1
|
Huang P, Li W, Guan J, Jia Y, Wang D, Chen Y, Xiao N, Ou S, Wang Y, Yang B. Synthetic Vesicle-Based Drug Delivery Systems for Oral Disease Therapy: Current Applications and Future Directions. J Funct Biomater 2025; 16:25. [PMID: 39852581 PMCID: PMC11766321 DOI: 10.3390/jfb16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Oral diseases such as dental caries, periodontitis, and oral cancer are prevalent and present significant challenges to global public health. Although these diseases are typically treated through procedures like dental preparation and resin filling, scaling and root planning, or surgical excision, these interventions are often not entirely effective, and postoperative drug therapy is usually required. Traditional drug treatments, however, are limited by factors such as poor drug penetration, significant side effects, and the development of drug resistance. As a result, there is a growing need for novel drug delivery systems that can enhance therapeutic efficacy, reduce side effects, and improve treatment outcomes. In recent years, drug-loaded vesicles, such as liposomes, polymersomes, and extracellular vesicles (EVs), have emerged as promising drug delivery platforms due to their high drug encapsulation efficiency, controlled release properties, and excellent biocompatibility. This review provides an in-depth examination of the characteristics, advantages, and limitations of liposomes, polymersomes, and extracellular vesicles in the context of oral disease treatment. It further explores the reasons for their advantages and limitations and discusses the specific applications, development prospects, and strategies for optimizing these vesicle-based systems for improved clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (P.H.); (W.L.); (J.G.); (Y.J.); (D.W.); (Y.C.); (N.X.); (S.O.)
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (P.H.); (W.L.); (J.G.); (Y.J.); (D.W.); (Y.C.); (N.X.); (S.O.)
| |
Collapse
|
2
|
Prasad PK, Inti A, Yadav SPS. Programmable Aggregation of Self-Assembled DNA Constructs. SMALL METHODS 2024; 8:e2400443. [PMID: 39188200 DOI: 10.1002/smtd.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Indexed: 08/28/2024]
Abstract
Biomolecular aggregates ensure the optimum concentration and proximity required for biochemical processes to take place. Synthetic aggregating systems are becoming increasingly essential to study/mimic dynamic condensates in nature. Herein the ratiometric DNA aggregation of self-assembled DNA constructs using lanthanide salts is reported. In addition, the aggregation is shown to be reversed by the addition of specific lanthanide-binding ligands. The aggregate formation is confirmed by dynamic light scattering experiment, electrophoretic mobility shift assay, and field emission scanning electron microscope. This programmed DNA aggregation and its reversion are applied to evaluating the lanthanide-DNA and lanthanide-ligand binding constants, respectively. To achieve this, Forster resonance energy transfer (FRET) pair dyes at the 3' or 5' end of the DNA strands are strategically placed that generate unique fluorescence patterns upon interaction with the DNA constructs and different triggers such as lanthanides/ligands/monovalent cations, thus enabling the tracking of various states of binding. It also demonstrates a "fast method" to form and stabilize G-quadruplex (GQ) using lanthanides which complements the existing slow formation of GQs with Na+/K+ ions. The formation of GQ by lanthanides is corroborated by FRET, circular dichroism (CD), and enzyme linked immunosorbent assay (ELISA) experiments. These DNA constructs, formed by lanthanides, have shown resistance to cleavage by DNase I, and distinctive binding to Protoporphyrin dyes and Thioflavin T.
Collapse
Affiliation(s)
- Pragati K Prasad
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Akhil Inti
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Shiv Pratap S Yadav
- Department of Biophysics, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| |
Collapse
|
3
|
Unnikrishnan AC, Das BK, Saveri P, Mani E, Deshpande AP, Shanmugam G. Efficiency Enhancement in Peptide Hydrogelators: The Crucial Role of Side Chain Hydrogen Bonding Over Aromatic π-π Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24405-24418. [PMID: 39446343 DOI: 10.1021/acs.langmuir.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Short peptide assemblies that form supramolecular hydrogels are stabilized by both intermolecular noncovalent interactions among amino acid side chains and hydrogen bonding between peptide backbone amides. Previous research has emphasized the inclusion of aromatic amino acids in short peptide sequences, positing that aromatic π-π interactions contribute significantly to inducing efficient hydrogelation i.e., at low minimum gelation concentrations (MGCs). However, herein, we demonstrate that additional hydrogen bonding interactions from amino acid side chains play a more pivotal role in the efficiency of peptide hydrogelation compared to aromatic π-π interactions. We investigated two sets of Fluorenylmethoxycarbonyl (Fmoc)-functionalized α-synuclein and human islet amyloid peptide fragments [Fmoc-NVGGAVVT (Syn-N) and Fmoc-NFGAIL (IAP-N)], substituting asparagine (N) with phenylalanine (Syn-F/IAP-F), alanine (Syn-A/IAP-A), and glutamine (Syn-Q/IAP-Q). This allowed us to explore the effects of aromatic (π-system), aliphatic (hydrophobic), and hydrogen bonding effects with varying chain lengths on hydrogel formation. Our results reveal that Syn-N and Syn-Q exhibit MGC of 0.03 and 0.05 wt %, respectively, classifying them as super hydrogelators (MGC < 0.1 wt %). These values are 4.0-6.6-fold lower than Syn-F and Syn-A, with Syn-N demonstrating greater efficiency than Syn-Q. Similarly, IAP-N exhibited a substantial decrease in MGC by 8.75, 3.75, and 2.5 folds compared to IAP-A, IAP-F, and IAP-Q, respectively. Experimental evidence and molecular dynamic simulation suggest that -CO-NH2 of asparagine side chains effectively engaged in hydrogen bonding, thereby immobilizing water molecules at low gelator concentrations. Although glutamine shares similar -CO-NH2 functionality, its hydrogelation efficiency is less pronounced compared to asparagine, likely due to its longer alkyl chain, which may hinder the formation of a hydrogen bonding network in the self-assembled structure compared to asparagine-containing peptides. These findings offer valuable insights for designing efficient peptide hydrogelators or lowering MGCs by substituting amino acids with asparagine/glutamine in peptide sequences. Additionally, modifying peptide properties through asparagine/glutamine substitution could optimize hydrogel properties for specific applications.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic and Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bratin Kumar Das
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Puchalapalli Saveri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Ethayaraja Mani
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Ganesh Shanmugam
- Organic and Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Choubey R, Chatterjee M, Johnson D, Thiruvenkatam V, Kumawat A, Mishra A, Datta B. Tunable Coassembly of Octaarginine with Thiazolyl Benzenesulfonamides Exerts Variable Antibacterial Activity. J Phys Chem B 2024; 128:10434-10450. [PMID: 39383536 DOI: 10.1021/acs.jpcb.4c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The cationic peptide octaarginine (R8) is a prominent cell-penetrating peptide and has been extensively researched as a carrier of diverse cell-destined cargo. In this work, we describe the coassembly of R8 with small molecule thiazolyl benzenesulfonamide (TBS) derivatives. Physical complexation of R8 with three TBS derivatives across a range of weight ratios results in the formation of a distinctive set of nano- and microstructures. A detailed structural characterization of the R8:TBS-derivative coassemblies has been performed by a combination of FTIR, XRD, SEM, and DSC. The major functional groups that facilitate coassembly include sulfonamide SO2 and NH groups of the TBS derivatives, and the guanidinium of R8, via a combination of cation-π and hydrogen-bonding interactions. The R8:4F-TBS coassembly displays singular topological features compared to R8:4Br-TBS and R8:4CH3-TBS complexes. These differences are attributed to the changes in the preferred orientation of the guanidino groups of R8 with respect to the π-surface of TBS derivatives. The modulation of forces of interaction across the R8:TBS-derivative coassemblies aligns with their respective thermal stabilities. The single-crystal structure of bare 4F-TBS has been subjected to Hirshfeld and 2D fingerprinting analysis and indicates notable variations from the crystal packing of the R8:4F-TBS coassembly. The structural differences among the R8:TBS-derivative coassemblies correlate with distinctive profiles of antibacterial activity in each case. The coassembled structures exert a variable extent of bacterial membrane disruption and damage based on the unique disposition of R8 and the potency of small molecule in each case. The aqueous suspension of R8:4F-TBS displays significant outer membrane disruption and bacterial killing compared with the other complexes. This work successfully demonstrates the hitherto unreported potential for coassembly of cell-penetrating peptides with other entities. The coassembly of R8 with small molecules highlights an attractive strategy for tuning the functional properties of each component.
Collapse
Affiliation(s)
- Rinku Choubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Moumita Chatterjee
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Delna Johnson
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Vijay Thiruvenkatam
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Akshant Kumawat
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Abhijit Mishra
- Department of Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
5
|
Adak A, Castelletto V, Mendes B, Barrett G, Seitsonen J, Hamley IW. Chirality and pH Influence the Self-Assembly of Antimicrobial Lipopeptides with Diverse Nanostructures. ACS APPLIED BIO MATERIALS 2024; 7:5553-5565. [PMID: 39042039 PMCID: PMC11337160 DOI: 10.1021/acsabm.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chirality plays a crucial role in the self-assembly of biomolecules in nature. Peptides show chirality-dependent conformation and self-assembly. Lipidation of peptides occurs in vivo and has recently been exploited in designed conjugates to drive self-assembly and enhance bioactivity. Here, a library of pH-responsive homochiral and heterochiral lipidated tripeptides has been designed. The designed lipopeptides comprise homochiral C16-YKK or C16-WKK (where all the amino acids are l-isomers), and two heterochiral conjugates C16-Ykk and C16-Wkk (where the two lysines are d-isomers). The self-assembly of all the synthesized lipopeptides in aqueous solution was examined using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). Interestingly, it was observed that at acidic pH all the lipopeptides self-assemble into micelles, whereas at basic pH the homochiral lipopeptides self-assemble into nanofibers, whereas the heterochiral lipopeptides self-assemble into nanotapes and nanotubes. A pH switch was demonstrated using a thioflavin T fluorescence probe of β-sheet structure present in the extended structures at pH 8. We demonstrate that both chirality and pH in lipopeptides influence the self-assembly behavior of the model tripeptides, which also show promising bioactivity. Good cytocompatibility is observed in hemolytic assays and antimicrobial activity against both Gram-negative and Gram-positive bacteria is shown through the determination of minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values and live/dead bacteria staining assay.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Bruno Mendes
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Glyn Barrett
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
6
|
Cao T, Liu Y, Gao C, Yuan Y, Chen W, Zhang T. Understanding Nanoscale Interactions between Minerals and Microbes: Opportunities for Green Remediation of Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39093060 DOI: 10.1021/acs.est.4c05324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In situ contaminant degradation and detoxification mediated by microbes and minerals is an important element of green remediation. Improved understanding of microbe-mineral interactions on the nanoscale offers promising opportunities to further minimize the environmental and energy footprints of site remediation. In this Perspective, we describe new methodologies that take advantage of an array of multidisciplinary tools─including multiomics-based analysis, bioinformatics, machine learning, gene editing, real-time spectroscopic and microscopic analysis, and computational simulations─to identify the key microbial drivers in the real environments, and to characterize in situ the dynamic interplay between minerals and microbes with high spatiotemporal resolutions. We then reflect on how the knowledge gained can be exploited to modulate the binding, electron transfer, and metabolic activities at the microbe-mineral interfaces, to develop new in situ contaminant degradation and detoxication technologies with combined merits of high efficacy, material longevity, and low environmental impacts. Two main strategies are proposed to maximize the synergy between minerals and microbes, including using mineral nanoparticles to enhance the versatility of microorganisms (e.g., tolerance to environmental stresses, growth and metabolism, directed migration, selectivity, and electron transfer), and using microbes to synthesize and regenerate highly dispersed nanostructures with desired structural/surface properties and reactivity.
Collapse
Affiliation(s)
- Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Cheng Gao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yuxin Yuan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
7
|
Abodja O, Touati N, Morel M, Rudiuk S, Baigl D. ATP/azobenzene-guanidinium self-assembly into fluorescent and multi-stimuli-responsive supramolecular aggregates. Commun Chem 2024; 7:142. [PMID: 38918507 PMCID: PMC11199595 DOI: 10.1038/s42004-024-01226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Building stimuli-responsive supramolecular systems is a way for chemists to achieve spatio-temporal control over complex systems as well as a promising strategy for applications ranging from sensing to drug-delivery. For its large spectrum of biological and biomedical implications, adenosine 5'-triphosphate (ATP) is a particularly interesting target for such a purpose but photoresponsive ATP-based systems have mainly been relying on covalent modification of ATP. Here, we show that simply mixing ATP with AzoDiGua, an azobenzene-guanidium compound with photodependent nucleotide binding affinity, results in the spontaneous self-assembly of the two non-fluorescent compounds into photoreversible, micrometer-sized and fluorescent aggregates. Obtained in water at room temperature and physiological pH, these supramolecular structures are dynamic and respond to several chemical, physical and biological stimuli. The presence of azobenzene allows a fast and photoreversible control of their assembly. ATP chelating properties to metal dications enable ion-triggered disassembly and fluorescence control with valence-selectivity. Finally, the supramolecular aggregates are disassembled by alkaline phosphatase in a few minutes at room temperature, resulting in enzymatic control of fluorescence. These results highlight the interest of using a photoswitchable nucleotide binding partner as a self-assembly brick to build highly responsive supramolecular entities involving biological targets without the need to covalently modify them.
Collapse
Affiliation(s)
- Olivier Abodja
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Nadia Touati
- Chimie ParisTech, Université PSL, CNRS, Institut de Recherche de Chimie-Paris, PCMTH, 75005, Paris, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
8
|
Singh IR, Aggarwal N, Srivastava S, Panda JJ, Mishra J. Small Peptide-Based Nanodelivery Systems for Cancer Therapy and Diagnosis. J Pharmacol Exp Ther 2024; 390:30-44. [PMID: 37977815 DOI: 10.1124/jpet.123.001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
Developing nano-biomaterials with tunable topology, size, and surface characteristics has shown tremendously favorable benefits in various biologic and clinical applications. Among various nano-biomaterials, peptide-based drug delivery systems offer multiple merits over other synthetic systems due to their enhanced bio- and cytocompatibility and desirable biochemical and biophysical properties. Currently, around 100 peptide-based drugs are clinically available for numerous therapeutic purposes. In conjugation with chemotherapeutic moieties, peptides demonstrate a remarkable ability to reduce nonspecific drug effects by improving drug targetability at cancer sites. This review encompasses a wide-ranging role played by different peptide-based nanostructures in cancer theranostics. Section 1 introduces the rising concern about cancer as a disease and further describes peptide-based nanomaterials as biomedical agents to tackle the ailment. The subsequent section explores the mechanistic pathways behind the self-assembly of peptides to form hierarchically distinct assemblies. The crux of our review lies in an exhaustive exploration of the applications of various types of peptide-based nanostructures in cancer therapy and diagnosis. SIGNIFICANCE STATEMENT: Peptide-based drug delivery systems possess superior biocompatibility, biochemical, and biophysical properties compared to other synthetic alternatives. The development of these nano-biomaterials with customizable topology, size, and surface characteristics have shown promising outcomes in biomedical contexts. Peptides in conjunction with chemotherapeutic agents exhibit the ability to enhance drug targetability at cancer sites, reducing nonspecific drug effects. This comprehensive review emphasizes the pivotal role of diverse peptide-based nanostructures as cancer theranostics, elucidating their potential in revolutionizing cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Imocha Rajkumar Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Nidhi Aggarwal
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Swapnil Srivastava
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jibanananda Mishra
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| |
Collapse
|
9
|
Luan X, Hu H, Zhu D, He P, Sun Z, Xi Y, Wei G. Injectable Chitosan Hydrogels Doped with 2D Peptide Nanosheet-Drug Conjugates for Glutathione-Responsive Sustained Drug Delivery. Chemistry 2024; 30:e202400021. [PMID: 38477386 DOI: 10.1002/chem.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
The development of novel and effective drug delivery systems aimed at enhancing therapeutic profile and efficacy of therapeutic agents is a critical challenge in modern medicine. This study presents an intelligent drug delivery system based on self-assembled two-dimensional peptide nanosheets (2D PNSs). Leveraging the tunable properties of amino acid structures and sequences, we design a peptide with the sequence of Fmoc-FKKGSHC, which self-assembles into 2D PNSs with uniform structure, high biocompatibility, and excellent degradability. Covalent attachment of thiol-modified doxorubicin (DOX) drugs to 2D PNSs via disulfide bond results in the peptide-drug conjugates (PDCs), which is denoted as PNS-SS-DOX. Subsequently, the PDCs are encapsulated within the injectable, thermosensitive chitosan (CS) hydrogels for drug delivery. The designed drug delivery system demonstrates outstanding pH-responsiveness and sustained drug release capabilities, which are facilitated by the characteristics of the CS hydrogels. Meanwhile, the covalently linked disulfide bond within the PNS-SS-DOX is responsive to intracellular glutathione (GSH) within tumor cells, enabling controlled drug release and significantly inhibiting the cancer cell growth. This responsive peptide-drug conjugate based on a 2D peptide nanoplatform paves the way for the development of smart drug delivery systems and has bright prospects in the future biomedicine field.
Collapse
Affiliation(s)
- Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, PR China
| | - Huiqiang Hu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266035, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, PR China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, PR China
| | - Zhengang Sun
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266035, PR China
- Department of Spinal Surgery, Qingdao Huangdao Central Hospital, Qingdao University Medical Group, Qingdao, 266555, PR China
| | - Yongming Xi
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266035, PR China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, PR China
| |
Collapse
|
10
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
11
|
Lee SKA, Tsai ST, Glotzer SC. Classification of complex local environments in systems of particle shapes through shape symmetry-encoded data augmentation. J Chem Phys 2024; 160:154102. [PMID: 38624110 DOI: 10.1063/5.0194820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Detecting and analyzing the local environment is crucial for investigating the dynamical processes of crystal nucleation and shape colloidal particle self-assembly. Recent developments in machine learning provide a promising avenue for better order parameters in complex systems that are challenging to study using traditional approaches. However, the application of machine learning to self-assembly on systems of particle shapes is still underexplored. To address this gap, we propose a simple, physics-agnostic, yet powerful approach that involves training a multilayer perceptron (MLP) as a local environment classifier for systems of particle shapes, using input features such as particle distances and orientations. Our MLP classifier is trained in a supervised manner with a shape symmetry-encoded data augmentation technique without the need for any conventional roto-translations invariant symmetry functions. We evaluate the performance of our classifiers on four different scenarios involving self-assembly of cubic structures, two-dimensional and three-dimensional patchy particle shape systems, hexagonal bipyramids with varying aspect ratios, and truncated shapes with different degrees of truncation. The proposed training process and data augmentation technique are both straightforward and flexible, enabling easy application of the classifier to other processes involving particle orientations. Our work thus presents a valuable tool for investigating self-assembly processes on systems of particle shapes, with potential applications in structure identification of any particle-based or molecular system where orientations can be defined.
Collapse
Affiliation(s)
- Shih-Kuang Alex Lee
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sun-Ting Tsai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sharon C Glotzer
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
12
|
Wang T, Ménard-Moyon C, Bianco A. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10532-10544. [PMID: 38367060 DOI: 10.1021/acsami.3c18463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Materials made of assembled biomolecules such as amino acids have drawn much attention during the past decades. Nevertheless, research on the relationship between the chemical structure of building block molecules, supramolecular interactions, and self-assembled structures is still necessary. Herein, the self-assembly and the coassembly of fluorenylmethoxycarbonyl (Fmoc)-protected aromatic amino acids (tyrosine, tryptophan, and phenylalanine) were studied. The individual self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH in water formed nanofibers, while Fmoc-Trp-OH self-assembled into nanoparticles. Moreover, when Fmoc-Tyr-OH or Fmoc-Phe-OH was coassembled with Fmoc-Trp-OH, the nanofibers were transformed into nanoparticles. UV-vis spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectroscopy were used to investigate the supramolecular interactions leading to the self-assembled architectures. π-π stacking and hydrogen bonding were the main driving forces leading to the self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH forming nanofibers. Further, a mechanism involving a two-step coassembly process is proposed based on nucleation and elongation/growth to explain the structural transformation. Fmoc-Trp-OH acted as a fiber inhibitor to alter the molecular interactions in the Fmoc-Tyr-OH or Fmoc-Phe-OH self-assembled structures during the coassembly process, locking the coassembly in the nucleation step and preventing the formation of nanofibers. This structural transformation is useful for extending the application of amino acid self- or coassembled materials in different fields. For example, the amino acids forming nanofibers could be applied for tissue engineering, while they could be exploited as drug nanocarriers when they form nanoparticles.
Collapse
Affiliation(s)
- Tengfei Wang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| |
Collapse
|
13
|
Zeng L, Luo G, Yue Z, Tang Y, Wang Z, Chang Y. Experimental Study on Rapid Hemostasis Using Peptide Hydrogels. ACS OMEGA 2024; 9:9247-9255. [PMID: 38434851 PMCID: PMC10905740 DOI: 10.1021/acsomega.3c08310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
Uncontrolled hemorrhaging resulting from trauma, surgery, and disease-associated or drug-induced blood disorders can cause significant morbidities and mortalities in civilian and military populations. Self-assembling peptide nanofibers are particularly attractive due to their rapid and efficient hemostasis, biocompatibility, and wound-healing properties. In this study, we designed two types of 12-residue peptides by using a strong fishnet-like peptide sequence and a pro-cell adhesion sequence (Arg-Gly-Asp, RGD). The peptides are HN2-X-Ser-Phe-Cys-Phe-Lys-Phe-Glu-X-Arg-Gly-Asp-OH (where X is Pro or Tyr), which dissolve in deionized (DI) water and form stable and transparent functional hydrogels. Transmission electron microscopy and scanning electron microscopy demonstrated that the two peptides self-assemble into nanowebs and nanofibers, forming a fishnet-like and three-dimensional network structure. Circular dichroism and Fourier transform infrared spectroscopy analysis demonstrated that the self-assembled peptides mainly adopt a β-sheet structure with β-turn and α-helix as auxiliary assembly growth. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and SEM analysis showed that the cell survival rates were very good, delivering an obvious promotion of cell proliferation of fibroblasts and hepatocytes. Importantly, in vivo hemostasis delivered that the self-assembled peptide nanowebs and nanofibers had a good hemostatic effect on rat saphenous vein and liver bleeding, achieving 38 s faster hemostasis, which was better than commercial "Instantaneous" hemostatic powder. Accoupling the fast hemostasis and effective promotion of liver defect rapid repair, the peptide self-assembly strategy offers a clinically promising treatment option for life-threatening liver bleeding and serves as a renewed impetus for the development of peptide hydrogels as effective hemostatic agents.
Collapse
Affiliation(s)
- Linru Zeng
- Department
of Orthopedics, Hangzhou Xiaoshan Traditional
Chinese Medical Hospital, Hangzhou 311201, P. R. China
| | - Gan Luo
- Department
of Orthopedics, Hangzhou Xiaoshan Traditional
Chinese Medical Hospital, Hangzhou 311201, P. R. China
| | - Zhenshuang Yue
- Department
of Orthopedics, Hangzhou Xiaoshan Traditional
Chinese Medical Hospital, Hangzhou 311201, P. R. China
| | - Yanghua Tang
- Department
of Orthopedics, Hangzhou Xiaoshan Traditional
Chinese Medical Hospital, Hangzhou 311201, P. R. China
| | - Zhetian Wang
- The
Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yitie Chang
- The
Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
14
|
Guo XY, Yi L, Yang J, An HW, Yang ZX, Wang H. Self-assembly of peptide nanomaterials at biointerfaces: molecular design and biomedical applications. Chem Commun (Camb) 2024; 60:2009-2021. [PMID: 38275083 DOI: 10.1039/d3cc05811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Self-assembly is an important strategy for constructing ordered structures and complex functions in nature. Based on this, people can imitate nature and artificially construct functional materials with novel structures through the supermolecular self-assembly pathway of biological interfaces. Among the many assembly units, peptide molecular self-assembly has received widespread attention in recent years. In this review, we introduce the interactions (hydrophobic interaction, hydrogen bond, and electrostatic interaction) between peptide nanomaterials and biological interfaces, summarizing the latest advancements in multifunctional self-assembling peptide materials. We systematically demonstrate the assembly mechanisms of peptides at biological interfaces, such as proteins and cell membranes, while highlighting their application potential and challenges in fields like drug delivery, antibacterial strategies, and cancer therapy.
Collapse
Affiliation(s)
- Xin-Yuan Guo
- College of Chemistry, Huazhong Agricultural University, Shizishan 1, Hongshan District, Wuhan, 430070, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Jia Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Zi-Xin Yang
- College of Chemistry, Huazhong Agricultural University, Shizishan 1, Hongshan District, Wuhan, 430070, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| |
Collapse
|
15
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
16
|
Rashid AB, Haque M, Islam SMM, Uddin Labib KR. Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon 2024; 10:e24692. [PMID: 38298690 PMCID: PMC10828705 DOI: 10.1016/j.heliyon.2024.e24692] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Incorporating nanoparticles can significantly improve the performance and functionality of fiber-reinforced polymer (FRP) composites. Different techniques exist for processing, testing, and implementing nanocomposites in various industries. Depending on these factors, these materials can be tailored to suit the specific applications of the automotive and aerospace industries, defence industries, biomedical and energy sectors etc. Nanotechnology offers several potential benefits for composites, including improved mechanical properties, surface modification, and sensing capabilities. This paper discusses the different types of nanoparticles, nanofibers, and nano-coating that can be used for reinforcement, surface modification, and property enhancement in FRP composites. It also examines the challenges associated with incorporating nanotechnology into composites and provides recommendations for potential opportunities in future work. This study is intended to offer a comprehensive understanding of the current research on using nanotechnology in FRP composites and its potential impact on the composites industry.
Collapse
Affiliation(s)
- Adib Bin Rashid
- Department of Industrial Production Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - Mahima Haque
- Department of Aeronautical Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - S M Mohaimenul Islam
- Department of Aeronautical Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - K.M. Rafi Uddin Labib
- Department of Aeronautical Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| |
Collapse
|
17
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Li YJ, Wang JQ, Tian W, Han L, Xiao T, Wu XH, Wang L, Yang PP, Cao H, Xu WH, Wang H. An adhesive peptide specifically induces microtubule condensation. MATERIALS HORIZONS 2023; 10:5298-5306. [PMID: 37750812 DOI: 10.1039/d3mh00867c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell function-associated biomolecular condensation has great potential in modulation of molecular activities. We develop a microtubule-trapping peptide that first self-assembles into nanoparticles and then in situ transforms into nanofibers via ligand-receptor interactions when targeted to tubulin. The nanofibers support the increased exposed targets for further adhering to microtubules and induce the self-assembly of microtubules into networks due to multivalent effects. Microtubule condensation with prolonged retention in cells for up to 24 h, which is 6 times longer than that of the non-transformable nanoparticle group, efficiently induces in vitro cell apoptosis and inhibits in vivo tumour growth. These smart transformable peptide materials for targeted protein condensation have the potential for improving retention and inducing cell apoptosis in tumour therapy.
Collapse
Affiliation(s)
- Yi-Jing Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jia-Qi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, China.
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy Harbin Medical University, Harbin, 150001, China
| | - Wen Tian
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Lu Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Ting Xiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Xiu-Hai Wu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy Harbin Medical University, Harbin, 150001, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Hui Cao
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wan-Hai Xu
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, China.
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy Harbin Medical University, Harbin, 150001, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
19
|
Ge Y, Wang X, Zhu Q, Yang Y, Dong H, Ma J. Machine Learning-Guided Adaptive Parametrization for Coupling Terms in a Mixed United-Atom/Coarse-Grained Model for Diphenylalanine Self-Assembly in Aqueous Ionic Liquids. J Chem Theory Comput 2023; 19:6718-6732. [PMID: 37725682 DOI: 10.1021/acs.jctc.3c00809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Precise regulation of the peptide self-assembly into ordered nanostructures with intriguing properties has attracted intense attention. However, predicting peptide assembly at atomic resolution is a challenge due to both the structural flexibility of peptides and the associated huge computational costs. A machine learning-guided adaptive parametrization method was proposed for developing a mixed atomic and coarse-grained (CG) model through a multiobjective optimization strategy. Our model incorporates the united-atom (UA) model for diphenylalanine (P) and the polarizable electrostatic-variable coarse-grained (VaCG) model for aqueous ionic liquid [BMIM]+[BF4]- solution. In this mixed model, the coupling van der Waals (vdW) interaction is addressed by introducing virtual sites (VS) in the UA model to interact with solvent CG beads. The coupling parameters, including the electrostatic parameter and vdW parameters, are automatically optimized through ML-guided adaptive parametrization. The performance of this model was tested by some microstructural properties, e.g., the average number of P-P intermolecular hydrogen bonds (HBs) and radius distribution functions (RDFs) between P and different fragments of IL, in comparison with all-atom (AA) simulations. The computational cost is significantly reduced using such a parametrization scheme, which could search tens of thousands of force-field parameter sets, while needing only a small fraction of them to be assessed with molecular dynamics (MD) simulations. We used such a mixed resolution model to investigate the self-assembly in IL-water mixtures with variants of IL concentration (X). The long-range-ordered fibril structure is formed in a pure water system (X = 0). With an increase of IL concentrations, the formation of an ordered self-assembly nanostructure is prohibited, instead forming branched fibril at X = 2 mol % or amorphous aggregates when X > 10 mol %, resulting from the interplay between π-stacking and HB interactions between P and IL. The qualitative agreement between the simulated structures and the observed morphologies in experiments indicates the applicability of ML-guided parametrization strategy in the study of complex systems, such as polymers, lipid bilayers, and polysaccharides.
Collapse
Affiliation(s)
- Yang Ge
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xueping Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Argueta-Gonzalez H, Swenson CS, Skowron KJ, Heemstra JM. Elucidating Sequence-Assembly Relationships for Bilingual PNA Biopolymers. ACS OMEGA 2023; 8:37442-37450. [PMID: 37841192 PMCID: PMC10569013 DOI: 10.1021/acsomega.3c05528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Nucleic acids and proteins possess encoded "languages" that can be used for information storage or to direct function. However, each biopolymer is limited to encoding its respective "language." Using a peptide nucleic acid (PNA) scaffold, nucleobase and amino acid residues can be installed on a singular backbone, enabling a single biopolymer to encode both languages. Our laboratory previously reported the development of a "bilingual" PNA biopolymer that incorporates a sequence-specific nucleic acid code interspersed with hydrophobic (alanine) and hydrophilic (lysine) amino acid residues at defined positions to produce amphiphilic character. We observed the amphiphilic amino acid residues directing the biopolymer to undergo self-assembly into micelle-like structures, while the nucleic acid recognition was harnessed for disassembly. Herein, we report a series of bilingual PNA sequences having amino acid residues with varying lengths, functional group charges, hydrophobicities, and spacings to elucidate the effect of these parameters on micelle assembly and nucleic acid recognition. Negative charges in the hydrophilic block or increased bulkiness of the hydrophobic side chains led to assembly into similarly sized micelles; however, the negative charge additionally led to increased critical micelle concentration. Upon PNA sequence truncation to decrease the spacing between side chains, the biopolymers remained capable of self-assembling but formed smaller structures. Characterization of disassembly revealed that each variant retained sequence recognition capabilities and stimuli-responsive disassembly. Together, these data show that the amino acid and nucleic acid sequences of amphiphilic bilingual biopolymers can be customized to finely tune the assembly and disassembly properties, which has implications for applications such as the encapsulation and delivery of cargo for therapeutics.
Collapse
Affiliation(s)
| | - Colin S. Swenson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kornelia J. Skowron
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
21
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
22
|
Fortunato A, Hensel RC, Casalini S, Mba M. Self-Assembly and Electrical Conductivity of a New [1]benzothieno[3,2-b][1]-benzothiophene (BTBT)-Peptide Hydrogel. Molecules 2023; 28:molecules28072917. [PMID: 37049680 PMCID: PMC10095725 DOI: 10.3390/molecules28072917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The conjugation of small-molecule semiconductors with self-assembling peptides is a powerful tool for the fabrication of supramolecular soft materials for organic electronics and bioelectronics. Herein, we introduced the benchmark organic semiconductor [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) within the structure of a self-assembling amphipathic peptide. The molecular structure of the conjugate was rationally designed to favour π-π stacking between BTBT cores and π-delocalization within the self-assembled architectures. Hydrogels with fibrillar structure were obtained upon self-assembly. Spectroscopic studies confirmed that both hydrogen bonding between peptide segments and π-π stacking between BTBT chromophores are responsible for the formation of the 3D fibrillar network observed by transmission electron microscopy. The hydrogel was successfully deposited on gold interdigitated electrodes and a conductivity up to 1.6 (±0.1) × 10−5 S cm−1 was measured.
Collapse
|
23
|
Kaur J, Gulati M, Pal Kaur I, Patravale V, Dua K, Kumar Singh S. Polymeric micelles as potent islet amyloid inhibitors: current advances and future perspectives. Drug Discov Today 2023; 28:103571. [PMID: 36990145 DOI: 10.1016/j.drudis.2023.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Diabetes mellitus (DM) has become one of the most prevalent diseases across the globe, mainly because of the inability of existing treatment strategies to target its root cause (i.e., pancreatic β cell damage). Polymeric micelles (PMs) have gained attention as a treatment option for DM by targeting misfolded islet amyloid polypeptide protein (IAPP), which is common in more than 90% of patients with DM patients. Such misfolding could result from either oxidative stress or mutation in the gene encoding IAPP. In this review, we discuss progress in the design of PMs to halt islet amyloidosis along with their mechanism and dynamics of interactions with IAPP. We also discuss the clinical challenges associated with the translation of PMs as anti-islet amyloidogenic agents. Teaser: Polymeric micelles are able to target misfolding of islet amyloid polypeptide protein in the pancreas owing to their amphiphilic properties and could help protect against β cell damage, thereby offering effective management of diabetes mellitus.
Collapse
|
24
|
Phutane P, Telange D, Agrawal S, Gunde M, Kotkar K, Pethe A. Biofunctionalization and Applications of Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine. Polymers (Basel) 2023; 15:1202. [PMID: 36904443 PMCID: PMC10007057 DOI: 10.3390/polym15051202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
The limited ability of most human tissues to regenerate has necessitated the interventions namely autograft and allograft, both of which carry the limitations of its own. An alternative to such interventions could be the capability to regenerate the tissue in vivo.Regeneration of tissue using the innate capacity of the cells to regenerate is studied under the discipline of tissue engineering and regenerative medicine (TERM). Besides the cells and growth-controlling bioactives, scaffolds play the central role in TERM which is analogous to the role performed by extracellular matrix (ECM) in the vivo. Mimicking the structure of ECM at the nanoscale is one of the critical attributes demonstrated by nanofibers. This unique feature and its customizable structure to befit different types of tissues make nanofibers a competent candidate for tissue engineering. This review discusses broad range of natural and synthetic biodegradable polymers employed to construct nanofibers as well as biofunctionalization of polymers to improve cellular interaction and tissue integration. Amongst the diverse ways to fabricate nanofibers, electrospinning has been discussed in detail along with advances in this technique. Review also presents a discourse on application of nanofibers for a range of tissues, namely neural, vascular, cartilage, bone, dermal and cardiac.
Collapse
Affiliation(s)
- Prasanna Phutane
- Department of Pharmaceutics, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| | - Darshan Telange
- Department of Pharmaceutics, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| | - Surendra Agrawal
- Department of Pharmaceutical Chemistry, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| | - Mahendra Gunde
- Department of Pharmacognosy, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| | - Kunal Kotkar
- Department of Pharmaceutical Quality Assurance, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, MH, India
| | - Anil Pethe
- Department of Pharmaceutics, Datta Meghe Institute of Higher Education and Research, Datta Meghe College of Pharmacy, Wardha 442004, MH, India
| |
Collapse
|
25
|
Verma R, Kumar Gupta S, Lamba NP, Singh BK, Singh S, Bahadur V, Chauhan MS. Graphene and Graphene Based Nanocomposites for Bio‐Medical and Bio‐safety Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Renu Verma
- Amity University Rajasthan Jaipur India- 303002
| | | | | | | | | | - Vijay Bahadur
- Alliance University Chandapura-Anekal Main Road Bengaluru India- 562106
- Department of Pharmaceutical and Pharmacological science, University of Houston Houston USA- 77204
| | | |
Collapse
|
26
|
Halperin-Sternfeld M, Pokhojaev A, Ghosh M, Rachmiel D, Kannan R, Grinberg I, Asher M, Aviv M, Ma PX, Binderman I, Sarig R, Adler-Abramovich L. Immunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration. J Clin Periodontol 2023; 50:200-219. [PMID: 36110056 PMCID: PMC10086858 DOI: 10.1111/jcpe.13725] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 01/18/2023]
Abstract
AIM To investigate the potential of an ultrashort aromatic peptide hydrogelator integrated with hyaluronic acid (HA) to serve as a scaffold for bone regeneration. MATERIALS AND METHODS Fluorenylmethyloxycarbonyl-diphenylalanine (FmocFF)/HA hydrogel was prepared and characterized using microscopy and rheology. Osteogenic differentiation of MC3T3-E1 preosteoblasts was investigated using Alizarin red, alkaline phosphatase and calcium deposition assays. In vivo, 5-mm-diameter calvarial critical-sized defects were prepared in 20 Sprague-Dawley rats and filled with either FmocFF/HA hydrogel, deproteinized bovine bone mineral, FmocFF/Alginate hydrogel or left unfilled. Eight weeks after implantation, histology and micro-computed tomography analyses were performed. Immunohistochemistry was performed in six rats to assess the hydrogel's immunomodulatory effect. RESULTS A nanofibrous FmocFF/HA hydrogel with a high storage modulus of 46 KPa was prepared. It supported osteogenic differentiation of MC3T3-E1 preosteoblasts and facilitated calcium deposition. In vivo, the hydrogel implantation resulted in approximately 93% bone restoration. It induced bone deposition not only around the margins, but also generated bony islets along the defect. Elongated M2 macrophages lining at the periosteum-hydrogel interface were observed 1 week after implantation. After 3 weeks, these macrophages were dispersed through the regenerating tissue surrounding the newly formed bone. CONCLUSIONS FmocFF/HA hydrogel can serve as a cell-free, biomimetic, immunomodulatory scaffold for bone regeneration.
Collapse
Affiliation(s)
- Michal Halperin-Sternfeld
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Pokhojaev
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moumita Ghosh
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Department of Chemistry, Techno India University, Kolkata, West Bengal, India
| | - Dana Rachmiel
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Raha Kannan
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Itzhak Grinberg
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Asher
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Aviv
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,School of Mechanical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, Israel
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Itzhak Binderman
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Sarig
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Tikhonova T, Cohen-Gerassi D, Arnon ZA, Efremov Y, Timashev P, Adler-Abramovich L, Shirshin EA. Tunable Self-Assembled Peptide Hydrogel Sensor for Pharma Cold Supply Chain. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55392-55401. [PMID: 36475602 PMCID: PMC9782340 DOI: 10.1021/acsami.2c17609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Defrost sensors are a crucial element for proper functioning of the pharmaceutical cold chain. In this paper, the self-assembled peptide-based hydrogels were used to construct a sensitive defrost sensor for the transportation and storage of medications and biomaterials. The turbidity of the peptide hydrogel was employed as a marker of the temperature regime. The gelation kinetics under different conditions was studied to detect various stages of hydrogel structural transitions aimed at tuning the system properties. The developed sensor can be stored at room temperature for a long period, irreversibly indicates whether the product has been thawed, and can be adjusted to a specific temperature range and detection time.
Collapse
Affiliation(s)
- Tatiana
N. Tikhonova
- Department
of Physics, M.V. Lomonosov Moscow State
University, Leninskie gory 1/2, Moscow119991, Russia
- SBIH
Vorohobov’s City Clinical Hospital No. 67 MHD Moscow, 2/44 Salam Adil St., Moscow123423, Russia
| | - Dana Cohen-Gerassi
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| | - Zohar A. Arnon
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| | - Yuri Efremov
- World-Class
Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University 8-2, Trubetskaya St., Moscow119991, Russia
- Institute
for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., Moscow119991, Russia
| | - Peter Timashev
- World-Class
Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University 8-2, Trubetskaya St., Moscow119991, Russia
- Institute
for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., Moscow119991, Russia
| | - Lihi Adler-Abramovich
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| | - Evgeny A. Shirshin
- Department
of Physics, M.V. Lomonosov Moscow State
University, Leninskie gory 1/2, Moscow119991, Russia
- World-Class
Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University 8-2, Trubetskaya St., Moscow119991, Russia
| |
Collapse
|
28
|
Taylor ER, Sato A, Jones I, Gudeangadi PG, Beal DM, Hopper JA, Xue WF, Reithofer MR, Serpell CJ. Tuning dynamic DNA- and peptide-driven self-assembly in DNA-peptide conjugates. Chem Sci 2022; 14:196-202. [PMID: 36605750 PMCID: PMC9769108 DOI: 10.1039/d2sc02482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
DNA-peptide conjugates offer an opportunity to marry the benefits of both biomolecular classes, combining the high level of programmability found with DNA, with the chemical diversity of peptides. These hybrid systems offer potential in fields such as therapeutics, nanotechnology, and robotics. Using the first DNA-β-turn peptide conjugate, we present three studies investigating the self-assembly of DNA-peptide conjugates over a period of 28 days. Time-course studies, such as these have not been previously conducted for DNA-peptide conjugates, although they are common in pure peptide assembly, for example in amyloid research. By using aging studies to assess the structures produced, we gain insights into the dynamic nature of these systems. The first study explores the influence varying amounts of DNA-peptide conjugates have on the self-assembly of our parent peptide. Study 2 explores how DNA and peptide can work together to change the structures observed during aging. Study 3 investigates the presence of orthogonality within our system by switching the DNA and peptide control on and off independently. These results show that two orthogonal self-assemblies can be combined and operated independently or in tandem within a single macromolecule, with both spatial and temporal effects upon the resultant nanostructures.
Collapse
Affiliation(s)
- Emerald R. Taylor
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - Akiko Sato
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - Isobel Jones
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - Prashant G. Gudeangadi
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - David M. Beal
- School of Biosciences, University of KentStacey BuildingCanterburyKentCT2 7NJUK
| | - James A. Hopper
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - Wei-Feng Xue
- School of Biosciences, University of KentStacey BuildingCanterburyKentCT2 7NJUK
| | - Michael R. Reithofer
- Department of Inorganic Chemistry, University of ViennaWähringer Straße. 421090ViennaAustria
| | - Christopher J. Serpell
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| |
Collapse
|
29
|
Wei H, Min J, Wang Y, Shen Y, Du Y, Su R, Qi W. Bioinspired porphyrin-peptide supramolecular assemblies and their applications. J Mater Chem B 2022; 10:9334-9348. [PMID: 36373597 DOI: 10.1039/d2tb01660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inspired by the hierarchical chiral assembly of porphyrin-proteins in photosynthetic systems, the hierarchical self-assembly of porphyrin-amino acids/peptides provides a novel strategy for constructing functional materials. How to artificially simulate the assembly of porphyrins, proteins, and other cofactors in the photosynthesis system to obtain persistent strong light capture, charge separation and catalytic reactions has become an important concern in the construction of biomimetic photosynthesis systems. This paper summarizes the different assembly strategies adopted in recent years, the effects of driving forces on self-assembly, and the application of porphyrin-peptides in catalysis and biomedicine, and briefly discusses the challenges and prospects for future research.
Collapse
Affiliation(s)
- Hao Wei
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yaohui Du
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
30
|
He P, Yang G, Zhu D, Kong H, Corrales-Ureña YR, Colombi Ciacchi L, Wei G. Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. J Nanobiotechnology 2022; 20:483. [PMID: 36384717 PMCID: PMC9670580 DOI: 10.1186/s12951-022-01691-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Nanomaterial-based phototherapy has become an important research direction for cancer therapy, but it still to face some obstacles, such as the toxic side effects and low target specificity. The biomimetic synthesis of nanomaterials using biomolecules is a potential strategy to improve photothermal therapy (PTT) and photodynamic therapy (PDT) techniques due to their endowed biocompatibility, degradability, low toxicity, and specific targeting. This review presents recent advances in the biomolecule-mimetic synthesis of functional nanomaterials for PTT and PDT of cancers. First, we introduce four biomimetic synthesis methods via some case studies and discuss the advantages of each method. Then, we introduce the synthesis of nanomaterials using some biomolecules such as DNA, RNA, protein, peptide, polydopamine, and others, and discuss in detail how to regulate the structure and functions of the obtained biomimetic nanomaterials. Finally, potential applications of biomimetic nanomaterials for both PTT and PDT of cancers are demonstrated and discussed. We believe that this work is valuable for readers to understand the mechanisms of biomimetic synthesis and nanomaterial-based phototherapy techniques, and will contribute to bridging nanotechnology and biomedicine to realize novel highly effective cancer therapies.
Collapse
Affiliation(s)
- Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yendry Regina Corrales-Ureña
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany.
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
31
|
Anboo S, Lau SY, Kansedo J, Yap P, Hadibarata T, Jeevanandam J, Kamaruddin AH. Recent advancements in enzyme-incorporated nanomaterials: Synthesis, mechanistic formation, and applications. Biotechnol Bioeng 2022; 119:2609-2638. [PMID: 35851660 PMCID: PMC9543334 DOI: 10.1002/bit.28185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Over the past decade, nanotechnology has been developed and employed across various entities. Among the numerous nanostructured material types, enzyme-incorporated nanomaterials have shown great potential in various fields, as an alternative to biologically derived as well as synthetically developed hybrid structures. The mechanism of incorporating enzyme onto a nanostructure depends on several factors including the method of immobilization, type of nanomaterial, as well as operational and environmental conditions. The prospects of enzyme-incorporated nanomaterials have shown promising results across various applications, such as biocatalysts, biosensors, drug therapy, and wastewater treatment. This is due to their excellent ability to exhibit chemical and physical properties such as high surface-to-volume ratio, recovery and/or reusability rates, sensitivity, response scale, and stable catalytic activity across wide operating conditions. In this review, the evolution of enzyme-incorporated nanomaterials along with their impact on our society due to its state-of-the-art properties, and its significance across different industrial applications are discussed. In addition, the weakness and future prospects of enzyme-incorporated nanomaterials were also discussed to guide scientists for futuristic research and development in this field.
Collapse
Affiliation(s)
- Shamini Anboo
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | - Sie Yon Lau
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | - Jibrail Kansedo
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | - Pow‐Seng Yap
- Department of Civil EngineeringXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| | - Tony Hadibarata
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | | | - Azlina H. Kamaruddin
- School of Chemical EngineeringUniversiti Sains MalaysiaSeberang Perai SelatanPenangMalaysia
| |
Collapse
|
32
|
Zhang X, Chen G, Liu L, Zhu L, Tong Z. Precise Control of Two-Dimensional Platelet Micelles from Biodegradable Poly( p-dioxanone) Block Copolymers by Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xu Zhang
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guanhao Chen
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lingyuan Zhu
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zaizai Tong
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
33
|
Mapping of β-lactoglobulin − mucin interactions in an in vitro astringency model: Phase compatibility, adsorption mechanism and thermodynamic analysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci 2022; 10:4694-4723. [PMID: 35899853 DOI: 10.1039/d2bm00775d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of peptides demonstrates a great potential for designing highly ordered, finely tailored supramolecular arrangements enriched with high specificity, improved efficacy and biological activity. Along with natural peptides, hybrid peptide systems composed of natural and chemically diverse unnatural amino acids have been used in various fields, including drug delivery, wound healing, potent inhibition of diseases, and prevention of biomaterial related diseases to name a few. In this review, we provide a brief outline of various methods that have been utilized for obtaining fascinating structures that create an avenue to reproduce a range of functions resulting from these folds. An overview of different self-assembled structures as well as their applications will also be provided. We believe that this review is very relevant to the current scenario and will cover conformations of hybrid peptides and resulting self-assemblies from the late 20th century through 2022. This review aims to be a comprehensive and reliable account of the hybrid peptide-based self-assembly owing to its enormous influence in understanding and mimicking biological processes.
Collapse
Affiliation(s)
- Alpana Boruah
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arup Roy
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
35
|
Dayani L, Varshosaz J, Aliomrani M, Sadeghi Dinani M, Hashempour H, Taheri A. Morphological studies of self-assembled cyclotides extracted from Viola odorata as novel versatile platforms in biomedical applications. Biomater Sci 2022; 10:5172-5186. [PMID: 35833353 DOI: 10.1039/d2bm00848c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Self-assembling peptides have attracted researchers' attention recently. They are classified as biomedical materials with unique properties formed in response to environmental conditions. Cyclotides are macrocyclic plant-derived peptides containing 28-37 amino acids that have the ability to self-assemble. Herein, we investigated the effect of pH, time, and temperature on the self-assembling properties of the cyclotides extracted from Viola odorata. For this purpose, the cyclotides were dispersed in aqueous trifluoroacetic acid at pH 2, 4, or 6 and incubated at 25 or 37 °C for 1, 2, 3, 5, 7 or 10 days, and the morphology of the self-assembled structures was identified by optical microscopy, polarized optical microscopy, scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. At pH 2 and 4, the self-assembly process of cyclotides comprises a number of steps, starting with the formation of spherical peptide nanostructures followed by hierarchically assembled nanotubes, and then shifting to nanofibers after 10 days. At pH 6, amorphous structures were produced even after 10 days. The temperature also could affect the self-assembly mechanism of the cyclotides. At 25 °C, the spherical peptide micelles formed firstly and then merged to form nanotubes, while at 37 °C the cyclotides showed crystallization followed by an increase in length with time. The fluorescence microscopy images showed that the nanotubes could efficiently entrap the hydrophobic molecules of coumarin. This comparative study on the self-assembly of the cyclotides extracted from Viola odorata is the first example exploring the capacity of these cyclotides to adopt precise nanostructures. The nanotubes and nanofibers obtained with these cyclotides might find interesting applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Ladan Dayani
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hashempour
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Azade Taheri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Antioxidative, cytotoxic, and antibacterial properties of self-assembled glycine-histidine-based dipeptides with or without silver nanoparticles in bio-inspired film. ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU 2022; 73:169-177. [PMID: 35792768 PMCID: PMC9287833 DOI: 10.2478/aiht-2022-73-3658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022]
Abstract
Recent years have seen much attention being given to self-assembly of dipeptide-based structures, especially to self-regulation of dipeptide structures with different amino acid sequences. In this study we investigated the effects of varying solvent environments on the self-assembly of glycine-histidine (Gly-His) dipeptide structures. First we determined the morphological properties of Gly-His films formed in different solvent environments with scanning electron microscopy and then structural properties with Fourier-transform infrared (FTIR) spectroscopy. In addition, we studied the effects of Gly-His films on silver nanoparticle (AgNP) formation and the antioxidant and cytotoxic properties of AgNPs obtained in this way. We also, assessed antibacterial activities of Gly-His films against Gram-negative Escherichia coli and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Silver nanoparticle-decorated Gly-His films were not significantly cytotoxic at concentrations below 2 mg/mL but had antibacterial activity. We therefore believe that AgNP-decorated Gly-His films at concentrations below 2 mg/mL can be used safely against bacteria.
Collapse
|
37
|
Buffer Components Incorporate into the Framework of Polyserotonin Nanoparticles and Films during Synthesis. NANOMATERIALS 2022; 12:nano12122027. [PMID: 35745365 PMCID: PMC9227592 DOI: 10.3390/nano12122027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Polyserotonin nanoparticles (PSeNP) and films are bioinspired nanomaterials that have potential in biomedical applications and surface coatings. As studies on polyserotonin (PSe) nanoparticles and films are still in their infancy, synthetic pathways and material development for this new class of nanomaterial await investigation. Here, we sought to determine how different buffers used during the polymerization of serotonin to form nanoparticles and films impact the physicochemical properties of PSe materials. We show that buffer components are incorporated into the polymer matrix, which is also supported by density functional theory calculations. While we observed no significant differences between the elasticity of nanoparticles synthesized in the different buffers, the nanoscale surface properties of PSe films revealed dissimilarities in surface functional groups influenced by solvent molecules. Overall, the results obtained in this work can be used towards the rational design of PSe nanomaterials with tailored properties and for specific applications.
Collapse
|
38
|
Peng X, Meng T, Wang L, Cheng L, Zhai W, Deng K, Ma CQ, Zeng Q. Self-assembled nanostructures of a series of linear oligothiophene derivatives adsorbed on surfaces. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022; 279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
Due to the good biocompatibility and flexibility of cellulose and the excellent optical, electronic, as well as mechanical properties of carbon nanomaterials (CNMs), cellulose/CNM hybrid materials have been widely synthesized and used in energy storage, sensors, adsorption, biomedicine, and many other fields. In this review, we present recent advances (2016-current) in the design, structural design, functional tailoring and various applications of cellulose/CNM hybrid materials. For this aim, first the interactions between cellulose and CNMs for promoting the formation of cellulose/CNM materials are analyzed, and then the hybridization between cellulose with various CNMs for tailoring the structures and functions of hybrid materials is introduced. Further, abundant applications of cellulose/CNM hybrid materials in various fields are presented and discussed. This comprehensive review will be helpful for readers to understand the functional design and facile synthesis of cellulose-based nanocomposites, and to promote the high-performance utilization and sustainability of biomass materials in the future.
Collapse
Affiliation(s)
- Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
40
|
Gatto E, Toniolo C, Venanzi M. Peptide Self-Assembled Nanostructures: From Models to Therapeutic Peptides. NANOMATERIALS 2022; 12:nano12030466. [PMID: 35159810 PMCID: PMC8838750 DOI: 10.3390/nano12030466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
Self-assembly is the most suitable approach to obtaining peptide-based materials on the nano- and mesoscopic scales. Applications span from peptide drugs for personalized therapy to light harvesting and electron conductive media for solar energy production and bioelectronics, respectively. In this study, we will discuss the self-assembly of selected model and bioactive peptides, in particular reviewing our recent work on the formation of peptide architectures of nano- and mesoscopic size in solution and on solid substrates. The hierarchical and cooperative characters of peptide self-assembly will be highlighted, focusing on the structural and dynamical properties of the peptide building blocks and on the nature of the intermolecular interactions driving the aggregation phenomena in a given environment. These results will pave the way for the understanding of the still-debated mechanism of action of an antimicrobial peptide (trichogin GA IV) and the pharmacokinetic properties of a peptide drug (semaglutide) currently in use for the therapy of type-II diabetes.
Collapse
Affiliation(s)
- Emanuela Gatto
- PEPSA-LAB, Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy;
| | - Claudio Toniolo
- Department of Chemical Sciences, University of Padua, 35131 Padua, Italy;
| | - Mariano Venanzi
- PEPSA-LAB, Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-06-7259-4468
| |
Collapse
|
41
|
Design of Micro- and Nanoparticles: Self-Assembly and Application. NANOMATERIALS 2022; 12:nano12030430. [PMID: 35159775 PMCID: PMC8839509 DOI: 10.3390/nano12030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023]
Abstract
The modern world throws down an increasing number of challenges to humanity [...].
Collapse
|
42
|
Sweedan A, Cohen Y, Yaron S, Bashouti MY. Binding Capabilities of Different Genetically Engineered pVIII Proteins of the Filamentous M13/Fd Virus and Single-Walled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12030398. [PMID: 35159743 PMCID: PMC8839290 DOI: 10.3390/nano12030398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Binding functional biomolecules to non-biological materials, such as single-walled carbon nanotubes (SWNTs), is a challenging task with relevance for different applications. However, no one has yet undertaken a comparison of the binding of SWNTs to different recombinant filamentous viruses (phages) bioengineered to contain different binding peptides fused to the virus coat proteins. This is important due to the range of possible binding efficiencies and scenarios that may arise when the protein’s amino acid sequence is modified, since the peptides may alter the virus’s biological properties or they may behave differently when they are in the context of being displayed on the virus coat protein; in addition, non-engineered viruses may non-specifically adsorb to SWNTs. To test these possibilities, we used four recombinant phage templates and the wild type. In the first circumstance, we observed different binding capabilities and biological functional alterations; e.g., some peptides, in the context of viral templates, did not bind to SWNTs, although it was proven that the bare peptide did. The second circumstance was excluded, as the wild-type virus was found to hardly bind to the SWNTs. These results may be relevant to the possible use of the virus as a “SWNT shuttle” in nano-scale self-assembly, particularly since the pIII proteins are free to act as binding-directing agents. Therefore, knowledge of the differences between and efficiencies of SWNT binding templates may help in choosing better binding phages or peptides for possible future applications and industrial mass production.
Collapse
Affiliation(s)
- Amro Sweedan
- The Ilse-Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yachin Cohen
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.C.); (S.Y.); (M.Y.B.)
| | - Sima Yaron
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.C.); (S.Y.); (M.Y.B.)
| | - Muhammad Y. Bashouti
- The Ilse-Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Sede Boqer 8499000, Israel
- Correspondence: (Y.C.); (S.Y.); (M.Y.B.)
| |
Collapse
|
43
|
Kong H, Liu B, Yang G, Chen Y, Wei G. Tailoring Peptide Self-Assembly and Formation of 2D Nanoribbons on Mica and HOPG Surface. MATERIALS 2022; 15:ma15010310. [PMID: 35009456 PMCID: PMC8745981 DOI: 10.3390/ma15010310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/10/2022]
Abstract
Studying the interactions between biomolecules and material interfaces play a crucial role in the designing and synthesizing of functional bionanomaterials with tailored structure and function. Previously, a lot of studies were performed on the self-assembly of peptides in solution through internal and external stimulations, which mediated the creation of peptide nanostructures from zero-dimension to three-dimension. In this study, we demonstrate the self-assembly behavior of the GNNQQNY peptide on the surface of mica and highly oriented pyrolytic graphite through tailoring the self-assembly conditions. Various factors, such as the type of dissolvent, peptide concentration, pH value, and evaporation period on the formation of peptide nanofibers and nanoribbons with single- and bi-directional arrays are investigated. It is found that the creation of peptide nanoribbons on both mica and HOPG can be achieved effectively through adjusting and optimizing the experimental parameters. Based on the obtained results, the self-assembly and formation mechanisms of peptide nanoribbons on both material interfaces are discussed. It is expected that the findings obtained in this study will inspire the design of motif-specific peptides with high binding affinity towards materials and mediate the green synthesis of peptide-based bionanomaterials with unique function and application potential.
Collapse
Affiliation(s)
| | | | | | | | - Gang Wei
- Correspondence: ; Tel.: +86-150-6624-2101
| |
Collapse
|
44
|
Abdul Manas NHB, Abang Zaidel DN, Wan Azelee NI, Zaharah Mohd Fuzi SF, Mazila Ramli AN, Shaarani S, Illias RM, Karim NA. Delivery of bioencapsulated proteins. SMART NANOMATERIALS FOR BIOENCAPSULATION 2022:63-75. [DOI: 10.1016/b978-0-323-91229-7.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Argueta-Gonzalez HS, Swenson CS, Song G, Heemstra JM. Stimuli-responsive assembly of bilingual peptide nucleic acids. RSC Chem Biol 2022; 3:1035-1043. [PMID: 35974999 PMCID: PMC9347363 DOI: 10.1039/d2cb00020b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acids (PNAs) are high-affinity synthetic nucleic acid analogs capable of hybridization with native nucleic acids. PNAs synthesized having amino acid sidechains installed at the γ-position along the backbone provide a template for a single biopolymer to simultaneously encode nucleic acid and amino acid sequences. Previously, we reported the development of “bilingual” PNAs through the synthesis of an amphiphilic sequence featuring separate blocks of hydrophobic and hydrophilic amino acid functional groups. These PNAs combined the sequence-specific binding activity of nucleic acids with the structural organization properties of peptides. Like other amphiphilic compounds, these γ-PNAs were observed to assemble spontaneously into micelle-like nanostructures in aqueous solutions and disassembly was induced through hybridization to a complementary sequence. Here, we explore whether assembly of these bilingual PNAs is possible by harnessing the nucleic acid code. Specifically, we designed an amphiphile-masking duplex system in which spontaneous amphiphile assembly is prevented through hybridization to a nucleic acid masking sequence. We show that the amphiphile is displaced upon introduction of a releasing sequence complementary to the masking sequence through toehold mediated displacement. Upon release, we observe that the amphiphile proceeds to assemble in a fashion consistent with our previously reported structures. Our approach represents a novel method for controlled stimuli-responsive assembly of PNA-based nanostructures. “Bilingual” biopolymers comprised of γ-modified peptide nucleic acids can harness peptide and nucleic acid codes to direct assembly and recognition. Herein, we demonstrate stimuli-responsive assembly through a toehold-mediated displacement motif.![]()
Collapse
Affiliation(s)
| | - Colin S. Swenson
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, Georgia, USA
| | - George Song
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, Georgia, USA
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, Georgia, USA
| |
Collapse
|
46
|
Mesa M, Becerra NY. Silica/Protein and Silica/Polysaccharide Interactions and Their Contributions to the Functional Properties of Derived Hybrid Wound Dressing Hydrogels. Int J Biomater 2021; 2021:6857204. [PMID: 34777502 PMCID: PMC8580642 DOI: 10.1155/2021/6857204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Multifunctional and biocompatible hydrogels are on the focus of wound healing treatments. Protein and polysaccharides silica hybrids are interesting wound dressing alternatives. The objective of this review is to answer questions such as why silica for wound dressings reinforcement? What are the roles and contributions of silane precursors and silica on the functional properties of hydrogel wound dressings? The effects of tailoring the porous, morphological, and chemical characteristics of synthetic silicas on the bioactivity of hybrid wound dressings hydrogels are explored in the first part of the review. This is followed by a commented review of the mechanisms of silica/protein and silica/polysaccharide interactions and their impact on the barrier, scaffold, and delivery matrix functions of the derived hydrogels. Such information has important consequences for wound healing and paves the way to multidisciplinary researches on the production, processing, and biomedical application of this kind of hybrid materials.
Collapse
Affiliation(s)
- Monica Mesa
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín 050010, Colombia
| | - Natalia Y. Becerra
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| |
Collapse
|
47
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
48
|
Jiang Q, Liu X, Liang G, Sun X. Self-assembly of peptide nanofibers for imaging applications. NANOSCALE 2021; 13:15142-15150. [PMID: 34494635 DOI: 10.1039/d1nr04992e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pathological stimuli-responsive self-assembly of peptide nanofibers enables selective accumulation of imaging agent cargos in the stimuli-rich regions of interest. It provides enhanced imaging signals, biocompatibility, and tumor/disease accessibility and retention, thereby promoting smart, precise, and sensitive tumor/disease imaging both in vitro and in vivo. Considering the remarkable significance and recent encouraging breakthroughs of self-assembled peptide nanofibers in tumor/disease diagnosis, this reivew is herein proposed. We emphasize the recent advances particularly in the past three years, and provide an outlook in this field.
Collapse
Affiliation(s)
- Qiaochu Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| |
Collapse
|
49
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
50
|
Stach OS, Breul K, Berač CM, Urschbach M, Seiffert S, Besenius P. Bridging Rigidity and Flexibility: Modulation of Supramolecular Hydrogels by Metal Complexation. Macromol Rapid Commun 2021; 43:e2100473. [PMID: 34505725 DOI: 10.1002/marc.202100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Indexed: 11/11/2022]
Abstract
The combination of complementary, noncovalent interactions is a key principle for the design of multistimuli responsive hydrogels. In this work, an amphiphilic peptide, supramacromolecular hydrogelator which combines metal-ligand coordination induced gelation and thermoresponsive toughening is reported. Following a modular approach, the incorporation of the triphenylalanine sequence FFF into a structural (C3 EG ) and a terpyridine-functionalized (C3 Tpy ) C3 -symmetric monomer enables their statistical copolymerization into self-assembled, 1D nanorods in water, as investigated by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). In the presence of a terpyridine functionalized telechelic polyethylene glycol (PEG) cross-linker, complex formation upon addition of different transition metal ions (Fe2+ , Zn2+ , Ni2+ ) induces the formation of soft, reversible hydrogels at a solid weight content of 1 wt% as observed by linear shear rheology. The viscoelastic behavior of Fe2+ and Zn2+ cross-linked hydrogels are basically identical, while the most kinetically inert Ni2+ coordinative bond leads to significantly weaker hydrogels, suggesting that the most dynamic rather than the most thermodynamically stable interaction supports the formation of robust and responsive hydrogel materials.
Collapse
Affiliation(s)
- Oliver S Stach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Katharina Breul
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| |
Collapse
|