1
|
Kumar P, Ashique S, Sharma H, Yasmin S, Islam A, Mandal S, Gowda BHJ, Khalid M, Ansari MY, Singh M, Ehsan I, Taj T, Taghizadeh-Hesary F. A narrative review on the use of Green synthesized metallic nanoparticles for targeted cancer therapy. Bioorg Chem 2025; 157:108305. [PMID: 40022847 DOI: 10.1016/j.bioorg.2025.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cancer is a leading cause of death worldwide. While traditional and synthetic medical therapies are in place for cancer treatment, their effectiveness is hindered by various limitations, such as toxic side effects, limited availability, and high costs. In recent years, a promising alternative approach has emerged in the form of green-synthesized metallic nanoparticles (MNPs), which offer targeted cancer therapy. These nanoparticles (NPs) have garnered significant attention from cancer researchers owing to their natural or surface-induced anticancer properties, versatility of metals as agents, and eco-friendly nature. This approach may positively impact healthy cells surrounding the cancerous cells. Green-synthesized MNPs have gained popularity in cancer management because of their ease of handling in the laboratory and the affordability of starting materials compared to synthetic methods. This review analyzes green-synthesized MNPs for targeted cancer therapy, highlighting tumor-targeting strategies, synthesis methods, and clinical challenges. Unlike general reviews, it compares plant-, microbial-, and enzyme-mediated synthesis approaches, emphasizing their impact on nanoparticle stability, functionalization, and interactions with the tumor microenvironment for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM Modinagar College of Pharmacy, SRMIST Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, West Bengal 711316, India.
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, (UP), India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Subhajit Mandal
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi-241124 Uttar Pradesh (U.P.) India.
| | - Mansi Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Iman Ehsan
- School of Pharmacy Sister Nivedita University, Kolkata-700156, WB, India
| | - Tahreen Taj
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore 575018, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA. Naringenin-loaded nanoparticles modulate HIF-driven oxygen-sensing pathways in lung adenocarcinoma cells. BMC Res Notes 2025; 18:64. [PMID: 39934840 DOI: 10.1186/s13104-025-07133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Hypoxia is a common symptom of lung cancer. Proliferation and neovascularization mediated by hypoxia-inducible factors (HIF) influence several adaptations. It has recently been established that naringenin (NAR) and its nanoparticles are chemo-preventive flavonoids in lung cancer. AIM Adjust HIF activity by reviving oxygen-sensing enzyme activity while considering possible therapeutic targets. METHOD The bindings of NAR to target proteins were examined using computational modeling techniques. Additionally, NAR nanoparticles (NARNPs) were synthesized and characterized. Normal fibroblast cells and A549 cells were used to determine cytotoxicity. Colorimetric analysis of α-ketoglutarate detection for hydroxylases. RESULTS According to molecular modeling, NAR and target proteins have a high affinity. The PHD and FIH activities in A549 are significantly stimulated. CONCLUSION NAR and NARNPs diminish hypoxia in lung cancer by stimulating oxygen-sensing hydroxylases.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Ghaznavi H, Hajinezhad MR, Hesari Z, Shirvaliloo M, Sargazi S, Shahraki S, Saberi EA, Sheervalilou R, Jafarinejad S. Synthesis, characterization, and evaluation of copper-doped zinc oxide nanoparticles anticancer effects: in vitro and in vivo experiments. BMC Cancer 2025; 25:37. [PMID: 39780079 PMCID: PMC11707944 DOI: 10.1186/s12885-024-13398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND AND AIM Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies. METHODS Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method. All synthetized nanoparticles were examined for shape, crystal structure and morphology/ microstructure using X-ray diffractometers, scanning electron microscopy and transmission electron microscopy. The hydrodynamic diameter and zeta-potential was measured by dynamic light scattering. Energy Dispersive Spectroscopy evaluated copper doping in zinc oxide nanoparticles. The anticancer effects were tested on bone cancer fibroblast cells and normal lung fibroblast cells using cell viability test, colony formation assay, and lactate dehydrogenase assay at concentrations of 0, 1, 10, 17.5, 25, 50, 100, and 200 μg/ml. In vivo experiments assessed serum markers (Aspartate aminotransferase, Alanine transaminase, blood urea nitrogen and creatinine) and liver malondialdehyde levels in response to 5 mg/kg and 50 mg/kg doses. RESULTS zinc oxide nanoparticles exhibited a spherical morphology and good dispersion, with an average grain size ranging from 15-39 nm. Copper-doped zinc oxide nanoparticles displayed a mixture of rod-like and grain-like structures, and a larger average grain size of 18-68 nm. X-ray diffraction analysis confirmed the wurtzite crystal structure for both types of nanoparticles. While individual grain sizes varied, the mean particle size for all samples, including those with increasing copper doping, was approximately 100 ± 0.1 nm. Both nanoparticles exhibited a negative zeta potential. In vitro studies revealed that copper-doped zinc oxide nanoparticles, zinc oxide nanoparticles, and bulk zinc oxide exhibited cytotoxic activity (cell viability < 80%) and induced apoptosis in bone cancer fibroblast cells at 17.5 μg/ml after 72 h (P < 0.05). The copper-doped zinc oxide nanoparticles demonstrated higher cytotoxicity compared to zinc oxide nanoparticles and bulk zinc oxide at higher concentrations (P < 0.05). The copper-doped zinc oxide nanoparticles also showed significant inhibition of cell proliferation over 10 days at 17.5 μg/ml (P < 0.05). In vivo studies indicated no significant changes in serum Aspartate aminotransferase, Alanine transaminase, blood urea nitrogen, and creatinine levels at 5 mg/kg. However, a 50 mg/kg dose of zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles significantly increased these serum markers and liver malondialdehyde levels (P < 0.05). Histological analysis revealed liver injury in rats treated with 50 mg/kg but not at 0.5 mg/kg. CONCLUSIONS The copper-doped zinc oxide nanoparticles exhibit enhanced cytotoxicity and anticancer activity compared to zinc oxide nanoparticles and bulk zinc oxide, particularly at higher concentrations. High doses of these nanoparticles could induce significant biochemical changes and liver injury in vivo, highlighting the need for careful dose management.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | | | - Zahra Hesari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Milad Shirvaliloo
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Eshagh Ali Saberi
- Department of Endodontics, Faculty of Dentistry, Oral and Dental Diseases Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.
| | - Somayeh Jafarinejad
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sajeevan D, Are RP, Hota P, Babu AR. Nanoparticles as Drug Delivery Carrier-synthesis, Functionalization and Application. Curr Pharm Des 2025; 31:244-260. [PMID: 38685791 DOI: 10.2174/0113816128304018240415095912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
In recent years, advancements in chemistry have allowed the tailoring of materials at the nanoscopic level as needed. There are mainly four main types of nanomaterials used as drug carriers:metal-based nanomaterials, organic nanomaterials, inorganic nanomaterials, and polymer nanomaterials. The nanomaterials as a drug carrier showed advantages for decreased side effects with a higher therapeutic index. The stability of the drug compounds are increased by encapsulation of the drug within the nano-drug carriers, leading to decreased systemic toxicity. Nano-drug carriers are also used for controlled drug release by tailoring system-made solubility characteristics of nanoparticles by surface coating with surfactants. The review focuses on the different types of nanoparticles used as drug carriers, the nanoparticle synthesis process, techniques of nanoparticle surface coating for drug carrier purposes, applications of nano-drug carriers, and prospects of nanomaterials as drug carriers for biomedical applications.
Collapse
Affiliation(s)
- Drishya Sajeevan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Ramakrishna Prasad Are
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Prabhudutta Hota
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Anju R Babu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
5
|
Mazumdar H, Khondakar KR, Das S, Halder A, Kaushik A. Artificial intelligence for personalized nanomedicine; from material selection to patient outcomes. Expert Opin Drug Deliv 2025; 22:85-108. [PMID: 39645588 DOI: 10.1080/17425247.2024.2440618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Artificial intelligence (AI) is changing the field of nanomedicine by exploring novel nanomaterials for developing therapies of high efficacy. AI works on larger datasets, finding sought-after nano-properties for different therapeutic aims and eventually enhancing nanomaterials' safety and effectiveness. AI leverages patient clinical and genetic data to predict outcomes, guide treatments, and optimize drug dosages and forms, enhancing benefits while minimizing side effects. AI-supported nanomedicine faces challenges like data fusion, ethics, and regulation, requiring better tools and interdisciplinary collaboration. This review highlights the importance of AI regarding patient care and urges scientists, medical professionals, and regulators to adopt AI for better outcomes. AREAS COVERED Personalized Nanomedicine, Material Discovery, AI-Driven Therapeutics, Data Integration, Drug Delivery, Patient Centric Care. EXPERT OPINION Today, AI can improve personalized health wellness through the discovery of new types of drug nanocarriers, nanomedicine of specific properties to tackle targeted medical needs, and an increment in efficacy along with safety. Nevertheless, problems such as ethical issues, data security, or unbalanced data sets need to be addressed. Potential future developments involve using AI and quantum computing together and exploring telemedicine i.e. the Internet-of-Medical-Things (IoMT) approach can enhance the quality of patient care in a personalized manner by timely decision-making.
Collapse
Affiliation(s)
- Hirak Mazumdar
- Department of Computer Science and Engineering, Adamas University, Kolkata, India
| | | | - Suparna Das
- Department of Computer Science and Engineering, BVRIT HYDERABAD College of Engineering for Women, Hyderabad, India
| | - Animesh Halder
- Department of Electrical and Electronics Engineering, Adamas University, Kolkata, India
| | - Ajeet Kaushik
- Nano Biotech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| |
Collapse
|
6
|
Deng X, Hu L, Xing H, Liu Y, Yin H. Recent progress in gold-derived nanomaterials for tumor theranostics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8058-8067. [PMID: 39601081 DOI: 10.1039/d4ay01932f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It is widely acknowledged that gold-based materials are of significant interest in the field of biomedicine. Consequently, considerable efforts have been devoted to identifying gold nanoparticles that exhibit effective performance in tumor diagnosis and treatment. However, the underlying reasons for the enhanced efficacy of these gold-based nanomaterials in cancer therapy and diagnosis remain unclear, primarily due to the lack of an in-depth understanding of the mechanisms involved. Therefore, it is essential to summarize the progress in the field to facilitate the rational design of more efficient nanodevices. In this review, we present recent achievements drawn from the latest research to demonstrate the broad applications of gold-based materials. We begin by illustrating the mechanisms of gold-derived nanoparticles during therapeutic and diagnostic processes, including photothermal therapy, photodynamic therapy, sonodynamic therapy, photoacoustic tomography, fluorescence imaging, and X-ray computed tomography. We then summarize the advancements of gold-based nanomaterials in cancer diagnosis and treatment while also analyzing the factors contributing to their enhanced performance. Finally, we highlight key descriptors for evaluating the efficacy and strategies for designing high-performance nanomaterials. This review aims to pave the way for addressing future challenges and outlines directions for the advancement of gold-based biomedicine.
Collapse
Affiliation(s)
- Xi Deng
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lei Hu
- Department of Oncology, Jiulongpo District People's Hospital, Chongqing, 400050, China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Yin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
8
|
Dang CH, Nguyen LKT, Tran MT, Le VD, Ty NM, Pham TNH, Vu-Quang H, Chi TTK, Giang TTH, Tu NTT, Nguyen TD. Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1227-1237. [PMID: 39376727 PMCID: PMC11457073 DOI: 10.3762/bjnano.15.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
Abstract
This study introduces a highly efficient and straightforward method for synthesizing gold nanoparticles (AuNPs) within a glucosamine/alginate (GluN/Alg) nanocomposite via an ionotropic gelation mechanism in aqueous environment. The resulting nanocomposite, AuNPs@GluN/Alg, underwent thorough characterization using UV-vis, EDX, FTIR, SEM, TEM, SAED, and XRD analyses. The spherical AuNPs exhibited uniform size with an average diameter of 10.0 nm. The nanocomposites facilitated the recyclable reduction of organic dyes, including 2-nitrophenol, 4-nitrophenol, and methyl orange, employing NaBH4 as the reducing agent. Kinetic studies further underscored the potential of this nanocomposite as a versatile catalyst with promising applications across various industrial sectors.
Collapse
Affiliation(s)
- Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Le-Kim-Thuy Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Minh-Trong Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Ty
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - T Ngoc Han Pham
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Vu-Quang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Tran Thi Huong Giang
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Nguyen Thi Thanh Tu
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| |
Collapse
|
9
|
Gao Y, Wang J, Deng Z, Wang Y, Zhang D, Xu X, Yu X, Wei X. Targeted Delivery of 2D Composite Minerals for Biofilm Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52814-52823. [PMID: 39358894 DOI: 10.1021/acsami.4c10998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Microbiologically influenced corrosion (MIC) poses considerable challenges in various industries, prompting the exploration of advanced materials to mitigate microbial threats. This study successfully synthesized nanoscale vermiculite (VMT) from natural seawater and utilized it as a foundation to integrate magnetic nanoparticles (Fe3O4) and chlorhexidine acetate (CA) for inhibiting MIC. A comprehensive investigation encompassing the synthesis, characterization, and application of these VMT/Fe3O4/CA composites was conducted to evaluate their antimicrobial effectiveness against Escherichia coli, Staphylococcus aureus, and sulfate-reducing bacteria (SRB), demonstrating an efficacy exceeding 99.5%. Moreover, the composite material demonstrated the capability to align with a magnetic field, enabling precise drug targeting and release, thereby facilitating biofilm removal. This research makes a significant contribution to the advancement of intelligent, efficient, and eco-friendly corrosion protection solutions.
Collapse
Affiliation(s)
- Yaohua Gao
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhuo Deng
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Dun Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaohan Xu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaojiao Yu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xile Wei
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
10
|
Sharifi M, Bahrami SH. Review on application of herbal extracts in biomacromolecules-based nanofibers as wound dressings and skin tissue engineering. Int J Biol Macromol 2024; 277:133666. [PMID: 38971295 DOI: 10.1016/j.ijbiomac.2024.133666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.
Collapse
Affiliation(s)
- Mohaddeseh Sharifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Rakshit S, Roy T, Jana PC, Gupta K. A Comprehensive Review on the Importance of Sustainable Synthesized Coinage Metal Nanomaterials and Their Diverse Biomedical Applications. Biol Trace Elem Res 2024:10.1007/s12011-024-04361-8. [PMID: 39222235 DOI: 10.1007/s12011-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
From a historical perspective, coinage metals (CMNMs) are most renowned for their monetary, ornamental, and metallurgical merits; nevertheless, as nanotechnology's potential has only just come to light, their metal nanostructures and uses may be viewed as products of modern science. Notable characteristics of CMNMs include visual, electrical, chemical, and catalytic qualities that depend on shape and size. Due diligence on the creation and synthesis of CMNMs and their possible uses has been greatly promoted by these characteristics. This review focuses on solution-based methods and provides an overview of the latest developments in CMNMs and their bimetallic nanostructures. It discusses a range of synthetic techniques, including conventional procedures and more modern approaches used to enhance functionality by successfully manipulating the CMNMs nanostructure's size, shape, and composition. To help with the design of new nanostructures with improved capabilities in the future, this study offers a brief assessment of the difficulties and potential future directions of these intriguing metal nanostructures. This review focuses on mechanisms and factors influencing the synthesis process, green synthesis, and sustainable synthesis methods. It also discusses the wide range of biological domains in which CMNMs are applied, including antibacterial, antifungal, and anticancer. Researchers will therefore find the appropriateness of both synthesizing and using CMNMS keeping in mind the different levels of environmental effects.
Collapse
Affiliation(s)
- Soumen Rakshit
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Tamanna Roy
- Department of Microbiology, Bankura Sammilani Medical College and Hospital, Bankura, 722102, West Bengal, India
| | - Paresh Chandra Jana
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Kajal Gupta
- Department of Chemistry, Nistarini College, Purulia, 723101, West Bengal, India.
| |
Collapse
|
12
|
Hemanth C, Vimal S. Assessment of Anti-oxidative, Anti-inflammatory, and Anti-cancer Activity of Magnesium Oxide Doped Chitosan/Polyvinyl Alcohol With Catharanthus roseus: An In Vitro Study. Cureus 2024; 16:e70103. [PMID: 39449928 PMCID: PMC11500816 DOI: 10.7759/cureus.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 10/26/2024] Open
Abstract
Background Recent biomedical research has emphasized the potential of biocomposite materials for medicinal purposes. This work investigates the combination of magnesium oxide (MgO)-doped chitosan and polyvinyl alcohol (PVA) with extracts from Catharanthus roseus, a medicinal plant renowned for its abundant alkaloid content and therapeutic advantages. The antioxidant, anti-inflammatory, and anti-cancer characteristics of this unique biocomposite material are being studied better to understand its prospective uses in biomedicine. Aim The goal of this study is to investigate the in vitro oxidative, anti-inflammatory, and anti-cancer properties of a biocomposite made of MgO-doped chitosan and PVA, combined with an extract from C. roseus. Materials and methods The biocomposite was made by blending chitosan and PVA in equal proportions and adding MgO nanoparticles to C. roseus extract. The surface morphology was analysed using scanning electron microscopy (SEM). The antioxidant activity was measured using the H2O2 test, the anti-inflammatory activity was identified using the egg albumin assay, and the anti-cancer activity was analyzed using the MTT assay on MCF-7 breast cancer cell lines. In addition, cell morphology investigations were performed to evaluate any alterations after treatment. Results The SEM investigation showed clearly defined and sleek nanoparticles. The biocomposite demonstrated notable antioxidant activity, with inhibition percentages escalating in proportion to the concentration. The anti-inflammatory assays demonstrated inhibition percentages comparable to diclofenac, reaching approximately 90% at the maximum concentration. The MTT experiment revealed that the viability of MCF-7 cells decreased in a manner that was dependent on the dose administered. The IC-50 value, which represents the concentration required to inhibit 50% of cell viability, was determined to be 60 µg/mL. The morphological examinations demonstrated cytotoxic effects, such as cell shrinkage and membrane blebbing, which indicate the successful initiation of apoptosis. Conclusion The biocomposite of chitosan/PVA doped with MgO, combined with C. roseus extract, has shown significant antioxidant, anti-inflammatory, and anti-cancer characteristics. These findings indicate that it has the potential to be used in therapy, particularly for treating illnesses related to oxidative stress, inflammatory disorders, and cancer. Future research should focus on improving formulation and delivery systems for therapeutic applications, with the support of in vivostudies and clinical trials.
Collapse
Affiliation(s)
- Challa Hemanth
- Biochemistry, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Sugumar Vimal
- Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
13
|
Gaffar NA, Zahid M, Asghar A, Shafiq MF, Jelani S, Rehan F. Biosynthesized metallic nanoparticles: A new era in cancer therapy. Arch Pharm (Weinheim) 2024; 357:e2300712. [PMID: 38653735 DOI: 10.1002/ardp.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cancer remains a global health crisis, claiming countless lives throughout the years. Traditional cancer treatments like chemotherapy and radiation often bring about severe side effects, underscoring the pressing need for innovative, more efficient, and less toxic therapies. Nanotechnology has emerged as a promising technology capable of producing environmentally friendly anticancer nanoparticles. Among various nanoparticle types, metal-based nanoparticles stand out due to their exceptional performance and ease of use in methods of imaging. The widespread accessibility of biological precursors for synthesis based on plants of metal nanoparticles has made large-scale, eco-friendly production feasible. This evaluation provides a summary of the green strategy for synthesizing metal-based nanoparticles and explores their applications. Moreover, this review delves into the potential of phyto-based metal nanoparticles in combating cancer, shedding light on their probable mechanisms of action. These insights are invaluable for enhancing both biomedical and environmental applications. The study also touches on the numerous potential applications of nanotechnology in the field of medicine. Consequently, this research offers a concise and well-structured summary of nanotechnology, which should prove beneficial to researchers, engineers, and scientists embarking on future research endeavors.
Collapse
Affiliation(s)
- Nabila Abdul Gaffar
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Mavia Zahid
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Akleem Asghar
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | | | - Seemal Jelani
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Farah Rehan
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
14
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
15
|
Bokhari SS, Ali T, Naeem M, Hussain F, Nasir A. Recent advances in nanoformulation-based delivery for cancer immunotherapy. Nanomedicine (Lond) 2024; 19:1253-1269. [PMID: 38717427 PMCID: PMC11285355 DOI: 10.1080/17435889.2024.2343273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide, and its treatment faces several challenges. Phytoconstituents derived from recently discovered medicinal plants through nanotechnology potentially target cancer cells via PI3K/Akt/mTOR pathways and exert their effects selectively through the generation of reactive oxygen species through β-catenin inhibition, DNA damage, and increasing caspase 3/9 and p53 expression. These nanocarriers act specifically against different cancer cell lines such as HT-29, MOLT-4 human leukemia cancer and MCF-7 cell lines SKOV-3, Caov-3, SW-626, HepG2, A-549, HeLa, and MCF-7. This review comprehensively elaborates on the cellular and molecular mechanisms, and therapeutic prospects of various plant-mediated nanoformulations to attain a revolutionary shift in cancer immunotherapy.
Collapse
Affiliation(s)
- Seyedeh Saimeh Bokhari
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
16
|
Mohammadjani N, Ashengroph M, Abdollahzadeh J. Untargeted metabolomics and molecular docking studies on green silver nanoparticles synthesized by Sarocladium subulatum: Exploring antibacterial and antioxidant properties. CHEMOSPHERE 2024; 355:141836. [PMID: 38561160 DOI: 10.1016/j.chemosphere.2024.141836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The biological synthesis of silver nanoparticles (Ag-NPs) with fungi has shown promising results in antibacterial and antioxidant properties. Fungi generate metabolites (both primary and secondary) and proteins, which aid in the formation of metal nanoparticles as reducing or capping agents. While several studies have been conducted on the biological production of Ag-NPs, the exact mechanisms still need to be clarified. In this study, Ag-NPs are synthesized greenly using an unstudied fungal strain, Sarocladium subulatum AS4D. Three silver salts were used to synthesize the Ag-NPs for the first time, optimized using a cell-free extract (CFE) strategy. Additionally, these NPs were assessed for their antimicrobial and antioxidant properties. Various spectroscopic and microscopy techniques were utilized to confirm Ag-NP formation and analyze their morphology, crystalline properties, functional groups, size, stability, and concentrations. Untargeted metabolomics and proteome disruption were employed to explore the synthesis mechanism. Computational tools were applied to predict metabolite toxicity and antibacterial activity. The study identified 40 fungal metabolites capable of reducing silver ions, with COOH and OH functional groups playing a pivotal role. The silver salt type impacted the NPs' size and stability, with sizes ranging from 40 to 52 nm and zeta potentials from -0.9 to -30.4 mV. Proteome disruption affected size and stability but not shape. Biosynthesized Ag-NPs using protein-free extracts ranged from 55 to 62 nm, and zeta potentials varied from -18 to -27 mV. Molecular docking studies and PASS results found no role for the metabolome in antibacterial activity. This suggests the antibacterial activity comes from Ag-NPs, not capping or reducing agents. Overall, the research affirmed the vital role of specific reducing metabolites in the biosynthesis of Ag-NPs, while proteins derived from biological extracts were found to solely affect their size and stability.
Collapse
Affiliation(s)
- Navid Mohammadjani
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| |
Collapse
|
17
|
Davodabadi F, Farasati Far B, Sargazi S, Fatemeh Sajjadi S, Fathi-Karkan S, Mirinejad S, Ghotekar S, Sargazi S, Rahman MM. Nanomaterials-Based Targeting of Long Non-Coding RNAs in Cancer: A Cutting-Edge Review of Current Trends. ChemMedChem 2024; 19:e202300528. [PMID: 38267373 DOI: 10.1002/cmdc.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
This review article spotlights the burgeoning potential of using nanotherapeutic strategies to target long non-coding RNAs (lncRNAs) in cancer cells. This updated discourse underlines the prominent role of lncRNAs in instigating cancer, facilitating its progression, and metastasis, validating lncRNAs' potential for being effective diagnostic biomarkers and therapeutic targets. The manuscript offers an in-depth examination of different strategies presently employed to modulate lncRNA expression and function for therapeutic purposes. Among these strategies, Antisense Oligonucleotides (ASOs), RNA interference (RNAi) technologies, and the innovative clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing tools garner noteworthy mention. A significant section of the review is dedicated to nanocarriers and their crucial role in drug delivery. These nanocarriers' efficiency in targeting lncRNAs in varied types of cancers is elaborated upon, validating the importance of targeted therapy. The manuscript culminates by reaffirming the promising prospects of targeting lncRNAs to enhance the accuracy of cancer diagnosis and improve treatment efficacy. Consequently, new paths are opened to more research and innovation in employing nanotherapeutic approaches against lncRNAs in cancer cells. Thus, this comprehensive manuscript serves as a valuable resource that underscores the vital role of lncRNAs and the various nano-strategies for targeting them in cancer treatment. Future research should also focus on unraveling the complex regulatory networks involving lncRNAs and identifying fundamental functional interactions to refine therapeutic strategies targeting lncRNAs in cancer.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
18
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
19
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
20
|
Chaudhary P, Janmeda P, Pareek A, Chuturgoon AA, Sharma R, Pareek A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed Pharmacother 2024; 173:116294. [PMID: 38401516 DOI: 10.1016/j.biopha.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Lung cancer, a leading global cause of mortality, poses a significant public health challenge primarily linked to tobacco use. While tobacco contributes to over 90% of cases, factors like dietary choices and radiation exposure also play a role. Despite potential benefits from early detection, cancer patients face hurdles, including drug resistance, chemotherapy side effects, high treatment costs, and limited healthcare access. Traditional medicinal plant knowledge has recently unveiled diverse cancer chemopreventive agents from terrestrial and marine sources. These phytochemicals regulate intricate molecular processes, influencing the immune system, apoptosis, cell cycle, proliferation, carcinogen elimination, and antioxidant levels. In pursuing cutting-edge strategies to combat the diverse forms of cancer, technological advancements have spurred innovative approaches. Researchers have focused on the green synthesis of metallic nanoparticles using plant metabolites. This method offers distinct advantages over conventional physical and chemical synthesis techniques, such as cost-effectiveness, biocompatibility, and energy efficiency. Metallic nanoparticles, through various pathways such as the generation of reactive oxygen species, modulation of enzyme activity, DNA fragmentation, disruption of signaling pathways, perturbation of cell membranes, and interference with mitochondrial function resulting in DNA damage, cell cycle arrest, and apoptosis, exhibit significant potential for preventive applications. Thus, the amalgamation of phytocompounds and metallic nanoparticles holds promise as a novel approach to lung cancer therapy. However, further refinements and advancements are necessary to enhance the environmentally friendly process of metallic nanoparticle synthesis.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
21
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Varma RS. A review of chitosan nanoparticles: Nature's gift for transforming agriculture through smart and effective delivery mechanisms. Int J Biol Macromol 2024; 260:129522. [PMID: 38246470 DOI: 10.1016/j.ijbiomac.2024.129522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Chitosan nanoparticles (CNPs) have emerged as a promising tool in agricultural advancements due to their unique properties including, biocompatability, biodegradability, non-toxicity and remarkable versatility. These inherent properties along with their antimicrobial, antioxidant and eliciting activities enable CNPs to play an important role in increasing agricultural productivity, enhancing nutrient absorption and improving pest management strategies. Furthermore, the nano-formulation of chitosan have the ability to encapsulate various agricultural amendments, enabling the controlled release of pesticides, fertilizers, plant growth promoters and biocontrol agents, thus offering precise and targeted delivery mechanisms for enhanced efficiency. This review provides a comprehensive analysis of the latest research and developments in the use of CNPs for enhancing agricultural practices through smart and effective delivery mechanisms. It discusses the synthesis methods, physicochemical properties, and their role in enhancing seed germination and plant growth, crop protection against biotic and abiotic stresses, improving soil quality and reducing the environmental pollution and delivery of agricultural amendments. Furthermore, the potential environmental benefits and future directions for integrating CNPs into sustainable agricultural systems are explored. This review aims to shed light on the transformative potential of chitosan nanoparticles as nature's gift for revolutionizing agriculture and fostering eco-friendly farming practices.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 771751735, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
22
|
Arafat M, Sakkal M, Beiram R, AbuRuz S. Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment-A Recent Review. Pharmaceuticals (Basel) 2024; 17:315. [PMID: 38543101 PMCID: PMC10974155 DOI: 10.3390/ph17030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer continues to pose one of the most critical challenges in global healthcare. Despite the wide array of existing cancer drugs, the primary obstacle remains in selectively targeting and eliminating cancer cells while minimizing damage to healthy ones, thereby reducing treatment side effects. The revolutionary approach of utilizing nanomaterials for delivering cancer therapeutic agents has significantly enhanced the efficacy and safety of chemotherapeutic drugs. This crucial shift is attributed to the unique properties of nanomaterials, enabling nanocarriers to transport therapeutic agents to tumor sites in both passive and active modes, while minimizing drug elimination from delivery systems. Furthermore, these nanocarriers can be designed to respond to internal or external stimuli, thus facilitating controlled drug release. However, the production of nanomedications for cancer therapy encounters various challenges that can impede progress in this field. This review aims to provide a comprehensive overview of the current state of nanomedication in cancer treatment. It explores a variety of nanomaterials, focusing on their unique properties that are crucial for overcoming the limitations of conventional chemotherapy. Additionally, the review delves into the properties and functionalities of nanocarriers, highlighting their significant impact on the evolution of nanomedicine. It also critically assesses recent advancements in drug delivery systems, covering a range of innovative delivery methodologies. Finally, the review succinctly addresses the challenges encountered in developing nanomedications, offering insightful perspectives to guide future research in this field.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
23
|
Li Y, Su H, Liu K, Zhao Z, Wang Y, Chen B, Xia J, Yuan H, Huang DS, Gu Y. Individualized detection of TMPRSS2-ERG fusion status in prostate cancer: a rank-based qualitative transcriptome signature. World J Surg Oncol 2024; 22:49. [PMID: 38331878 PMCID: PMC10854045 DOI: 10.1186/s12957-024-03314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level. METHODS Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA). RESULTS A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion. CONCLUSIONS Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.
Collapse
Affiliation(s)
- Yawei Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hang Su
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaidong Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuquan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Xia
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huating Yuan
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - De-Shuang Huang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
24
|
Kamil Shareef NA, Zandsalimi F, Tavoosidana G. Gold nanoparticles (AuNPs) decrease the viability of cervical cancer cells by inducing the BAX gene and activating antioxidant enzymes. Mol Biol Rep 2024; 51:287. [PMID: 38329621 DOI: 10.1007/s11033-024-09253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Cervical Cancer (CC), a leading cause of female mortality worldwide, demonstrates a direct association with high-risk human papillomavirus (HPV) infections. However, not all CC patients exhibit HPV infection, suggesting additional predisposing factors. Recently, disturbances in the oxidant-antioxidant balance have been implicated in CC development. This study explores the impact of gold nanoparticles (AuNPs) on the survival and antioxidant capacity of HeLa cells, aiming to contribute to novel CC therapy approaches. METHODS AND RESULTS Synthesized and characterized AuNPs (25.5 nm, uniform distribution according to the DLS analysis) were administered to HeLa cells at varying concentrations. After 24 h, cell viability was assessed using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide) (MTT) assay. Real-time PCR measured expression levels of apoptosis-related genes (BCL2 associated X (BAX) and p53). Catalase and superoxide dismutase (SOD) activities, key antioxidant enzymes, were also evaluated post-AuNP treatment. AuNPs dose-dependently reduced HeLa cell viability, with an IC50 value of 113 µg/ml. BAX gene expression significantly increased, indicating pro-apoptotic effects. Moreover, enzyme activities significantly rose under AuNP influence. CONCLUSIONS AuNPs demonstrated the potential to induce HeLa cell death by upregulating pro-apoptotic BAX gene expression and altering antioxidant system enzyme activities. These findings underscore the promise of AuNPs as a therapeutic avenue for CC, emphasizing their impact on crucial cellular processes involved in cancer progression.
Collapse
Affiliation(s)
- Noor Alhuda Kamil Shareef
- Department of Biology, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
| | - Farshid Zandsalimi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Taheri H, Feizabadi MM, Keikha R, Afkari R. Therapeutic effects of probiotics and herbal medications on oxalate nephrolithiasis: a mini systematic review. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:4-18. [PMID: 38682062 PMCID: PMC11055440 DOI: 10.18502/ijm.v16i1.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives The majority of all kidney stone cases are oxalate urolithiasis with a high risk of recurrence. Beside its widespread occurrence, kidney stones are characterized by severe complications and high treatment costs. Probiotics and herbal medications could be forthcoming therapeutic interventions in the management of oxalate kidney stones. Materials and Methods The PubMed/MEDLINE database was searched for keywords "Oxalobacter formigenes" AND "Oxalate" OR "oxalate degradation" AND "Lactobacillus" OR "Bifidobacterium" OR "recombinant Lactobacillus" OR "Bacillus subtilis", and "urolithiasis" AND "herbal extract". The search returned 253 results, 38 of which were included in the review. Results Most of the oxalate-degrading probiotics belong to the Oxalobacter formigenes, Lactobacillus, Bifidobacterium, and Bacillus genus with a minimum dosage of 107 CFU in the form of capsules, sachets, and lyophilized powder. Oxalate concentration in media was 5-50mM with an incubation time ranging from 24h to 14 days. The majority of the studies suggested that probiotic supplementation might be useful for reducing urinary excretion of oxalate and urea and alleviation of stone formation. Different herbal extracts were used on murine models of nephrolithiasis (induced by 0.5-3% ethylene glycol) with reduction of renal inflammation and urinary parameters, and calcium oxalate crystals. Conclusion Several strains of probiotics and herbal extracts confer protective effects against kidney stone/nephrolithiasis, indicating their promising nature for being considered as elements of preventive / adjuvant therapeutic strategies.
Collapse
Affiliation(s)
- Hamed Taheri
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Mehdi Feizabadi
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Keikha
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rouhi Afkari
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
26
|
Truong LB, Medina-Cruz D, Mostafavi E. Gold nanoparticles for delivery of nucleic acid constructs for cancer treatment. GOLD NANOPARTICLES FOR DRUG DELIVERY 2024:141-165. [DOI: 10.1016/b978-0-443-19061-2.00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Tiryaki E, Zorlu T. Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy. Curr Top Med Chem 2024; 24:930-951. [PMID: 38243934 DOI: 10.2174/0115680266282489240109050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications, Italian Institute of Technology, 16163, Genova, Italy
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
28
|
Bucher T, Ruimy R, Tsesses S, Dahan R, Bartal G, Vanacore GM, Kaminer I. Free-electron Ramsey-type interferometry for enhanced amplitude and phase imaging of nearfields. SCIENCE ADVANCES 2023; 9:eadi5729. [PMID: 38134276 PMCID: PMC10745688 DOI: 10.1126/sciadv.adi5729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
The complex range of interactions between electrons and electromagnetic fields gave rise to countless scientific and technological advances. A prime example is photon-induced nearfield electron microscopy (PINEM), enabling the detection of confined electric fields in illuminated nanostructures with unprecedented spatial resolution. However, PINEM is limited by its dependence on strong fields, making it unsuitable for sensitive samples, and its inability to resolve complex phasor information. Here, we leverage the nonlinear, overconstrained nature of PINEM to present an algorithmic microscopy approach, achieving far superior nearfield imaging capabilities. Our algorithm relies on free-electron Ramsey-type interferometry to produce orders-of-magnitude improvement in sensitivity and ambiguity-immune nearfield phase reconstruction, both of which are optimal when the electron exhibits a fully quantum behavior. Our results demonstrate the potential of combining algorithmic approaches with state-of-the-art modalities in electron microscopy and may lead to various applications from imaging sensitive biological samples to performing full-field tomography of confined light.
Collapse
Affiliation(s)
- Tomer Bucher
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ron Ruimy
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shai Tsesses
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raphael Dahan
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Guy Bartal
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Giovanni Maria Vanacore
- Department of Material Science, University of Milano-Bicocca, Via Cozzi 55, 20121 Milano, Italy
| | - Ido Kaminer
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
29
|
Lan H, Jamil M, Ke G, Dong N. The role of nanoparticles and nanomaterials in cancer diagnosis and treatment: a comprehensive review. Am J Cancer Res 2023; 13:5751-5784. [PMID: 38187049 PMCID: PMC10767363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer's pathological processes are complex and present several challenges for current chemotherapy methods. These challenges include cytotoxicity, multidrug resistance, the proliferation of cancer stem cells, and a lack of specificity. To address these issues, researchers have turned to nanomaterials, which possess distinct optical, magnetic, and electrical properties due to their size range of 1-100 nm. Nanomaterials have been engineered to improve cancer treatment by mitigating cytotoxicity, enhancing specificity, increasing drug payload capacity, and improving drug bioavailability. Despite a growing corpus of research on this subject, there has been limited progress in permitting nanodrugs for medical use. The advent of nanotechnology, particularly advances in intelligent nanomaterials, has transformed the field of cancer diagnosis and therapy. Nanoparticles' large surface area allows them to successfully encapsulate a large number of molecules. Nanoparticles can be functionalized with various bio-based substrates like RNA, DNA, aptamers, and antibodies, enhancing their theranostic capabilities. Biologically derived nanomaterials offer economical, easily producible, and less toxic alternatives to conventionally manufactured ones. This review offers a comprehensive overview of cancer theranostics methodologies, focusing on intelligent nanomaterials such as metal, polymeric, and carbon-based nanoparticles. I have also critically discussed their benefits and challenges in cancer therapy and diagnostics. Utilizing intelligent nanomaterials holds promise for advancing cancer theranostics, and improving tumor detection and treatment. Further research should optimize nanocarriers for targeted drug delivery and explore enhanced permeability, cytotoxicity, and retention effects.
Collapse
Affiliation(s)
- Hongwen Lan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Gaotan Ke
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|
30
|
Li M, Guo Q, Zhong C, Zhang Z. Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective. Drug Deliv 2023; 30:2288797. [PMID: 38069500 PMCID: PMC10987056 DOI: 10.1080/10717544.2023.2288797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has ignited a transformative revolution in disease detection, prevention, management, and treatment. Central to this paradigm shift is the innovative realm of cell membrane-based nanocarriers, a burgeoning class of biomimetic nanoparticles (NPs) that redefine the boundaries of biomedical applications. These remarkable nanocarriers, designed through a top-down approach, harness the intrinsic properties of cell-derived materials as their fundamental building blocks. Through shrouding themselves in natural cell membranes, these nanocarriers extend their circulation longevity and empower themselves to intricately navigate and modulate the multifaceted microenvironments associated with various diseases. This comprehensive review provides a panoramic view of recent breakthroughs in biomimetic nanomaterials, emphasizing their diverse applications in cancer treatment, cardiovascular therapy, viral infections, COVID-19 management, and autoimmune diseases. In this exposition, we deliver a concise yet illuminating overview of the distinctive properties underpinning biomimetic nanomaterials, elucidating their pivotal role in biomedical innovation. We subsequently delve into the exceptional advantages these nanomaterials offer, shedding light on the unique attributes that position them at the forefront of cutting-edge research. Moreover, we briefly explore the intricate synthesis processes employed in creating these biomimetic nanocarriers, shedding light on the methodologies that drive their development.
Collapse
Affiliation(s)
- Mo Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, China
| | - Qiushi Guo
- Pharmacy Department, First Hospital of Jilin University—the Eastern Division, Changchun, China
| | - Chongli Zhong
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, China
| | - Ziyan Zhang
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
32
|
Díaz-García V, Haensgen A, Inostroza L, Contreras-Trigo B, Oyarzun P. Novel Microsynthesis of High-Yield Gold Nanoparticles to Accelerate Research in Biosensing and Other Bioapplications. BIOSENSORS 2023; 13:992. [PMID: 38131752 PMCID: PMC10742281 DOI: 10.3390/bios13120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit unique properties that make them appealing for applications in biosensing and other emerging fields. Despite the availability of numerous synthesis methods, important questions remain to be addressed regarding the volume effect on the synthesis yield and quality of AuNPs in the light of biosensing research. The present study addresses these issues by developing a novel microvolumetric citrate-reduction method to improve the synthesis of AuNPs, which were characterized by electronic microscopy, energy dispersive spectroscopy, zeta potential and colorimetric analysis. A comparison of the novel microsynthesis method with the standard Turkevich method demonstrated its superior performance in terms of yield, monodispersity, rapidity (in one step), reproducibility, and stability. The analytical behavior of AuNPs-based aptasensors prepared by microsynthesis was investigated using kanamycin detection and showed higher reproducibility and improved detection limits (3.4 times) compared to those of Turkevich AuNPs. Finally, the effect of pH was studied to demonstrate the suitability of the method for the screening of AuNP synthesis parameters that are of direct interest in biosensing research; the results showed an optimal pH range between 5.0 and 5.5. In summary, the approach described herein has the potential to improve research capabilities in biosensing, with the added benefits of lowering costs and minimizing waste generation in line with current trends in green nanotechnology.
Collapse
Affiliation(s)
- Víctor Díaz-García
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| | | | | | | | - Patricio Oyarzun
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| |
Collapse
|
33
|
El-Sheekh MM, AlKafaas SS, Rady HA, Abdelmoaty BE, Bedair HM, Ahmed AA, El-Saadony MT, AbuQamar SF, El-Tarabily KA. How Synthesis of Algal Nanoparticles Affects Cancer Therapy? - A Complete Review of the Literature. Int J Nanomedicine 2023; 18:6601-6638. [PMID: 38026521 PMCID: PMC10644851 DOI: 10.2147/ijn.s423171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
The necessity to engineer sustainable nanomaterials for the environment and human health has recently increased. Due to their abundance, fast growth, easy cultivation, biocompatibility and richness of secondary metabolites, algae are valuable biological source for the green synthesis of nanoparticles (NPs). The aim of this review is to demonstrate the feasibility of using algal-based NPs for cancer treatment. Blue-green, brown, red and green micro- and macro-algae are the most commonly participating algae in the green synthesis of NPs. In this process, many algal bioactive compounds, such as proteins, carbohydrates, lipids, alkaloids, flavonoids and phenols, can catalyze the reduction of metal ions to NPs. In addition, many driving factors, including pH, temperature, duration, static conditions and substrate concentration, are involved to facilitate the green synthesis of algal-based NPs. Here, the biosynthesis, mechanisms and applications of algal-synthesized NPs in cancer therapy have been critically discussed. We also reviewed the effective role of algal synthesized NPs as anticancer treatment against human breast, colon and lung cancers and carcinoma.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hadeer A Rady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Bassant E Abdelmoaty
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Heba M Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abdelhamid A Ahmed
- Plastic Surgery Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
34
|
Mandhata CP, Bishoyi AK, Sahoo CR, Swain S, Bej S, Jali BR, Meher RK, Dubey D, Padhy RN. Investigation of in vitro antimicrobial, antioxidant and antiproliferative activities of Nostoc calcicola biosynthesized gold nanoparticles. Bioprocess Biosyst Eng 2023; 46:1341-1350. [PMID: 37460859 DOI: 10.1007/s00449-023-02905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
The cyanobacteria are the promising candidate for synthesizing gold nanoparticles (AuNPs), due to their ability to accumulate heavy metals from the cellular environment and additionally contain varied bioactive compounds as reducing and stabilizing agents. This study describes the N2-fixing cyanobacterium Nostoc calcicola-mediated bioreduction of AuNPs and the inherent antimicrobial, antioxidant, and antiproliferative activities in vitro. Biosynthesized Nc-AuNPs were characterized by spectral characterization techniques. The formation of AuNPs was physically confirmed by the colour change from pale green to dark violet. The UV-Vis analysis, further, proved the reduction in Nc-AuNPs with the cyanobacterium and showed a spectral peak at 527 nm. FESEM-EDX images suggested the surface morphology of the NPs as spherical, cuboidal, and size between 20 and 140 nm. The antimicrobial studies of Nc-AuNPs were carried out by agar-well diffusion method and MIC values against five pathogenic bacterial and two fungal strains were noted. The AuNPs exhibited potential antimicrobial activity against h-pathogenic bacteria with inhibitory zones ranging at 11-18 mm; against fungi ranging at 13-17 mm. Significant antioxidant potentialities were explored by a DPPH assay with an IC50 value of 55.97 μg/ mL. Furthermore, in the anticancer efficacy assay, the Nc-AuNPs inhibited cellular proliferation in human breast adenocarcinoma and cervical cancer cell lines at IC50 concentration, 37.3 μg/ml, and 44.5 μg/ml, respectively. Conclusively, N. calcicola would be an excellent source for synthesizing stable colloidal AuNPs that had significant credibility as phycological (algal) nanomedicines as novel prodrugs with multiple bioactivities.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences, & Sum Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences, & Sum Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences, & Sum Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Govt. of India, Bhubaneswar, India
| | - Surendra Swain
- Central Research Laboratory, Institute of Medical Sciences, & Sum Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Shuvasree Bej
- Central Research Laboratory, Institute of Medical Sciences, & Sum Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Rajesh Kumar Meher
- Kode Lab, Tumor Immunology and Immunotherapy Group ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Debasmita Dubey
- Medical Research Laboratory, IMS and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences, & Sum Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
35
|
Jiang X, Hu Z, Wang S, Zhang Y. Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers (Basel) 2023; 15:3608. [PMID: 37509272 PMCID: PMC10377683 DOI: 10.3390/cancers15143608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The application of deep learning technology to realize cancer diagnosis based on medical images is one of the research hotspots in the field of artificial intelligence and computer vision. Due to the rapid development of deep learning methods, cancer diagnosis requires very high accuracy and timeliness as well as the inherent particularity and complexity of medical imaging. A comprehensive review of relevant studies is necessary to help readers better understand the current research status and ideas. (2) Methods: Five radiological images, including X-ray, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission computed tomography (PET), and histopathological images, are reviewed in this paper. The basic architecture of deep learning and classical pretrained models are comprehensively reviewed. In particular, advanced neural networks emerging in recent years, including transfer learning, ensemble learning (EL), graph neural network, and vision transformer (ViT), are introduced. Five overfitting prevention methods are summarized: batch normalization, dropout, weight initialization, and data augmentation. The application of deep learning technology in medical image-based cancer analysis is sorted out. (3) Results: Deep learning has achieved great success in medical image-based cancer diagnosis, showing good results in image classification, image reconstruction, image detection, image segmentation, image registration, and image synthesis. However, the lack of high-quality labeled datasets limits the role of deep learning and faces challenges in rare cancer diagnosis, multi-modal image fusion, model explainability, and generalization. (4) Conclusions: There is a need for more public standard databases for cancer. The pre-training model based on deep neural networks has the potential to be improved, and special attention should be paid to the research of multimodal data fusion and supervised paradigm. Technologies such as ViT, ensemble learning, and few-shot learning will bring surprises to cancer diagnosis based on medical images.
Collapse
Grants
- RM32G0178B8 BBSRC
- MC_PC_17171 MRC, UK
- RP202G0230 Royal Society, UK
- AA/18/3/34220 BHF, UK
- RM60G0680 Hope Foundation for Cancer Research, UK
- P202PF11 GCRF, UK
- RP202G0289 Sino-UK Industrial Fund, UK
- P202ED10, P202RE969 LIAS, UK
- P202RE237 Data Science Enhancement Fund, UK
- 24NN201 Fight for Sight, UK
- OP202006 Sino-UK Education Fund, UK
- RM32G0178B8 BBSRC, UK
- 2023SJZD125 Major project of philosophy and social science research in colleges and universities in Jiangsu Province, China
Collapse
Affiliation(s)
- Xiaoyan Jiang
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
36
|
Ahmed MM, Ameen MSM, Abazari M, Badeleh SM, Rostamizadeh K, Mohammed SS. Chitosan-decorated and tripolyphosphate-crosslinked pH-sensitive niosomal nanogels for Controlled release of fluoropyrimidine 5-fluorouracil. Biomed Pharmacother 2023; 164:114943. [PMID: 37267634 DOI: 10.1016/j.biopha.2023.114943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
In the present study, 5-fluorouracil-loaded niosomal nanoparticles were successfully prepared and coated with chitosan and subsequently crosslinked by tripolyphosphate to form niosomal nanogels. The prepared niosomal formulations were fully characterized for their particle size, zeta potential, particle morphology, drug entrapment efficiency, and in vitro drug release profile. The prepared niosomal nanocarriers exhibited nanoscale particle sizes of 165.35 ± 2.75-322.85 ± 2.75 nm. Chitosan-coated and TPP-crosslinked niosomes exhibited a slightly decreased in particle size and a switch of zeta potential from negative to positive values. In addition, high yield percentage, drug encapsulation efficiency, and drug loading values of 92.11 ± 2.07 %, 66.59 ± 6.06, and 4.65 ± 0.5 were obtained for chitosan-coated formulations, respectively. Moreover, lowering the rate of 5-FU in vitro release was achieved within 72 h by using chitosan-coated formulations. All prepared formulations revealed hemocompatible properties in hemolysis assay with less than 5 % hemolysis percentage at their higher possible concentrations (500 µM and 1 mM). The cell viability by MTT assay showed higher anticancer activity against B16F10 cancerous cells and lower cytotoxicity toward NIH3T3 normal cells than control and pure 5-FU in the studied concentration range (10-100 µM). Investigating the cell migration inhibition properties of fabricated formulations revealed similar results with in vitro cell viability assay with a higher migration inhibition rate for B16F10 cells than NIH3T3 cells, controls, and free 5-FU.
Collapse
Affiliation(s)
- Mohammed Mahmood Ahmed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| | | | - Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Safa Momeni Badeleh
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral sciences, Department of Pharmacology, School of medicine, University of Washington, WA, USA.
| | - Shahen Salih Mohammed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| |
Collapse
|
37
|
Majumdar R, Kar PK. Biosynthesis, characterization and anthelmintic activity of silver nanoparticles of Clerodendrum infortunatum isolate. Sci Rep 2023; 13:7415. [PMID: 37150767 PMCID: PMC10164746 DOI: 10.1038/s41598-023-34221-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
Over the past few decades, the green synthesis of nanoparticles has gained importance for their therapeutic efficacy and eco-friendly nature. Integrating green chemistry principles into multidisciplinary nanoscience research has paved the way for developing environmentally benign and sustainable methods for synthesizing gold and silver nanoparticles. In the present study, the flowers obtained from Clerodendrum infortunatum (L.), belonging to the family Verbenaceae, have been used for biosynthesizing silver nanoparticles (AgNPs) to evaluate the anthelmintic potential. UV-Vis spectroscopy, XRD, FTIR, SEM and TEM analyses were performed to ascertain the formation of AgNPs. Clerodendrum-derived AgNP (CLE-AgNP) has significantly affected the normal physiological functions of the poultry parasite Raillietina spp., a menace to the livestock industry. Our study manifests that CLE-AgNPs cause considerable distortion of the surface tegument of this cestode parasite leading to changes in the host-parasite interface. The histochemical localization studies of the tegument-associated enzymes viz. AcPase, AlkPase, ATPase and 5'-Nu, exposed to the drug, showed a substantial activity decline, thus establishing the anthelmintic potential of the CLE-AgNPs.
Collapse
Affiliation(s)
- Rima Majumdar
- Parasitology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Vivekananda Street, Cooch Behar, 736101, West Bengal, India
| | - Pradip Kumar Kar
- Parasitology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Vivekananda Street, Cooch Behar, 736101, West Bengal, India.
| |
Collapse
|
38
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
39
|
Wang L. Editorial for Special Issue "Cancer Treatment via Nanotherapy". NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1153. [PMID: 37049247 PMCID: PMC10096838 DOI: 10.3390/nano13071153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Effective cancer treatment remains one of the greatest medical challenges [...].
Collapse
Affiliation(s)
- Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; ; Tel.: +1-613-562-5624
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
40
|
Chota A, George BP, Abrahamse H. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:4808. [PMID: 36902238 PMCID: PMC10003542 DOI: 10.3390/ijms24054808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Globally, cancer is one of the leading causes of death among men and women, it is characterized by the unregulated proliferation of tumor cells. Some of the common risk factors associated with cancer development include the consistent exposure of body cells to carcinogenic agents such as alcohol, tobacco, toxins, gamma rays and alpha particles. Besides the above-mentioned risk factors, conventional therapies such as radiotherapy, and chemotherapy have also been linked to the development of cancer. Over the past decade, tremendous efforts have been invested in the synthesis of eco-friendly green metallic nanoparticles (NPs), and their medical application. Comparatively, metallic NPs have greater advantages over conventional therapies. Additionally, metallic NPs can be functionalized with different targeting moieties e.g., liposomes, antibodies, folic acid, transferrin, and carbohydrates. Herein, we review and discuss the synthesis, and therapeutic potential of green synthesized metallic NPs for enhanced cancer photodynamic therapy (PDT). Finally, the advantages of green hybridized activatable NPs over conventional photosensitizers (PSs) and the future perspectives of nanotechnology in cancer research are discussed in the review. Furthermore, we anticipate that the insights offered in this review will inspire the design and development of green nano-formulations for enhanced image-guided PDT in cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| | | |
Collapse
|
41
|
Devendrapandi G, I Sahay M, Padmanaban D, Panneerselvam A, Palraj R, Thanikasalam R, kuppan S, Sadaiyandi V, Balu R, Rajendiran N. Biogenic Synthesis of Gold Nanoparticles using Bael Fruit Juice and its efficacy against human A-549 lung cancer cell line. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
42
|
Yang ML, Huang YJ, Lin YC, Lin YH, Hung TT, Shiau AL, Cheng HC, Wu CL. Multivalent dipeptidyl peptidase IV fragment-nanogold complex inhibits cancer metastasis by blocking pericellular fibronectin. BIOMATERIALS ADVANCES 2023; 148:213357. [PMID: 36871348 DOI: 10.1016/j.bioadv.2023.213357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Inhibition of cancer metastasis is a fundamental challenge in cancer treatment. We have previously shown that metastasis of cancer cells in the lung is critically promoted by the interaction between the superficial dipeptidyl peptidase IV (DPP IV) expressed on lung endothelial cells and the pericellular polymeric fibronectin (polyFN) of circulating cancer cells. In the present study, we aimed to search for DPP IV fragments with high avidity to polyFN and develop FN-targeted gold nanoparticles (AuNPs) conjugated with DPP IV fragments for treating cancer metastasis. We first identified a DPP IV fragment encompassing amino acids 29-130 of DPP IV, designated DP4A, which contained FN-binding sites and could specifically bind to FN immobilized on gelatin agarose beads. Furthermore, we conjugated maltose binding protein (MBP)-fused DP4A proteins to AuNPs for fabricating a DP4A-AuNP complex and evaluated its FN-targeted activity in vitro and anti-metastatic efficacy in vivo. Our results show that DP4A-AuNP exhibited higher binding avidity to polyFN than DP4A by 9 folds. Furthermore, DP4A-AuNP was more potent than DP4A in inhibiting DPP IV binding to polyFN. In terms of polyFN-targeted effect, DP4A-AuNP interacted with FN-overexpressing cancer cells and was endocytosed into cells 10 to 100 times more efficiently than untargeted MBP-AuNP or PEG-AuNP with no noticeable cytotoxicity. Furthermore, DP4A-AuNP was superior to DP4A in competitive inhibition of cancer cell adhesion to DPP IV. Confocal microscopy analysis revealed that binding of DP4A-AuNP to pericellular FN induced FN clustering without altering its surface expression on cancer cells. Notably, intravenous treatment with DP4A-AuNP significantly reduced metastatic lung tumor nodules and prolonged the survival in the experimental metastatic 4T1 tumor model. Collectively, our findings suggest that the DP4A-AuNP complex with potent FN-targeted effects may have therapeutic potential for prevention and treatment of tumor metastasis to the lung.
Collapse
Affiliation(s)
- Mei-Lin Yang
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Jang Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chuan Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Hsiu Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Ting Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
43
|
Malik S, Niazi M, Khan M, Rauff B, Anwar S, Amin F, Hanif R. Cytotoxicity Study of Gold Nanoparticle Synthesis Using Aloe vera, Honey, and Gymnema sylvestre Leaf Extract. ACS OMEGA 2023; 8:6325-6336. [PMID: 36844542 PMCID: PMC9947984 DOI: 10.1021/acsomega.2c06491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Gold nanoparticles (AuNPs) have gained importance in the field of biomedical research and diagnostics due to their unique physicochemical properties. This study aimed to synthesize AuNPs using Aloe vera extract, honey, and Gymnema sylvestre leaf extract. Physicochemical parameters for the optimal synthesis of AuNPs were determined using 0.5, 1, 2, and 3 mM of gold salt at varying temperatures from 20 to 50 °C. X-ray diffraction was used to evaluate the crystal structure of AuNPs, which came out to be a face-centered cubic structure. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis confirmed the size and shape of AuNPs between 20 and 50 nm from the Aloe vera, honey, and Gymnema sylvestre, as well as large-sized nanocubes in the case of honey, with 21-34 wt % of gold content. Furthermore, Fourier transform infrared spectroscopy confirmed the presence of a broadband of amine (N-H) and alcohol groups (O-H) on the surface of the synthesized AuNPs that prevents them from agglomeration and provides stability. Broad and weak bands of aliphatic ether (C-O), alkane (C-H), and other functional groups were also found on these AuNPs. DPPH antioxidant activity assay showed a high free radical scavenging potential. The most suited source was selected for further conjugation with three anticancer drugs including 4-hydroxy Tamoxifen, HIF1 alpha inhibitor, and the soluble Guanylyl Cyclase Inhibitor 1 H-[1,2,4] oxadiazolo [4,3-alpha]quinoxalin-1-one (ODQ). Evidence of the pegylated drug conjugation with AuNPs was reinforced by ultraviolet/visible spectroscopy. These drug-conjugated nanoparticles were further checked on MCF7 and MDA-MB-231 cells for their cytotoxicity. These AuNP-conjugated drugs can be a good candidate for breast cancer treatment that will lead toward safe, economical, biocompatible, and targeted drug delivery systems.
Collapse
Affiliation(s)
- Shiza Malik
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Maha Niazi
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Maham Khan
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Bisma Rauff
- Department
of Biomedical Engineering, University of
Engineering and Technology (UET), Lahore53400, Pakistan
| | - Sidra Anwar
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Faheem Amin
- Department
of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad46000, Pakistan
| | - Rumeza Hanif
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| |
Collapse
|
44
|
Navada MK, Karnikkar NG, D'Souza JN, Kouser S, Aroor G, Kudva J, Jayappa MD. Biosynthesis of phyto functionalized cerium oxide nanoparticles mediated from Scoparia dulsis L. for appraisal of anti-cancer potential against adenocarcinomic lung cancer cells and paracetamol sensing potentiality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18901-18920. [PMID: 36217050 DOI: 10.1007/s11356-022-23500-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
This research work aims at the eco-friendly preparation of cerium oxide nanoparticles (CeSD NPs) utilizing the natural extract of Scoparia dulsis L. An attempt was made to analyze the influence of the fuel load on the size, shape, and optical properties of the nanoparticles. The p-XRD studies revealed the controlled formation of NPs with a size not more than 12.74 nm. The surface area studies appraise the mesoporous nature of the synthesized ceria particles, with the maximum specific surface area of 36.06 m2g-1. The nano-regime CeO2 nanoparticles had a definite impact on biomedical and electrochemical studies. The CeSD NPs with minuscule size (10.69 nm) manifested promising antioxidant and human RBC protection activity. The antioxidant properties were evaluated using % DPPH inhibition with of maximum of 83.38. The stabilization of RBC's by CeSD NPs was maximum at 94.97%. However, the CeSD NPs with apparent size (12.74 nm) that utilized greater volume fuel (25 mL) had noticeable results on adenocarcinomic lung (A549) cancer cell viability and antidiabetic study which was maximum of 70.16% at concentration 500 μg/mL. A satisfactory antibacterial application was proffered against chosen bacterial stains. The smallest size CeO2 NPs exhibited the best proton diffusion coefficient (8.16 × 10-6 cm2s-1), and the capacitance values of the CeSD NPs are near in all samples (~ 1.17 to 2.00 F) manifest their compact nano-regime sizes. The paracetamol drug was chosen as analyte to appreciating the superlative efficiency for sensing paracetamol drug with the lowest detection limit.
Collapse
Affiliation(s)
- Meghana K Navada
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - Nagaraja G Karnikkar
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, 574199, Karnataka, India.
| | - Josline Neetha D'Souza
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - Sabia Kouser
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - Ganesha Aroor
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jyothi Kudva
- Department of Chemistry, St Joseph Engineering College, Mangaluru, 575028, Karnataka, India
| | - Manasa D Jayappa
- Department of Studies in Botany, Davangere University, Shivagangothri, Davangere, 577007, Karnataka, India
| |
Collapse
|
45
|
Tumor vasculature VS tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
46
|
Asl SS, Tafvizi F, Noorbazargan H. Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: a potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20168-20184. [PMID: 36251187 DOI: 10.1007/s11356-022-23507-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drug resistance of cancer cells is a major issue in cancer treatment. Plant-mediated nanoparticle synthesis has been applied in recent years to overcome this problem. In this study, the biogenic synthesis of AuNPs was explored using Satureja rechingeri Jamzad aqueous leaf extract, and their anticancer effects were evaluated in cisplatin-resistant A2780CP ovarian cancer cells. The chemical composition of S. rechingeri Jamzad was analyzed using gas chromatography-mass spectrometry. The characteristics of green-synthesized AuNPs were confirmed using XRD, FTIR, UV-visible spectroscopy, TEM, SEM, EDX, DLS, and zeta potential. The cytotoxic effects of AuNPs and S. rechingeri Jamzad aqueous extract on cisplatin-resistant A2780CP ovarian cancer cells were evaluated by MTT assay and flow cytometry. Real-time PCR analyzed gene expression. The chemical composition revealed that carvacrol (89%) was the main component of the S. rechingeri Jamzad extract. The average size of the spherical biosynthesized AuNPs was 15.1 ± 3.7 nm. The AuNPs and plant extract inhibited the growth of cisplatin-resistant ovarian cancer cells in a time- and dose-dependent manner. The apoptotic cell death was confirmed by flow cytometry and DAPI staining. The proapoptotic genes were upregulated, while anti-apoptotic and metastatic genes were downregulated. According to the cell cycle analysis, cancer cells were arrested in the G0/G1 phase. Considering the anticancer activity of the synthesized AuNPs using S. rechingeri Jamzad and the low side effects of AuNPs on normal cells, these AuNPs showed strong potential for use as biological agents in drug-resistant cancer cells treatment.
Collapse
Affiliation(s)
- Sahar Sadeghi Asl
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Biological Use of Nanostructured Silica-Based Materials Functionalized with Metallodrugs: The Spanish Perspective. Int J Mol Sci 2023; 24:ijms24032332. [PMID: 36768659 PMCID: PMC9917151 DOI: 10.3390/ijms24032332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Since the pioneering work of Vallet-Regí's group on the design and synthesis of mesoporous silica-based materials with therapeutic applications, during the last 15 years, the potential use of mesoporous silica nanostructured materials as drug delivery vehicles has been extensively explored. The versatility of these materials allows the design of a wide variety of platforms that can incorporate numerous agents of interest (fluorophores, proteins, drugs, etc.) in a single scaffold. However, the use of these systems loaded with metallodrugs as cytotoxic agents against different diseases and with distinct therapeutic targets has been studied to a much lesser extent. This review will focus on the work carried out in this field, highlighting both the pioneering and recent contributions of Spanish groups that have synthesized a wide variety of systems based on titanium, tin, ruthenium, copper and silver complexes supported onto nanostructured silica. In addition, this article will also discuss the importance of the structural features of the systems for evaluating and modulating their therapeutic properties. Finally, the most interesting results obtained in the study of the potential therapeutic application of these metallodrug-functionalized silica-based materials against cancer and bacteria will be described, paying special attention to preclinical trials in vivo.
Collapse
|
48
|
Micro-/Nano-Carboxymethyl Cellulose as a Promising Biopolymer with Prospects in the Agriculture Sector: A Review. Polymers (Basel) 2023; 15:polym15020440. [PMID: 36679320 PMCID: PMC9860740 DOI: 10.3390/polym15020440] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The increase in the population rate has increased the demand for safe and quality food products. However, the current agricultural system faces many challenges in producing vegetables and fruits. Indiscriminate use of pesticides and fertilizers, deficiency of water resources, short shelf life of products postharvest, and nontargeted delivery of agrochemicals are the main challenges. In this regard, carboxymethyl cellulose (CMC) is one of the most promising materials in the agriculture sector for minimizing these challenges due to its mechanical strength, viscosity, wide availability, and edibility properties. CMC also has high water absorbency; therefore, it can be used for water deficiency (as superabsorbent hydrogels). Due to the many hydroxyl groups on its surface, this substance has high efficacy in removing pollutants, such as pesticides and heavy metals. Enriching CMC coatings with additional substances, such as antimicrobial, antibrowning, antioxidant, and antisoftening materials, can provide further novel formulations with unique advantages. In addition, the encapsulation of bioactive materials or pesticides provides a targeted delivery system. This review presents a comprehensive overview of the use of CMC in agriculture and its applications for preserving fruit and vegetable quality, remediating agricultural pollution, preserving water sources, and encapsulating bioactive molecules for targeted delivery.
Collapse
|
49
|
Bhandari M, Raj S, Kumar A, Kaur DP. Bibliometric analysis on exploitation of biogenic gold and silver nanoparticles in breast, ovarian and cervical cancer therapy. Front Pharmacol 2022; 13:1035769. [PMID: 36618941 PMCID: PMC9818348 DOI: 10.3389/fphar.2022.1035769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Multifunctional nanoparticles are being formulated to overcome the side effects associated with anticancer drugs as well as conventional drug delivery systems. Cancer therapy has gained the advancement due to various pragmatic approaches with better treatment outcomes. The metal nanostructures such as gold and silver nanoparticles accessible via eco-friendly method provide amazing characteristics in the field of diagnosis and therapy towards cancer diseases. The environmental friendly approach has been proposed as a substitute to minimize the use of hazardous compounds associated in chemical synthesis of nanoparticles. In this attempt, researchers have used various microbes, and plant-based agents as reducing agents. In the last 2 decades various papers have been published emphasizing the benefits of the eco-friendly approach and advantages over the traditional method in the cancer therapy. Despite of various reports and published research papers, eco-based nanoparticles do not seem to find a way to clinical translation for cancer treatment. Present review enumerates the bibliometric data on biogenic silver and gold nanoparticles from Clarivate Analytics Web of Science (WoS) and Scopus for the duration 2010 to 2022 for cancer treatment with a special emphasis on breast, ovarian and cervical cancer. Furthermore, this review covers the recent advances in this area of research and also highlights the obstacles in the journey of biogenic nanodrug from clinic to market.
Collapse
Affiliation(s)
- Meena Bhandari
- Department of Chemistry, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India
| | - Seema Raj
- Department of Chemistry, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India,*Correspondence: Seema Raj, ,
| | - Ashwani Kumar
- Department of Computer Sciences, School of Engineering and Technology, K.R Mangalam University, Gurugram, India
| | - Dilraj Preet Kaur
- Department of Physics, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India
| |
Collapse
|
50
|
Damavandi AR, Mirmosayyeb O, Ebrahimi N, Zalpoor H, khalilian P, Yahiazadeh S, Eskandari N, Rahdar A, Kumar PS, Pandey S. Advances in nanotechnology versus stem cell therapy for the theranostics of multiple sclerosis disease. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|