1
|
Abtahi MS, Fotouhi A, Rezaei N, Akalin H, Ozkul Y, Hossein-Khannazer N, Vosough M. Nano-based drug delivery systems in hepatocellular carcinoma. J Drug Target 2024; 32:977-995. [PMID: 38847573 DOI: 10.1080/1061186x.2024.2365937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024]
Abstract
The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems (DDSs), in all active, passive and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumour site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment and monitoring of cancer cells. In this review, the specific design of DDSs based on the different nano-particles and their surface engineering is discussed. In addition, the innovative clinical studies in which nano-based DDS was used in the treatment of HCC were highlighted.
Collapse
Affiliation(s)
- Maryam Sadat Abtahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Al Refaai KA, AlSawaftah NA, Abuwatfa W, Husseini GA. Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review. Pharmaceutics 2024; 16:1383. [PMID: 39598507 PMCID: PMC11597164 DOI: 10.3390/pharmaceutics16111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Conventional cancer chemotherapy often struggles with safely and effectively delivering anticancer therapeutics to target tissues, frequently leading to dose-limiting toxicity and suboptimal therapeutic outcomes. This has created a need for novel therapies that offer greater efficacy, enhanced safety, and improved toxicological profiles. Nanocarriers are nanosized particles specifically designed to enhance the selectivity and effectiveness of chemotherapy drugs while reducing their toxicity. A subset of drug delivery systems utilizes stimuli-responsive nanocarriers, which enable on-demand drug release, prevent premature release, and offer spatial and temporal control over drug delivery. These stimuli can be internal (such as pH and enzymes) or external (such as ultrasound, magnetic fields, and light). This review focuses on the mechanics of ultrasound-induced drug delivery and the various nanocarriers used in conjunction with ultrasound. It will also provide a comprehensive overview of key aspects related to ultrasound-induced drug delivery, including ultrasound parameters and the biological effects of ultrasound waves.
Collapse
Affiliation(s)
- Khaled Armouch Al Refaai
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Nour A. AlSawaftah
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.A.); (W.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.A.); (W.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.A.); (W.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
3
|
Hernandez D, Nam T, Lee E, Lee JJ, Kim K, Kim KN. Design of multi-modal antenna arrays for microwave hyperthermia and 1H/1⁹F MRI monitoring of drug release. PLoS One 2024; 19:e0312343. [PMID: 39446902 PMCID: PMC11501028 DOI: 10.1371/journal.pone.0312343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
This simulation-based study presented a novel hybrid RF antenna array designed for neck cancer treatment within a 7T MRI system. The proposed design aimed to provide microwave hyperthermia to release 19F-labeled anticancer drugs from thermosensitive liposomes, facilitating drug concentration monitoring through 19F imaging and enabling 1H anatomical imaging and MR thermometry for temperature control. The design featured a bidirectional microstrip for generating the magnetic |B1|-fields required for 1H and 19F MR imaging, along with a patch antenna for localized RF heating. The bidirectional microstrip was operated at 300 MHz and 280 MHz through the placement of excitation ports at the ends of the antenna and an asymmetric structure along the antenna. Additionally, a patch antenna was positioned at the center. Based on this setup, an array of six antennas was designed. Simulation results using a tissue-mimicking simulation model confirmed the intensity and uniformity of |B1|-fields for both 19F and 1H nuclei, demonstrating the suitability of the design for clinical imaging. RF heating from the patch antennas was effectively localized at the center of the cancer model. In simulations with a human model, average |B1|-fields were 0.21 μT for 19F and 0.12 μT for 1H, with normalized-absolute-average-deviation values of 81.75% and 87.74%, respectively. Hyperthermia treatment was applied at 120 W for 600 s, achieving an average temperature of 40.22°C in the cancer model with a perfusion rate of 1 ml/min/kg. This study demonstrated the potential of a hybrid antenna array for integrating 1H MR, 19F drug monitoring, and hyperthermia.
Collapse
Affiliation(s)
| | - Taewoo Nam
- Department of Health Sciences and Technology, GAIHST, Gachon University, South Korea
| | - Eunwoo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, South Korea
| | - Jae Jun Lee
- Non-Clinical Center, KBIO Osong Medical Innovation Foundation, Cheongju-si, Chungbuk, Korea
| | - Kisoo Kim
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
| | - Kyoung Nam Kim
- Department of Biomedical Engineering, Gachon University, Seongnam, South Korea
| |
Collapse
|
4
|
Manescu (Paltanea) V, Antoniac I, Paltanea G, Nemoianu IV, Mohan AG, Antoniac A, Rau JV, Laptoiu SA, Mihai P, Gavrila H, Al-Moushaly AR, Bodog AD. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int J Mol Sci 2024; 25:10065. [PMID: 39337552 PMCID: PMC11432100 DOI: 10.3390/ijms251810065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 years as a solution used as a single therapy or combined with others for glioma tumor assessment in preclinical and clinical studies. It is based on magnetic nanoparticles (MNPs) that are injected into the tumor, and, under the effect of an external alternating magnetic field, they produce heat with temperatures higher than 42 °C, which determines cancer cell death. It is well known that iron oxide nanoparticles have received FDA approval for anemia treatment and to be used as contrast substances in the medical imagining domain. Today, energetic, efficient MNPs are developed that are especially dedicated to MHT treatments. In this review, the subject's importance will be emphasized by specifying the number of patients with cancer worldwide, presenting the main features of GBM, and detailing the physical theory accompanying the MHT treatment. Then, synthesis routes for thermally efficient MNP manufacturing, strategies adopted in practice for increasing MHT heat performance, and significant in vitro and in vivo studies are presented. This review paper also includes combined cancer therapies, the main reasons for using these approaches with MHT, and important clinical studies on human subjects found in the literature. This review ends by describing the most critical challenges associated with MHT and future perspectives. It is concluded that MHT can be successfully and regularly applied as a treatment for GBM if specific improvements are made.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya St. 8, Build.2, 119048 Moscow, Russia
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Petruta Mihai
- Faculty of Entrepreneurship, Business Engineering and Management, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Horia Gavrila
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
- Technical Sciences Academy of Romania, 26 Bulevardul Dacia, RO-030167 Bucharest, Romania
| | | | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
5
|
Li W, Wang C, Zhang Y, Lu Y. Lipid Nanocarrier-Based mRNA Therapy: Challenges and Promise for Clinical Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310531. [PMID: 38287729 DOI: 10.1002/smll.202310531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Due to the outbreak of novel coronavirus pneumonia, messenger RNA (mRNA) technology has attracted heated attention. A specific, safe, and efficient mRNA delivery system is needed. Lipid nanocarriers have become attractive carriers for mRNA delivery due to their high delivery efficiency, few side effects, and easy modification to change their structures and functions. To achieve the desired biological effect, lipid nanocarriers must reach the designated location for effective drug delivery. Therefore, the effects of the composition of lipid nanocarriers on their key properties are briefly reviewed. In addition, the progress of smart drug delivery by changing the composition of lipid nanocarriers is summarized, and the importance of component design and structure is emphasized. Subsequently, this review summarizes the latest progress in lipid nanocarrier-based mRNA technology and provides corresponding strategies for its current challenges, putting forward valuable information for the future design of lipid nanocarriers and mRNA.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
7
|
Bokhari SS, Ali T, Naeem M, Hussain F, Nasir A. Recent advances in nanoformulation-based delivery for cancer immunotherapy. Nanomedicine (Lond) 2024; 19:1253-1269. [PMID: 38717427 PMCID: PMC11285355 DOI: 10.1080/17435889.2024.2343273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide, and its treatment faces several challenges. Phytoconstituents derived from recently discovered medicinal plants through nanotechnology potentially target cancer cells via PI3K/Akt/mTOR pathways and exert their effects selectively through the generation of reactive oxygen species through β-catenin inhibition, DNA damage, and increasing caspase 3/9 and p53 expression. These nanocarriers act specifically against different cancer cell lines such as HT-29, MOLT-4 human leukemia cancer and MCF-7 cell lines SKOV-3, Caov-3, SW-626, HepG2, A-549, HeLa, and MCF-7. This review comprehensively elaborates on the cellular and molecular mechanisms, and therapeutic prospects of various plant-mediated nanoformulations to attain a revolutionary shift in cancer immunotherapy.
Collapse
Affiliation(s)
- Seyedeh Saimeh Bokhari
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
8
|
Cao H, Wang J, Hao Z, Zhao D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front Pharmacol 2024; 15:1398939. [PMID: 38751781 PMCID: PMC11094280 DOI: 10.3389/fphar.2024.1398939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbing or disrupting the regular healing process of a skin wound may result in its progression to a chronic state. Chronic wounds often lead to increased infection because of their long healing time, malnutrition, and insufficient oxygen flow, subsequently affecting wound progression. Gelatin-the main structure of natural collagen-is widely used in biomedical fields because of its low cost, wide availability, biocompatibility, and degradability. However, gelatin may exhibit diverse tailored physical properties and poor antibacterial activity. Research on gelatin-based biomaterials has identified the challenges of improving gelatin's poor antibacterial properties and low mechanical properties. In chronic wounds, gelatin-based biomaterials can promote wound hemostasis, enhance peri-wound antibacterial and anti-inflammatory properties, and promote vascular and epithelial cell regeneration. In this article, we first introduce the natural process of wound healing. Second, we present the role of gelatin-based biomaterials and gelatin as an additive in wound healing. Finally, we present the future implications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Hongwei Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingren Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Danyang Zhao
- Department of emergency Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Kandasamy G, Maity D. Inorganic nanocarriers for siRNA delivery for cancer treatments. Biomed Mater 2024; 19:022001. [PMID: 38181441 DOI: 10.1088/1748-605x/ad1baf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
RNA interference is one of the emerging methodologies utilized in the treatment of a wide variety of diseases including cancer. This method specifically uses therapeutic RNAs (TpRNAs) like small interfering RNAs (siRNAs) to regulate/silence the cancer-linked genes, thereby minimizing the distinct activities of the cancer cells while aiding in their apoptosis. But, many complications arise during the transport/delivery of these TpRNAs that include poor systemic circulation, instability/degradation inside the body environment, no targeting capacity and also low cellular internalization. These difficulties can be overcome by using nanocarriers to deliver the TpRNAs inside the cancer cells. The following are the various categories of nanocarriers-viral vectors (e.g. lentivirus and adenovirus) and non-viral nanocarriers (self-assembling nanocarriers and inorganic nanocarriers). Viral vectors suffer from disadvantages like high immunogenicity compared to the non-viral nanocarriers. Among non-viral nanocarriers, inorganic nanocarriers gained significant attention as their inherent properties (like magnetic properties) can aid in the effective cellular delivery of the TpRNAs. Most of the prior reports have discussed about the delivery of TpRNAs through self-assembling nanocarriers; however very few have reviewed about their delivery using the inorganic nanoparticles. Therefore, in this review, we have mainly focussed on the delivery of TpRNAs-i.e. siRNA, especially programmed death ligand-1 (PD-L1), survivin, B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor and other siRNAs using the inorganic nanoparticles-mainly magnetic, metal and silica nanoparticles. Moreover, we have also discussed about the combined delivery of these TpRNAs along with chemotherapeutic drugs (mainly doxorubicin) andin vitroandin vivotherapeutic effectiveness.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, School of Electrical and Communication, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India
| | - Dipak Maity
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
10
|
Zhang Y, Li J, Zhao J, Li X, Wang Z, Huang Y, Zhang H, Liu Q, Lei Y, Ding D. π-π Interaction-Induced Organic Long-wavelength Room-Temperature Phosphorescence for In Vivo Atherosclerotic Plaque Imaging. Angew Chem Int Ed Engl 2024; 63:e202313890. [PMID: 38059792 DOI: 10.1002/anie.202313890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have great potential for in vivo imaging because they can circumvent the autofluorescence of biological tissues. In this study, a class of organic-doped long-wavelength (≈600 nm) RTP materials with benzo[c][1,2,5] thiadiazole as a guest was constructed. Both host and guest molecules have simple structures and can be directly purchased commercially at a low cost. Owing to the long phosphorescence wavelength of the doping system, it exhibited good tissue penetration (10 mm). Notably, these RTP nanoparticles were successfully used to image atherosclerotic plaques, with a signal-to-background ratio (SBR) of 44.52. This study provides a new approach for constructing inexpensive red organic phosphorescent materials and a new method for imaging cardiovascular diseases using these materials.
Collapse
Affiliation(s)
- Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jisen Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jiliang Zhao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Xuefei Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Zhimei Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yicheng Huang
- School of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, China
| | - Hongkai Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| |
Collapse
|
11
|
Honari A, Sirsi SR. The Evolution and Recent Trends in Acoustic Targeting of Encapsulated Drugs to Solid Tumors: Strategies beyond Sonoporation. Pharmaceutics 2023; 15:1705. [PMID: 37376152 DOI: 10.3390/pharmaceutics15061705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite recent advancements in ultrasound-mediated drug delivery and the remarkable success observed in pre-clinical studies, no delivery platform utilizing ultrasound contrast agents has yet received FDA approval. The sonoporation effect was a game-changing discovery with a promising future in clinical settings. Various clinical trials are underway to assess sonoporation's efficacy in treating solid tumors; however, there are disagreements on its applicability to the broader population due to long-term safety issues. In this review, we first discuss how acoustic targeting of drugs gained importance in cancer pharmaceutics. Then, we discuss ultrasound-targeting strategies that have been less explored yet hold a promising future. We aim to shed light on recent innovations in ultrasound-based drug delivery including newer designs of ultrasound-sensitive particles specifically tailored for pharmaceutical usage.
Collapse
Affiliation(s)
- Arvin Honari
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shashank R Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
12
|
Sarkar M, Wang Y, Ekpenyong O, Liang D, Xie H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1846. [PMID: 35979879 PMCID: PMC9938089 DOI: 10.1002/wnan.1846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
Chemotherapeutic treatment with conventional drug formulations pose numerous challenges, such as poor solubility, high cytotoxicity and serious off-target side effects, low bioavailability, and ultimately subtherapeutic tumoral concentration leading to poor therapeutic outcomes. In the field of Nanomedicine, advances in nanotechnology have been applied with great success to design and develop novel nanoparticle-based formulations for the treatment of various types of cancer. The approval of the first nanomedicine, Doxil® (liposomal doxorubicin) in 1995, paved the path for further development for various types of novel delivery platforms. Several different types of nanoparticles, especially organic (soft) nanoparticles (liposomes, polymeric micelles, and albumin-bound nanoparticles), have been developed and approved for several anticancer drugs. Nanoparticulate drug delivery platform have facilitated to overcome of these challenges and offered key advantages of improved bioavailability, higher intra-tumoral concentration of the drug, reduced toxicity, and improved efficacy. This review introduces various commonly used nanoparticulate systems in biomedical research and their pharmacokinetic (PK) attributes, then focuses on the various physicochemical and physiological factors affecting the in vivo disposition of chemotherapeutic agents encapsulated in nanoparticles in recent years. Further, it provides a review of the current landscape of soft nanoparticulate formulations for the two most widely investigated anticancer drugs, paclitaxel, and doxorubicin, that are either approved or under investigation. Formulation details, PK profiles, and therapeutic outcomes of these novel strategies have been discussed individually and in comparison, to traditional formulations. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mahua Sarkar
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Yang Wang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | | | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Huan Xie
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
13
|
Moradi Kashkooli F, Jakhmola A, Hornsby TK, Tavakkoli JJ, Kolios MC. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J Control Release 2023; 355:552-578. [PMID: 36773959 DOI: 10.1016/j.jconrel.2023.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The application of biocompatible nanocarriers in medicine has provided several benefits over conventional treatment methods. However, achieving high treatment efficacy and deep penetration of nanocarriers in tumor tissue is still challenging. To address this, stimuli-responsive nano-sized drug delivery systems (DDSs) are an active area of investigation in delivering anticancer drugs. While ultrasound is mainly used for diagnostic purposes, it can also be applied to affect cellular function and the delivery/release of anticancer drugs. Therapeutic ultrasound (TUS) has shown potential as both a stand-alone anticancer treatment and a method to induce targeted drug release from nanocarrier systems. TUS approaches have been used to overcome various physiological obstacles, including endothelial barriers, the tumor microenvironment (TME), and immunological hurdles. Combining nanomedicine and ultrasound as a smart DDS can increase in situ drug delivery and improve access to impermeable tissues. Furthermore, smart DDSs can perform targeted drug release in response to distinctive TMEs, external triggers, or dual/multi-stimulus. This results in enhanced treatment efficacy and reduced damage to surrounding healthy tissue or organs at risk. Integrating DDSs and ultrasound is still in its early stages. More research and clinical trials are required to fully understand ultrasound's underlying physical mechanisms and interactions with various types of nanocarriers and different types of cells and tissues. In the present review, ultrasound-mediated nano-sized DDS, specifically focused on cancer treatment, is presented and discussed. Ultrasound interaction with nanoparticles (NPs), drug release mechanisms, and various types of ultrasound-sensitive NPs are examined. Additionally, in vitro, in vivo, and clinical applications of TUS are reviewed in light of the critical challenges that need to be considered to advance TUS toward an efficient, secure, straightforward, and accessible cancer treatment. This study also presents effective TUS parameters and safety considerations for this treatment modality and gives recommendations about system design and operation. Finally, future perspectives are considered, and different TUS approaches are examined and discussed in detail. This review investigates drug release and delivery through ultrasound-mediated nano-sized cancer treatment, both pre-clinically and clinically.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Nsairat H, AlShaer W, Odeh F, Essawi E, Khater D, Bawab AA, El-Tanani M, Awidi A, Mubarak MS. Recent Advances in Using Liposomes for Delivery of Nucleic Acid-Based Therapeutics. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
15
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
16
|
Wang S, Chen Y, Guo J, Huang Q. Liposomes for Tumor Targeted Therapy: A Review. Int J Mol Sci 2023; 24:ijms24032643. [PMID: 36768966 PMCID: PMC9916501 DOI: 10.3390/ijms24032643] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Liposomes, the most widely studied nano-drug carriers in drug delivery, are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Compared with traditional drug delivery systems, liposomes exhibit prominent properties that include targeted delivery, high biocompatibility, biodegradability, easy functionalization, low toxicity, improvements in the sustained release of the drug it carries and improved therapeutic indices. In the wake of the rapid development of nanotechnology, the studies of liposome composition have become increasingly extensive. The molecular diversity of liposome composition, which includes long-circulating PEGylated liposomes, ligand-functionalized liposomes, stimuli-responsive liposomes, and advanced cell membrane-coated biomimetic nanocarriers, endows their drug delivery with unique physiological functions. This review describes the composition, types and preparation methods of liposomes, and discusses their targeting strategies in cancer therapy.
Collapse
Affiliation(s)
- Shile Wang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Yanyu Chen
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Jiancheng Guo
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
17
|
Geng S, Guo M, Zhan G, Shi D, Shi L, Gan L, Zhao Y, Yang X. NIR-triggered ligand-presenting nanocarriers for enhancing synergistic photothermal-chemotherapy. J Control Release 2023; 353:229-240. [PMID: 36427657 DOI: 10.1016/j.jconrel.2022.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Surface PEGylation of nanomedicine is effective for prolonging blood circulation time and facilitating the EPR effect, whereas the hydrophilic stealth surface inhibits effective cellular uptake and hinders active targeting. To address the dilemma, herein, a NIR light-triggered dePEGylation/ligand-presenting strategy based on thermal decomposition of azo bonds is developed, whereby Dox/Pz-IR nanoparticle is self-assembled from thermo-labile azo molecule-linked long PEG chain polymer (Pz-IR), cRGD-conjugated IR783 with short PEG chains (rP-IR) and doxorubicin. The long PEG chains could mask cRGD peptides in the blood circulation, preventing serum degradation and nonspecific interaction with normal cells. Once exposed to NIR laser, the PEG corona is stripped off owing to the rupture of azo bonds through the photothermal effect of IR783, and the masked cRGD peptides are exposed, which remarkably enhances cellular uptake by tumor cells and improves tumor accumulation. Dox/Pz-IR achieves the optimal synergy of photothermal-chemotherapy at mild temperature through progressive tumor accumulation, precisely regulated photothermal effect and NIR-PTT induced pulsated drug release. The strategy of NIR photo-driven dePEGylation/targeting offers a new approach to overcoming the "PEG dilemma", and provides a noval avenue for programmed tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Shinan Geng
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guiting Zhan
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, China.
| |
Collapse
|
18
|
Jiang X, Du Z, Zhang X, Zaman F, Song Z, Guan Y, Yu T, Huang Y. Gelatin-based anticancer drug delivery nanosystems: A mini review. Front Bioeng Biotechnol 2023; 11:1158749. [PMID: 37025360 PMCID: PMC10070861 DOI: 10.3389/fbioe.2023.1158749] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Drug delivery nanosystems (DDnS) is widely developed recently. Gelatin is a high-potential biomaterial originated from natural resources for anticancer DDnS, which can effectively improve the utilization of anticancer drugs and reduce side effects. The hydrophilic, amphoteric behavior and sol-gel transition of gelatin can be used to fulfill various requirements of anticancer DDnS. Additionally, the high number of multifunctional groups on the surface of gelatin provides the possibility of crosslinking and further modifications. In this review, we focus on the properties of gelatin and briefly elaborate the correlation between the properties and anticancer DDnS. Furthermore, we discuss the applications of gelatin-based DDnS in various cancer treatments. Overall, we have summarized the excellent properties of gelatin and correlated with DDnS to provide a manual for the design of gelatin-based materials for DDnS.
Collapse
Affiliation(s)
- Xianchao Jiang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhen Du
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xinran Zhang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Fakhar Zaman
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zihao Song
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| |
Collapse
|
19
|
Sun Y, Chen LG, Fan XM, Pang JL. Ultrasound Responsive Smart Implantable Hydrogels for Targeted Delivery of Drugs: Reviewing Current Practices. Int J Nanomedicine 2022; 17:5001-5026. [PMID: 36275483 PMCID: PMC9586127 DOI: 10.2147/ijn.s374247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last two decades, the process of delivering therapeutic drugs to a patient with a controlled release profile has been a significant focus of drug delivery research. Scientists have given tremendous attention to ultrasound-responsive hydrogels for several decades. These smart nanosystems are more applicable than other stimuli-responsive drug delivery vehicles (ie UV-, pH- and thermal-, responsive materials) because they enable more efficient targeted treatment via relatively non-invasive means. Ultrasound (US) is capable of safely transporting energy through opaque and complex media with minimal loss of energy. It is capable of being localized to smaller regions and coupled to systems operating at various time scales. However, the properties enabling the US to propagate effectively in materials also make it very difficult to transform acoustic energy into other forms that may be used. Recent research from a variety of domains has attempted to deal with this issue, proving that ultrasonic effects can be used to control chemical and physical systems with remarkable specificity. By obviating the need for multiple intravenous injections, implantable US responsive hydrogel systems can enhance the quality of life for patients who undergo treatment with a varied dosage regimen. Ideally, the ease of self-dosing in these systems would lead to increased patient compliance with a particular therapy as well. However, excessive literature has been reported based on implanted US responsive hydrogel in various fields, but there is no comprehensive review article showing the strategies to control drug delivery profile. So, this review was aimed at discussing the current strategies for controlling and targeting drug delivery profiles using implantable hydrogel systems.
Collapse
Affiliation(s)
- Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014, People’s Republic of China
| | - Le-Gao Chen
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014, People’s Republic of China
| | - Xiao-Ming Fan
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014, People’s Republic of China,Correspondence: Xiao-Ming Fan, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, People’s Republic of China, Tel/Fax +86-571-85893290, Email
| | - Jian-Liang Pang
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, 317200, People’s Republic of China,Jian-Liang Pang, Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Kangning Middle Road, Shifeng Street, Tiantai County, Taizhou, Zhejiang, 317200, People’s Republic of China, Tel/Fax +86-576- 81302085, Email
| |
Collapse
|
20
|
Barzegar-Fallah A, Gandhi K, Rizwan SB, Slatter TL, Reynolds JNJ. Harnessing Ultrasound for Targeting Drug Delivery to the Brain and Breaching the Blood–Brain Tumour Barrier. Pharmaceutics 2022; 14:pharmaceutics14102231. [PMID: 36297666 PMCID: PMC9607160 DOI: 10.3390/pharmaceutics14102231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite significant advances in developing drugs to treat brain tumours, achieving therapeutic concentrations of the drug at the tumour site remains a major challenge due to the presence of the blood–brain barrier (BBB). Several strategies have evolved to enhance brain delivery of chemotherapeutic agents to treat tumours; however, most approaches have several limitations which hinder their clinical utility. Promising studies indicate that ultrasound can penetrate the skull to target specific brain regions and transiently open the BBB, safely and reversibly, with a high degree of spatial and temporal specificity. In this review, we initially describe the basics of therapeutic ultrasound, then detail ultrasound-based drug delivery strategies to the brain and the mechanisms by which ultrasound can improve brain tumour therapy. We review pre-clinical and clinical findings from ultrasound-mediated BBB opening and drug delivery studies and outline current therapeutic ultrasound devices and technologies designed for this purpose.
Collapse
Affiliation(s)
- Anita Barzegar-Fallah
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Shakila B. Rizwan
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-5781; Fax: +64-3-479-7254
| |
Collapse
|
21
|
Cerdan K, Moya C, Van Puyvelde P, Bruylants G, Brancart J. Magnetic Self-Healing Composites: Synthesis and Applications. Molecules 2022; 27:3796. [PMID: 35744920 PMCID: PMC9228312 DOI: 10.3390/molecules27123796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 12/17/2022] Open
Abstract
Magnetic composites and self-healing materials have been drawing much attention in their respective fields of application. Magnetic fillers enable changes in the material properties of objects, in the shapes and structures of objects, and ultimately in the motion and actuation of objects in response to the application of an external field. Self-healing materials possess the ability to repair incurred damage and consequently recover the functional properties during healing. The combination of these two unique features results in important advances in both fields. First, the self-healing ability enables the recovery of the magnetic properties of magnetic composites and structures to extend their service lifetimes in applications such as robotics and biomedicine. Second, magnetic (nano)particles offer many opportunities to improve the healing performance of the resulting self-healing magnetic composites. Magnetic fillers are used for the remote activation of thermal healing through inductive heating and for the closure of large damage by applying an alternating or constant external magnetic field, respectively. Furthermore, hard magnetic particles can be used to permanently magnetize self-healing composites to autonomously re-join severed parts. This paper reviews the synthesis, processing and manufacturing of magnetic self-healing composites for applications in health, robotic actuation, flexible electronics, and many more.
Collapse
Affiliation(s)
- Kenneth Cerdan
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium; (K.C.); (P.V.P.)
| | - Carlos Moya
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium;
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium; (K.C.); (P.V.P.)
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium;
| | - Joost Brancart
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| |
Collapse
|
22
|
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8:e09394. [PMID: 35600452 PMCID: PMC9118483 DOI: 10.1016/j.heliyon.2022.e09394] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes are now considered the most commonly used nanocarriers for various potentially active hydrophobic and hydrophilic molecules due to their high biocompatibility, biodegradability, and low immunogenicity. Liposomes also proved to enhance drug solubility and controlled distribution, as well as their capacity for surface modifications for targeted, prolonged, and sustained release. Based on the composition, liposomes can be considered to have evolved from conventional, long-circulating, targeted, and immune-liposomes to stimuli-responsive and actively targeted liposomes. Many liposomal-based drug delivery systems are currently clinically approved to treat several diseases, such as cancer, fungal and viral infections; more liposomes have reached advanced phases in clinical trials. This review describes liposomes structure, composition, preparation methods, and clinical applications.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman, Jordan
| | - Usama Sayed
- Department of Biology, The University of Jordan, Amman, 11942, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
23
|
Wang M, Zhao J, Jiang H, Wang X. Tumor-targeted nano-delivery system of therapeutic RNA. MATERIALS HORIZONS 2022; 9:1111-1140. [PMID: 35134106 DOI: 10.1039/d1mh01969d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The birth of RNAi technology has pioneered actionability at the molecular level. Compared to DNA, RNA is less stable and therefore requires more demanding delivery vehicles. With their flexible size, shape, structure, and accessible surface modification, non-viral vectors show great promise for application in RNA delivery. Different non-viral vectors have different ways of binding to RNA. Low immunotoxicity gives RNA significant advantages in tumor treatment. However, the delivery of RNA still has many limitations in vivo. This manuscript summarizes the size-targeting dependence of different organs, followed by a summary of nanovesicles currently in or undergoing clinical trials. It also reviews all RNA delivery systems involved in the current study, including natural, bionic, organic, and inorganic systems. It summarizes the advantages and disadvantages of different delivery methods, which will be helpful for future RNA vehicle design. It is hoped that this will be helpful for gene therapy of clinical tumors.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jingzhou Zhao
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
24
|
Alphandéry E. Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology 2022; 20:139. [PMID: 35300712 PMCID: PMC8930287 DOI: 10.1186/s12951-022-01243-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/02/2022] [Indexed: 01/12/2023] Open
Abstract
Ultrasounds are often used in cancer treatment protocols, e.g. to collect tumor tissues in the right location using ultrasound-guided biopsy, to image the region of the tumor using more affordable and easier to use apparatus than MRI and CT, or to ablate tumor tissues using HIFU. The efficacy of these methods can be further improved by combining them with various nano-systems, thus enabling: (i) a better resolution of ultrasound imaging, allowing for example the visualization of angiogenic blood vessels, (ii) the specific tumor targeting of anti-tumor chemotherapeutic drugs or gases attached to or encapsulated in nano-systems and released in a controlled manner in the tumor under ultrasound application, (iii) tumor treatment at tumor site using more moderate heating temperatures than with HIFU. Furthermore, some nano-systems display adjustable sizes, i.e. nanobubbles can grow into micro-bubbles. Such dual size is advantageous since it enables gathering within the same unit the targeting properties of nano bubbles via EPR effect and the enhanced ultrasound contrasting properties of micro bubbles. Interestingly, the way in which nano-systems act against a tumor could in principle also be adjusted by accurately selecting the nano-system among a large choice and by tuning the values of the ultrasound parameters, which can lead, due to their mechanical nature, to specific effects such as cavitation that are usually not observed with purely electromagnetic waves and can potentially help destroying the tumor. This review highlights the clinical potential of these combined treatments that can improve the benefit/risk ratio of current cancer treatments.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de. Cosmochimie, IMPMC, 75005, Paris, France. .,Nanobacterie SARL, 36 boulevard Flandrin, 75116, Paris, France. .,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
25
|
Christou E, Pearson JR, Beltrán AM, Fernández-Afonso Y, Gutiérrez L, de la Fuente JM, Gámez F, García-Martín ML, Caro C. Iron–Gold Nanoflowers: A Promising Tool for Multimodal Imaging and Hyperthermia Therapy. Pharmaceutics 2022; 14:pharmaceutics14030636. [PMID: 35336012 PMCID: PMC8955043 DOI: 10.3390/pharmaceutics14030636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
The development of nanoplatforms prepared to perform both multimodal imaging and combined therapies in a single entity is a fast-growing field. These systems are able to improve diagnostic accuracy and therapy success. Multicomponent Nanoparticles (MCNPs), composed of iron oxide and gold, offer new opportunities for Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) diagnosis, as well as combined therapies based on Magnetic Hyperthermia (MH) and Photothermal Therapy (PT). In this work, we describe a new seed-assisted method for the synthesis of Au@Fe Nanoparticles (NPs) with a flower-like structure. For biomedical purposes, Au@Fe NPs were functionalized with a PEGylated ligand, leading to high colloidal stability. Moreover, the as-obtained Au@Fe-PEG NPs exhibited excellent features as both MRI and CT Contrast Agents (CAs), with high r2 relaxivity (60.5 mM−1⋅s−1) and X-ray attenuation properties (8.8 HU mM−1⋅HU). In addition, these nanoflowers presented considerable energy-to-heat conversion under both Alternating Magnetic Fields (AMFs) (∆T ≈ 2.5 °C) and Near-Infrared (NIR) light (∆T ≈ 17 °C). Finally, Au@Fe-PEG NPs exhibited very low cytotoxicity, confirming their potential for theranostics applications.
Collapse
Affiliation(s)
- Evangelia Christou
- BIONAND—Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain; (E.C.); (J.R.P.)
| | - John R. Pearson
- BIONAND—Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain; (E.C.); (J.R.P.)
| | - Ana M. Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de Á frica 7, 41011 Sevilla, Spain;
| | - Yilian Fernández-Afonso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (Y.F.-A.); (L.G.); (J.M.d.l.F.)
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (Y.F.-A.); (L.G.); (J.M.d.l.F.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Jesús M. de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (Y.F.-A.); (L.G.); (J.M.d.l.F.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Francisco Gámez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María L. García-Martín
- BIONAND—Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain; (E.C.); (J.R.P.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.L.G.-M.); (C.C.)
| | - Carlos Caro
- BIONAND—Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain; (E.C.); (J.R.P.)
- Correspondence: (M.L.G.-M.); (C.C.)
| |
Collapse
|
26
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
27
|
Lin X, Wu J, Liu Y, Lin N, Hu J, Zhang B. Stimuli-Responsive Drug Delivery Systems for the Diagnosis and Therapy of Lung Cancer. Molecules 2022; 27:molecules27030948. [PMID: 35164213 PMCID: PMC8838081 DOI: 10.3390/molecules27030948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death worldwide. Numerous drugs have been developed to treat lung cancer patients in recent years, whereas most of these drugs have undesirable adverse effects due to nonspecific distribution in the body. To address this problem, stimuli-responsive drug delivery systems are imparted with unique characteristics and specifically deliver loaded drugs at lung cancer tissues on the basis of internal tumor microenvironment or external stimuli. This review summarized recent studies focusing on the smart carriers that could respond to light, ultrasound, pH, or enzyme, and provided a promising strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
| | - Yupeng Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
- Cancer Center, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Correspondence: (J.H.); (B.Z.)
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
- Cancer Center, Zhejiang University, Hangzhou 310003, China
- Correspondence: (J.H.); (B.Z.)
| |
Collapse
|
28
|
Lecot N, Rodríguez G, Stancov V, Fernández M, González M, Glisoni RJ, Cabral P, Cerecetto H. Development of fluorescent- and radio-traceable T1307-polymeric micelles as biomedical agents for cancer diagnosis: biodistribution on 4T1 tumor-bearing mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Hugo Cerecetto
- Universidad de la República, Uruguay; Universidad de la República, Uruguay
| |
Collapse
|
29
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
30
|
Zhang H, Xu J, Gao B, Wang H, Huang J, Zhou J, Yang R, Yan F, Peng Y. Synergistic Cascade Strategy Based on Modifying Tumor Microenvironment for Enhanced Breast Cancer Therapy. Front Pharmacol 2021; 12:750847. [PMID: 34867360 PMCID: PMC8636108 DOI: 10.3389/fphar.2021.750847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with very few treatment options. Although tumor-targeted nanomedicines hold great promise for the treatment of TNBC, the tumor microenvironment (TME) continues to be a major cause of failure in nanotherapy and immunotherapy. To overcome this barrier, we designed a new synergistic cascade strategy (SCS) that uses mild hyperthermia and smart drug delivery system (SDDS) to alter TME resistance in order to improve drug delivery and therapeutic efficacy of TNBC. Methods: Mild hyperthermia was produced by microwave (MW) irradiation. SDDS were formulated with thermosensitive polymer-lipid nanoparticles (HA-BNPs@Ptx), composed of polymer PLGA, phospholipid DPPC, hyaluronic acid (HA, a differentiation-44-targeted molecule, also known as CD44), 1-butyl-3-methylimidazolium-L-lactate (BML, a MW sensitizer), and paclitaxel (Ptx, chemotherapy drug). 4T1 breast tumor-bearing mice were treated with two-step MW combined with HA-BNPs@Ptx. Tumors in mice were pretreated with first MW irradiation prior to nanoparticle injection to modify and promote TME and promoting nanoparticle uptake and retention. The second MW irradiation was performed on the tumor 24 h after the injection of HA-BNPs@Ptx to produce a synergistic cascade effect through activating BML, thus, enhancing a hyperthermia effect, and instantly releasing Ptx at the tumor site. Results: Multifunctional CD44-targeted nanoparticles HA-BNPs@Ptx were successfully prepared and validated in vitro. After the first MW irradiation of tumors in mice, the intratumoral perfusion increased by two times, and the nanoparticle uptake was augmented by seven times. With the second MW irradiation, remarkable antitumor effects were obtained with the inhibition rate up to 88%. In addition, immunohistochemical analysis showed that SCS therapy could not only promote tumor cell apoptosis but also significantly reduce lung metastasis. Conclusion: The SCS using mild hyperthermia combined with SDDS can significantly improve the efficacy of TNBC treatment in mice by modifying TME and hyperthermia-mediated EPR effects.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jinshun Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Binyang Gao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Yang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Yan
- Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu, China
| | - Yulan Peng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Magnetic iron oxide nanoparticles for biomedical applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20. [DOI: 10.1016/j.cobme.2021.100330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021; 178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer involves a collection of diseases with a common trait - dysregulation in cell proliferation. At present, traditional therapeutic strategies against cancer have limitations in tackling various tumors in clinical settings. These include chemotherapeutic resistance and the inability to overcome intrinsic physiological barriers to drug delivery. Nanomaterials have presented promising strategies for tumor treatment in recent years. Nanotheranostics combine therapeutic and bioimaging functionalities at the single nanoparticle level and have experienced tremendous growth over the past few years. This review highlights recent developments of advanced nanomaterials and nanotheranostics in three main directions: stimulus-responsive nanomaterials, nanocarriers targeting the tumor microenvironment, and emerging nanomaterials that integrate with phototherapies and immunotherapies. We also discuss the cytotoxicity and outlook of next-generation nanomaterials towards clinical implementation.
Collapse
Affiliation(s)
- Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| | - Yi-Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
33
|
Handa M, Beg S, Shukla R, Barkat MA, Choudhry H, Singh KK. Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting. J Control Release 2021; 340:48-59. [PMID: 34695523 DOI: 10.1016/j.jconrel.2021.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Cancer is a leading cause of death in many countries around the world. However, the efficacy of current treatments available for variety of cancers is considered to be suboptimal due to the pathophysiological challenges associated with the disease which limits the efficacy of the anticancer drugs. Moreover, the vulnerability towards off-target effects and high toxicity also limits the use of drugs for the treatment of cancers. Besides, the biopharmaceutical challenges like poor water solubility and permeability of the drugs, along with the absence of active targeting capability further decreases the utility of drugs in cancer therapy. As a result of these deficiencies, the current therapeutic strategies face noncompliance to patients for providing meaningful benefits after administration. With the advancements in nanotechnology, there has been a paradigm shift in the modalities for cancer treatment with the help of phytomedicine-based nanosized drug delivery systems coupled with variegated surface-engineering strategies for targeted drug delivery. Among these delivery systems, lipid-based nanoparticles are considered as one of the highly biocompatible, efficient and effective systems extensively explored for anticancer drug delivery. These include diverse range of systems including liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipidic carriers and supramolecular carriers, which alters pharmacokinetic and biodistribution of the drugs for active targeting to the desired site of action by overcoming the biopharmaceutical challenges associated with anticancer drug delivery. The present review endeavours to provide a comprehensive account on the recent advances in the application of lipid-based nanostructured systems for improving the pharmacotherapeutic performance of phytomedicines for cancer targeting application.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India
| | - Sarwar Beg
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India.
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| |
Collapse
|
34
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
35
|
Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13081135. [PMID: 34452096 PMCID: PMC8397943 DOI: 10.3390/pharmaceutics13081135] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional cancer chemotherapies often exhibit insufficient therapeutic outcomes and dose-limiting toxicity. Therefore, there is a need for novel therapeutics and formulations with higher efficacy, improved safety, and more favorable toxicological profiles. This has promoted the development of nanomedicines, including systems for drug delivery, but also for imaging and diagnostics. Nanoparticles loaded with drugs can be designed to overcome several biological barriers to improving efficiency and reducing toxicity. In addition, stimuli-responsive nanocarriers are able to release their payload on demand at the tumor tissue site, preventing premature drug loss. This review focuses on ultrasound-triggered drug delivery by nanocarriers as a versatile, cost-efficient, non-invasive technique for improving tissue specificity and tissue penetration, and for achieving high drug concentrations at their intended site of action. It highlights aspects relevant for ultrasound-mediated drug delivery, including ultrasound parameters and resulting biological effects. Then, concepts in ultrasound-mediated drug delivery are introduced and a comprehensive overview of several types of nanoparticles used for this purpose is given. This includes an in-depth compilation of the literature on the various in vivo ultrasound-responsive drug delivery systems. Finally, toxicological and safety considerations regarding ultrasound-mediated drug delivery with nanocarriers are discussed.
Collapse
|
36
|
Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021; 337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Triple negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC) are amongst the most aggressive forms of solid tumors. TNBC is highlighted by absence of genetic components of progesterone receptor, HER2/neu and estrogen receptor in breast cancer. NSCLC is characterized by integration of malignant carcinoma into respiratory system. Both cancers are associated with poor median and overall survival rates with low progression free survival with high incidences of relapse. These cancers are characterized by tumor heterogeneity, genetic mutations, generation of cancer-stem cells, immune-resistance and chemoresistance. Further, these neoplasms have been reported for tumor cross-talk into second primary cancers for each other. Current chemotherapeutic regimens include usage of multiple agents in tandem to affect tumor cells through multiple mechanisms with various such combinations being clinically tested. However, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Consequently, passive targeted albumin bound paclitaxel and PEGylated liposomal doxorubicin have been clinically used and tested with newer drugs for improved therapeutic efficacy in these cancers. Active targeting of nanocarriers against surface overexpressed proteins in both neoplasms have been explored. However, use of single agent nanoparticulate formulations against both cancers have failed to elicit desired outcomes. This review aims to identify clinical unmet need in these cancers while establishing a correlation with tested nano-formulation approaches and issues with preclinical to clinical translation. Lipid and polymer-based drug-drug and drug-gene combinatorial nanocarriers delivering multiple chemotherapeutics simultaneously to desired site of action have been detailed. Finally, emerging opportunities such as pharmacological targets (immune check point and epigentic modulators) as well as gene-based modulation (siRNA/CRISPR/Cas9) and the nano-formulation challenges for effective treatment of both cancers have been explored.
Collapse
|
37
|
Petrini M, Lokerse WJM, Mach A, Hossann M, Merkel OM, Lindner LH. Effects of Surface Charge, PEGylation and Functionalization with Dipalmitoylphosphatidyldiglycerol on Liposome-Cell Interactions and Local Drug Delivery to Solid Tumors via Thermosensitive Liposomes. Int J Nanomedicine 2021; 16:4045-4061. [PMID: 34163158 PMCID: PMC8214027 DOI: 10.2147/ijn.s305106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Previous studies demonstrated the possibility of targeting tumor-angiogenic endothelial cells with positively charged nanocarriers, such as cationic liposomes. We investigated the active targeting potential of positively charged nanoparticles in combination with the heat-induced drug release function of thermosensitive liposomes (TSL). This novel dual-targeted approach via cationic TSL (CTSL) was thoroughly explored using either a novel synthetic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) or a conventional polyethylene glycol (PEG) surface modification. Anionic particles containing either DPPG2 or PEG were also included in the study to highlight difference in tumor enrichment driven by surface charge. With this study, we aim to provide a deep insight into the main differences between DPPG2- and PEG-functionalized liposomes, focusing on the delivery of a well-known cytotoxic drug (doxorubicin; DOX) in combination with local hyperthermia (HT, 41–43°C). Materials and Methods DPPG2- and PEG-based cationic TSLs (PG2-CTSL/PEG-CTSL) were thoroughly analyzed for size, surface charge, and heat-triggered DOX release. Cancer cell targeting and DOX delivery was evaluated by FACS, fluorescence imaging, and HPLC. In vivo particle behavior was analyzed by assessing DOX biodistribution with local HT application in tumor-bearing animals. Results The absence of PEG in PG2-CTSL promoted more efficient liposome–cell interactions, resulting in a higher DOX delivery and cancer cell toxicity compared with PEG-CTSL. By exploiting the dual-targeting function of CTSLs, we were able to selectively trigger DOX release in the intracellular compartment by HT. When tested in vivo, local HT promoted an increase in intratumoral DOX levels for all (C)TSLs tested, with DOX enrichment factors ranging from 3 to 14-fold depending on the type of formulation. Conclusion Cationic particles showed lower hemocompatibility than their anionic counterparts, which was partially mitigated when PEG was grafted on the liposome surface. DPPG2-based anionic TSL showed optimal local drug delivery compared to all other formulations tested, demonstrating the potential advantages of using DPPG2 lipid in designing liposomes for tumor-targeted applications.
Collapse
Affiliation(s)
- Matteo Petrini
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilian University, Munich, Germany
| | - Wouter J M Lokerse
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Agnieszka Mach
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany
| | | | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilian University, Munich, Germany
| | - Lars H Lindner
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
38
|
In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy. Cells 2021; 10:cells10061436. [PMID: 34201238 PMCID: PMC8230049 DOI: 10.3390/cells10061436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5–15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.
Collapse
|
39
|
Morales-Zavala F, Jara-Guajardo P, Chamorro D, Riveros AL, Chandia-Cristi A, Salgado N, Pismante P, Giralt E, Sánchez-Navarro M, Araya E, Vasquez R, Acosta G, Albericio F, Alvarez R A, Kogan MJ. In vivo micro computed tomography detection and decrease in amyloid load by using multifunctionalized gold nanorods: a neurotheranostic platform for Alzheimer's disease. Biomater Sci 2021; 9:4178-4190. [PMID: 33982040 DOI: 10.1039/d0bm01825b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development and use of nanosystems is an emerging strategy for the diagnosis and treatment of a broad number of diseases, such as Alzheimer's disease (AD). Here, we developed a neurotheranostic nanosystem based on gold nanorods (GNRs) that works as a therapeutic peptide delivery system and can be detected in vivo for microcomputed tomography (micro-CT), being a diagnostic tool. GNRs functionalized with the peptides Ang2 (a shuttle to the Central Nervous System) and D1 (that binds to the Aβ peptide, also inhibiting its aggregation) allowed detecting differences in vivo between wild type and AD mice (APPswe/PSEN1dE9) 15 minutes after a single dose by micro-CT. Moreover, after a recurrent treatment for one month with GNRs-D1/Ang2, we observed a diminution of amyloid load and inflammatory markers in the brain. Thus, this new designed nanosystem exhibits promising properties for neurotheranostics of AD.
Collapse
Affiliation(s)
- Francisco Morales-Zavala
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bolaños K, Celis F, Garrido C, Campos M, Guzmán F, Kogan MJ, Araya E. Adsorption of bovine serum albumin on gold nanoprisms: interaction and effect of NIR irradiation on protein corona. J Mater Chem B 2021; 8:8644-8657. [PMID: 32842142 DOI: 10.1039/d0tb01246g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of their photothermal properties, gold nanoparticles (AuNPs) have gained attention regarding their use in drug delivery and therapeutic applications. In this sense, it is interesting to consider their interactions with biologically available proteins, such as serum albumin, as well as the effects of irradiation and photothermal conversion on the protein structure that can lead to a loss of function or generate an immune response. Gold nanoprisms (AuNPrs) have gained interest due to their low toxicity, ease of synthesis, and excellent stability, promoting their use in bioapplications such as surface-enhanced Raman spectroscopy (SERS), drug delivery, and photothermal therapy. The interaction between AuNPrs, with plasmon bands centred in the near-infrared region (NIR), and bovine serum albumin (BSA) has not been explored yet. UV-Vis spectroscopy, dynamic light scattering (DLS) and fluorescence spectroscopy were used to study the interaction between AuNPrs and BSA in addition to estimation of the adsorption rate and kinetic and thermodynamic parameters (K, ΔH°, ΔG°, ΔS°, and Ea) using adsorption isotherms and Langmuir and Freundlich models. The results suggest spontaneous cooperative binding in multilayer adsorption, achieved by the chemisorption of BSA on the AuNPr surface through the S-Au interaction, as confirmed by Raman spectroscopy. On the other hand, the photothermal conversion efficiency (PE) of the coated nanoparticles after NIR irradiation was assessed, resulting in a slight decrease in the PE of BSA coated on AuNPrs in comparison with that of noncapped nanoparticles. The effect of the irradiation on the protein conformation of capped nanoparticles was also assessed; circular dichroism showed BSA unfolding upon interaction with AuNPrs, with a decrease in the α-helix and β-sheet contents, as well as an increase in random coil conformations. Changes in the Raman spectrum suggest a modification of the disposition of the protein residues exposed to the gold surface after NIR irradiation; but at the secondary structure level, no relevant changes were observed. This provides possibilities for the use of NPs-BSA for bioapplications based on the photothermal effect promoted by laser irradiation, since the biological identity of the protein is preserved after NIR irradiation.
Collapse
Affiliation(s)
- Karen Bolaños
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile and Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile. and Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile
| | - Carlos Garrido
- Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Av. José Pedro Alessandri 774, Ñuñoa, Santiago, Chile
| | - Marcelo Campos
- Department of Chemistry, Faculty of Sciences, University of Chile, P. O. Box 653, Santiago, Chile
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontifcia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile. and Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile
| | - Eyleen Araya
- Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile and Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile.
| |
Collapse
|
41
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Reina G, Iglesias D, Samorì P, Bianco A. Graphene: A Disruptive Opportunity for COVID-19 and Future Pandemics? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007847. [PMID: 33538037 PMCID: PMC7995107 DOI: 10.1002/adma.202007847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Indexed: 05/19/2023]
Abstract
The graphene revolution, which has taken place during the last 15 years, has represented a paradigm shift for science. The extraordinary properties possessed by this unique material have paved the road to a number of applications in materials science, optoelectronics, energy, and sensing. Graphene-related materials (GRMs) are now produced in large scale and have found niche applications also in the biomedical technologies, defining new standards for drug delivery and biosensing. Such advances position GRMs as novel tools to fight against the current COVID-19 and future pandemics. In this regard, GRMs can play a major role in sensing, as an active component in antiviral surfaces or in virucidal formulations. Herein, the most promising strategies reported in the literature on the use of GRM-based materials against the COVID-19 pandemic and other types of viruses are showcased, with a strong focus on the impact of functionalization, deposition techniques, and integration into devices and surface coatings.
Collapse
Affiliation(s)
- Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572University of Strasbourg, ISISStrasbourg67000France
| | | | - Paolo Samorì
- University of Strasbourg, CNRS, ISISStrasbourg67000France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572University of Strasbourg, ISISStrasbourg67000France
- University of Strasbourg, CNRS, ISISStrasbourg67000France
| |
Collapse
|
43
|
Zhang H, Tang WL, Kheirolomoom A, Fite BZ, Wu B, Lau K, Baikoghli M, Raie MN, Tumbale SK, Foiret J, Ingham ES, Mahakian LM, Tam SM, Cheng RH, Borowsky AD, Ferrara KW. Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy. J Control Release 2021; 330:1080-1094. [PMID: 33189786 PMCID: PMC7906914 DOI: 10.1016/j.jconrel.2020.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/01/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Resiquimod (R848) is a toll-like receptor 7 and 8 (TLR7/8) agonist with potent antitumor and immunostimulatory activity. However, systemic delivery of R848 is poorly tolerated because of its poor solubility in water and systemic immune activation. In order to address these limitations, we developed an intravenously-injectable formulation with R848 using thermosensitive liposomes (TSLs) as a delivery vehicle. R848 was remotely loaded into TSLs composed of DPPC: DSPC: DSPE-PEG2K (85:10:5, mol%) with 100 mM FeSO4 as the trapping agent inside. The final R848 to lipid ratio of the optimized R848-loaded TSLs (R848-TSLs) was 0.09 (w/w), 10-fold higher than the previously-reported values. R848-TSLs released 80% of R848 within 5 min at 42 °C. These TSLs were then combined with αPD-1, an immune checkpoint inhibitor, and ultrasound-mediated hyperthermia in a neu deletion (NDL) mouse mammary carcinoma model (Her2+, ER/PR negative). Combined with αPD-1, local injection of R848-TSLs showed superior efficacy with complete NDL tumor regression in both treated and abscopal sites achieved in 8 of 11 tumor bearing mice over 100 days. Immunohistochemistry confirmed enhanced CD8+ T cell infiltration and accumulation by R848-TSLs. Systemic delivery of R848-TSLs, combined with local hyperthermia and αPD-1, inhibited tumor growth and extended median survival from 28 days (non-treatment control) to 94 days. Upon re-challenge with reinjection of tumor cells, none of the previously cured mice developed tumors, as compared with 100% of age-matched control mice. The dose of R848 (10 μg for intra-tumoral injection or 6 mg/kg for intravenous injection delivered up to 4 times) was well-tolerated without weight loss or organ hypertrophy. In summary, we developed R848-TSLs that can be administered locally or systematically, resulting in tumor regression and enhanced survival when combined with αPD-1 in mouse models of breast cancer.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Wei-Lun Tang
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Azadeh Kheirolomoom
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Brett Z Fite
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Bo Wu
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Kenneth Lau
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Marina Nura Raie
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Spencer K Tumbale
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Sarah M Tam
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | - Katherine W Ferrara
- Molecular Imaging Program, Department of Radiology, Stanford University, 3165 Porter Drive, Palo Alto, CA 94304, USA.
| |
Collapse
|
44
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
45
|
Liu J, Zhang Y, Chen T, Chen H, He H, Jin T, Wang J, Ke Y. Environmentally Self-Adaptative Nanocarriers Suppress Glioma Proliferation and Stemness via Codelivery of shCD163 and Doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52354-52369. [PMID: 33196179 DOI: 10.1021/acsami.0c14288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gliomas-devastating intracranial tumors with a dismal outcome-are in dire need of innovative treatment. Although nanodrugs have been utilized as a target therapy for certain types of solid tumors, their therapeutic effects in gliomas are limited due to the complications of the systemic circulation, blood-brain barrier (BBB), and specific glioma environment. Thus, we aimed to establish a nanoliposome adaptable to different environments by codelivery of shCD163 and doxorubicin (DOX) to treat gliomas. In this study, we first synthesized pH-sensitive DSPE-cRGD-Hz-PEG2000 to form an environmentally self-adaptative nanoliposome (cRGD-DDD Lip) via a thin film method. We used in vitro BBB models, in vitro cell uptake experiments, and in vivo biodistribution assays to confirm the long circulation time and low cell uptake of the cRGD-DDD Lip as a result of the poly(ethylene glycol) (PEG) shell of cRGD-DDD Lip in the neutral pH systemic circulation. Moreover, the cRGD-DDD Lip bypassed the BBB and attached to the intracranial glioma following the removal of the PEG shell and the exposure of cRGD to the weakly acidic tumor microenvironment. We further assembled the shCD163/DOX@cRGD-DDD Lip through cRGD-DDD Lip loading of shCD163 and DOX. In vitro, cell proliferation and self-renewal of glioma cells were inhibited by the shCD163/DOX@cRGD-DDD Lip due to the toxicity of DOX and the suppression of shCD163 via the CD163 pathway. In vivo, the shCD163/DOX@cRGD-DDD Lip disturbed the progression of in situ gliomas by inhibiting the growth and stemness of glioma cells and prevented the recurrence of gliomas after resection. In conclusion, the cRGD-DDD Lip may be a promising nanodrug-loading platform to cope with different environments and the shCD163/DOX@cRGD-DDD Lip may potentially be a novel nanodrug for glioma therapy.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/therapeutic use
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Brain Neoplasms/drug therapy
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Glioma/drug therapy
- Glioma/mortality
- Glioma/pathology
- Humans
- Liposomes/chemistry
- Mice
- Mice, Nude
- Nanoparticles/chemistry
- Nanoparticles/metabolism
- Oligopeptides/chemistry
- Polyethylene Glycols/chemistry
- RNA Interference
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/metabolism
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Survival Rate
- Tissue Distribution
Collapse
Affiliation(s)
- Jie Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Taoliang Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huajian Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Haoqi He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Jin
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
46
|
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2186. [PMID: 33147800 PMCID: PMC7692849 DOI: 10.3390/nano10112186] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a rapidly growing field that uses nanomaterials for the diagnosis, treatment and prevention of various diseases, including cancer. Various biocompatible nanoplatforms with diversified capabilities for tumor targeting, imaging, and therapy have materialized to yield individualized therapy. However, due to their unique properties brought about by their small size, safety concerns have emerged as their physicochemical properties can lead to altered pharmacokinetics, with the potential to cross biological barriers. In addition, the intrinsic toxicity of some of the inorganic materials (i.e., heavy metals) and their ability to accumulate and persist in the human body has been a challenge to their translation. Successful clinical translation of these nanoparticles is heavily dependent on their stability, circulation time, access and bioavailability to disease sites, and their safety profile. This review covers preclinical and clinical inorganic-nanoparticle based nanomaterial utilized for cancer imaging and therapeutics. A special emphasis is put on the rational design to develop non-toxic/safe inorganic nanoparticle constructs to increase their viability as translatable nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Saisree Ravi
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Joy D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
47
|
Zhang X, Zhou J, Gu Z, Zhang H, Gong Q, Luo K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2020; 269:120492. [PMID: 33153757 DOI: 10.1016/j.biomaterials.2020.120492] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
In spite of a great improvement in medical health services and an increase in lifespan, we have witnessed a skyrocket increase in the incidence of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease), ischemic stroke, and epilepsy, which have seriously undermined the quality of life and substantially increased economic and societal burdens. Development of diagnostic methods for CNS disorders is still in the early stage, and the clinical outcomes suggest these methods are not ready for the challenges associated with diagnosis of CNS disorders, such as early detection, specific binding, sharp contrast, and continuous monitoring of therapeutic interventions. Another challenge is to overcome various barrier structures during delivery of diagnostic agents, especially the blood-brain barrier (BBB). Fortunately, utilization of nanomaterials has been pursued as a potential and promising strategy to address these challenges. This review will discuss anatomical and functional structures of BBB and transport mechanisms of nanomaterials across the BBB, and special emphases will be placed on the state-of-the-art advances in the development of nanomedicines from a variety of nanomaterials for diagnosis of CNS disorders. Meanwhile, current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
48
|
Wang JB, Di Ianni T, Vyas DB, Huang Z, Park S, Hosseini-Nassab N, Aryal M, Airan RD. Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention. Front Neurosci 2020; 14:675. [PMID: 32760238 PMCID: PMC7372945 DOI: 10.3389/fnins.2020.00675] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
A long-standing goal of translational neuroscience is the ability to noninvasively deliver therapeutic agents to specific brain regions with high spatiotemporal resolution. Focused ultrasound (FUS) is an emerging technology that can noninvasively deliver energy up the order of 1 kW/cm2 with millimeter and millisecond resolution to any point in the human brain with Food and Drug Administration-approved hardware. Although FUS is clinically utilized primarily for focal ablation in conditions such as essential tremor, recent breakthroughs have enabled the use of FUS for drug delivery at lower intensities (i.e., tens of watts per square centimeter) without ablation of the tissue. In this review, we present strategies for image-guided FUS-mediated pharmacologic neurointerventions. First, we discuss blood–brain barrier opening to deliver therapeutic agents of a variety of sizes to the central nervous system. We then describe the use of ultrasound-sensitive nanoparticles to noninvasively deliver small molecules to millimeter-sized structures including superficial cortical regions and deep gray matter regions within the brain without the need for blood–brain barrier opening. We also consider the safety and potential complications of these techniques, with attention to temporal acuity. Finally, we close with a discussion of different methods for mapping the ultrasound field within the brain and describe future avenues of research in ultrasound-targeted drug therapies.
Collapse
Affiliation(s)
- Jeffrey B Wang
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Tommaso Di Ianni
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Daivik B Vyas
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Zhenbo Huang
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Sunmee Park
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Niloufar Hosseini-Nassab
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Muna Aryal
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Raag D Airan
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
49
|
Ahamad N, Prabhakar A, Mehta S, Singh E, Bhatia E, Sharma S, Banerjee R. Trigger-responsive engineered-nanocarriers and image-guided theranostics for rheumatoid arthritis. NANOSCALE 2020; 12:12673-12697. [PMID: 32524107 DOI: 10.1039/d0nr01648a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rheumatoid Arthritis (RA), one of the leading causes of disability due to progressive autoimmune destruction of synovial joints, affects ∼1% of the global population. Standard therapy helps in reducing inflammation and delaying the progression of RA but is limited by non-responsiveness on long-term use and several side-effects. The conventional nanocarriers (CNCs), to some extent, minimize toxicity associated with free drug administration while improving the therapeutic efficacy. However, the uncontrolled release of the encapsulated drug even at off-targeted organs limits the application of CNCs. To overcome these challenges, trigger-responsive engineered nanocarriers (ENCs) have been recently explored for RA treatment. Unlike CNCs, ENCs enable precise control over on-demand drug release due to endogenous triggers in arthritic paws like pH, enzyme level, oxidative stress, or exogenously applied triggers like near-infrared light, magnetic field, ultrasonic waves, etc. As the trigger is selectively applied to the inflamed joint, it potentially reduces toxicity at off-target locations. Moreover, ENCs have been strategically coupled with imaging probe(s) for simultaneous monitoring of ENCs inside the body and facilitate an 'image-guided-co-trigger' for site-specific action in arthritic paws. In this review, the progress made in recently emerging 'trigger-responsive' and 'image-guided theranostics' ENCs for RA treatment has been explored with emphasis on the design strategies, mechanism, current status, challenges, and translational perspectives.
Collapse
Affiliation(s)
- Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076 India.
| | | | | | | | | | | | | |
Collapse
|
50
|
Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev 2020; 163-164:65-83. [PMID: 32603814 PMCID: PMC7736167 DOI: 10.1016/j.addr.2020.06.025] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/19/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Significant research and preclinical investment in cancer nanomedicine has produced several products, which have improved cancer care. Nevertheless, there exists a perception that cancer nanomedicine 'has not lived up to its promise' because the number of approved products and their clinical performance are modest. Many of these analyses do not consider the long clinical history and many clinical products developed from iron oxide nanoparticles. Iron oxide nanoparticles have enjoyed clinical use for about nine decades demonstrating safety, and considerable clinical utility and versatility. FDA-approved applications of iron oxide nanoparticles include cancer diagnosis, cancer hyperthermia therapy, and iron deficiency anemia. For cancer nanomedicine, this wealth of clinical experience is invaluable to provide key lessons and highlight pitfalls in the pursuit of nanotechnology-based cancer therapeutics. We review the clinical experience with systemic liposomal drug delivery and parenteral therapy of iron deficiency anemia (IDA) with iron oxide nanoparticles. We note that the clinical success of injectable iron exploits the inherent interaction between nanoparticles and the (innate) immune system, which designers of liposomal drug delivery seek to avoid. Magnetic fluid hyperthermia, a cancer therapy that harnesses magnetic hysteresis heating is approved for treating humans only with iron oxide nanoparticles. Despite its successful demonstration to enhance overall survival in clinical trials, this nanotechnology-based thermal medicine struggles to establish a clinical presence. We review the physical and biological attributes of this approach, and suggest reasons for barriers to its acceptance. Finally, despite the extensive clinical experience with iron oxide nanoparticles new and exciting research points to surprising immune-modulating potential. Recent data demonstrate the interactions between immune cells and iron oxide nanoparticles can induce anti-tumor immune responses. These present new and exciting opportunities to explore additional applications with this venerable technology. Clinical applications of iron oxide nanoparticles present poignant case studies of the opportunities, complexities, and challenges in cancer nanomedicine. They also illustrate the need for revised paradigms and multidisciplinary approaches to develop and translate nanomedicines into clinical cancer care.
Collapse
Affiliation(s)
- Frederik Soetaert
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, Belgium; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Preethi Korangath
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David Serantes
- Department of Applied Physics and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Steven Fiering
- Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Centre, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore 21218, USA; Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore 21218, USA.
| |
Collapse
|