1
|
Velazquez-Albino AC, Imhoff ED, Rinaldi-Ramos CM. Advances in engineering nanoparticles for magnetic particle imaging (MPI). SCIENCE ADVANCES 2025; 11:eado7356. [PMID: 39772674 PMCID: PMC11708890 DOI: 10.1126/sciadv.ado7356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Magnetic particle imaging (MPI) is an emerging imaging modality with exciting biomedical applications, such as cell tracking, blood pool imaging, and image-guided magnetic hyperthermia. MPI is unique in that signal is generated entirely by synthetic nanoparticle tracers, motivating precise engineering of magnetic nanoparticle properties including size, shape, composition, and coating to address the needs of specific applications. However, success in many applications and in clinical transition requires development of high-sensitivity and high-resolution tracers, for which there is considerable room for improvement. This review summarizes recent advancements in MPI tracer synthesis and compares reported tracers in terms of sensitivity and resolution. In making these comparisons, we point out inconsistencies in reporting of MPI tracer properties. To overcome this challenge, we propose a list of properties to standardize characterization and reporting of new MPI tracers and improve communication within the field.
Collapse
Affiliation(s)
| | - Eric Daniel Imhoff
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Carlos M. Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| |
Collapse
|
2
|
Kruse B, Dash BS, Kostka K, Wolff N, Prymak O, Loza K, Gumbiowski N, Heggen M, Oliveira CLP, Chen JP, Epple M. Doxorubicin-Loaded Ultrasmall Gold Nanoparticles (1.5 nm) for Brain Tumor Therapy and Assessment of Their Biodistribution. ACS APPLIED BIO MATERIALS 2024; 7:6890-6907. [PMID: 39240877 DOI: 10.1021/acsabm.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Ultrasmall gold nanoparticles (1.5 nm) were covalently conjugated with doxorubicin (AuDox) and AlexaFluor647 (AuAF647) to assess their biodistribution and their efficiency toward brain tumors (glioblastoma). A thorough characterization by transmission electron microscopy, small-angle X-ray scattering, and differential centrifugal sedimentation confirmed their uniform ultrasmall nature which makes them very mobile in the body. Each nanoparticle carried either 13 doxorubicin molecules (AuDox) or 2.7 AlexaFluor-647 molecules (AuAF647). The firm attachment of the ligands to the nanoparticles was demonstrated by their resilience to extensive washing, followed by centrifugation. The particles easily entered mammalian cells (HeLa, T98-G, brain endothelial cells, and human astrocytes) due to their small size. The intravenously delivered fluorescing AuAF647 nanoparticles crossed the blood-brain barrier with ∼23% accumulation in the brain tumor in an orthotopic U87 brain tumor model in nude mice. This was confirmed by elemental analysis (gold; inductively coupled plasma optical emission spectroscopy) in various organs. The doxorubicin-loaded AuDox nanoparticles inhibited brain tumor growth and prolonged animal survival without adverse side effects. Most of the nanoparticles (84%) had been excreted from the animal after 24 h, indicating a high mobility in the body.
Collapse
Affiliation(s)
- Benedikt Kruse
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Kathrin Kostka
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Natalie Wolff
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52428, Germany
| | | | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
| | - Matthias Epple
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| |
Collapse
|
3
|
Karal MAS, Billah MM, Nasrin T, Moniruzzaman M. Interaction of anionic Fe 3O 4 nanoparticles with lipid vesicles: a review on deformation and poration under various conditions. RSC Adv 2024; 14:25986-26001. [PMID: 39161454 PMCID: PMC11331399 DOI: 10.1039/d4ra05686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
This review focuses on the deformation and poration of lipid vesicles caused by the interaction of anionic magnetite nanoparticles (MNPs). Effects of various factors, such as surface charge density, salt and sugar concentrations in buffer, membrane cholesterol content, polymer-grafted phospholipid, and membrane potential have been discussed for the interaction of MNPs with lipid vesicles. To quantify these effects on the vesicles, compactness, fraction of deformation and poration, dynamics of membrane permeation, and kinetics of membrane permeation have been critically evaluated. The review explores the potential advancements as well as future directions of the research field in the biomedical application of MNPs.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology Jashore 7408 Bangladesh +880-2-42142012 +880-242142046
| | - Tawfika Nasrin
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| |
Collapse
|
4
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
5
|
Piosik E, Modlińska A, Gołaszewski M, Chełminiak-Dudkiewicz D, Ziegler-Borowska M. Influence of the Type of Biocompatible Polymer in the Shell of Magnetite Nanoparticles on Their Interaction with DPPC in Two-Component Langmuir Monolayers. J Phys Chem B 2024; 128:781-794. [PMID: 38215049 DOI: 10.1021/acs.jpcb.3c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Magnetite nanoparticles (MNPs) are attractive nanomaterials for applications in magnetic resonance imaging, targeted drug delivery, and anticancer therapy due to their unique properties such as nontoxicity, wide chemical affinity, and intrinsic superparamagnetism. Their functionalization with polymers such as chitosan or poly(vinyl alcohol) (PVA) can not only improve their biocompatibility and biodegradability but it also plays an important role in their interactions with biological cells. In this work, the effect of the functionalization of MNPs with chitosan, PVA, and their blend on model cell membranes formed from 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) using a Langmuir technique was studied. The studies performed showed that the type of biocompatible polymer in the MNP shell plays a crucial role in the effectiveness of its adsorption process into the model cell membrane. Modification of MNPs with chitosan facilitates significantly more effective adsorption than coating them with PVA or with a chitosan and PVA blend. The presence of all the investigated MNPs in the DPPC monolayer at low concentrations does not affect its thermodynamic state, fluidity, or morphology, which is promising in terms of their biocompatibility. On the other hand, their high concentration (molar fraction above ≈0.05) exerts a disruptive effect on the model cell membrane and results in their aggregation, leading probably to the loss of their superparamagnetic properties essential for nanomedicine.
Collapse
Affiliation(s)
- Emilia Piosik
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, Poznań 60-965, Poland
| | - Anna Modlińska
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, Poznań 60-965, Poland
| | - Mateusz Gołaszewski
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, Poznań 60-965, Poland
| | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Toruń 87-100, Poland
| |
Collapse
|
6
|
Xing Z, Dong B, Zhang X, Qiu L, Jiang P, Xuan Y, Ni X, Xu H, Wang J. Cypate-loaded hollow mesoporous Prussian blue nanoparticle/hydrogel system for efficient photodynamic therapy/photothermal therapy dual-modal antibacterial therapy. J Biomed Mater Res A 2024; 112:53-64. [PMID: 37728144 DOI: 10.1002/jbm.a.37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms are a significant burden on public health and the economic stability of societies all over the world. The appearance of drug-resistant bacteria has severely blocked the effectiveness of conventional antibiotics. Therefore, developing novel antibiotic-free strategies to combat bacteria holds huge potential for maximizing validity and minimizing the risk of enhancing bacterial resistance. Herein, a cypate-loaded hollow mesoporous Prussian blue nanoparticles (Cy-HMPBs) was built to achieve the PDT/PTT synergistic antimicrobial therapy. The carbomer hydrogel (CH) was combined with the Cy-HMPBs to form a nanoparticle/hydrogel therapeutic system (Cy-HMPBs/CH) to reach the goal of local delivery of antimicrobial cargo. The low concentration of Cy-HMPBs/CH receives over 99% of antimicrobial ability against Escherichia coli and Staphylococcus aureus upon near-infrared (NIR) irradiation. More importantly, Cy-HMPBs/CH has favorable biocompatibility and can play therapeutic effects only after laser irradiation, indicating the on-demand therapy at the targeted region to avert side effects on healthy tissue. This study provides ideas for the design of an antibiotic-free antimicrobial strategy against infectious diseases.
Collapse
Affiliation(s)
- Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Bingyu Dong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Xiaoxiao Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Xinye Ni
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
7
|
Thomas R, Ghosh D, Pulimi M, Nirmala J, Anand S, Rai PK, Mukherjee A. Investigating the transport and colloidal behavior of Fe 3O 4 nanoparticles in aqueous and porous media under varying solution chemistry parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118693-118705. [PMID: 37917261 DOI: 10.1007/s11356-023-30628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
The possible adverse effects of engineered iron oxide nanoparticles, especially magnetite (Fe3O4 NP), on human health and the environment, have raised concerns about their transport and behavior in soil and water systems. Accumulating these NPs in the environment can substantially affect soil and water quality and the well-being of aquatic and terrestrial organisms. Therefore, it is essential to examine the factors that affect Fe3O4 NP transportation and behavior in soil and water systems to determine their possible environmental fate. In this work, experiments were conducted in aqueous and porous media using an environmentally relevant range of pH (5, 7, 9), ionic strength (IS) (10, 50, 100 mM), and humic acid (HA) (0.1, 1, 10 mg L-1) concentrations. Fe3O4 NPs exhibited severe colloidal instability at pH 7 (⁓ = pHPZC) and showed an improvement in apparent colloidal stability at pH 5 and 9 in aquatic and terrestrial environments. HA in the background solutions promoted the overall transport of Fe3O4 NPs by enhancing the colloidal stability. The increased ionic strength in aqueous media hindered the transport by electron double-layer compression and electrostatic repulsion; however, in porous media, the transport was hindered by ionic compression. Furthermore, the transport behavior of Fe3O4 NPs was investigated in different natural waters such as rivers, lakes, taps, and groundwater. The interaction energy pattern in aquatic systems was estimated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This study showed the effects of various physical-chemical conditions on Fe3O4 NP transport in aqueous and porous (sand) media.
Collapse
Affiliation(s)
- Reetha Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Debayan Ghosh
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Shalini Anand
- Centre for Fire, Explosive and Environment Safety, Timarpur, Delhi, India
| | - Pramod Kumar Rai
- Centre for Fire, Explosive and Environment Safety, Timarpur, Delhi, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Inestrosa-Izurieta MJ, Vilches D, Urzúa JI. Tailored synthesis of iron oxide nanoparticles for specific applications using a statistical experimental design. Heliyon 2023; 9:e21124. [PMID: 37964834 PMCID: PMC10641129 DOI: 10.1016/j.heliyon.2023.e21124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
For this work, iron oxide nanoparticles are synthesized by the co-precipitation method with stoichiometric amounts of Fe2+ and Fe3+ salts in a 1:2 ratio in distilled water and the pH is raised by adding an aqueous ammonia solution by controlled dripping. Nanoparticles precipitating after the reaction time are magnetically filtered and stored in ethanol for further analysis. Superparamagnetic Fe3O4 nanoparticles with a slight deviation from the stoichiometry are obtained, with sizes between 7.4 and 12.8 nm and saturation magnetization between 40 and 78 emu/gr. At pH 6, rod-shaped nanoparticles are obtained in addition to spherical ones. With a statistical design, it is shown how the morphological, structural and magnetic properties of the resulting nanoparticles can be manipulated by the synthesis parameters, offering many possibilities to tailor the materials to a wide range of applications.
Collapse
Affiliation(s)
- María José Inestrosa-Izurieta
- Centro de Materiales para la Transición y Sostenibilidad Energética, Comisión Chilena de Energía Nuclear, 7600713, Santiago, Chile
| | - Diego Vilches
- Centro de Materiales para la Transición y Sostenibilidad Energética, Comisión Chilena de Energía Nuclear, 7600713, Santiago, Chile
| | - Julio I. Urzúa
- Centro de Materiales para la Transición y Sostenibilidad Energética, Comisión Chilena de Energía Nuclear, 7600713, Santiago, Chile
| |
Collapse
|
9
|
Khonina TG, Demin AM, Tishin DS, Germov AY, Uimin MA, Mekhaev AV, Minin AS, Karabanalov MS, Mysik AA, Bogdanova EA, Krasnov VP. Magnetic Nanocomposite Materials Based on Fe 3O 4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization. Int J Mol Sci 2023; 24:12178. [PMID: 37569552 PMCID: PMC10419229 DOI: 10.3390/ijms241512178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Novel magnetic nanocomposite materials based on Fe3O4 nanoparticles coated with iron and silica glycerolates (MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc) were obtained. The synthesized nanocomposites were characterized using TEM, XRD, TGA, VMS, Mössbauer and IR spectroscopy. The amount of iron and silica glycerolates in the nanocomposites was calculated from the Mössbauer spectroscopy, ICP AES and C,H-elemental analysis. Thus, it has been shown that the distribution of Fe in the shell and core for MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc is 27:73 and 32:68, respectively. The synthesized nanocomposites had high specific magnetization values and a high magnetic response to the alternating magnetic field. The hydrolysis of shells based on Fe(III)Glyc and Fe(III)/SiGlyc in aqueous media has been studied. It has been demonstrated that, while the iron glycerolates shell of MNP@Fe(III)Glyc is resistant to hydrolysis, the silica glycerolates shell of MNP@Fe(III)/SiGlyc is rather labile and hydrolyzed by 76.4% in 24 h at 25 °C. The synthesized materials did not show cytotoxicity in in vitro experiments (MTT-assay). The data obtained can be used in the design of materials for controlled-release drug delivery.
Collapse
Affiliation(s)
- Tat’yana G. Khonina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander M. Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Denis S. Tishin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander Yu. Germov
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Mikhail A. Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Alexander V. Mekhaev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Artem S. Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Maxim S. Karabanalov
- Institute of New Materials and Technologies, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Alexey A. Mysik
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Ekaterina A. Bogdanova
- Institute of Solid State Chemistry, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia;
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| |
Collapse
|
10
|
Yue R, Zhou M, Li X, Xu L, Lu C, Dong Z, Lei L, Liu H, Guan G, Liu Q, Zhang XB, Song G. GSH/APE1 Cascade-Activated Nanoplatform for Imaging Therapy Resistance Dynamics and Enzyme-Mediated Adaptive Ferroptosis. ACS NANO 2023; 17:13792-13810. [PMID: 37458417 DOI: 10.1021/acsnano.3c03443] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Ferroptosis, as a type of programmed cell death process, enables effective damage to various cancer cells. However, we discovered that persistent oxidative stress during ferroptosis can upregulate the apurinic/apyrimidinic endonuclease 1 (APE1) protein that induces therapeutic resistance ("ferroptosis resistance"), resulting in an unsatisfactory treatment outcome. To address APE1-induced therapeutic resistance, we developed a GSH/APE1 cascade activated therapeutic nanoplatform (GAN). Specifically, the GAN is self-assembled by DNA-functionalized ultrasmall iron oxide nanoparticles and further loaded with drug molecules (drug-GAN). GSH-triggered GAN disassembly can "turn on" the catalysis of GAN to induce efficient lipid peroxidation (LPO) for ferroptosis toward the tumor, which could upregulate APE1 expression. Subsequently, upregulated APE1 can further trigger accurate drug release for overcoming ferroptosis resistance and inducing the recovery of near-infrared fluorescence for imaging the dynamics of APE1. Importantly, adaptive drug release can overcome the adverse effects of APE1 upregulation by boosting intracellular ROS yield and increasing DNA damage, to offset APE1's functions of antioxidant and DNA repair, thus leading to adaptive ferroptosis. Moreover, with overexpressed GSH and upregulated APE1 in the tumor as stimuli, the therapeutic specificity of ferroptosis toward the tumor is greatly improved, which minimized nonspecific activation of catalysis and excessive drug release in normal tissues. Furthermore, a switchable MRI contrast from negative to positive is in sync with ferroptosis activation, which is beneficial for monitoring the ferroptosis process. Therefore, this adapted imaging and therapeutic nanoplatform can not only deliver GSH/APE1-activated lipid peroxide mediated adaptive synergistic therapy but also provided a switchable MRI/dual-channel fluorescence signal for monitoring ferroptosis activation, drug release, and therapy resistance dynamics in vivo, leading to high-specificity and high-efficiency adaptive ferroptosis therapy.
Collapse
Affiliation(s)
- Renye Yue
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Mengjie Zhou
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Xu Li
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Li Xu
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Chang Lu
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Zhe Dong
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Lingling Lei
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Huiyi Liu
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Guoqiang Guan
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Qin Liu
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Xiao-Bing Zhang
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| | - Guosheng Song
- The State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China
| |
Collapse
|
11
|
Dolete G, Ilie CI, Chircov C, Purcăreanu B, Motelica L, Moroșan A, Oprea OC, Ficai D, Andronescu E, Dițu LM. Synergistic Antimicrobial Activity of Magnetite and Vancomycin-Loaded Mesoporous Silica Embedded in Alginate Films. Gels 2023; 9:gels9040295. [PMID: 37102906 PMCID: PMC10137406 DOI: 10.3390/gels9040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The aim of the present study was to obtain a hydrogel-based film as a carrier for the sustained and controlled release of vancomycin, an antibiotic commonly used in various types of infections. Considering the high-water solubility of vancomycin (>50 mg/mL) and the aqueous medium underlying the exudates, a prolonged release of vancomycin from an MCM-41 carrier was sought. The present work focused on the synthesis of malic acid coated magnetite (Fe3O4/malic) by co-precipitation, synthesis of MCM-41 by a sol-gel method and loading of MCM-41 with vancomycin, and their use in alginate films for wound dressing. The nanoparticles obtained were physically mixed and embedded in the alginate gel. Prior to incorporation, the nanoparticles were characterized by XRD, FT-IR and FT-Raman spectroscopy, TGA-DSC and DLS. The films were prepared by a simple casting method and were further cross-linked and examined for possible heterogeneities by means of FT-IR microscopy and SEM. The degree of swelling and the water vapor transmission rate were determined, considering their potential use as wound dressings. The obtained films show morpho-structural homogeneity, sustained release over 48 h and a strong synergistic enhancement of the antimicrobial activity as a consequence of the hybrid nature of these films. The antimicrobial efficacy was tested against S. aureus, two strains of E. faecalis (including vancomycin-resistant Enterococcus, VRE) and C. albicans. The incorporation of magnetite was also considered as an external triggering component in case the films were used as a magneto-responsive smart dressing to stimulate vancomycin diffusion.
Collapse
Affiliation(s)
- Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Bogdan Purcăreanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- BIOTEHNOS SA, Gorunului Street 3-5, 075100 Otopeni, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Alina Moroșan
- Department of Organic Chemistry “Costin Nenițescu”, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Lia-Mara Dițu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest, 91-95 Splaiul Independenței, 050095 Bucharest, Romania
| |
Collapse
|
12
|
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite-Based Biosensors and Molecular Logic Gates: From Magnetite Synthesis to Application. BIOSENSORS 2023; 13:304. [PMID: 36979516 PMCID: PMC10046048 DOI: 10.3390/bios13030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In the last few decades, point-of-care (POC) sensors have become increasingly important in the detection of various targets for the early diagnostics and treatment of diseases. Diverse nanomaterials are used as building blocks for the development of smart biosensors and magnetite nanoparticles (MNPs) are among them. The intrinsic properties of MNPs, such as their large surface area, chemical stability, ease of functionalization, high saturation magnetization, and more, mean they have great potential for use in biosensors. Moreover, the unique characteristics of MNPs, such as their response to external magnetic fields, allow them to be easily manipulated (concentrated and redispersed) in fluidic media. As they are functionalized with biomolecules, MNPs bear high sensitivity and selectivity towards the detection of target biomolecules, which means they are advantageous in biosensor development and lead to a more sensitive, rapid, and accurate identification and quantification of target analytes. Due to the abovementioned properties of functionalized MNPs and their unique magnetic characteristics, they could be employed in the creation of new POC devices, molecular logic gates, and new biomolecular-based biocomputing interfaces, which would build on new ideas and principles. The current review outlines the synthesis, surface coverage, and functionalization of MNPs, as well as recent advancements in magnetite-based biosensors for POC diagnostics and some perspectives in molecular logic, and it also contains some of our own results regarding the topic, which include synthetic MNPs, their application for sample preparation, and the design of fluorescent-based molecular logic gates.
Collapse
Affiliation(s)
- Nataliia Dudchenko
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Shweta Pawar
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Perelshtein
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
13
|
Nanoscale Prognosis of Colorectal Cancer Metastasis from AFM Image Processing of Histological Sections. Cancers (Basel) 2023; 15:cancers15041220. [PMID: 36831563 PMCID: PMC9953928 DOI: 10.3390/cancers15041220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Early ascertainment of metastatic tumour phases is crucial to improve cancer survival, formulate an accurate prognostic report of disease advancement, and, most importantly, quantify the metastatic progression and malignancy state of primary cancer cells with a universal numerical indexing system. This work proposes an early improvement to metastatic cancer detection with 97.7 nm spatial resolution by indexing the metastatic cancer phases from the analysis of atomic force microscopy images of human colorectal cancer histological sections. The procedure applies variograms of residuals of Gaussian filtering and theta statistics of colorectal cancer tissue image settings. This methodology elucidates the early metastatic progression at the nanoscale level by setting metastatic indexes and critical thresholds based on relatively large histological sections and categorising the malignancy state of a few suspicious cells not identified with optical image analysis. In addition, we sought to detect early tiny morphological differentiations indicating potential cell transition from epithelial cell phenotypes of low metastatic potential to those of high metastatic potential. This metastatic differentiation, which is also identified in higher moments of variograms, sets different hierarchical levels for metastatic progression dynamics.
Collapse
|
14
|
Han J, Zeng S, Chen Y, Li H, Yoon J. Prospects of coupled iron-based nanostructures in preclinical antibacterial therapy. Adv Drug Deliv Rev 2023; 193:114672. [PMID: 36592895 DOI: 10.1016/j.addr.2022.114672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/13/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Bacterial infections can threaten human health. Drug-resistant bacteria have become a challenge because of the excessive use of drugs. We summarize the current metallic antibacterial materials, especially Fe-based materials, for efficiently killing bacteria. The possible antibacterial mechanisms of metallic antibacterial agents are classified into interactions with bacterial proteins, iron metabolism, catalytic activity, and combinations of magnetic, photodynamic, and photothermal effects. This review will inspire the development of novel Fe-based antibacterial agents for clinical settings.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760 Republic of Korea; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shuang Zeng
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024 China
| | - Yahui Chen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760 Republic of Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024 China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760 Republic of Korea.
| |
Collapse
|
15
|
Hasan MJ, Westphal E, Chen P, Saini A, Chu IW, Watzman SJ, Ureña-Benavides E, Vasquez ES. Adsorptive properties and on-demand magnetic response of lignin@Fe 3O 4 nanoparticles at castor oil-water interfaces. RSC Adv 2023; 13:2768-2779. [PMID: 36756408 PMCID: PMC9850361 DOI: 10.1039/d2ra07952f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Lignin@Fe3O4 nanoparticles adsorb at oil-water interfaces, form Pickering emulsions, induce on-demand magnetic responses to break emulsions, and can sequester oil from water. Lignin@Fe3O4 nanoparticles were prepared using a pH-induced precipitation method and were fully characterized. These were used to prepare Pickering emulsions with castor oil/Sudan red G dye and water at various oil/water volume ratios and nanoparticle concentrations. The stability and demulsification of the emulsions under different magnetic fields generated with permanent magnets (0-540 mT) were investigated using microscopy images and by visual inspection over time. The results showed that the Pickering emulsions were more stable at the castor oil/water ratio of 50/50 and above. Increasing the concentration of lignin@Fe3O4 improved the emulsion stability and demulsification rates with 540 mT applied magnetic field strength. The adsorption of lignin@Fe3O4 nanoparticles at the oil/water interface using 1-pentanol evaporation through Marangoni effects was demonstrated, and magnetic manipulation of a lignin@Fe3O4 stabilized castor oil spill in water was shown. Nanoparticle concentration and applied magnetic field strengths were analyzed for the recovery of spilled oil from water; it was observed that increasing the magnetic strength increased oil spill motion for a lignin@Fe3O4 concentration of up to 0.8 mg mL-1 at 540 mT. Overall, this study demonstrates the potential of lignin-magnetite nanocomposites for rapid on-demand magnetic responses to externally induced stimuli.
Collapse
Affiliation(s)
- Mohammad Jahid Hasan
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San AntonioOne UTSA CircleSan Antonio78249TXUSA
| | - Emily Westphal
- Department of Chemical and Materials Engineering, University of Dayton, 300 College Park Dayton OH 45469-0256 USA
| | - Peng Chen
- Department of Chemical and Materials Engineering, University of Dayton, 300 College Park Dayton OH 45469-0256 USA
| | - Abhishek Saini
- Department of Mechanical and Materials Engineering, University of Cincinnati2901Woodside DriveCincinnatiOH45221USA
| | - I-Wei Chu
- Institute of Imaging and Analytical Technology, Mississippi State UniversityMississippi StateMS39762USA
| | - Sarah J. Watzman
- Department of Mechanical and Materials Engineering, University of Cincinnati2901Woodside DriveCincinnatiOH45221USA
| | - Esteban Ureña-Benavides
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San AntonioOne UTSA CircleSan Antonio78249TXUSA
| | - Erick S. Vasquez
- Department of Chemical and Materials Engineering, University of Dayton, 300 College ParkDaytonOH45469-0256USA,Integrative Science and Engineering Center, University of Dayton, 300 College ParkDaytonOH45469USA
| |
Collapse
|
16
|
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023; 157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, however there are several shortcomings in current diagnostic and therapeutic measures. In terms of diagnosis, the diagnostic tools currently available are not sufficiently sensitive and specific, and imaging is poor, leading to misdiagnosis and missed diagnoses, which can delay treatment. In terms of treatment, current treatment options include surgery, chemotherapy, immunotherapy, gene therapy, and other emerging treatments, as well as combination therapies. However, the main reasons for poor efficacy and side effects during treatment are the lack of specificity and targeting, improper dose control of drugs and photosensitizers, damage to normal cells while attacking cancer cells, and difficulty in delivering siRNA to cancer cells. Nanomedicine is an emerging approach. Among the many nanotechnologies applied in the medical field, nanocarrier-assisted drug delivery systems have attracted extensive research interest due to their great translational value. Well-designed nanoparticles can deliver agents or drugs to specific cell types within target organs through active targeting or passive targeting (enhanced permeability and retention), which allows for imaging, diagnosis, as well as treatment of cancer. This paper reviews advances in the application of various nanocarriers and their advantages and drawbacks, with a focus on their use in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huanhuan Geng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinzhe Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
17
|
Hudiță A, Grumezescu V, Gherasim O, Grumezescu AM, Dorcioman G, Negut I, Oprea OC, Vasile BȘ, Gălățeanu B, Curuțiu C, Holban AM. MAPLE Processed Nanostructures for Antimicrobial Coatings. Int J Mol Sci 2022; 23:ijms232315355. [PMID: 36499682 PMCID: PMC9738358 DOI: 10.3390/ijms232315355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Despite their great benefits for debilitated patients, indwelling devices are prone to become easily colonized by resident and opportunistic microorganisms, which have the ability to attach to their surfaces and form highly specialized communities called biofilms. These are extremely resistant to host defense mechanisms and antibiotics, leading to treatment failure and device replacement, but also to life-threatening complications. In this study, we aimed to optimize a silica (SiO2)-coated magnetite (Fe3O4)-based nanosystem containing the natural antimicrobial agent, eugenol (E), suitable for MAPLE (matrix-assisted pulsed laser evaporation) deposition as a bioactive coating for biomedical applications. X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and transmission electron microscopy investigations were employed to characterize the obtained nanosystems. The in vitro tests evidenced the superior biocompatibility of such nanostructured coatings, as revealed by their non-cytotoxic activity and ability to promote cellular proliferation and sustain normal cellular development of dermal fibroblasts. Moreover, the obtained nanocoatings did not induce proinflammatory events in human blood samples. Our studies demonstrated that Fe3O4 NPs can improve the antimicrobial activity of E, while the use of a SiO2 matrix may increase its efficiency over prolonged periods of time. The Fe3O4@SiO2 nanosystems showed excellent biocompatibility, sustaining human dermal fibroblasts' viability, proliferation, and typical architecture. More, the novel coatings lack proinflammatory potential as revealed by the absence of proinflammatory cytokine expression in response to human blood sample interactions.
Collapse
Affiliation(s)
- Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
- Correspondence:
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Carmen Curuțiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei Street, 077206 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei Street, 077206 Bucharest, Romania
| |
Collapse
|
18
|
Miola M, Multari C, Vernè E. Iron Oxide-Au Magneto-Plasmonic Heterostructures: Advances in Their Eco-Friendly Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7036. [PMID: 36234377 PMCID: PMC9573543 DOI: 10.3390/ma15197036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, nanotechnologies have attracted considerable interest, especially in the biomedical field. Among the most investigated particles, magnetic based on iron oxides and Au nanoparticles gained huge interest for their magnetic and plasmonic properties, respectively. These nanoparticles are usually produced starting from processes and reagents that can be the cause of potential human health and environmental concerns. For this reason, there is a need to develop simple, green, low-cost, and non-toxic synthesis methods and reagents. This review aims at providing an overview of the most recently developed processes to produce iron oxide magnetic nanoparticles, Au nanoparticles, and their magneto-plasmonic heterostructures using eco-friendly approaches, focusing the attention on the microorganisms and plant-assisted syntheses and showing the first results of the development of magneto-plasmonic heterostructures.
Collapse
|
19
|
Taghizadeh SM, Ghoshoon MB, Ghasemi Y, Dehshahri A, Berenjian A, Ebrahiminezhad A. Efficiency of magnetic immobilization for recombinant Pichia pastoris cells harvesting over consecutive production cycles. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Seyedeh-Masoumeh Taghizadeh
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Younes Ghasemi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, the University of Waikato, Shiraz, Hamilton, New Zealand
- Department of Agricultural and Biological Engineering, 221 Agricultural Engineering Building, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
20
|
Inorganic Nanocarriers: Surface Functionalization, Delivery Utility for Natural Therapeutics - A Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-96l963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inorganic nanocarriers for a decade have increased interest in nanotechnology research platform as versatile drug delivery materials. The utility of the inorganic nanocarriers for delivery of therapeutic agents is attributed to their unique properties such as magnetic, photocatalytic nature and the ability to exhibit surface functionalization. Herein, we review the surface functionalization and delivery utility for natural therapeutics exhibited by inorganic nanocarriers mostly focusing on their magnetic, photocatalytic and the plasmonic properties. The review also highlights the influence of electronic property of inorganic surface on functionalization of ligand based natural therapeutic agents. Improvement of stability and therapeutic potential by formation of nanocomposites are detailed. Furthermore, we suggest improvement strategies for stability and toxicity reduction of inorganic nanoparticles that would potentially make them useful for clinical application as therapeutic delivery tools for treatment of various diseases.
Collapse
|
21
|
Demin AM, Vakhrushev AV, Pershina AG, Valova MS, Efimova LV, Syomchina AA, Uimin MA, Minin AS, Levit GL, Krasnov VP, Charushin VN. Magnetic-Responsive Doxorubicin-Containing Materials Based on Fe 3O 4 Nanoparticles with a SiO 2/PEG Shell and Study of Their Effects on Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23169093. [PMID: 36012356 PMCID: PMC9409415 DOI: 10.3390/ijms23169093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022] Open
Abstract
Novel nanocomposite materials based on Fe3O4 magnetic nanoparticles (MNPs) coated with silica and covalently modified by [(3-triethoxysilyl)propyl]succinic acid–polyethylene glycol (PEG 3000) conjugate, which provides a high level of doxorubicin (Dox) loading, were obtained. The efficiency of Dox desorption from the surface of nanomaterials under the action of an alternating magnetic field (AMF) in acidic and neutral media was evaluated. Their high cytotoxicity against tumor cells, as well as the drug release upon application of AMF, which leads to an increase in the cytotoxic effect, was demonstrated.
Collapse
Affiliation(s)
- Alexander M. Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
- Correspondence: (A.M.D.); (V.N.C.)
| | - Alexander V. Vakhrushev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Alexandra G. Pershina
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Marina S. Valova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Lina V. Efimova
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
| | | | - Mikhail A. Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia
| | - Artem S. Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
- Institute of Chemical Engineering, Ural Federal University, 620002 Ekaterinburg, Russia
- Correspondence: (A.M.D.); (V.N.C.)
| |
Collapse
|
22
|
Substituted Poly(Vinylphosphonate) Coatings of Magnetite Nanoparticles and Clusters. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8080079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Magnetite nanoparticles and clusters of nanoparticles have been of Increasing scientific interest in the past decades. In order to prepare nanoparticles and clusters that are stable in suspension, different coatings have been used. Phosphates and phosphonates are a preferred anchoring group for the coating of magnetite nanomaterials. However, poly(vinylphosphonates) have rarely been used as a coating agent for any nanoparticles. Here, poly(methylvinylphosphonate) and other substituted polyvinylphosphonates are described as new coatings for magnetite nanoparticles and clusters. They show great stability in aqueous suspension. This is also the first time phosphonate-coated magnetite clusters have been synthesized in a one-pot polyol reaction. The coated magnetite nanoparticles and clusters have been characterized by TEM, EDX, FTIR, magnetization measurement, XRD as well as XPS. It has been shown that substituted vinylphosphonates can be easily synthesized in one-step procedures and as a polymeric coating can imbue important properties such as stability in suspension, tight binding to the particle surface, the ability to be further functionalized or to tightly adsorb metal ions. For the synthesis of magnetite clusters the cluster formation, polymerization and coating are done in a one-pot reaction and the resulting magnetite clusters show a higher amount of phosphonate coating than with a three-step procedure including a ligand exchange.
Collapse
|
23
|
Bilalis P, Karagouni E, Toubanaki DK. Peroxidase‐like activity of Fe
3
O
4
nanoparticles and Fe
3
O
4
‐graphene oxide nanohybrids: Effect of the amino‐ and carboxyl‐surface modifications on H
2
O
2
sensing. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Panayiotis Bilalis
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Evdokia Karagouni
- Immunology of Infection Group, Department of Microbiology Hellenic Pasteur Institute Athens Greece EK
| | - Dimitra K. Toubanaki
- Immunology of Infection Group, Department of Microbiology Hellenic Pasteur Institute Athens Greece EK
| |
Collapse
|
24
|
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20:305. [PMID: 35761279 PMCID: PMC9235206 DOI: 10.1186/s12951-022-01510-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland
| |
Collapse
|
25
|
High Drug Capacity Doxorubicin-Loaded Iron Oxide Nanocomposites for Cancer Therapy. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles (MNPs) have great potential in the drug delivery area. Iron oxide (Fe3O4) MNPs have demonstrated a promising effect due to their ferrimagnetic properties, large surface area, stability, low cost, easy synthesis, and functionalization. Some coating procedures are required to improve stability, biocompatibility, and decrease toxicity for medical applications. Herein, the co-precipitation synthesis of iron oxide MNPs coated with four types of primary surfactants, polyethylene glycol 2000 (PEG 2000), oleic acid (OA), Tween 20 (Tw20), and Tween 80 (Tw80), were investigated. Dynamic light scattering (DLS), ζ-potential, and transmission electron microscopy (TEM) techniques were used for morphology, size, charge, and stability analysis. Methylene blue reactive oxygen species (ROS) detection assay and the toxicity experiment on the lung adenocarcinoma A549 cell line were conducted. Two loading conditions for anticancer drug doxorubicin (DOX) on MNPs were proposed. The first one provides high loading efficiency (~90%) with up to 870 μg/mg (DOX/MNPs) drug capacity. The second is perspective for extremely high capacity 1757 μg/mg with drug wasting (DOX loading efficiency ~24%). For the most perspective MNP_OA and MNP_OA_DOX in cell media, pH 7.4, 5, and 3, the stability experiments are also presented. MNP_OA_DOX shows DOX pH-dependent release in the acidic pH and effective inhibition of A549 cancer cell growth. The IC50 values were calculated as 1.13 ± 0.02 mM in terms of doxorubicin and 0.4 ± 0.03 µg/mL in terms of the amount of the nanoparticles. Considering this, the MNP_OA_DOX nano theranostics agent is a highly potential candidate for cancer treatment.
Collapse
|
26
|
Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14050937. [PMID: 35631523 PMCID: PMC9145864 DOI: 10.3390/pharmaceutics14050937] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is among the leading causes of mortality globally, with nearly 10 million deaths in 2020. The emergence of nanotechnology has revolutionised treatment strategies in medicine, with rigorous research focusing on designing multi-functional nanoparticles (NPs) that are biocompatible, non-toxic, and target-specific. Iron-oxide-based NPs have been successfully employed in theranostics as imaging agents and drug delivery vehicles for anti-cancer treatment. Substituted iron-oxides (MFe2O4) have emerged as potential nanocarriers due to their unique and attractive properties such as size and magnetic tunability, ease of synthesis, and manipulatable properties. Current research explores their potential use in hyperthermia and as drug delivery vehicles for cancer therapy. Significantly, there are considerations in applying iron-oxide-based NPs for enhanced biocompatibility, biodegradability, colloidal stability, lowered toxicity, and more efficient and targeted delivery. This review covers iron-oxide-based NPs in cancer therapy, focusing on recent research advances in the use of ferrites. Methods for the synthesis of cubic spinel ferrites and the requirements for their considerations as potential nanocarriers in cancer therapy are discussed. The review highlights surface modifications, where functionalisation with specific biomolecules can deliver better efficiency. Finally, the challenges and solutions for the use of ferrites in cancer therapy are summarised.
Collapse
|
27
|
Synthesis, Characterization, and Application of Magnetite Nanoparticles Coated with Hydrophobic Polyethyleneimine for Oil Spill Cleaning. J CHEM-NY 2022. [DOI: 10.1155/2022/3368298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pollution with oil spills, a major contributor to water contamination, has a remarkable effect on the economy, biodiversity, and environment. To protect marine species and environment, efforts should be undertaken for developing efficient ways to remove oil spills. The current work discusses the oil spill removal using magnetite nanoparticles (MNPs) functionalized with hydrophobic polyethyleneimine (HPEA). In this respect, nonylphenol pentaethylenehexamine (NTEPA) and nonylphenol triethylenetetramine (NDETA) were prepared by a simple one-step method and used as capping agents in the synthesis of hydrophobically modified magnetite nanoparticles designated as NDETA/Fe3O4 (magnetite as a core and NDETA as a shell) and NTEPA/Fe3O4 (magnetite as a core and NTEPA as a shell). The prepared MNPs were characterized using FTIR, XRD, TEM, DLS, TGA, and DSA to determine their physical and chemical properties. Additionally, MNPs were applied as oil spill collectors with high efficiencies that reached 93% and 90% for NDETA/Fe3O4 and NTEPA/Fe3O4, respectively, at low magnetite to oil ratios.
Collapse
|
28
|
Design and Synthesis of Multipotent Antioxidants for Functionalization of Iron Oxide Nanoparticles. COATINGS 2022. [DOI: 10.3390/coatings12040517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multipotent antioxidants (MPAO) were synthesized and characterized by FTIR, NMR. The functionalized nanoparticles (IONP@AO) were characterized by FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX. IONP@AO1 and IONP@AO2 have average particles size of 10 nm and 11 nm, respectively. The functionalized IONP@AO has a superparamagnetic nature, with saturation magnetization of 45 emu·g−1. Structure-based virtual screening of the designed MPAO was performed by PASS analysis and ADMET studies to discover and predict the molecule’s potential bioactivities and safety profile before the synthesis procedure. The half-maximal inhibitory concentration (IC50) of DPPH analysis results showed a four-fold decrease in radical scavenging by IONP@AO compared to IONP. In addition to antioxidant activity, IONP@AO showed suitable antimicrobial activities when tested on various bacterial and fungal strains. The advantage of the developed nanoantioxidants is that they have a strong affinity towards biomolecules such as enzymes, proteins, amino acids, and DNA. Thus, synthesized nanoantioxidants can be used to develop biomedicines that can act as antioxidant, antimicrobial, and anticancer agents.
Collapse
|
29
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
30
|
Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
32
|
Mushtaq S, Shahzad K, Saeed T, Ul-Hamid A, Abbasi BH, Ahmad N, Khalid W, Atif M, Ali Z, Abbasi R. Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1339-1364. [PMID: 34934608 PMCID: PMC8649206 DOI: 10.3762/bjnano.12.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
In this study, poly(isobutylene-alt-maleic anhydride) (PMA)-coated spinel ferrite (MFe2O4, where M = Fe, Co, Ni, or Zn) nanoparticles (NPs) were developed as carriers of the anticancer drugs doxorubicin (DOX) and methotrexate (MTX). Physical characterizations confirmed the formation of pure cubic structures (14-22 nm) with magnetic properties. Drug-loaded NPs exhibited tumor specificity with significantly higher (p < 0.005) drug release in an acidic environment (pH 5.5). The nanoparticles were highly colloidal (zeta potential = -35 to -26 mV) in deionized water, phosphate buffer saline (PBS), and sodium borate buffer (SBB). They showed elevated and dose-dependent cytotoxicity in vitro compared to free drug controls. The IC50 values ranged from 0.81 to 3.97 μg/mL for HepG2 and HT144 cells, whereas IC50 values for normal lymphocytes were 10 to 35 times higher (18.35-43.04 µg/mL). Cobalt ferrite (CFO) and zinc ferrite (ZFO) NPs were highly genotoxic (p < 0.05) in cancer cell lines. The nanoparticles caused cytotoxicity via oxidative stress, causing DNA damage and activation of p53-mediated cell cycle arrest (significantly elevated expression, p < 0.005, majorly G1 and G2/M arrest) and apoptosis. Cytotoxicity testing in 3D spheroids showed significant (p < 0.05) reduction in spheroid diameter and up to 74 ± 8.9% of cell death after two weeks. In addition, they also inhibited multidrug resistance (MDR) pump activity in both cell lines suggesting effectivity in MDR cancers. Among the tested MFe2O4 NPs, CFO nanocarriers were the most favorable for targeted cancer therapy due to excellent magnetic, colloidal, cytotoxic, and biocompatible aspects. However, detailed mechanistic, in vivo cytotoxicity, and magnetic-field-assisted studies are required to fully exploit these nanocarriers in therapeutic applications.
Collapse
Affiliation(s)
- Sadaf Mushtaq
- Institute of Biomedical and Genetic Engineering, G-9/1, Islamabad, Pakistan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Khuram Shahzad
- Department of Physics, Functional Materials Lab, Air University, Sector E-9, Islamabad, Pakistan
| | - Tariq Saeed
- Institute of Biomedical and Genetic Engineering, G-9/1, Islamabad, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | | | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering, G-9/1, Islamabad, Pakistan
| | - Waqas Khalid
- Department of Physics, Functional Materials Lab, Air University, Sector E-9, Islamabad, Pakistan
| | - Muhammad Atif
- Department of Physics, Functional Materials Lab, Air University, Sector E-9, Islamabad, Pakistan
| | - Zulqurnain Ali
- Department of Physics, Functional Materials Lab, Air University, Sector E-9, Islamabad, Pakistan
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering, G-9/1, Islamabad, Pakistan
| |
Collapse
|
33
|
Hosseini MA, Malekie S, Keshavarzi M. Analysis of Radiation Shielding Characteristics of Magnetite/High Density Polyethylene Nanocomposite at Diagnostic Level Using the MCNPX, XCOM, XMuDat and Auto-Zeff Programs. MOSCOW UNIVERSITY PHYSICS BULLETIN 2021; 76:S52-S61. [DOI: 10.3103/s0027134922010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 08/22/2023]
|
34
|
Hosseini MA, Malekie S, Keshavarzi M. Analysis of Radiation Shielding Characteristics of Magnetite/High Density Polyethylene Nanocomposite at Diagnostic Level Using the MCNPX, XCOM, XMuDat and Auto-Zeff Programs. MOSCOW UNIVERSITY PHYSICS BULLETIN 2021; 76:S52-S61. [DOI: https:/doi.org/10.3103/s0027134922010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 08/21/2023]
|
35
|
Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 12:693-727. [PMID: 34512930 PMCID: PMC8419677 DOI: 10.1007/s40097-021-00444-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations. Graphic abstract
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
| | | | - Luciana Magalhães Rebelo Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, Maranhão 65080805 Brazil
| | - Francisco Franciné Maia Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró, RN 59625-900 Brazil
| | - Sara Gemini-Piperni
- Laboratory of Advanced Science, Universidade Unigranrio, Duque de Caxias, RJ 25071-202 Brazil
| | - Samuel V. Carneiro
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, 8910060 Santiago, Chile
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Vladivostok, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, Russia
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials, Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico Di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Zona Oeste State University, Av Manuel Caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000 Brazil
| |
Collapse
|
36
|
Golovin YI, Golovin DY, Vlasova KY, Veselov MM, Usvaliev AD, Kabanov AV, Klyachko NL. Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2255. [PMID: 34578570 PMCID: PMC8470408 DOI: 10.3390/nano11092255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The review discusses the theoretical, experimental and toxicological aspects of the prospective biomedical application of functionalized magnetic nanoparticles (MNPs) activated by a low frequency non-heating alternating magnetic field (AMF). In this approach, known as nano-magnetomechanical activation (NMMA), the MNPs are used as mediators that localize and apply force to such target biomolecular structures as enzyme molecules, transport vesicles, cell organelles, etc., without significant heating. It is shown that NMMA can become a biophysical platform for a family of therapy methods including the addressed delivery and controlled release of therapeutic agents from transport nanomodules, as well as selective molecular nanoscale localized drugless nanomechanical impacts. It is characterized by low system biochemical and electromagnetic toxicity. A technique of 3D scanning of the NMMA region with the size of several mm to several cm over object internals has been described.
Collapse
Affiliation(s)
- Yuri I. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Dmitry Yu. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
| | - Ksenia Yu. Vlasova
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Azizbek D. Usvaliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Alexander V. Kabanov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalia L. Klyachko
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
μSR-Study of a 3% CoFe2O4 Nanoparticle Concentration Ferrofluid. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7070104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic fluids based on single-domain magnetic spinel ferrite nanoparticles dispersed in various liquid media are of particular practical and scientific interest. This paper presents a muon spectroscopy study of a ferrofluid based on magnetic nanoparticles of CoFe2O4 molecules dispersed in water (H2O) with a nanoparticle concentration of 3%. In this study, it was determined that the structure and magnitude of the magnetization of a ferrofluid depend on the viscosity of the liquid itself. It was shown that, at room temperature (290 K) and under an external magnetic field of 527 G, the observed additional magnetization was ~20 G. In a small fraction of the sample under study (~20%), negative magnetization (diamagnetism) was observed. At low temperatures (~30 K), the sample acted as a paramagnet in a magnetic field. For the first time, the magnetic field inside and in the immediate vicinity of a CoFe2O4 nanoparticle has been measured experimentally using the μSR method: the value was 1.96 ± 0.44 kG; thus, direct measurement of the magnetization of a nanoscale object was performed.
Collapse
|
38
|
Design of SiO2/aminopropylsilane-modified magnetic Fe3O4 nanoparticles for doxorubicin immobilization. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3177-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Piosik E, Zaryczniak A, Mylkie K, Ziegler-Borowska M. Probing of Interactions of Magnetite Nanoparticles Coated with Native and Aminated Starch with a DPPC Model Membrane. Int J Mol Sci 2021; 22:5939. [PMID: 34073072 PMCID: PMC8198464 DOI: 10.3390/ijms22115939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanism of interactions between magnetite nanoparticles and phospholipids that form cellular membranes at the molecular level is of crucial importance for their safe and effective application in medicine (e.g. magnetic resonance imaging, targeted drug delivery, and hyperthermia-based anticancer therapy). In these interactions, their surface coating plays a crucial role because even a small modification to its structure can cause significant changes to the behaviour of the magnetite nanoparticles that come in contact with a biomembrane. In this work, the influence of the magnetite nanoparticles functionalized with native and aminated starch on the thermodynamics, morphology, and dilatational elasticity of the model cell membranes was studied. The model cell membranes constituted the Langmuir monolayers formed at the air-water interface of dipalmitoylphosphatidylcholine (DPPC). The surface of the aminated starch-coated nanoparticles was enriched in highly reactive amino groups, which allowed more effective binding of drugs and biomolecules suitable for specific nano-bio applications. The studies indicated that the presence of these groups also reduced to some extent the disruptive effect of the magnetite nanoparticles on the model membranes and improved their adsorption.
Collapse
Affiliation(s)
- Emilia Piosik
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
| | - Aleksandra Zaryczniak
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
| | - Kinga Mylkie
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| |
Collapse
|
40
|
Eguía-Eguía SI, Gildo-Ortiz L, Pérez-González M, Tomas SA, Arenas-Alatorre JA, Santoyo-Salazar J. Magnetic domains orientation in (Fe3O4/γ-Fe2O3) nanoparticles coated by Gadolinium-diethylenetriaminepentaacetic acid (Gd3+-DTPA). NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In this work, the magnetic domains (MDs) orientation was evaluated from magnetite/maghemite nanoparticles (Fe3O4/γ-Fe2O3) NPs coated with Gadolinium (Gd3+) chelated with diethylenetriamine pentaacetate acid (Gd–DTPA). The (Fe3O4/γ–Fe2O3) superparamagnetic cores were configured by adding a DTPA organic layer and paramagnetic Gd as (Fe3O4/γ–Fe2O3)@Gd–DTPA NPs. The cores were obtained by coprecipitation and coated with additional modifications to the synthesis with Gd–DTPA. Analysis of properties showed that particles 9–12 nm, with Gd–DTPA layer thickness ∼10 nm increased their magnetisation from 62.72 to 75.82 emu/g. The result showed that the structure, particle size, composition, thickness and interface defects, as well as the anisotropy, play an important role in MDs orientation of (Fe3O4/γ–Fe2O3)@Gd–DTPA NPs. Magnetic force microscopy (MFM) analysis showed an MDs uniaxial orientation of 90° at magnetisation and disorder at zero conditions and demagnetisation. The MDs interactions showed uniaxial anisotropy defined in the direction of the magnetic field. These addressable and rotational features could be considered for potential applications to induce hydrogen proton alignment in water by longitudinal spin-lattice relaxation T
1 and transversal spin-spin relaxation T
2 as a dual contrast agent and as a theranostic trigger.
Collapse
|
41
|
Poly(ethylene-imine)-Functionalized Magnetite Nanoparticles Derivatized with Folic Acid: Heating and Targeting Properties. Polymers (Basel) 2021; 13:polym13101599. [PMID: 34063481 PMCID: PMC8155902 DOI: 10.3390/polym13101599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
Magnetite nanoparticles (MNPs) coated by branched poly (ethylene-imine) (PEI) were synthesized in a one-pot. Three molecular weights of PEI were tested, namely, 1.8 kDa (sample MNP-1), 10 kDa (sample MNP-2), and 25 kDa (sample MNP-3). The MNP-1 particles were further functionalized with folic acid (FA) (sample MNP-4). The four types of particles were found to behave magnetically as superparamagnetic, with MNP-1 showing the highest magnetization saturation. The particles were evaluated as possible hyperthermia agents by subjecting them to magnetic fields of 12 kA/m strength and frequencies ranging between 115 and 175 kHz. MNP-1 released the maximum heating power, reaching 330 W/g at the highest frequency, in the high side of reported values for spherical MNPs. In vitro cell viability assays of MNP-1 and MNP-4 against three cell lines expressing different levels of FA receptors (FR), namely, HEK (low expression), and HeLa (high expression), and HepG2 (high expression), demonstrated that they are not cytotoxic. When the cells were incubated in the presence of a 175 kHz magnetic field, a significant reduction in cell viability and clone formation was obtained for the high expressing FR cells incubated with MNP-4, suggesting that MNP-4 particles are good candidates for magnetic field hyperthermia and active targeting.
Collapse
|
42
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
43
|
Antibacterial composite coatings of MgB 2 powders embedded in PVP matrix. Sci Rep 2021; 11:9591. [PMID: 33953282 PMCID: PMC8100140 DOI: 10.1038/s41598-021-88885-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Three commercial powders of MgB2 were tested in vitro by MTS and LDH cytotoxicity tests on the HS27 dermal cell line. Depending on powders, the toxicity concentrations were established in the range of 8.3–33.2 µg/ml. The powder with the lowest toxicity limit was embedded into polyvinylpyrrolidone (PVP), a biocompatible and biodegradable polymer, for two different concentrations. The self-replenishing MgB2-PVP composite materials were coated on substrate materials (plastic foil of the reservoir and silicon tubes) composing a commercial urinary catheter. The influence of the PVP-reference and MgB2-PVP novel coatings on the bacterial growth of Staphylococcus aureus ATCC 25923, Enterococcus faecium DMS 13590, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, in planktonic and biofilm state was assessed in vitro at 6, 24, and 48 h of incubation time. The MgB2-PVP coatings are efficient both against planktonic microbes and microbial biofilms. Results open promising applications for the use of MgB2 in the design of anti-infective strategies for different biomedical devices and systems.
Collapse
|
44
|
Reyes-Ortega F, Delgado ÁV, Iglesias GR. Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies. NANOMATERIALS 2021; 11:nano11030627. [PMID: 33802441 PMCID: PMC8001085 DOI: 10.3390/nano11030627] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
The use of magnetic nanoparticles in hyperthermia, that is, heating induced by alternating magnetic fields, is gaining interest as a non-invasive, free of side effects technique that can be considered as a co-adjuvant of other cancer treatments. Having sufficient control on the field characteristics, within admissible limits, the focus is presently on the magnetic material. In the present contribution, no attempt has been made of using other composition than superparamagnetic iron oxide nanoparticles (SPION), or of applying surface functionalization, which opens a wider range of choices. We have used a hydrothermal synthesis route that allows preparing SPION nanoparticles in the 40 nm size range, with spherical, cuboidal or rod-like shapes, by minor changes in the synthesis steps. The three kinds of particles (an attempt to produce star-shaped colloids yielded hematite) were demonstrated to have the magnetite (or maghemite) crystallinity. Magnetization cycles showed virtually no hysteresis and demonstrated the superparamagnetic nature of the particles, cuboidal ones displaying saturation magnetization comparable to bulk magnetite, followed by rods and spheres. The three types were used as hyperthermia agents using magnetic fields of 20 kA/m amplitude and frequency in the range 136–205 kHz. All samples demonstrated to be able to raise the solution temperature from room values to 45 °C in a mere 60 s. Not all of them performed the same way, though. Cuboidal magnetic nanoparticles (MNPs) displayed the maximum heating power (SAR or specific absorption rate), ranging in fact among the highest reported with these geometries and raw magnetite composition.
Collapse
Affiliation(s)
- Felisa Reyes-Ortega
- Department of Applied Physics, University of Granada, 18071 Granada, Spain;
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, University of Córdoba, 14004 Córdoba, Spain
- Correspondence: or (F.R.-O.); (G.R.I.); Tel.: +34-957-736-483 (F.R.-O.); +34-958-242-734 (G.R.I.)
| | - Ángel V. Delgado
- Department of Applied Physics, University of Granada, 18071 Granada, Spain;
| | - Guillermo R. Iglesias
- Department of Applied Physics, University of Granada, 18071 Granada, Spain;
- Correspondence: or (F.R.-O.); (G.R.I.); Tel.: +34-957-736-483 (F.R.-O.); +34-958-242-734 (G.R.I.)
| |
Collapse
|
45
|
Miguel MG, Lourenço JP, Faleiro ML. Superparamagnetic Iron Oxide Nanoparticles and Essential Oils: A New Tool for Biological Applications. Int J Mol Sci 2020; 21:E6633. [PMID: 32927821 PMCID: PMC7555169 DOI: 10.3390/ijms21186633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Essential oils are complex mixtures of volatile compounds with diverse biological properties. Antimicrobial activity has been attributed to the essential oils as well as their capacity to prevent pathogenic microorganisms from forming biofilms. The search of compounds or methodologies with this capacity is of great importance due to the fact that the adherence of these pathogenic microorganisms to surfaces largely contributes to antibiotic resistance. Superparamagnetic iron oxide nanoparticles have been assayed for diverse biomedical applications due to their biocompatibility and low toxicity. Several methods have been developed in order to obtain functionalized magnetite nanoparticles with adequate size, shape, size distribution, surface, and magnetic properties for medical applications. Essential oils have been evaluated as modifiers of the surface magnetite nanoparticles for improving their stabilization but particularly to prevent the growth of microorganisms. This review aims to provide an overview on the current knowledge about the use of superparamagnetic iron oxide nanoparticles and essential oils on the prevention of microbial adherence and consequent biofilm formation with the goal of being applied on the surface of medical devices. Some limitations found in the studies are discussed.
Collapse
Affiliation(s)
- Maria Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Paulo Lourenço
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Centro de Investigação em Química do Algarve (CIQA), Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- CBMR, Algarve Biomedical Center, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
46
|
Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
Energy-converting biomaterials (ECBs)-mediated cancer-therapeutic modalities have been extensively explored, which have achieved remarkable benefits to overwhelm the obstacles of traditional cancer-treatment modalities. Energy-driven cancer-therapeutic modalities feature their distinctive merits, including noninvasiveness, low mammalian toxicity, adequate therapeutic outcome, and optimistical synergistic therapeutics. In this advanced review, the prevailing mainstream ECBs can be divided into two sections: Reactive oxygen species (ROS)-associated energy-converting biomaterials (ROS-ECBs) and hyperthermia-related energy-converting biomaterials (H-ECBs). On the one hand, ROS-ECBs can transfer exogenous or endogenous energy (such as light, radiation, ultrasound, or chemical) to generate and release highly toxic ROS for inducing tumor cell apoptosis/necrosis, including photo-driven ROS-ECBs for photodynamic therapy, radiation-driven ROS-ECBs for radiotherapy, ultrasound-driven ROS-ECBs for sonodynamic therapy, and chemical-driven ROS-ECBs for chemodynamic therapy. On the other hand, H-ECBs could translate the external energy (such as light and magnetic) into heat for killing tumor cells, including photo-converted H-ECBs for photothermal therapy and magnetic-converted H-ECBs for magnetic hyperthermia therapy. Additionally, the biosafety issues of ECBs are expounded preliminarily, guaranteeing the ever-stringent requirements of clinical translation. Finally, we discussed the prospects and facing challenges for constructing the new-generation ECBs for establishing intriguing energy-driven cancer-therapeutic modalities. This article is categorized under: Nanotechnology Approaches to Biology >Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lile Dong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Wenjuan Li
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
47
|
Öztürk Er E, Dalgıç Bozyiğit G, Büyükpınar Ç, Bakırdere S. Magnetic Nanoparticles Based Solid Phase Extraction Methods for the Determination of Trace Elements. Crit Rev Anal Chem 2020; 52:231-249. [DOI: 10.1080/10408347.2020.1797465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elif Öztürk Er
- Chemical Engineering Department, Yıldız Technical University, İstanbul, Turkey
| | - Gamze Dalgıç Bozyiğit
- Faculty of Civil Engineering, Department of Environmental Engineering, Yıldız Technical University, İstanbul, Turkey
| | - Çağdaş Büyükpınar
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
- Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
48
|
Saturation of Specific Absorption Rate for Soft and Hard Spinel Ferrite Nanoparticles Synthesized by Polyol Process. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6020023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinel ferrite nanoparticles represent a class of magnetic nanoparticles (MNPs) with enormous potential in magnetic hyperthermia. In this study, we investigated the magnetic and heating properties of spinel soft NiFe2O4, MnFe2O4, and hard CoFe2O4 MNPs of comparable sizes (12–14 nm) synthesized by the polyol method. Similar to the hard ferrite, which predominantly is ferromagnetic at room temperature, the soft ferrite MNPs display a non-negligible coercivity (9–11 kA/m) arising from the strong interparticle interactions. The heating capabilities of ferrite MNPs were evaluated in aqueous media at concentrations between 4 and 1 mg/mL under alternating magnetic fields (AMF) amplitude from 5 to 65 kA/m at a constant frequency of 355 kHz. The hyperthermia data revealed that the SAR values deviate from the quadratic dependence on the AMF amplitude in all three cases in disagreement with the Linear Response Theory. Instead, the SAR values display a sigmoidal dependence on the AMF amplitude, with a maximum heating performance measured for the cobalt ferrites (1780 W/gFe+Co), followed by the manganese ferrites (835 W/gFe+Mn), while the nickel ferrites (540 W/gFe+Ni) present the lowest values of SAR. The heating performances of the ferrites are in agreement with their values of coercivity and saturation magnetization.
Collapse
|
49
|
Iacovita C, Fizeșan I, Pop A, Scorus L, Dudric R, Stiufiuc G, Vedeanu N, Tetean R, Loghin F, Stiufiuc R, Lucaciu CM. In Vitro Intracellular Hyperthermia of Iron Oxide Magnetic Nanoparticles, Synthesized at High Temperature by a Polyol Process. Pharmaceutics 2020; 12:E424. [PMID: 32384665 PMCID: PMC7285148 DOI: 10.3390/pharmaceutics12050424] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/20/2023] Open
Abstract
We report the synthesis of magnetite nanoparticles (IOMNPs) using the polyol method performed at elevated temperature (300 °C) and high pressure. The ferromagnetic polyhedral IOMNPs exhibited high saturation magnetizations at room temperature (83 emu/g) and a maximum specific absorption rate (SAR) of 2400 W/gFe in water. The uniform dispersion of IOMNPs in solid matrix led to a monotonous increase of SAR maximum (3600 W/gFe) as the concentration decreased. Cytotoxicity studies on two cell lines (cancer and normal) using Alamar Blues and Neutral Red assays revealed insignificant toxicity of the IOMNPs on the cells up to a concentration of 1000 μg/mL. The cells internalized the IOMNPs inside lysosomes in a dose-dependent manner, with higher amounts of IOMNPs in cancer cells. Intracellular hyperthermia experiments revealed a significant increase in the macroscopic temperatures of the IOMNPs loaded cell suspensions, which depend on the amount of internalized IOMNPs and the alternating magnetic field amplitude. The cancer cells were found to be more sensitive to the intracellular hyperthermia compared to the normal ones. For both cell lines, cells heated at the same macroscopic temperature presented lower viability at higher amplitudes of the alternating magnetic field, indicating the occurrence of mechanical or nanoscale heating effects.
Collapse
Affiliation(s)
- Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania; (C.I.); (L.S.); (N.V.)
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur, 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur, 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Lavinia Scorus
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania; (C.I.); (L.S.); (N.V.)
| | - Roxana Dudric
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (R.D.); (G.S.); (R.T.)
| | - Gabriela Stiufiuc
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (R.D.); (G.S.); (R.T.)
| | - Nicoleta Vedeanu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania; (C.I.); (L.S.); (N.V.)
| | - Romulus Tetean
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (R.D.); (G.S.); (R.T.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur, 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Rares Stiufiuc
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania; (C.I.); (L.S.); (N.V.)
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania; (C.I.); (L.S.); (N.V.)
| |
Collapse
|
50
|
Kaneyoshi T. Decoration in a Graphene-like Ising nanoparticle for the possibility of high critical temperature. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|