites of endophytic fungal strain Aspergillus terreus: an insight into antibacterial, anti-Candida, biocompatibility, anticancer, and antioxidant activities. BMC Complement Med Ther 2023; 23:261. [PMID: 37481531 PMCID: PMC10363295 DOI: 10.1186/s12906-023-04056-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The overuse of antibiotics leads to the emergence of antibiotic-resistant microbes which causes high mortality worldwide. Therefore, the synthesis of new active compounds has multifunctional activities are the main challenge. Nanotechnology provides a solution for this issue. METHOD The endophytic fungal strain Aspergillus terreus BR.1 was isolated from the healthy root of Allium sativum and identified using internal transcribed spacer (ITS) sequence analysis. The copper oxide nanoparticles (CuO-NPs) were synthesized by harnessing the metabolites of the endophytic fungal strain. The UV-Visble spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Transmission electron micrscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Dynamic light scattering (DLS), and zeta potential (ζ) were used for the characterization of synthesized CuO-NPs. The activity against different pathogenic bacteria and Candida species were investigated by agar well-diffusion method. The biocombatibility and anticancer activity were assessed by MTT assay method. The scavenging of DPPH was used to investigate the antioxidant activity of synthesized CuO-NPs. RESULTS Data showed the successful formation of crystalline nature and spherical shape CuO-NPs with sizes in the ranges of 15-55 nm. The EDX reveals that the as-formed sample contains ions of C, O, Cl, and Cu with weight percentages of 18.7, 23.82, 11.31, and 46.17%, respectively. The DLS and ζ-potential showed high homogeneity and high stability of synthesized CuO-NPs with a polydispersity index (PDI) of 0.362 and ζ-value of - 26.6 mV. The synthesized CuO-NPs exhibited promising antibacterial and anti-Candida activity (concentration-dependent) with minimum inhibitory concentration (MIC) values in the ranges of 25-50 µg mL-1. Moreover, the fungal mediated-CuO-NPs targeted cancer cells of MCF7 and PC3 at low IC50 concentrations of 159.2 ± 4.5 and 116.2 ± 3.6 µg mL-1, respectively as compared to normal cells (Vero and Wi38 with IC50 value of 220.6 ± 3.7 and 229.5 ± 2.1 µg mL-1, respectively). The biosynthesized CuO-NPs showed antioxidant activity as detected by the DPPH method with scavenging percentages of 80.5 ± 1.2% at a concentration of 1000 µg mL-1 and decreased to 20.4 ± 4.2% at 1.9 µg mL-1 as compared to ascorbic acid (control) with scavenging activity of 97.3 ± 0.2 and 37.5 ± 1.3% at the same concentrations, respectively. CONCLUSION The fungal mediated-CuO-NPs exhibited promising activity and can be integrated into various biomedical and theraputic applications.
Collapse
Affiliation(s)
| | - Hossam M Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Wageih S El Naghy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
26
|
Asiri M, Srivastava N, Singh R, Al Ali A, Tripathi SC, Alqahtani A, Saeed M, Srivastava M, Rai AK, Gupta VK. Rice straw derived graphene-silica based nanocomposite and its application in improved co-fermentative microbial enzyme production and functional stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162765. [PMID: 36906037 DOI: 10.1016/j.scitotenv.2023.162765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Cellulases are the one of the most highly demanded industrial biocatalysts due to their versatile applications, such as in the biorefinery industry. However, relatively poor efficiency and high production costs are included as the key industrial constraints that hinder enzyme production and utilization at economic scale. Furthermore, the production and functional efficiency of the β-glucosidase (BGL) enzyme is usually found to be relatively low among the cellulase cocktail produced. Thus, the current study focuses on fungi-mediated improvement of BGL enzyme in the presence of a rice straw-derived graphene-silica-based nanocomposite (GSNCs), which has been characterized using various techniques to analyze its physicochemical properties. Under optimized conditions of solid-state fermentation (SSF), co-fermentation using co-cultured cellulolytic enzyme has been done, and maximum enzyme production of 42 IU/gds FP, 142 IU/gds BGL, and 103 IU/gds EG have been achieved at a 5 mg concentration of GSNCs. Moreover, at a 2.5 mg concentration of nanocatalyst, the BGL enzyme showed its thermal stability at 60°C and 70 °C by holding its half-life relative activity for 7 h, while the same enzyme demonstrated pH stability at pH 8.0 and 9.0 for the 10 h. This thermoalkali BGL enzyme might be useful for the long-term bioconversion of cellulosic biomass into sugar.
Collapse
Affiliation(s)
- Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil, Bisha, Saudi Arabia
| | - Subhash C Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Abdulaziz Alqahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh 273015, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
27
|
AlGabbani Q. Nanotechnology: A promising strategy for the control of parasitic infections. Exp Parasitol 2023:108548. [PMID: 37196702 DOI: 10.1016/j.exppara.2023.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/17/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Annually 3.5 billion people are affected by the parasitic infections that results around 200,000 deaths per annum. Major diseases occur due to the neglected tropical parasites. Variety of methods have been used to treat the parasitic infections but now these methods have become ineffective due to the development of resistance in the parasites and some other side effects of traditional treatment methods. Previous methods include use of chemotherapeutic agents and ethnobotanicals for the treatment of parasites. Parasites have developed resistance against the chemotherapeutic agents. A major problem related to Ethnobotanicals is the unequal availability of drug at the target site which is responsible for the low efficacy of drug. Nanotechnology technology involves the manipulation of matter on a nanoscale level and has the potential to enhance the efficacy and safety of existing drugs, develop new treatments, and improve diagnostic methods for parasitic infections. Nanoparticles can be designed to selectively target parasites while minimizing toxicity to the host, and they can also be used to improve drug delivery and increase drug stability. Some important nanotechnology-based tools for parasitic control include nanoparticle-based drug delivery, nanoparticle diagnostics, nanoparticle vaccines, nanoparticle insecticides. Nanotechnology has the potential to revolutionize the field of parasitic control by providing new methods for detection, prevention and treatment of parasitic infections. This review discusses the current state of nanotechnology-based approaches for controlling parasitic infections and highlights their potential to revolutionize the field of parasitology.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| |
Collapse
|
28
|
Tripathi S, Mahra S, J V, Tiwari K, Rana S, Tripathi DK, Sharma S, Sahi S. Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101604. [PMID: 37242021 DOI: 10.3390/nano13101604] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Victoria J
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivendra Sahi
- Department of Biology, St. Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Ghalkhani M, Teymourinia H, Ebrahimi F, Irannejad N, Karimi-Maleh H, Karaman C, Karimi F, Dragoi EN, Lichtfouse E, Singh J. Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. Int J Biol Macromol 2023; 242:124585. [PMID: 37105252 DOI: 10.1016/j.ijbiomac.2023.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environmental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is therefore a need for methods to recycle waste into valuable materials through resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable, yet inexpensive catalysts. In this case, a growing attention has been paid to development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) introduce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | - Fatemeh Ebrahimi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Neda Irannejad
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron no 73, 700050, Iasi, Romania
| | - Eric Lichtfouse
- Tate Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Jagpreet Singh
- Department of Chemical Engineering, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
30
|
Silver-Based Surface Plasmon Sensors: Fabrication and Applications. Int J Mol Sci 2023; 24:ijms24044142. [PMID: 36835553 PMCID: PMC9963732 DOI: 10.3390/ijms24044142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
A series of novel phenomena such as optical nonlinear enhancement effect, transmission enhancement, orientation effect, high sensitivity to refractive index, negative refraction and dynamic regulation of low threshold can be generated by the control of surface plasmon (SP) with metal micro-nano structure and metal/material composite structure. The application of SP in nano-photonics, super-resolution imaging, energy, sensor detection, life science, and other fields shows an important prospect. Silver nanoparticles are one of the commonly used metal materials for SP because of their high sensitivity to refractive index change, convenient synthesis, and high controllable degree of shape and size. In this review, the basic concept, fabrication, and applications of silver-based surface plasmon sensors are summarized.
Collapse
|
31
|
Gangan MS, Naughton KL, Boedicker JQ. Utilizing a divalent metal ion transporter to control biogenic nanoparticle synthesis. J Ind Microbiol Biotechnol 2023; 50:kuad020. [PMID: 37587013 PMCID: PMC10481092 DOI: 10.1093/jimb/kuad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Biogenic synthesis of inorganic nanomaterials has been demonstrated for both wild and engineered bacterial strains. In many systems the nucleation and growth of nanomaterials is poorly controlled and requires concentrations of heavy metals toxic to living cells. Here, we utilized the tools of synthetic biology to engineer a strain of Escherichia coli capable of synthesizing cadmium sulfide nanoparticles from low concentrations of reactants with control over the location of synthesis. Informed by simulations of bacterially-assisted nanoparticle synthesis, we created a strain of E. coli expressing a broad-spectrum divalent metal transporter, ZupT, and a synthetic CdS nucleating peptide. Expression of ZupT in the outer membrane and placement of the nucleating peptide in the periplasm focused synthesis within the periplasmic space and enabled sufficient nucleation and growth of nanoparticles at sub-toxic levels of the reactants. This strain synthesized internal CdS quantum dot nanoparticles with spherical morphology and an average diameter of approximately 3.3 nm. ONE-SENTENCE SUMMARY Expression of a metal ion transporter regulates synthesis of cadmium sulfide nanoparticles in bacteria.
Collapse
Affiliation(s)
- Manasi Subhash Gangan
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyle L Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
32
|
Haque S, Singh R, Harakeh S, Teklemariam AD, Tayeb HH, Deen PR, Srivastava UC, Srivastava M. Green synthesis of nanostructures from rice straw food waste to improve the antimicrobial efficiency: New insight. Int J Food Microbiol 2023; 386:110016. [PMID: 36435097 DOI: 10.1016/j.ijfoodmicro.2022.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Applications for nanotechnology, which is constantly gaining prominence, have been found in a variety of industrial applications. Due to the multiple benefits associated with it, including an eco-friendly, pollution-free, cost-effective, and non-toxic synthesis method, the green way to synthesize nanostructures utilizing waste biomasses has become one of the key focuses of the current researches globally. Additionally, lignocellulasic biomass (LCB), which is a waste of the food crops, can be used as one of the potential substrates for the synthesis of a variety of nanostructures. Among different types of LCB, rice straw is a potential food waste biomass and can be efficiently employed during the synthesis of different types of nanostructures for a range of technological applications. Here, diverse phenolic compounds found in rice straw as well as reducing sugars can be used as natural reducing and capping agents to prepare a range of nanostructures. Based on the aforementioned facts, the objective of this review is to investigate the viability of using rice straw to produce nanostructured materials using rice straw as a renewable biosource following an environmentally friendly method. Additionally, it is noted that various organic compounds present on the surface of nanostructures produced using rice straw extract/hydrolyzate through a green approach may be more successful in terms of antibacterial efficacy, which might be of considerable interest for a variety of biomedical applications. Based on the possibility of enhancing the antimicrobial activity of developed nanostructures, the review also provides overview on the feasibility, characteristics, and availability of using rice straw extract in the synthesis of nanostructures. Additionally, the constraints of the present and potential futures of the green synthesis methods using rice straw wastes have been explored.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India; Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| | - Steve Harakeh
- King Fahd Medical Research Center and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Addisu Demeke Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam H Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Nanomedicine Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Prakash Ranjan Deen
- Department of Physics, Purnea College, Purnea University, Purnea, Bihar 854301, India
| | - Umesh Chandra Srivastava
- Department of Physics, Amity Institute of Applied Sciences, Amity University, Noida, UP 201303, India
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh-273015.
| |
Collapse
|
33
|
Mejía-Méndez JL, López-Mena ER, Sánchez-Arreola E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023; 11:389. [PMID: 36830926 PMCID: PMC9953519 DOI: 10.3390/biomedicines11020389] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nanomedicine is an interdisciplinary field where nanostructured objects are applied to treat or diagnose disease. Nanoparticles (NPs) are a special class of materials at nanometric scale that can be prepared from lipids, polymers, or noble metals through bottom-up approaches. Biological synthesis is a reliable, sustainable, and non-toxic bottom-up method that uses phytochemicals, microorganisms, and enzymes to induce the reduction of metal ions into NPs. Silver (Ag) NPs exhibit potent therapeutic properties that can be exploited to overcome the limitations of current treatment modalities for human health issues such as lung cancer (LC). Here, we review the preparation of AgNPs using biological synthesis and their application against LC using in vitro and in vivo models. An overview of the staging, diagnosis, genetic mutations, and treatment of LC, as well as its main subtypes, is presented. A summary of the reaction mechanisms of AgNPs using microbial cell cultures, plant extracts, phytochemicals, and amino acids is included. The use of capping agents in the biosynthesis of AgNPs with anticancer activity is also detailed. The history and biological activities of metal-based nanostructures synthesized with gold, copper, palladium, and platinum are considered. The possible anticancer mechanisms of AgNPs against LC models are covered. Our perspective about the future of AgNPs in LC treatment and nanomedicine is added.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico
| | - Eugenio Sánchez-Arreola
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| |
Collapse
|
34
|
Ferreira LAD, Rambo C, Gomes MJK, Ribeiro KDP, Nishimoto GDA, Tisatto LGDR, Fritzen LD, da Cruz YB, Kambara AL, Rodrigues MJVB, Nogueira GA, Salvador HD, Oliveira-Toré CDF, Reason IJDM, Telles JEQ, Tomiotto-Pellissier F. Nanoparticles and phototherapy combination as therapeutic alternative in prostate cancer: A scoping review. Eur J Pharmacol 2023; 939:175421. [PMID: 36435234 DOI: 10.1016/j.ejphar.2022.175421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Prostate cancer (CaP) is one of the most common types of cancers worldwide. Despite the existing surgical techniques, prostatectomy patients may experience tumor recurrence. In addition, castration-resistant cancers pose a challenge, especially given their lack of response to standard care. Thus, the development of more efficient therapies has become a field of great interest, and photothermal therapy (PTT) and photodynamic therapy (PDT) are promising alternatives, given their high capacity to cause cell injury and consequent tumor ablation. Phototherapy, along with chemotherapy, has also been shown to be more effective than pharmacotherapy alone. Free molecules used as photosensitizers are rapidly cleared from the body, do not accumulate in the tumor, and are primarily hydrophobic and require toxic solvents. Thus, the use of nanoparticles can be an effective strategy, given their ability to carry or bind to different molecules, protecting them from degradation and allowing their association with other surface ligands, which favors permeation and retention at the tumor site. Despite this, there is still a gap in the literature regarding the use of phototherapy in association with nanotechnology for the treatment of CaP. In this scoping review, it was found that most of the particles studied could act synergistically through PDT and PTT. In addition, fluorescent quenchers can act as diagnostic and therapeutic tools. However, future clinical studies should be performed to confirm the benefits and safety of the combination of nanoparticles and phototherapy for CaP.
Collapse
Affiliation(s)
| | - Camila Rambo
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Lucas Diego Fritzen
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Aline Lika Kambara
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | - Fernanda Tomiotto-Pellissier
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil; Laboratory of Immunopathology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
35
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
36
|
Chowdhury MA, Hossain N, Mostofa MG, Mia MR, Tushar M, Rana MM, Hossain MH. Green synthesis and characterization of zirconium nanoparticlefor dental implant applications. Heliyon 2022; 9:e12711. [PMID: 36685390 PMCID: PMC9850058 DOI: 10.1016/j.heliyon.2022.e12711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Green synthesis is a promising and cost-effective technique to synthesize nanoparticles from plant extract. The present study shows the green synthesis of zirconium nanoparticles using the extract of ginger, garlic, and zirconium nitride. The obtained nanoparticles were studied for potential dental implant applications. The synthesized nanoparticles were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-Ray Spectroscopy (EDX), X-Ray diffraction analysis (XRD), and antibacterial analysis. FTIR analysis confirmed the presence of various organic compounds in the synthesized nanoparticles. The synthesized nanoparticles were spherical, triangular, and irregular, with varying sizes confirmed by FESEM analysis. The nanoparticles synthesized from the combination of garlic and ginger, and zirconium exhibited potent antibacterial activity against S. aureus. Anti-biofilm, anti-microbial activity, biointegration formation, and cell mechanism survival are also mentioned. Thus, the synthesized nanoparticles can be a good candidate for a dental implant because of their excellent antimicrobial properties.
Collapse
Affiliation(s)
- Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh,Corresponding author.
| | - Md. Golam Mostofa
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Md. Riyad Mia
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Md. Tushar
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Md. Masud Rana
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Md. Helal Hossain
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| |
Collapse
|
37
|
Amrillah T, Abdullah CAC, Hermawan A, Sari FNI, Alvani VN. Towards Greener and More Sustainable Synthesis of MXenes: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4280. [PMID: 36500902 PMCID: PMC9793760 DOI: 10.3390/nano12234280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The unique properties of MXenes have been deemed to be of significant interest in various emerging applications. However, MXenes provide a major drawback involving environmentally harmful and toxic substances for its general fabrication in large-scale production and employing a high-temperature solid-state reaction followed by selective etching. Meanwhile, how MXenes are synthesized is essential in directing their end uses. Therefore, making strategic approaches to synthesize greener, safer, more sustainable, and more environmentally friendly MXenes is imperative to commercialize at a competitive price. With increasing reports of green synthesis that promote advanced technologies and non-toxic agents, it is critical to compile, summarize, and synthesize the latest development of the green-related technology of MXenes. We review the recent progress of greener, safer, and more sustainable MXene synthesis with a focus on the fundamental synthetic process, the mechanism, and the general advantages, and the emphasis on the MXene properties inherited from such green synthesis techniques. The emerging use of the so-called green MXenes in energy conversion and storage, environmental remediation, and biomedical applications is presented. Finally, the remaining challenges and prospects of greener MXene synthesis are discussed.
Collapse
Affiliation(s)
- Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, East Java, Indonesia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang 15315, Banten, Indonesia
| | - Fitri Nur Indah Sari
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Vani Novita Alvani
- Graduate School of Environmental Studies, Tohoku University, Sendai 9808579, Japan
| |
Collapse
|
38
|
Mycosynthesis of Metal-Containing Nanoparticles-Fungal Metal Resistance and Mechanisms of Synthesis. Int J Mol Sci 2022; 23:ijms232214084. [PMID: 36430561 PMCID: PMC9696665 DOI: 10.3390/ijms232214084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
In the 21st century, nanomaterials play an increasingly important role in our lives with applications in many sectors, including agriculture, biomedicine, and biosensors. Over the last two decades, extensive research has been conducted to find ways to synthesise nanoparticles (NPs) via mediation with fungi or fungal extracts. Mycosynthesis can potentially be an energy-efficient, highly adjustable, environmentally benign alternative to conventional physico-chemical procedures. This review investigates the role of metal toxicity in fungi on cell growth and biochemical levels, and how their strategies of resistance, i.e., metal chelation, biomineral formation, biosorption, bioaccumulation, compartmentalisation, and efflux of metals from cells, contribute to the synthesis of metal-containing NPs used in different applications, e.g., biomedical, antimicrobial, catalytic, biosensing, and precision agriculture. The role of different synthesis conditions, including that of fungal biomolecules serving as nucleation centres or templates for NP synthesis, reducing agents, or capping agents in the synthesis process, is also discussed. The authors believe that future studies need to focus on the mechanism of NP synthesis, as well as on the influence of such conditions as pH, temperature, biomass, the concentration of the precursors, and volume of the fungal extracts on the efficiency of the mycosynthesis of NPs.
Collapse
|
39
|
Elzoheiry A, Ayad E, Omar N, Elbakry K, Hyder A. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles. Sci Rep 2022; 12:18403. [PMID: 36319750 PMCID: PMC9626641 DOI: 10.1038/s41598-022-23276-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis results from the hepatic accumulation of the extracellular matrix accompanied by a failure of the mechanisms responsible for matrix dissolution. Pathogenesis of liver fibrosis is associated with many proteins from different cell types. In the present study, in silico molecular docking analysis revealed that curcumin may inhibit the fibrosis-mediating proteins PDGF, PDGFRB, TIMP-1, and TLR-9 by direct binding. Nano-formulation can overcome curcumin problems, increasing the efficacy of curcumin as a drug by maximizing its solubility and bioavailability, enhancing its membrane permeability, and improving its pharmacokinetics, pharmacodynamics and biodistribution. Therefore, green silver nanoparticles (AgNPs) were synthesized in the presence of sunlight by means of the metabolite of Streptomyces malachiticus, and coated with curcumin-chitosan mixture to serve as a drug delivery tool for curcumin to target CCl4-induced liver fibrosis mouse model. Fibrosis induction significantly increased hepatic gene expression of COL1A1, α-SMA, PDGFRB, and TIMP1, elevated hepatic enzymes, increased histopathological findings, and increased collagen deposition as determined by Mason's trichrome staining. Treatment with naked AgNPs tended to increase these inflammatory effects, while their coating with chitosan, similar to treatment with curcumin only, did not prevent the fibrogenic effect of CCl4. The induction of liver fibrosis was reversed by concurrent treatment with curcumin/chitosan-coated AgNPs. In this nano form, curcumin was found to be efficient as anti-liver fibrosis drug, maintaining the hepatic architecture and function during fibrosis development. This efficacy can be attributed to its inhibitory role through a direct binding to fibrosis-mediating proteins such as PDGFRB, TIMP-1, TLR-9 and TGF-β.
Collapse
Affiliation(s)
- Alya Elzoheiry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Esraa Ayad
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Nahed Omar
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Kadry Elbakry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
40
|
Kulkarni S, Kumar S, Acharya S. Gold Nanoparticles in Cancer Therapeutics and Diagnostics. Cureus 2022; 14:e30096. [DOI: 10.7759/cureus.30096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022] Open
|
41
|
Mendes Hacke AC, Lima D, Kuss S. Green synthesis of electroactive nanomaterials by using plant-derived natural products. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Nanomaterials in Scaffolds for Periodontal Tissue Engineering: Frontiers and Prospects. Bioengineering (Basel) 2022; 9:bioengineering9090431. [PMID: 36134977 PMCID: PMC9495816 DOI: 10.3390/bioengineering9090431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The regeneration of periodontium represents important challenges to controlling infection and achieving functional regeneration. It has been recognized that tissue engineering plays a vital role in the treatment of periodontal defects, profiting from scaffolds that create the right microenvironment and deliver signaling molecules. Attributable to the excellent physicochemical and antibacterial properties, nanomaterials show great potential in stimulating tissue regeneration in tissue engineering. This article reviewed the up-to-date development of nanomaterials in scaffolds for periodontal tissue engineering. The paper also represented the merits and defects of different materials, among which the biocompatibility, antibacterial properties, and regeneration ability were discussed in detail. To optimize the project of choosing materials and furthermore lay the foundation for constructing a series of periodontal tissue engineering scaffolds, various nanomaterials and their applications in periodontal regeneration were introduced.
Collapse
|
43
|
Aswathi VP, Meera S, Maria CGA, Nidhin M. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2022. [PMCID: PMC9399584 DOI: 10.1007/s41204-022-00276-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The contemporary world is concerned only with non-biodegradable waste management which needs more sophisticated procedures as compared to biodegradable waste management. Biodegradable waste has the potential to become useful to society through a simple volarization technique. The researchers are behind sustainable nanotechnology pathways which are made possible by using biodegradable waste for the preparation of nanomaterials. This review emphasizes the potentialities of biodegradable waste produced as a viable alternative to create a sustainable economy that benefits all humans. Volarization results in the utilization of biowastes as well as provides safer and hazard-free green methods for the synthesis of nanoparticles. Starting from different sources to the application which includes therapeutics, food industry and water treatment. The review hovers over the pros and cons of biowaste-mediated nanoparticles and concludes with possible advances in the application. In the present scenario, the combination of green synthesis and biowaste can bring about a wide variety of applications in nanotechnology once the hurdles of bulk-scale industrial production are resolved. Given these points, the review is focused on the cost-effective synthesis of metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- V. P. Aswathi
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, Karnataka 560029 India
| | - S. Meera
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, Karnataka 560029 India
| | - C. G. Ann Maria
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, Karnataka 560029 India
| | - M. Nidhin
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, Karnataka 560029 India
| |
Collapse
|
44
|
Rezk N, Abdelsattar AS, Makky S, Hussein AH, Kamel AG, El-Shibiny A. New formula of the green synthesised Au@Ag core@shell nanoparticles using propolis extract presented high antibacterial and anticancer activity. AMB Express 2022; 12:108. [PMID: 35987838 PMCID: PMC9392670 DOI: 10.1186/s13568-022-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial alternatives such as nanoparticles are critically required to tackle bacterial infections, especially with the emerging threat of antibiotic resistance. Therefore, this study aimed to biosynthesize Au-Ag nanoparticles using propolis as a natural reducing agent and investigate their antibacterial activity against antibiotic-resistant Staphylococcus sciuri (S. sciuri), Pseudomonas aeruginosa (P. aeruginosa), and Salmonella enterica Typhimurium (S. enterica), besides demonstrating their anticancer activity in cancer cell lines. The biosynthesized Au@AgNPs were characterized using UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transformation Infrared (FTIR), and Scanning Electron Microscopy (SEM). Moreover, the detection of antibacterial activity was assessed through disc diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), time-killing curve, and detection of cell membrane integrity via SEM. As a result, the UV-Vis spectrum revealed the formation of Au@AgNPs in a single peak between 533 and 555 nm. Furthermore, FTIR analysis confirmed nanoparticles' green synthesis due to the presence of carbon functional groups. The formulated Au@AgNPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. The MIC and the MBC of P. aeruginosa and S. sciuri were 31.25 µg/mL. However, nanoparticles were more effective on S. enterica with MIC of 7.5 µg/mL and MBC of 15.6 µg/mL. Furthermore, the time-killing curve of the three model bacteria with the treatment was effective at 50 µg/mL. Besides, SEM of the tested bacteria indicated unintegrated bacterial cell membranes and damage caused by Au@AgNPs. Regarding the anticancer activity, the results indicated that the biosynthesized Au@AgNPs have a cytotoxic effect on HEPG2 cell lines. In conclusion, this research revealed that the green synthesized Au@AgNPs could be effective antibacterial agents against S. sciuri, P. aeruginosa, and S. enterica and anticancer agents against HEPG2.
Collapse
Affiliation(s)
- Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
45
|
Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal12070756] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aqueous extract of marine green macroalgae, Ulva fasciata Delile, was harnessed for the synthesis of zinc oxide nanoparticles (ZnO-NPs). The conversion to ZnO-NPs was characterized by color change, UV–vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed the formation of spherical and crystalline ZnO-NPs with a size range of 3–33 nm. SEM-EDX revealed the presence of Zn and O in weight percentages of 45.3 and 31.62%, respectively. The phyco-synthesized ZnO-NPs exhibited an effective antibacterial activity against the pathogenic Gram-positive and Gram-negative bacteria. The bacterial clear zones ranged from 21.7 ± 0.6 to 14.7 ± 0.6 mm with MIC values of 50–6.25 µg mL−1. The catalytic activity of our product was investigated in dark and visible light conditions, using the methylene blue (MB) dye. The maximum dye removal (84.9 ± 1.2%) was achieved after 140 min in the presence of 1.0 mg mL−1 of our nanocatalyst under the visible light at a pH of 7 and a temperature of 35 °C. This percentage was decreased to 53.4 ± 0.7% under the dark conditions. This nanocatalyst showed a high reusability with a decreasing percentage of ~5.2% after six successive cycles. Under the optimum conditions, ZnO-NPs showed a high efficacy in decolorizing the tanning wastewater with a percentage of 96.1 ± 1.7%. Moreover, the parameters of the COD, BOD, TSS, and conductivity were decreased with percentages of 88.8, 88.5, 96.9, and 91.5%, respectively. Moreover, nano-ZnO had a high efficacy in decreasing the content of the tanning wastewater Cr (VI) from 864.3 ± 5.8 to 57.3 ± 4.1 mg L−1 with a removal percentage of 93.4%.
Collapse
|
46
|
Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water is the key element that defines and individualizes our planet. Relative to body weight, water represents 70% or more for the majority of all species on Earth. Taking care of water as a whole is equivalent with taking care of the entire biodiversity or the whole of humanity itself. Water quality is becoming an increasingly important component of terrestrial life, hence intensive work is being conducted to develop sensors for detecting contaminants and assessing water quality and characteristics. Our bibliometric analysis is focused on water quality sensors based on carbon nanotubes and highlights the most important objectives and achievements of researchers in recent years. Due to important measurement characteristics such as sensitivity and selectivity, or low detection limit and linearity, up to the ability to measure water properties, including detection of heavy metal content or the presence of persistent organic compounds, carbon nanotube (CNT) sensors, taking advantage of available nanotechnologies, are becoming increasingly attractive. The conducted bibliometric analysis creates a visual, more efficient keystones mapping. CNT sensors can be integrated into an inexpensive real-time monitoring data acquisition system as an alternative for classical expensive and time-consuming offline water quality monitoring. The conducted bibliometric analysis reveals all connections and maps all the results in this water quality CNT sensors research field and gives a perspective on the approached methods on this specific type of sensor. Finally, challenges related to integration of other trends that have been used and proven to be valuable in the field of other sensor types and capable to contribute to the development (and outlook) for future new configurations that will undoubtedly emerge are presented.
Collapse
|
48
|
Aspergillus flavus-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial, Anti-Candida, Acaricides, and Photocatalytic Activities. Catalysts 2022. [DOI: 10.3390/catal12050462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aspergillus flavus F5 was used to reduce AgNO3 to form silver nanoparticles (Ag-NPs) that were monitored by a color change from colorless to yellowish-brown. The characterizations were achieved by UV-Vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed that there was a successful formation of crystalline, spherical shape Ag-NPs with a particle average size of 12.5 ± 5.1 nm. The FT-IR clarified the role of various functional groups in the reducing/capping process. EDX-SEM revealed that the main component of the as-formed sample was set to be mainly Ag with a weight percentage of 46.1%. The synthesized Ag-NPs exhibit antibacterial and anti-Candida activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, C. glabrata, C. tropicalis, and C. parapsilosis, with inhibition zones ranging between 9.3 ± 0.5 to 20.8 ± 0.3 nm based on concentrations used and MIC values between 6.25 to 25 ppm. The mortality percentages of Tyrophagus putrescentiae mite species due to the mixing of their diet with different Ag-NPs concentrations of 0.5, 1.0, and 1.5 mg were 55.7 ± 2.1, 73.3 ± 1.5, and 87.4 ± 1.6% respectively after 20 days post-treatment. The catalytic activity of Ag-NPs to degrade methylene blue (MB) was investigated in the presence and absence of light irradiation. Data showed that a high photocatalytic degradation of MB compared with dark conditions at various times and concentrations. At a concentration of 70 mg/30 mL after 200 min., the dye removal percentages were 86.4 ± 0.4% in the presence of light irradiation versus 66.5 ± 1.1% in dark conditions.
Collapse
|
49
|
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S. Green Metallic Nanoparticles: Biosynthesis to Applications. Front Bioeng Biotechnol 2022; 10:874742. [PMID: 35464722 PMCID: PMC9019488 DOI: 10.3389/fbioe.2022.874742] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
50
|
Low SS, Yew M, Lim CN, Chai WS, Low LE, Manickam S, Tey BT, Show PL. Sonoproduction of nanobiomaterials - A critical review. ULTRASONICS SONOCHEMISTRY 2022; 82:105887. [PMID: 34954629 PMCID: PMC8799622 DOI: 10.1016/j.ultsonch.2021.105887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 05/19/2023]
Abstract
Ultrasound (US) demonstrates remarkable potential in synthesising nanomaterials, particularly nanobiomaterials targeted towards biomedical applications. This review briefly introduces existing top-down and bottom-up approaches for nanomaterials synthesis and their corresponding synthesis mechanisms, followed by the expounding of US-driven nanomaterials synthesis. Subsequently, the pros and cons of sono-nanotechnology and its advances in the synthesis of nanobiomaterials are drawn based on recent works. US-synthesised nanobiomaterials have improved properties and performance over conventional synthesis methods and most essentially eliminate the need for harsh and expensive chemicals. The sonoproduction of different classes and types of nanobiomaterials such as metal and superparamagnetic nanoparticles (NPs), lipid- and carbohydrate-based NPs, protein microspheres, microgels and other nanocomposites are broadly categorised based on the physical and/or chemical effects induced by US. This review ends on a good note and recognises US-driven synthesis as a pragmatic solution to satisfy the growing demand for nanobiomaterials, nonetheless some technical challenges are highlighted.
Collapse
Affiliation(s)
- Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, China
| | - Maxine Yew
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, China
| | - Chang Nong Lim
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China
| | - Liang Ee Low
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan BE1410, Brunei Darussalam.
| | - Beng Ti Tey
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|