1
|
Bess SN, Igoe MJ, Muldoon TJ. The Physiological and Therapeutic Role of CD47 in Macrophage Function and Cancer. Immunol Invest 2025; 54:112-146. [PMID: 39415597 PMCID: PMC11774679 DOI: 10.1080/08820139.2024.2415409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Immunotherapy is an emerging strategy in cancer therapeutics aimed at modulating the immune system to inhibit pro-tumor pathways and increase a tumor's sensitivity to chemotherapy. Several clinically approved immunotherapy treatments, such as monoclonal antibody treatments, have been successful in solid tumors such as breast, colorectal, and pancreatic. However, an outstanding challenge of these strategies is tumor cell resistance. One target of interest for immune cell modulation is targeting macrophages that enter the tumor microenvironment. More specifically, an immune checkpoint of interest is CD47. CD47 is a transmembrane protein that inhibits phagocytic activity by acting as a "don't eat me" signal. In both mice and humans, healthy cells can express CD47, while solid malignancies like colorectal and breast cancer express it most strongly. METHODS Analysis of literature data on the physiological and functional roles of tissue-resident macrophages, along with the structure and mechanisms of action of the CD47 pathway was explored. We also explored how CD47 can influence different aspects of the tumor microenvironment (i.e. cellular metabolism and hypoxia) in addition to current clinical strategies and challenges associated with targeting CD47. RESULTS Overall, it was discovered that CD47 is overexpressed in a variety of cancer types in addition to normal tissue, making it a promising treatment regimen to enhance the capability of macrophages to phagocytose tumor cells. However, treatment efficacy is varied in pre-clinical and clinical models due to various challenges such as off-target effects. CONCLUSION This review emphasizes the diverse functionality of macrophages in normal and cancerous tissue, while also emphasizing the importance of macrophage targeting and their clinical significance.
Collapse
Affiliation(s)
- Shelby N. Bess
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Matthew J. Igoe
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
2
|
Wu Y, Wang Y, Mo T, Liu Q. Surface-enhanced Raman scattering-based strategies for tumor markers detection: A review. Talanta 2024; 280:126717. [PMID: 39167940 DOI: 10.1016/j.talanta.2024.126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The presence of malignant tumors poses a significant threat to people's life and well-being. As biochemical parameters indicate the occurrence and development of tumors, tumor markers play a pivotal role in early cancer detection, treatment, prognosis, efficient monitoring, and other aspects. Surface-enhanced Raman scattering (SERS) is considered a potent tool for the detection of tumor markers owing to its exceptional advantages encompassing high sensitivity, superior selectivity, rapid analysis speed, and photobleaching resistance nature. This review aims to provide a comprehensive understanding of SERS applications in the detection of tumor markers. Firstly, we introduce the SERS enhancement mechanism, classification of active substrates, and SERS detection techniques. Secondly, the latest research progress of in vitro SERS detection of different types of tumor markers in body fluids and the application of SERS imaging in biomedical imaging are highlighted in sections of the review. Finally, according to the current status of SERS detection of tumor markers, the challenges and problems of SERS in biomedical detection are discussed, and insights into future developments in SERS are offered.
Collapse
Affiliation(s)
- Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yinglin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
4
|
Liu X, Jia Y, Zheng C. Recent progress in Surface-Enhanced Raman Spectroscopy detection of biomarkers in liquid biopsy for breast cancer. Front Oncol 2024; 14:1400498. [PMID: 39040452 PMCID: PMC11260621 DOI: 10.3389/fonc.2024.1400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women globally and a leading cause of cancer-related mortality. However, current detection methods, such as X-rays, ultrasound, CT scans, MRI, and mammography, have their limitations. Recently, with the advancements in precision medicine and technologies like artificial intelligence, liquid biopsy, specifically utilizing Surface-Enhanced Raman Spectroscopy (SERS), has emerged as a promising approach to detect breast cancer. Liquid biopsy, as a minimally invasive technique, can provide a temporal reflection of breast cancer occurrence and progression, along with a spatial representation of overall tumor information. SERS has been extensively employed for biomarker detection, owing to its numerous advantages such as high sensitivity, minimal sample requirements, strong multi-detection ability, and controllable background interference. This paper presents a comprehensive review of the latest research on the application of SERS in the detection of breast cancer biomarkers, including exosomes, circulating tumor cells (CTCs), miRNA, proteins and others. The aim of this review is to provide valuable insights into the potential of SERS technology for early breast cancer diagnosis.
Collapse
Affiliation(s)
- Xiaobei Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yining Jia
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| |
Collapse
|
5
|
Zhang M, Wang Y, Song Z, Lu Y, Zhao H, Wang Y, Lu P, Liu Y. Recent Progress of Bioinspired Cell Membrane in Cancer Immunotherapy. Clin Med Insights Oncol 2024; 18:11795549241236896. [PMID: 38645894 PMCID: PMC11032066 DOI: 10.1177/11795549241236896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 04/23/2024] Open
Abstract
By modifying immune cells, immunotherapy can activate immune response to establish long-term immune memory and prevent tumor recurrence. However, their effectiveness is largely constricted by the poor immunogenicity, immune escape, and immune tolerance of the tumor. This is related to the characteristics of the tumor itself, such as genome instability and mutation. The combination of various nanocarriers with tumor immunotherapy is beneficial for overcoming the shortcomings of traditional immunotherapy. Nanocarriers coated by cell membranes can extend blood circulation time, improve ability to evade immune clearance, and enhance targeting, thus significantly enhancing the efficacy of immunotherapy and showing great potential in tumor immunotherapy. This article reviews the application research progress of different types of cell membrane-modified nanocarriers in tumor immunotherapy, immunotherapy combination therapy, and tumor vaccines, and provides prospects for future research.
Collapse
Affiliation(s)
- Min Zhang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yuanhang Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhiyuan Song
- Department of Ultrasound Medicine, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yimeng Lu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Houyu Zhao
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yihan Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ping Lu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
6
|
Bagheri P, Eremina OE, Fernando A, Kamal M, Stegis I, Vazquez C, Shishido SN, Kuhn P, Zavaleta C. A Systematic Approach toward Enabling Maximal Targeting Efficiency of Cell Surface Proteins with Actively Targeted SERS Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15847-15860. [PMID: 38507685 DOI: 10.1021/acsami.3c18959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
With their intricate design, nanoparticles (NPs) have become indispensable tools in the quest for precise cellular targeting. Among various NPs, gold NPs stand out with unique features such as chemical stability, biocompatibility, adjustable shape, and size-dependent optical properties, making them particularly promising for molecular detection by leveraging the surface-enhanced Raman scattering (SERS) effect. Their multiplexing abilities for the simultaneous identification of multiple biomarkers are important in the rapidly evolving landscape of diverse cellular phenotypes and biomolecular profiling. However, the challenge is ensuring that SERS NPs can effectively target specific cells and biomarkers among intricate cell types and biomolecules with high specificity. In this study, we improve the functionalization of SERS NPs, optimizing their targeting efficiency in cellular applications for ca. 160 nm NP-based probes. Spherical SERS NPs, conjugated with antibodies targeting epidermal growth factor receptor and human epidermal growth factor receptor 2, were incubated with cells overexpressing these proteins, and their specific binding potential was quantified at each stage by using flow cytometry to achieve optimal targeting efficiency. We determined that maintaining an average of 3.5 × 105 thiols per NP, 300 antibodies per NP, 18,000 NPs per cell, conducting a 15 min staining incubation at 4 °C in a shaker, and using SM(PEG)12 as a cross-linker for the NP conjugation were crucial to achieve the highest targeting efficiency. Fluorescence and Raman imaging were used with these parameters to observe the maximum ability of these NPs to efficiently target suspended cells. These highly sensitive contrast agents demonstrate their pivotal role in effective active targeting, making them invaluable for multiplexing applications across diverse biological environments.
Collapse
Affiliation(s)
- Pegah Bagheri
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Mohamed Kamal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Ingus Stegis
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Nicolson F, Andreiuk B, Lee E, O’Donnell B, Whitley A, Riepl N, Burkhart DL, Cameron A, Protti A, Rudder S, Yang J, Mabbott S, Haigis KM. In vivo imaging using surface enhanced spatially offset raman spectroscopy (SESORS): balancing sampling frequency to improve overall image acquisition. NPJ IMAGING 2024; 2:7. [PMID: 38939049 PMCID: PMC11210722 DOI: 10.1038/s44303-024-00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/08/2024] [Indexed: 06/29/2024]
Abstract
In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 μm to 400 μm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm2) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorter time frames than previously reported, identify regions of interest, and then image the same area with greater resolution using a higher sampling frequency. Moreover, using a SESORRS approach, we demonstrate that it is possible to detect secondary, deeper-seated lesions through the intact skull.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
- Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Eunah Lee
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
| | - Bridget O’Donnell
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
- Honeywell International Inc., Fort Washington, PA 19034, USA
| | - Andrew Whitley
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
| | - Nicole Riepl
- College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Deborah L. Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Amy Cameron
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Andrea Protti
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Scott Rudder
- Innovative Photonic Solutions, Monmouth Junction, Plainsboro Township, NJ 08852, USA
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Samuel Mabbott
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX 77840, USA
- Center for Remote Health Technologies & Systems, Texas A & M Engineering Experiment Station, 600 Discovery Drive, College Station, TX 77840, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Alabrahim OAA, Azzazy HMES. Synergistic anticancer effect of Pistacia lentiscus essential oils and 5-Fluorouracil co-loaded onto biodegradable nanofibers against melanoma and breast cancer. DISCOVER NANO 2024; 19:27. [PMID: 38353827 PMCID: PMC10866856 DOI: 10.1186/s11671-024-03962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Chemoresistance and severe toxicities represent major drawbacks of chemotherapy. Natural extracts, including the essential oils of Pistacia lentiscus (PLEO), exhibit substantial anticancer and anti-inflammatory activities where different cancers are reported to dramatically recess following targeting with PLEO. PLEO has promising antimicrobial, anticancer, and anti-inflammatory properties. However, the therapeutic properties of PLEO are restricted by limited stability, bioavailability, and targeting ability. PLEO nanoformulation can maximize their physicochemical and therapeutic properties, overcoming their shortcomings. Hence, PLEO was extracted and its chemical composition was determined by GC-MS. PLEO and 5-Fluorouracil (5FU) were electrospun into poly-ε-caprolactone nanofibers (PCL-NFs), of 290.71 nm to 680.95 nm diameter, to investigate their anticancer and potential synergistic activities against triple-negative breast cancer cells (MDA-MB-231), human adenocarcinoma breast cancer cells (MCF-7), and human skin melanoma cell line (A375). The prepared nanofibers (NFs) showed enhanced thermal stability and remarkable physical integrity and tensile strength. Biodegradability studies showed prolonged stability over 42 days, supporting the NFs use as a localized therapy of breast tissues (postmastectomy) or melanoma. Release studies revealed sustainable release behaviors over 168 h, with higher released amounts of 5FU and PLEO at pH 5.4, indicating higher targeting abilities towards cancer tissues. NFs loaded with PLEO showed strong antioxidant properties. Finally, NFs loaded with either PLEO or 5FU depicted greater anticancer activities compared to free compounds. The highest anticancer activities were observed with NFs co-loaded with PLEO and 5FU. The developed 5FU-PLEO-PCL-NFs hold potential as a local treatment of breast cancer tissues (post-mastectomy) and melanoma to minimize their possible recurrence.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt.
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, Germany.
| |
Collapse
|
9
|
Eremina OE, Schaefer S, Czaja AT, Awad S, Lim MA, Zavaleta C. Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications. Analyst 2023; 148:5915-5925. [PMID: 37850265 PMCID: PMC10947999 DOI: 10.1039/d3an01298k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Multiplexed imaging, which allows for the interrogation of multiple molecular features simultaneously, is vital for addressing numerous challenges across biomedicine. Optically unique surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to serve as a vehicle to achieve highly multiplexed imaging in a single acquisition, which is non-destructive, quantitative, and simple to execute. When using laser excitation at 785 nm, which allows for a lower background from biological tissues, near infrared (NIR) dyes can be used as Raman reporters to provide high Raman signal intensity due to the resonance effect. This class of imaging agents are known as surface-enhanced resonance Raman scattering (SERRS) NPs. Investigators have predominantly utilized two classes of Raman reporters in their nanoparticle constructs for use in biomedical applications: NIR-resonant and non-resonant Raman reporters. Herein, we investigate the multiplexing potential of five non-resonant SERS: BPE, 44DP, PTT, PODT, and BMMBP, and five NIR resonant SERRS NP flavors with heptamethine cyanine dyes: DTTC, IR-770, IR-780, IR-792, and IR-797, which have been extensively used for biomedical imaging applications. Although SERRS NPs display high Raman intensities, due to their resonance properties, we observed that non-resonant SERS NP concentrations can be quantitated by the intensity of their unique emissions with higher accuracy. Spectral unmixing of five-plex mixtures revealed that the studied non-resonant SERS NPs maintain their detection limits more robustly as compared to the NIR resonant SERRS NP flavors when introducing more components into a mixture.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Sarah Schaefer
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Alexander T Czaja
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Samer Awad
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Matthew A Lim
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Li Q, Huo H, Wu Y, Chen L, Su L, Zhang X, Song J, Yang H. Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202051. [PMID: 36683237 PMCID: PMC10015885 DOI: 10.1002/advs.202202051] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a feasible and ultra-sensitive method for biomedical imaging and disease diagnosis. SERS is widely applied to in vivo imaging due to the development of functional nanoparticles encoded by Raman active molecules (SERS nanoprobes) and improvements in instruments. Herein, the recent developments in SERS active materials and their in vivo imaging and biosensing applications are overviewed. Various SERS substrates that have been successfully used for in vivo imaging are described. Then, the applications of SERS imaging in cancer detection and in vivo intraoperative guidance are summarized. The role of highly sensitive SERS biosensors in guiding the detection and prevention of diseases is discussed in detail. Moreover, its role in the identification and resection of microtumors and as a diagnostic and therapeutic platform is also reviewed. Finally, the progress and challenges associated with SERS active materials, equipment, and clinical translation are described. The present evidence suggests that SERS could be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Hongqi Huo
- Department of Nuclear MedicineHan Dan Central HospitalHandanHebei056001P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| |
Collapse
|
11
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
12
|
Is the new angel better than the old devil? Challenges and opportunities in CD47- SIRPα-based cancer therapy. Crit Rev Oncol Hematol 2023; 184:103939. [PMID: 36774991 DOI: 10.1016/j.critrevonc.2023.103939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The efficacy of immunotherapies is limited due to the impenetrable nature of the tumor microenvironment (TME). The TME of many tumors is immune-privileged, thus allowing them to evade host immunosurveillance. One mechanism through which this occurs is via the overexpression of CD47, a 'don't eat me' protein that can interact with SIRPα on myeloid cells to suppress their phagocytic action. In recent times, many studies are focusing on CD47-SIRPα-dependent immunotherapies to incite a 'seek and eat' interaction between phagocytes and tumors. Thus, in this review, we highlight the basic molecular properties and mechanisms of CD47-SIRPα cascade. In addition, we discuss the major challenges and potential remedies associated with CD47-SIRPα-based immunotherapies.
Collapse
|
13
|
Jayan H, Sun DW, Pu H, Wei Q. Mesoporous silica coated core-shell nanoparticles substrate for size-selective SERS detection of chloramphenicol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121817. [PMID: 36084581 DOI: 10.1016/j.saa.2022.121817] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
With the growing popularity of the non-destructive technique, surface-enhanced Raman spectroscopy (SERS) demands a highly sensitive and reproducible plasmonic nanoparticles substrate. In this study, a novel bimetallic core-shell nanoparticles (Au@Ag@mSiO2NP) substrate consisting of a gold core, silver shell, and a mesoporous silica coating was synthesized. The mesoporous coating structure was created by employing template molecules such as surfactant and their subsequent removal allowing selective screening based on the size of analyte molecules. Results showed that the plasmonic substrate could selectively enhance small molecules by preventing large macromolecules to reach the exciting zone of the substrate core, achieving the detection of chloramphenicol in milk samples with a detection limit of 6.68 × 10-8 M. Moreover, the mesoporous coating provided additional stability to the Au@Ag nanoparticles, leading to the reusability of the substrate. Thus, this work offered a simple and smart Au@Ag@mSiO2NP substrate for effective SERS detection of analytes.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland(1).
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
14
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Thao NTP, Ton-That L, Dang CT, Nedoma J. Detailed Investigation of Factors Affecting the Synthesis of SiO 2@Au for the Enhancement of Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3080. [PMID: 36080115 PMCID: PMC9458010 DOI: 10.3390/nano12173080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The reaction time, temperature, ratio of precursors, and concentration of sodium citrate are known as the main factors that affect the direct synthesis process of SiO2@Au based on the chemical reaction of HAuCl4 and sodium citrate. Hence, we investigated, in detail, and observed that these factors played a crucial role in determining the shape and size of synthesized nanoparticles. The significant enhancement of the SERS signal corresponding to the fabrication conditions is an existing challenge. Our study results show that the optimal reaction conditions for the fabrication of SiO2@Au are a 1:21 ratio of HAuCl4 to sodium citrate, with an initial concentration of sodium citrate of 4.2 mM, and a reaction time lasting longer than 6 h at a temperature of 80 °C. Under optimal conditions, our synthesis process result is SiO2@Au nanoparticles with a diameter of approximately 350 nm. In particular, the considerable enhancement of Raman intensities of SiO2@Au compared to SiO2 particles was examined.
Collapse
Affiliation(s)
- Nguyen Thi Phuong Thao
- Department of Telecommunications, VSB Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| | - Loc Ton-That
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang City 550000, Vietnam
| | - Cong-Thuan Dang
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang City 550000, Vietnam
| | - Jan Nedoma
- Department of Telecommunications, VSB Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| |
Collapse
|
16
|
Potara M, Suarasan S, Craciun AM, Focsan M, Hada AM, Astilean S. Probing polyvinylpyrrolidone-passivated graphene oxide nanoflakes as contrast agents inside tissue-like phantoms via multimodal confocal microscopy. Talanta 2022; 247:123581. [DOI: 10.1016/j.talanta.2022.123581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
|
17
|
Eremina OE, Czaja AT, Fernando A, Aron A, Eremin DB, Zavaleta C. Expanding the Multiplexing Capabilities of Raman Imaging to Reveal Highly Specific Molecular Expression and Enable Spatial Profiling. ACS NANO 2022; 16:10341-10353. [PMID: 35675533 DOI: 10.1021/acsnano.2c00353] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Profiling the heterogeneous landscape of cell types and biomolecules is rapidly being adopted to address current imperative research questions. Precision medicine seeks advancements in molecular spatial profiling techniques with highly multiplexed imaging capabilities and subcellular resolution, which remains an extremely complex task. Surface-enhanced Raman spectroscopy (SERS) imaging offers promise through the utilization of nanoparticle-based contrast agents that exhibit narrow spectral features and molecular specificity. The current renaissance of gold nanoparticle technology makes Raman scattering intensities competitive with traditional fluorescence methods while offering the added benefit of unsurpassed multiplexing capabilities. Here, we present an expanded library of individually distinct SERS nanoparticles to arm researchers and clinicians. Our nanoparticles consist of a ∼60 nm gold core, a Raman reporter molecule, and a final inert silica coating. Using density functional theory, we have selected Raman reporters that meet the key criterion of high spectral uniqueness to facilitate unmixing of up to 26 components in a single imaging pixel in vitro and in vivo. We also demonstrated the utility of our SERS nanoparticles for targeting cultured cells and profiling cancerous human tissue sections for highly multiplexed optical imaging. This study showcases the far-reaching capabilities of SERS-based Raman imaging in molecular profiling to improve personalized medicine and overcome the major challenges of functional and structural diversity in proteomic imaging.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Alexander T Czaja
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Arjun Aron
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Dmitry B Eremin
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089, United States
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| |
Collapse
|
18
|
Bruno JG. Applications in Which Aptamers Are Needed or Wanted in Diagnostics and Therapeutics. Pharmaceuticals (Basel) 2022; 15:693. [PMID: 35745612 PMCID: PMC9228505 DOI: 10.3390/ph15060693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
One strategy for bringing aptamers more into the mainstream of biomedical diagnostics and therapeutics is to exploit niche applications where aptamers are truly needed or wanted for their innate differences versus antibodies. This brief review article highlights some of those relatively rare applications in which aptamers are necessary or better suited to the user requirements than antibodies with explanations for why the aptamer is a necessary or superior choice. These situations include when no commercial antibody exists, when antibodies are excessively difficult to develop against a particular target because the target is highly toxic to host animals, when antibodies fail to discriminate closely related targets, when a smaller size is preferable to penetrate a tissue, when humanized monoclonal antibodies are too expensive and when the target is rapidly evolving or mutating. Examples of each are provided to illustrate these points.
Collapse
Affiliation(s)
- John G Bruno
- Nanohmics Inc., 6201 E. Oltorf Street, Suite 400, Austin, TX 78640, USA
| |
Collapse
|
19
|
Wang Y, Zhao C, Liu Y, Wang C, Jiang H, Hu Y, Wu J. Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis. Mol Pharm 2022; 19:1273-1293. [PMID: 35436123 DOI: 10.1021/acs.molpharmaceut.2c00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is still a major disease that is currently difficult for humans to overcome. When the expression of the cluster of differentiation 47 (CD47) is upregulated, tumor cells interact with the macrophage inhibitory receptor signal regulatory protein α (SIRPα) to transmit the "Don't eat me" signal, thereby avoiding phagocytosis by the macrophages. Therefore, when the CD47-SIRPα axis is inhibited, the macrophages' phagocytic function can be restored and can also exert antitumor effects. This Review mainly introduces recent advances in tumor therapy targeted on the CD47-SIRPα axis, including the antibody and fusion protein, small molecule, gene therapy, cell therapy, and drug delivery system, to inhibit the function of CD47 expressed on tumor cells and promote tumor phagocytosis by macrophages. In addition, this Review also summarizes the current approaches to avoid anemia, a common side effect of CD47-SIRPα inhibitions, and provides ideas for clinical transformation.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chenxuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
20
|
Iakab SA, Baquer G, Lafuente M, Pina MP, Ramírez JL, Ràfols P, Correig-Blanchar X, García-Altares M. SALDI-MS and SERS Multimodal Imaging: One Nanostructured Substrate to Rule Them Both. Anal Chem 2022; 94:2785-2793. [PMID: 35102738 PMCID: PMC8851428 DOI: 10.1021/acs.analchem.1c04118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Imaging techniques
based on mass spectrometry or spectroscopy methods
inform in situ about the chemical composition of
biological tissues or organisms, but they are sometimes limited by
their specificity, sensitivity, or spatial resolution. Multimodal
imaging addresses these limitations by combining several imaging modalities;
however, measuring the same sample with the same preparation using
multiple imaging techniques is still uncommon due to the incompatibility
between substrates, sample preparation protocols, and data formats.
We present a multimodal imaging approach that employs a gold-coated
nanostructured silicon substrate to couple surface-assisted laser
desorption/ionization mass spectrometry (SALDI-MS) and surface-enhanced
Raman spectroscopy (SERS). Our approach integrates both imaging modalities
by using the same substrate, sample preparation, and data analysis
software on the same sample, allowing the coregistration of both images.
We transferred molecules from clean fingertips and fingertips covered
with plasticine modeling clay onto our nanostructure and analyzed
their chemical composition and distribution by SALDI-MS and SERS.
Multimodal analysis located the traces of plasticine on fingermarks
and provided chemical information on the composition of the clay.
Our multimodal approach effectively combines the advantages of mass
spectrometry and vibrational spectroscopy with the signal enhancing
abilities of our nanostructured substrate.
Collapse
Affiliation(s)
- Stefania-Alexandra Iakab
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain
| | - Gerard Baquer
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Marta Lafuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D+i, C/Mariano Esquillor s/n, Zaragoza 50018, Spain
| | - Maria Pilar Pina
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D+i, C/Mariano Esquillor s/n, Zaragoza 50018, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - José Luis Ramírez
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain
| | - Xavier Correig-Blanchar
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
| | - María García-Altares
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain
| |
Collapse
|
21
|
Gomes MC, Chen J, Cunha A, Trindade T, Zheng G, Tomé JPC. Complex cellular environments imaged by SERS nanoprobes using sugars as an all-in-one vector. J Mater Chem B 2021; 9:9285-9294. [PMID: 34709285 DOI: 10.1039/d1tb01360b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman spectroscopy coupled with confocal microscopy offers an alternative bioimaging technique overcoming limitations associated with sensitivity, tissue penetration and image resolution. Allied to the surface-enhanced Raman scattering (SERS) properties of gold nanoparticles (AuNP), we designed SERS nanoprobes with enhanced properties and straightforward application as bio-labelling agents for gliomas. The ensuing nanoprobes coated with simple sugar units (galactose or glucose) allowed assessing information about their intracellular localization (vesicular structures), with impressive sensitivity towards complex environments and proved the ability to overcome biological auto-fluorescence and high penetration in tissues. We validate the use of sugars as an all-in-one vector (Raman reporter, conferring high stability, biocompatibility and affinity to glioma cells) as imaging agents using an impressive technique.
Collapse
Affiliation(s)
- Maria C Gomes
- LAQV-REQUINTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.
| | - Juan Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.
| | - Angela Cunha
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gang Zheng
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - João P C Tomé
- LAQV-REQUINTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,CQE and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| |
Collapse
|
22
|
Dell'Olio F. Multiplexed Liquid Biopsy and Tumor Imaging Using Surface-Enhanced Raman Scattering. BIOSENSORS 2021; 11:449. [PMID: 34821665 PMCID: PMC8615571 DOI: 10.3390/bios11110449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy
| |
Collapse
|
23
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
24
|
Pham LM, Poudel K, Phung CD, Nguyen TT, Pandit M, Nguyen HT, Chang JH, Jin SG, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO. Preparation and evaluation of dabrafenib-loaded, CD47-conjugated human serum albumin-based nanoconstructs for chemoimmunomodulation. Colloids Surf B Biointerfaces 2021; 208:112093. [PMID: 34482192 DOI: 10.1016/j.colsurfb.2021.112093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The transmembrane proteins, CD47 and signal-regulatory protein α are overexpressed in cancer cells and macrophages, respectively, and facilitate the escape of cancer cells from macrophage-mediated phagocytosis. The immunomodulatory and targeting properties of CD47, the chemotherapeutic effects of dabrafenib (D), and the anti-programmed death-1 antibodies (PD-1) pave the way for effective chemoimmunomodulation-mediated anticancer combination therapy. In this study, CD47-conjugated, D-loaded human serum albumin (HSA) nanosystems were fabricated by modified nanoparticle albumin-bound technology. Cis-aconityl-PEG-maleimide (CA), an acid-labile linker, was used to conjugate D@HSA and CD47; the resultant CD47-CA@D@HSA exhibited tumor-specificity through receptor targeting, as well as preferential cleavage and drug release in the acidic tumor microenvironment (pH 5) compared to normal physiological pH conditions (pH 6.5, 7.4). The successful preparation of nanosized (∼220 nm), narrowly dispersed (∼0.13) CD47-CA@D@HSA was proven by physicochemical characterization. In vitro and in vivo internalization, accumulation, cytotoxicity, and apoptosis were observed to be higher with CD47-conjugated nanoconstructs, than with free D or non-targeted nanoconstructs. CD47-CA@D@HSA was found to promote the infiltration of cytotoxic T cells and tumor-associated macrophages into tumors and improve in vivo tumor inhibition. Administration in combination with PD-1 further improved antitumor efficacy by promoting immune responses that blocked the immune checkpoint. No signs of toxicity were seen in mice treated with the nanoconstructs; the formulation was, therefore, thought to be biocompatible and as having potential for clinical use. The targeted chemoimmunomodulation achieved by this combination therapy was found to combat major immunosuppressive facets, making it a viable candidate for use in the treatment of cancer.
Collapse
Affiliation(s)
- Le Minh Pham
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea
| | - Tien Tiep Nguyen
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea
| | - Mahesh Pandit
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Daehak-ro 280, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
25
|
Abstract
Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) are ideal multiplexing probes for in vivo imaging and tissue staining. Their remarkable sensitivity and unique Raman molecular fingerprint results in minimal background compared to other optical modalities. These characteristics also allow multiplexing down to the attomolar concentration. Here we describe the synthesis and in vivo multiplexing application of a SERS NP library.
Collapse
|
26
|
Eremina OE, Eremin DB, Czaja A, Zavaleta C. Selecting Surface-Enhanced Raman Spectroscopy Flavors for Multiplexed Imaging Applications: Beyond the Experiment. J Phys Chem Lett 2021; 12:5564-5570. [PMID: 34105967 DOI: 10.1021/acs.jpclett.1c01504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiplexing capabilities and sensitivity of surface-enhanced Raman spectroscopy (SERS) nanoparticles (NPs) are strongly dependent on the selected Raman reporter. These Raman-active molecules are responsible for giving each batch of SERS NPs its unique spectral fingerprint. Herein, we studied four types of SERS NPs, namely, AuNPs labeled with trans-1,2-bis(4-pyridyl)ethylene (BPE), 4,4'-bis(mercaptomethyl)biphenyl (BMMBP), 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (PODT), and 5-(4-pyridyl)-1H-1,2,4-triazole-3-thiol (PTT), and demonstrated that the best level of theory could be chosen based on inner products of DFT-calculated and experimental Raman spectra. We also calculated the theoretical spectra of these Raman reporters bound to Au20 clusters to interrogate how SERS enhancement would affect their spectral fingerprint. Importantly, we found a correlation between B3LYP-D3 calculated and experimental enhancement factors, which opens up an avenue toward predicting which Raman reporters could offer improved sensitivity. We observed 0.5 and 3 fM limits of detection for BMMBP- and PTT-labeled 60 nm AuNPs, respectively.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Avenue, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Dmitry B Eremin
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California 90089, United States
| | - Alexander Czaja
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Avenue, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Avenue, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| |
Collapse
|
27
|
Kapara A, Brunton VG, Graham D, Faulds K. Characterisation of estrogen receptor alpha (ERα) expression in breast cancer cells and effect of drug treatment using targeted nanoparticles and SERS. Analyst 2021; 145:7225-7233. [PMID: 33164013 DOI: 10.1039/d0an01532f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The detection and identification of estrogen receptor alpha (ERα), one of the main biomarkers in breast cancer, is crucial for the clinical diagnosis and therapy of the disease. Here, we use a non-destructive approach for detecting and localising ERα expression at the single cell level using surface enhanced Raman spectroscopy (SERS) combined with functionalised gold nanoparticles (AuNPs). Antibody functionalised nanotags (ERα-AuNPs) showed excellent biocompatibility and enabled the spatial and temporal understanding of ERα location in breast cancer cell lines with different ERα expression status. Additionally, we developed an approach based on the percentage area of SERS response to qualitatively measure expression level in ERα positive (ERα+) breast cancer cells. Specifically, the calculation of relative SERS response demonstrated that MCF-7 cells (ERα+) exhibited higher nanotag accumulation resulting in a 4.2-times increase in SERS signal area in comparison to SKBR-3 cells (ERα-). These results confirmed the strong targeting effect of ERα-AuNPs towards the ERα receptor. The functionalised ERα-AuNP nanotags were also used to investigate the activity of fulvestrant, the first-in-class approved selective estrogen receptor degrader (SERD). SERS mapping confirmed that ERα degradation occurred after fulvestrant treatment since a weaker SERS signal, and hence accumulation of nanotags, was observed in MCF-7 cells treated with fulvestrant. Most importantly, a correlation coefficient of 0.9 between the SERS response and the ERα expression level, obtained by western blot, was calculated. These results confirmed the strong relationship between the two approaches and open up the possibilities of using SERS as a tool for the estimation of ERα expression levels, without the requirement of destructive and time-consuming techniques. Therefore, the potential of using SERS as a rapid and sensitive method to understand the activity of SERDs in breast cancer is demonstrated.
Collapse
Affiliation(s)
- Anastasia Kapara
- Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, Scotland G1 1RD, UK.
| | | | | | | |
Collapse
|
28
|
Miyasato DL, Mohamed AW, Zavaleta C. A path toward the clinical translation of nano-based imaging contrast agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1721. [PMID: 33938151 DOI: 10.1002/wnan.1721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Recently, nanoparticles have evolved ubiquitously in therapeutic applications to treat a range of diseases. Despite their regular use as therapeutic agents in the clinic, we have yet to see much progress in their clinical translation as diagnostic imaging agents. Several clinical and preclinical studies support their use as imaging contrast agents, but their use in the clinical setting has been limited to off-label imaging procedures (i.e., Feraheme). Since diagnostic imaging has been historically used as an exploratory tool to rule out disease or to screen patients for various cancers, nanoparticle toxicity remains a concern, especially when introducing exogenous contrast agents into a potentially healthy patient population, perhaps rationalizing why several nano-based therapeutic agents have been clinically translated before nano-based imaging agents. Another potential hindrance toward their clinical translation could be their market potential, as most therapeutic drugs have higher earning potential than small-molecule imaging contrast agents. With these considerations in mind, perhaps a clinical path forward for nano-based imaging contrast agents is to help guide/manage therapy. Several studies have demonstrated the ability of nanoparticles to produce more accurate imaging preoperatively, intraoperatively, and postoperatively. These applications illustrate a more reliable method of cancer detection and treatment that can prevent incomplete tumor resection and incorrect assessment of tumor progression following treatment. The aim of this review is to highlight the research that supports the use of nanoparticles in biomedical imaging applications and offer a new perspective to illustrate how nano-based imaging agents have the potential to better inform therapeutic decisions. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Dominie L Miyasato
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Ahmed W Mohamed
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
29
|
Kapara A, Findlay Paterson KA, Brunton VG, Graham D, Zagnoni M, Faulds K. Detection of Estrogen Receptor Alpha and Assessment of Fulvestrant Activity in MCF-7 Tumor Spheroids Using Microfluidics and SERS. Anal Chem 2021; 93:5862-5871. [PMID: 33797884 PMCID: PMC8153394 DOI: 10.1021/acs.analchem.1c00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
Breast cancer is one of the leading causes of cancer death in women. Novel in vitro tools that integrate three-dimensional (3D) tumor models with highly sensitive chemical reporters can provide useful information to aid biological characterization of cancer phenotype and understanding of drug activity. The combination of surface-enhanced Raman scattering (SERS) techniques with microfluidic technologies offers new opportunities for highly selective, specific, and multiplexed nanoparticle-based assays. Here, we explored the use of functionalized nanoparticles for the detection of estrogen receptor alpha (ERα) expression in a 3D tumor model, using the ERα-positive human breast cancer cell line MCF-7. This approach was used to compare targeted versus nontargeted nanoparticle interactions with the tumor model to better understand whether targeted nanotags are required to efficiently target ERα. Mixtures of targeted anti-ERα antibody-functionalized nanotags (ERα-AuNPs) and nontargeted (against ERα) anti-human epidermal growth factor receptor 2 (HER2) antibody-functionalized nanotags (HER2-AuNPs), with different Raman reporters with a similar SERS signal intensity, were incubated with MCF-7 spheroids in microfluidic devices and spectroscopically analyzed using SERS. MCF-7 cells express high levels of ERα and no detectable levels of HER2. 2D and 3D SERS measurements confirmed the strong targeting effect of ERα-AuNP nanotags to the MCF-7 spheroids in contrast to HER2-AuNPs (63% signal reduction). Moreover, 3D SERS measurements confirmed the differentiation between the targeted and the nontargeted nanotags. Finally, we demonstrated how nanotag uptake by MCF-7 spheroids was affected by the drug fulvestrant, the first-in-class approved selective estrogen receptor degrader (SERD). These results illustrate the potential of using SERS and microfluidics as a powerful in vitro platform for the characterization of 3D tumor models and the investigation of SERD activity.
Collapse
Affiliation(s)
- Anastasia Kapara
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
- MRC
Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research
UK Centre, University of Edinburgh, Western
General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Karla A. Findlay Paterson
- Centre
for Microsystems and Photonics, Department of Electronic and Electrical
Engineering, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK
| | - Valerie G. Brunton
- MRC
Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research
UK Centre, University of Edinburgh, Western
General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Duncan Graham
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Michele Zagnoni
- Centre
for Microsystems and Photonics, Department of Electronic and Electrical
Engineering, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK
| | - Karen Faulds
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| |
Collapse
|
30
|
Molecular Imaging Using Raman Scattering. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Burkitt S, Mehraein M, Stanciauskas RK, Campbell J, Fraser S, Zavaleta C. Label-Free Visualization and Tracking of Gold Nanoparticles in Vasculature Using Multiphoton Luminescence. NANOMATERIALS 2020; 10:nano10112239. [PMID: 33198113 PMCID: PMC7696495 DOI: 10.3390/nano10112239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/29/2022]
Abstract
Gold nanoparticles continue to generate interest for use in several biomedical applications. Recently, researchers have been focusing on exploiting their dual diagnostic/therapeutic theranostic capabilities. Before clinical translation can occur, regulatory agencies will require a greater understanding of their biodistribution and safety profiles post administration. Previously, the real-time identification and tracking of gold nanoparticles in free-flowing vasculature had not been possible without extrinsic labels such as fluorophores. Here, we present a label-free imaging approach to examine gold nanoparticle (AuNP) activity within the vasculature by utilizing multiphoton intravital microscopy. This method employs a commercially available multiphoton microscopy system to visualize the intrinsic luminescent signal produced by a multiphoton absorption-induced luminescence effect observed in single gold nanoparticles at frame rates necessary for capturing real-time blood flow. This is the first demonstration of visualizing unlabeled gold nanoparticles in an unperturbed vascular environment with frame rates fast enough to achieve particle tracking. Nanoparticle blood concentration curves were also evaluated by the tracking of gold nanoparticle flow in vasculature and verified against known pre-injection concentrations. Half-lives of these gold nanoparticle injections ranged between 67 and 140 s. This label-free imaging approach could provide important structural and functional information in real time to aid in the development and effective analysis of new metallic nanoparticles for various clinical applications in an unperturbed environment, while providing further insight into their complex uptake and clearance pathways.
Collapse
Affiliation(s)
- Sean Burkitt
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Bridge Institute, University of Southern California, 1002 Child’s Way, Los Angeles, CA 90089, USA
| | - Mana Mehraein
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
| | | | - Jos Campbell
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
| | - Scott Fraser
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Bridge Institute, University of Southern California, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Bridge Institute, University of Southern California, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
32
|
Fang Y, Lin T, Zheng D, Zhu Y, Wang L, Fu Y, Wang H, Wu X, Zhang P. Rapid and label-free identification of different cancer types based on surface-enhanced Raman scattering profiles and multivariate statistical analysis. J Cell Biochem 2020; 122:277-289. [PMID: 33043480 DOI: 10.1002/jcb.29857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023]
Abstract
Rapid detection and classification of cancer cells with label-free and non-destructive methods are helpful for rapid screening of cancer patients in clinical settings. Here, surface-enhanced Raman scattering (SERS) was used for rapid, unlabeled, and non-destructive detection of seven different cell types, including human cancer cells and non-tumorous cells. Au nanoparticles were used as enhanced substrates and directly added to cell surfaces. The single cellular SERS signals could be easily and stably collected in several minutes, and the cells maintained structural integrity over one hour. Different types of cells had unique Raman phenotypes. By applying multivariate statistical analysis to the Raman phenotypes, the cancer cells and non-tumorous cells were accurately identified. The high sensitivity enabled this method to discriminate subtle molecular changes in different cell types, and the accuracy reached 81.2% with principal components analysis and linear discriminant analysis. The technique provided a rapid, unlabeled, and non-destructive method for the detection and identification of various cancer types.
Collapse
Affiliation(s)
- Yaping Fang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Taifeng Lin
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Dawei Zheng
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yongwei Zhu
- Department of State-owned Assets and Laboratory Management, Beijing University of Technology, Beijing, China
| | - Limin Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yingying Fu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Huiqin Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xihao Wu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Ping Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
33
|
Shen L, Du Y, Wei N, Li Q, Li S, Sun T, Xu S, Wang H, Man X, Han B. SERS studies on normal epithelial and cancer cells derived from clinical breast cancer specimens. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118364. [PMID: 32361317 DOI: 10.1016/j.saa.2020.118364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 05/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy of single-cell suspensions obtained from fresh specimens of breast cancer tissue and normal breast tissue by mechanical enzymatic digestion was obtained and analysed, which is different from most Raman studies using breast cancer cell lines. Random forest classification was implemented to develop effective diagnostic algorithms for the classification of SERS of different typed cells. We first examined the SERS spectra of the primary breast cancer single cell and normal epithelial single cell obtained by flow sorting cytometry due to their biomarkers of CD326+/CD45-. Comparison analyses on their SERS spectra disclose that the nucleic acid and protein levels of the primary breast cancer single cell are higher than those of the normal epithelial single cell, while the lipids are at a relatively lower level. An important finding is that the cholesterol, palmitic acid, and sphingomyelin in the cancer cell profiles exhibit stronger than those of normal cells, while the glycans are at a relatively lower level. Furthermore, the standard deviation (SD) of the normal epithelial single cell is larger than that of the breast cancer cell, and the SD of the primary breast cancer single cell is more obvious than that of the normal epithelial cells. In addition, the prospective application of an algorithm to the dataset results in an accuracy of 78.2%, a precision of 75.5%, and a recall of 66.7%. The breast cancer diagnostic model laid a solid foundation for judgment of breast-conserving surgical margins and early diagnosis of breast cancer.
Collapse
Affiliation(s)
- LiShengNan Shen
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130000, Jilin, China
| | - Ye Du
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130000, Jilin, China
| | - Na Wei
- Third Operating Room, The First Hospital, Jilin University, Changchun 13000, Jilin, China
| | - Qian Li
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130000, Jilin, China
| | - SiMin Li
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130000, Jilin, China
| | - TianMeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130000, Jilin, China; International Center of Future Science, Jilin University, Changchun 130000, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130000, Jilin, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Han Wang
- College of Information Science and Technology, Northeast Normal University, Changchun 130117, China; Institution of Computational Biology, Northeast Normal University, Changchun 130117, China
| | - XiaXia Man
- Department of Gynaecology, The First Hospital, Jilin University, Changchun 130000, Jilin, China
| | - Bing Han
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130000, Jilin, China.
| |
Collapse
|
34
|
Eladl E, Tremblay-LeMay R, Rastgoo N, Musani R, Chen W, Liu A, Chang H. Role of CD47 in Hematological Malignancies. J Hematol Oncol 2020; 13:96. [PMID: 32677994 PMCID: PMC7364564 DOI: 10.1186/s13045-020-00930-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
CD47, or integrin-associated protein, is a cell surface ligand expressed in low levels by nearly all cells of the body. It plays an integral role in various immune responses as well as autoimmunity, by sending a potent "don't eat me" signal to prevent phagocytosis. A growing body of evidence demonstrates that CD47 is overexpressed in various hematological malignancies and its interaction with SIRPα on the phagocytic cells prevents phagocytosis of cancer cells. Additionally, it is expressed by different cell types in the tumor microenvironment and is required for establishing tumor metastasis. Overexpression of CD47 is thus often associated with poor clinical outcomes. CD47 has emerged as a potential therapeutic target and is being investigated in various preclinical studies as well as clinical trials to prove its safety and efficacy in treating hematological neoplasms. This review focuses on different therapeutic mechanisms to target CD47, either alone or in combination with other cell surface markers, and its pivotal role in impairing tumor growth and metastatic spread of various types of hematological malignancies.
Collapse
Affiliation(s)
- Entsar Eladl
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Rosemarie Tremblay-LeMay
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Nasrin Rastgoo
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Rumina Musani
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, University of Toronto, 11th floor, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
35
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
36
|
Zhang W, Huang Q, Xiao W, Zhao Y, Pi J, Xu H, Zhao H, Xu J, Evans CE, Jin H. Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis. Front Immunol 2020; 11:18. [PMID: 32082311 PMCID: PMC7003246 DOI: 10.3389/fimmu.2020.00018] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
CD47 is an immunoglobulin that is overexpressed on the surface of many types of cancer cells. CD47 forms a signaling complex with signal-regulatory protein α (SIRPα), enabling the escape of these cancer cells from macrophage-mediated phagocytosis. In recent years, CD47 has been shown to be highly expressed by various types of solid tumors and to be associated with poor patient prognosis in various types of cancer. A growing number of studies have since demonstrated that inhibiting the CD47-SIRPα signaling pathway promotes the adaptive immune response and enhances the phagocytosis of tumor cells by macrophages. Improved understanding in this field of research could lead to the development of novel and effective anti-tumor treatments that act through the inhibition of CD47 signaling in cancer cells. In this review, we describe the structure and function of CD47, provide an overview of studies that have aimed to inhibit CD47-dependent avoidance of macrophage-mediated phagocytosis by tumor cells, and assess the potential and challenges for targeting the CD47-SIRPα signaling pathway in anti-cancer therapy.
Collapse
Affiliation(s)
- Wenting Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Qinghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Weiwei Xiao
- Biosafety Level-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yue Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Key Laboratory for Tropical Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Huan Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Hongxia Zhao
- School of Biomedical and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Junfa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Colin E Evans
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| |
Collapse
|
37
|
Talebzadeh S, Queffélec C, Knight DA. Surface modification of plasmonic noble metal-metal oxide core-shell nanoparticles. NANOSCALE ADVANCES 2019; 1:4578-4591. [PMID: 36133114 PMCID: PMC9443677 DOI: 10.1039/c9na00581a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 05/31/2023]
Abstract
A comprehensive survey on the methods for the surface modification of plasmonic noble metal-metal oxide core-shell nanoparticles is presented. The review highlights various strategies for covalent attachment and electrostatic binding of molecules and molecular ions to core-shell nanoparticles with a focus on plasmonically active silver and gold nanoparticles encapsulated by SiO2 and TiO2 shells.
Collapse
Affiliation(s)
- Somayeh Talebzadeh
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology 150 West University Boulevard Melbourne Florida 32901 USA
| | | | - D Andrew Knight
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology 150 West University Boulevard Melbourne Florida 32901 USA
| |
Collapse
|
38
|
Lian S, Xie X, Lu Y, Jia L. Checkpoint CD47 Function On Tumor Metastasis And Immune Therapy. Onco Targets Ther 2019; 12:9105-9114. [PMID: 31806995 PMCID: PMC6839575 DOI: 10.2147/ott.s220196] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
The success of cancer immunotherapy on recognition checkpoints for killing cancer cells has raised a great interest of scientists in understanding new and old methods of immunotherapeutic. CD47 (cluster of differentiation 47) is a cell surface glycoprotein and widely expressed on cells, which belongs to the immunoglobulin (Ig) superfamily as a cell membrane receptor which serves in immune therapy. CD47 is an inhibitory receptor expressed on tumor cell surface and interacts with signal receptor protein-alpha (SIPR-α, also named CD172a or SHPS-1) which may escape from immune cells such as macrophage and T cells. Meanwhile, tumor cells express high CD47 protein which may secrete exosomes with high CD47 expression. The high CD47 expression-exosomes could serve the tumor metastasis process and provide transfer convenience for tumors on the microenvironment. CD47 on cancer cells can also affect the migration and invasion of cells. The high CD47 expression on tumor or CTC (circulating tumor cell) surface means the stronger migration and invasion and makes them escape from immune cells for phagocytosis such as T cells, NK (natural killer) cells and macrophage, which could be used for diagnosis and prognosis on cancer patients. Meanwhile, targeting CD47 combined with other biomarkers such as EpCAM (epithelial cell adhesion molecule), CD44, etc on cancer surface could be used to isolate CTCs from patients' blood. In terms of treatment, anti-CD47 antibody combined with another antibody such as anti-PD-L1 (programmed death-ligand 1) antibody or drugs such as rituximab, DOX or oxaliplatin also has better therapeutic effects and antitumor function to tumors. Using nanomaterials as an intermediary for CD47-related immune therapy could greatly increase the therapeutic effect and overcome multiple biological barriers for anti-CD47 antibody in vivo. In this review, we discuss the important role and the function of CD47 in tumor metastasis and also provide a reference for related research.
Collapse
Affiliation(s)
- Shu Lian
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.,Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, People's Republic of China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.,Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
39
|
Surface-Enhanced Raman Spectroscopy on Self-Assembled Au Nanoparticles Arrays for Pesticides Residues Multiplex Detection under Complex Environment. NANOMATERIALS 2019; 9:nano9030426. [PMID: 30871181 PMCID: PMC6473963 DOI: 10.3390/nano9030426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/21/2023]
Abstract
The high reproducibility of trace detection in complex systems is very hard but crucial to analytical technology and science. Here, we present a surface-enhanced Raman scattering (SERS) platform made by large-scale self-assembly of Au nanoparticle (NP) arrays at the cyclohexane/water interface and its use for pesticides residues trace detection. The analyte molecules spontaneously localize into the Au NPs’ nanogaps during the self-assembly process, yielding excellent Raman signal enhancement by surface effects, and possibly both by the concentration of the analytes into the array and by plasmonic hot-spot formation. Transmission electron microscopy (TEM) images demonstrate a good uniformity of interparticle distances (2–3 nm) in the Au NP arrays. SERS experiments on crystal violet (CV) molecules demonstrated that the relative standard deviations (RSD) of the band intensities at 1173, 1376, and 1618 cm−1 were 6.3%, 6.4%, and 6.9%, respectively, indicating high reproducibility of the substrate. Furthermore, we demonstrate that two pesticides dissolved in organic and aqueous phases could be simultaneously detected, suggesting an excellent selectivity and universality of this method for multiplex detection. Our SERS platform opens vast possibilities for repeatability and sensitivity detection of targets in various complex fields.
Collapse
|
40
|
MEMS Actuators for Optical Microendoscopy. MICROMACHINES 2019; 10:mi10020085. [PMID: 30682852 PMCID: PMC6412441 DOI: 10.3390/mi10020085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023]
Abstract
Growing demands for affordable, portable, and reliable optical microendoscopic imaging devices are attracting research institutes and industries to find new manufacturing methods. However, the integration of microscopic components into these subsystems is one of today's challenges in manufacturing and packaging. Together with this kind of miniaturization more and more functional parts have to be accommodated in ever smaller spaces. Therefore, solving this challenge with the use of microelectromechanical systems (MEMS) fabrication technology has opened the promising opportunities in enabling a wide variety of novel optical microendoscopy to be miniaturized. MEMS fabrication technology enables abilities to apply batch fabrication methods with high-precision and to include a wide variety of optical functionalities to the optical components. As a result, MEMS technology has enabled greater accessibility to advance optical microendoscopy technology to provide high-resolution and high-performance imaging matching with traditional table-top microscopy. In this review the latest advancements of MEMS actuators for optical microendoscopy will be discussed in detail.
Collapse
|
41
|
Purwidyantri A, Hsu CH, Yang CM, Prabowo BA, Tian YC, Lai CS. Plasmonic nanomaterial structuring for SERS enhancement. RSC Adv 2019; 9:4982-4992. [PMID: 35514657 PMCID: PMC9060671 DOI: 10.1039/c8ra10656h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Au island over nanospheres (AuIoN) structures featuring a three-dimensional (3D) nanostructure on a two-dimensional (2D) array of nanospheres with different adhesion layers were fabricated as surface-enhanced Raman scattering (SERS) substrates.
Collapse
Affiliation(s)
- Agnes Purwidyantri
- Research Unit for Clean Technology
- Indonesian Institute of Sciences
- Bandung
- Indonesia
- Biosensor Group
| | - Chih-Hsien Hsu
- Biosensor Group
- Chang-Gung University
- Taiwan
- Department of Electronics Engineering
- Chang Gung University
| | - Chia-Ming Yang
- Biosensor Group
- Chang-Gung University
- Taiwan
- Department of Electronics Engineering
- Chang Gung University
| | - Briliant Adhi Prabowo
- Department of Electronics Engineering
- Chang Gung University
- Taiwan
- Research Center for Electronics and Telecommunications
- Indonesian Institute of Sciences
| | - Ya-Chung Tian
- Kidney Research Center Department of Nephrology
- Chang Gung Memorial Hospital
- Taiwan
| | - Chao-Sung Lai
- Biosensor Group
- Chang-Gung University
- Taiwan
- Department of Electronics Engineering
- Chang Gung University
| |
Collapse
|