1
|
Cherlin T, Jing Y, Shah S, Kennedy A, Telonis AG, Pliatsika V, Wilson H, Thompson L, Vlantis PI, Loher P, Leiby B, Rigoutsos I. The subcellular distribution of miRNA isoforms, tRNA-derived fragments, and rRNA-derived fragments depends on nucleotide sequence and cell type. BMC Biol 2024; 22:205. [PMID: 39267057 PMCID: PMC11397057 DOI: 10.1186/s12915-024-01970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MicroRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), and rRNA-derived fragments (rRFs) represent most of the small non-coding RNAs (sncRNAs) found in cells. Members of these three classes modulate messenger RNA (mRNA) and protein abundance and are dysregulated in diseases. Experimental studies to date have assumed that the subcellular distribution of these molecules is well-understood, independent of cell type, and the same for all isoforms of a sncRNA. RESULTS We tested these assumptions by investigating the subcellular distribution of isomiRs, tRFs, and rRFs in biological replicates from three cell lines from the same tissue and same-sex donors that model the same cancer subtype. In each cell line, we profiled the isomiRs, tRFs, and rRFs in the nucleus, cytoplasm, whole mitochondrion (MT), mitoplast (MP), and whole cell. Using a rigorous mathematical model we developed, we accounted for cross-fraction contamination and technical errors and adjusted the measured abundances accordingly. Analyses of the adjusted abundances show that isomiRs, tRFs, and rRFs exhibit complex patterns of subcellular distributions. These patterns depend on each sncRNA's exact sequence and the cell type. Even in the same cell line, isoforms of the same sncRNA whose sequences differ by a few nucleotides (nts) can have different subcellular distributions. CONCLUSIONS SncRNAs with similar sequences have different subcellular distributions within and across cell lines, suggesting that each isoform could have a different function. Future computational and experimental studies of isomiRs, tRFs, and rRFs will need to distinguish among each molecule's various isoforms and account for differences in each isoform's subcellular distribution in the cell line at hand. While the findings add to a growing body of evidence that isomiRs, tRFs, rRFs, tRNAs, and rRNAs follow complex intracellular trafficking rules, further investigation is needed to exclude alternative explanations for the observed subcellular distribution of sncRNAs.
Collapse
Affiliation(s)
- Tess Cherlin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Jing
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Siddhartha Shah
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Anne Kennedy
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- University of Miami, Miami, FL, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- New York University, New York, NY, USA
| | - Haley Wilson
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lily Thompson
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Panagiotis I Vlantis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Independent Scholar, Athens, Greece
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Benjamin Leiby
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA.
| |
Collapse
|
2
|
Wang L, Xiao J, Zhang B, Hou A. Epigenetic modifications in the development of bronchopulmonary dysplasia: a review. Pediatr Res 2024; 96:632-642. [PMID: 38570557 DOI: 10.1038/s41390-024-03167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
While perinatal medicine advancements have bolstered survival outcomes for premature infants, bronchopulmonary dysplasia (BPD) continues to threaten their long-term health. Gene-environment interactions, mediated by epigenetic modifications such as DNA methylation, histone modification, and non-coding RNA regulation, take center stage in BPD pathogenesis. Recent discoveries link methylation variations across biological pathways with BPD. Also, the potential reversibility of histone modifications fuels new treatment avenues. The review also highlights the promise of utilizing mesenchymal stem cells and their exosomes as BPD therapies, given their ability to modulate non-coding RNA, opening novel research and intervention possibilities. IMPACT: The complexity and universality of epigenetic modifications in the occurrence and development of bronchopulmonary dysplasia were thoroughly discussed. Both molecular and cellular mechanisms contribute to the diverse nature of epigenetic changes, suggesting the need for deeper biochemical techniques to explore these molecular alterations. The utilization of innovative cell-specific drug delivery methods like exosomes and extracellular vesicles holds promise in achieving precise epigenetic regulation.
Collapse
Affiliation(s)
- Lichuan Wang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Jun Xiao
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Ana Hou
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Tiwari PK, Shanmugam P, Karn V, Gupta S, Mishra R, Rustagi S, Chouhan M, Verma D, Jha NK, Kumar S. Extracellular Vesicular miRNA in Pancreatic Cancer: From Lab to Therapy. Cancers (Basel) 2024; 16:2179. [PMID: 38927885 PMCID: PMC11201547 DOI: 10.3390/cancers16122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer is a prevalent lethal gastrointestinal cancer that generally does not show any symptoms until it reaches advanced stages, resulting in a high mortality rate. People at high risk, such as those with a family history or chronic pancreatitis, do not have a universally accepted screening protocol. Chemotherapy and radiotherapy demonstrate limited effectiveness in the management of pancreatic cancer, emphasizing the urgent need for innovative therapeutic strategies. Recent studies indicated that the complex interaction among pancreatic cancer cells within the dynamic microenvironment, comprising the extracellular matrix, cancer-associated cells, and diverse immune cells, intricately regulates the biological characteristics of the disease. Additionally, mounting evidence suggests that EVs play a crucial role as mediators in intercellular communication by the transportation of different biomolecules, such as miRNA, proteins, DNA, mRNA, and lipids, between heterogeneous cell subpopulations. This communication mediated by EVs significantly impacts multiple aspects of pancreatic cancer pathogenesis, including proliferation, angiogenesis, metastasis, and resistance to therapy. In this review, we delve into the pivotal role of EV-associated miRNAs in the progression, metastasis, and development of drug resistance in pancreatic cancer as well as their therapeutic potential as biomarkers and drug-delivery mechanisms for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Poojhaa Shanmugam
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Vamika Karn
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Sarvesh Rustagi
- School of Applied and Life science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
4
|
Shen Z, Naveed M, Bao J. Untacking small RNA profiling and RNA fragment footprinting: Approaches and challenges in library construction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1852. [PMID: 38715192 DOI: 10.1002/wrna.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Small RNAs (sRNAs) with sizes ranging from 15 to 50 nucleotides (nt) are critical regulators of gene expression control. Prior studies have shown that sRNAs are involved in a broad range of biological processes, such as organ development, tumorigenesis, and epigenomic regulation; however, emerging evidence unveils a hidden layer of diversity and complexity of endogenously encoded sRNAs profile in eukaryotic organisms, including novel types of sRNAs and the previously unknown post-transcriptional RNA modifications. This underscores the importance for accurate, unbiased detection of sRNAs in various cellular contexts. A multitude of high-throughput methods based on next-generation sequencing (NGS) are developed to decipher the sRNA expression and their modifications. Nonetheless, distinct from mRNA sequencing, the data from sRNA sequencing suffer frequent inconsistencies and high variations emanating from the adapter contaminations and RNA modifications, which overall skew the sRNA libraries. Here, we summarize the sRNA-sequencing approaches, and discuss the considerations and challenges for the strategies and methods of sRNA library construction. The pros and cons of sRNA sequencing have significant implications for implementing RNA fragment footprinting approaches, including CLIP-seq and Ribo-seq. We envision that this review can inspire novel improvements in small RNA sequencing and RNA fragment footprinting in future. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Zhaokang Shen
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Muhammad Naveed
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| |
Collapse
|
5
|
Panstruga R, Spanu P. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. THE NEW PHYTOLOGIST 2024; 241:567-577. [PMID: 37985402 DOI: 10.1111/nph.19409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Aydemir HB, Korkmaz EM. microRNAs in Syrista parreyssi (Hymenoptera) and Lepisma saccharina (Zygentoma) possibly involved in the mitochondrial function. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22062. [PMID: 37905458 DOI: 10.1002/arch.22062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Mitochondria are essential organelles for maintaining vital cellular functions, and microRNAs (miRNAs) regulate gene expression posttranscriptionally. miRNAs exhibit tissue and time-specific patterns in mitochondria and specifically mitochondrial miRNAs (mitomiRs) can regulate the mRNA expression both originating from mitochondrial and nuclear transcription which affect mitochondrial metabolic activity and cell homeostasis. In this study, miRNAs of two insect species, Syrista parreyssi (Hymenoptera) and Lepisma saccharina (Zygentoma), were investigated for the first time. The known and possible novel miRNAs were predicted and characterized and their potential effects on mitochondrial transcription were investigated in these insect species using deep sequencing. The previously reported mitomiRs were also investigated and housekeeping miRNAs were characterized. miRNAs that are involved in mitochondrial processes such as apoptosis and signaling and that affect genes encoding the subunits of OXPHOS complexes have been identified in each species. Here, 81 and 161 novel mature miRNA candidates were bioinformatically predicted and 9 and 24 of those were aligned with reference mitogenomes of S. parreyssi and L. saccharina, respectively. As a result of RNAHybrid analysis, 51 and 69 potential targets of miRNAs were found in the mitogenome of S. parreyssi and L. saccharina, respectively. cox1 gene was the most targeted gene and cytB, rrnS, and rrnL genes were highly targeted in both of the species by novel miRNAs, hypothetically. We speculate that these novel miRNAs, originating from or targeting mitochondria, influence on rRNA genes or positively selected mitochondrial protein-coding genes. These findings may provide a new perspective in evaluating miRNAs for maintaining mitochondrial function and transcription.
Collapse
Affiliation(s)
- Habeş Bilal Aydemir
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
7
|
Böğürcü-Seidel N, Ritschel N, Acker T, Németh A. Beyond ribosome biogenesis: noncoding nucleolar RNAs in physiology and tumor biology. Nucleus 2023; 14:2274655. [PMID: 37906621 PMCID: PMC10730139 DOI: 10.1080/19491034.2023.2274655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The nucleolus, the largest subcompartment of the nucleus, stands out from the nucleoplasm due to its exceptionally high local RNA and low DNA concentrations. Within this central hub of nuclear RNA metabolism, ribosome biogenesis is the most prominent ribonucleoprotein (RNP) biogenesis process, critically determining the structure and function of the nucleolus. However, recent studies have shed light on other roles of the nucleolus, exploring the interplay with various noncoding RNAs that are not directly involved in ribosome synthesis. This review focuses on this intriguing topic and summarizes the techniques to study and the latest findings on nucleolar long noncoding RNAs (lncRNAs) as well as microRNAs (miRNAs) in the context of nucleolus biology beyond ribosome biogenesis. We particularly focus on the multifaceted roles of the nucleolus and noncoding RNAs in physiology and tumor biology.
Collapse
Affiliation(s)
| | - Nadja Ritschel
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Attila Németh
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
8
|
Akins RB, Ostberg K, Cherlin T, Tsiouplis NJ, Loher P, Rigoutsos I. The Typical tRNA Co-Expresses Multiple 5' tRNA Halves Whose Sequences and Abundances Depend on Isodecoder and Isoacceptor and Change with Tissue Type, Cell Type, and Disease. Noncoding RNA 2023; 9:69. [PMID: 37987365 PMCID: PMC10660753 DOI: 10.3390/ncrna9060069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023] Open
Abstract
Transfer RNA-derived fragments (tRFs) are noncoding RNAs that arise from either mature transfer RNAs (tRNAs) or their precursors. One important category of tRFs comprises the tRNA halves, which are generated through cleavage at the anticodon. A given tRNA typically gives rise to several co-expressed 5'-tRNA halves (5'-tRHs) that differ in the location of their 3' ends. These 5'-tRHs, even though distinct, have traditionally been treated as indistinguishable from one another due to their near-identical sequences and lengths. We focused on co-expressed 5'-tRHs that arise from the same tRNA and systematically examined their exact sequences and abundances across 10 different human tissues. To this end, we manually curated and analyzed several hundred human RNA-seq datasets from NCBI's Sequence Run Archive (SRA). We grouped datasets from the same tissue into their own collection and examined each group separately. We found that a given tRNA produces different groups of co-expressed 5'-tRHs in different tissues, different cell lines, and different diseases. Importantly, the co-expressed 5'-tRHs differ in their sequences, absolute abundances, and relative abundances, even among tRNAs with near-identical sequences from the same isodecoder or isoacceptor group. The findings suggest that co-expressed 5'-tRHs that are produced from the same tRNA or closely related tRNAs have distinct, context-dependent roles. Moreover, our analyses show that cell lines modeling the same tissue type and disease may not be interchangeable when it comes to experimenting with tRFs.
Collapse
Affiliation(s)
| | | | | | | | | | - Isidore Rigoutsos
- Computational Medical Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Georgoulis V, Koumpis E, Hatzimichael E. The Role of Non-Coding RNAs in Myelodysplastic Neoplasms. Cancers (Basel) 2023; 15:4810. [PMID: 37835504 PMCID: PMC10571949 DOI: 10.3390/cancers15194810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Myelodysplastic syndromes or neoplasms (MDS) are a heterogeneous group of myeloid clonal disorders characterized by peripheral blood cytopenias, blood and marrow cell dysplasia, and increased risk of evolution to acute myeloid leukemia (AML). Non-coding RNAs, especially microRNAs and long non-coding RNAs, serve as regulators of normal and malignant hematopoiesis and have been implicated in carcinogenesis. This review presents a comprehensive summary of the biology and role of non-coding RNAs, including the less studied circRNA, siRNA, piRNA, and snoRNA as potential prognostic and/or predictive biomarkers or therapeutic targets in MDS.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19 107, USA
| |
Collapse
|
10
|
Darbinian N, Gallia GL, Darbinyan A, Vadachkoria E, Merabova N, Moore A, Goetzl L, Amini S, Selzer ME. Effects of In Utero EtOH Exposure on 18S Ribosomal RNA Processing: Contribution to Fetal Alcohol Spectrum Disorder. Int J Mol Sci 2023; 24:13714. [PMID: 37762017 PMCID: PMC10531167 DOI: 10.3390/ijms241813714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are leading causes of neurodevelopmental disability. The mechanisms by which alcohol (EtOH) disrupts fetal brain development are incompletely understood, as are the genetic factors that modify individual vulnerability. Because the phenotype abnormalities of FASD are so varied and widespread, we investigated whether fetal exposure to EtOH disrupts ribosome biogenesis and the processing of pre-ribosomal RNAs and ribosome assembly, by determining the effect of exposure to EtOH on the developmental expression of 18S rRNA and its cleaved forms, members of a novel class of short non-coding RNAs (srRNAs). In vitro neuronal cultures and fetal brains (11-22 weeks) were collected according to an IRB-approved protocol. Twenty EtOH-exposed brains from the first and second trimester were compared with ten unexposed controls matched for gestational age and fetal gender. Twenty fetal-brain-derived exosomes (FB-Es) were isolated from matching maternal blood. RNA was isolated using Qiagen RNA isolation kits. Fetal brain srRNA expression was quantified by ddPCR. srRNAs were expressed in the human brain and FB-Es during fetal development. EtOH exposure slightly decreased srRNA expression (1.1-fold; p = 0.03). Addition of srRNAs to in vitro neuronal cultures inhibited EtOH-induced caspase-3 activation (1.6-fold, p = 0.002) and increased cell survival (4.7%, p = 0.034). The addition of exogenous srRNAs reversed the EtOH-mediated downregulation of srRNAs (2-fold, p = 0.002). EtOH exposure suppressed expression of srRNAs in the developing brain, increased activity of caspase-3, and inhibited neuronal survival. Exogenous srRNAs reversed this effect, possibly by stabilizing endogenous srRNAs, or by increasing the association of cellular proteins with srRNAs, modifying gene transcription. Finally, the reduction in 18S rRNA levels correlated closely with the reduction in fetal eye diameter, an anatomical hallmark of FASD. The findings suggest a potential mechanism for EtOH-mediated neurotoxicity via alterations in 18S rRNA processing and the use of FB-Es for early diagnosis of FASD. Ribosome biogenesis may be a novel target to ameliorate FASD in utero or after birth. These findings are consistent with observations that gene-environment interactions contribute to FASD vulnerability.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Gary L. Gallia
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Ekaterina Vadachkoria
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Amos Moore
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
- Departments of Neurology and Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
11
|
Gou LT, Zhu Q, Liu MF. Small RNAs: An expanding world with therapeutic promises. FUNDAMENTAL RESEARCH 2023; 3:676-682. [PMID: 38933305 PMCID: PMC11197668 DOI: 10.1016/j.fmre.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023] Open
Abstract
Small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs), play essential roles in regulating various cellular and developmental processes. Over the past three decades, researchers have identified novel sncRNA species from various organisms. These molecules demonstrate dynamic expression and diverse functions, and they are subject to intricate regulation through RNA modifications in both healthy and diseased states. Notably, certain sncRNAs in gametes, particularly sperm, respond to environmental stimuli and facilitate epigenetic inheritance. Collectively, the in-depth understanding of sncRNA functions and mechanisms has accelerated the development of small RNA-based therapeutics. In this review, we present the recent advances in the field, including new sncRNA species and the regulatory influences of RNA modifications. We also discuss the current limitations and challenges associated with using small RNAs as either biomarkers or therapeutic drugs.
Collapse
Affiliation(s)
- Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qifan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
12
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Epigenetic Regulation in Lean Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:12864. [PMID: 37629043 PMCID: PMC10454848 DOI: 10.3390/ijms241612864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most prominent cause of chronic liver disease worldwide, is a rapidly growing epidemic. It consists of a wide range of liver diseases, from steatosis to nonalcoholic steatohepatitis, and predisposes patients to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. NAFLD is strongly correlated with obesity; however, it has been extensively reported among lean/nonobese individuals in recent years. Although lean patients demonstrate a lower prevalence of diabetes mellitus, central obesity, dyslipidemia, hypertension, and metabolic syndrome, a percentage of these patients may develop steatohepatitis, advanced liver fibrosis, and cardiovascular disease, and have increased all-cause mortality. The pathophysiological mechanisms of lean NAFLD remain vague. Studies have reported that lean NAFLD demonstrates a close association with environmental factors, genetic predisposition, and epigenetic modifications. In this review, we aim to discuss and summarize the epigenetic mechanisms involved in lean NAFLD and to introduce the interaction between epigenetic patterns and genetic or non genetic factors. Several epigenetic mechanisms have been implicated in the regulation of lean NAFLD. These include DNA methylation, histone modifications, and noncoding-RNA-mediated gene regulation. Epigenetics is an area of special interest in the setting of lean NAFLD as it could provide new insights into the therapeutic options and noninvasive biomarkers that target this under-recognized and challenging disorder.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece;
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
13
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 705] [Impact Index Per Article: 352.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Alagia A, Tereňová J, Ketley RF, Di Fazio A, Chelysheva I, Gullerova M. Small vault RNA1-2 modulates expression of cell membrane proteins through nascent RNA silencing. Life Sci Alliance 2023; 6:e202302054. [PMID: 37037596 PMCID: PMC10087102 DOI: 10.26508/lsa.202302054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Gene expression can be regulated by transcriptional or post-transcriptional gene silencing. Recently, we described nuclear nascent RNA silencing that is mediated by Dicer-dependent tRNA-derived small RNA molecules. In addition to tRNA, RNA polymerase III also transcribes vault RNA, a component of the ribonucleoprotein complex vault. Here, we show that Dicer-dependent small vault RNA1-2 (svtRNA1-2) associates with Argonaute 2 (Ago2). Although endogenous vtRNA1-2 is present mostly in the cytoplasm, svtRNA1-2 localises predominantly in the nucleus. Furthermore, in Ago2 and Dicer knockdown cells, a subset of genes that are up-regulated at the nascent level were predicted to be targeted by svtRNA1-2 in the intronic region. Genomic deletion of vtRNA1-2 results in impaired cellular proliferation and the up-regulation of genes associated with cell membrane physiology and cell adhesion. Silencing activity of svtRNA1-2 molecules is dependent on seed-plus-complementary-paired hybridisation features and the presence of a 5-nucleotide loop protrusion on target RNAs. Our data reveal a role of Dicer-dependent svtRNA1-2, possessing unique molecular features, in modulation of the expression of membrane-associated proteins at the nascent RNA level.
Collapse
Affiliation(s)
- Adele Alagia
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jana Tereňová
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ruth F Ketley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Arianna Di Fazio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Tate AJ, Brown KC, Montgomery TA. tiny-count: a counting tool for hierarchical classification and quantification of small RNA-seq reads with single-nucleotide precision. BIOINFORMATICS ADVANCES 2023; 3:vbad065. [PMID: 37288323 PMCID: PMC10243934 DOI: 10.1093/bioadv/vbad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Summary tiny-count is a highly flexible counting tool that allows for hierarchical classification and quantification of small RNA reads from high-throughput sequencing data. Selection rules can be used to filter reads by 5' nucleotide, length, position of alignments in relation to reference features, and by the number of mismatches to reference sequences. tiny-count can quantify reads aligned to a genome or directly to small RNA or transcript sequences. With tiny-count, users can quantify a single class of small RNAs or multiple classes in parallel. tiny-count can resolve distinct classes of small RNAs, for example, piRNAs and siRNAs, produced from the same locus. It can distinguish small RNA variants, such as miRNAs and isomiRs, with single-nucleotide precision. tRNA, rRNA, and other RNA fragments can also be quantified. tiny-count can be run alone or as part of tinyRNA, a workflow that provides a basic all-in-one command line-based solution for small RNA-seq data analysis, with documentation and statistics generated at each step for accurate and reproducible results. Availability and implementation tiny-count and other tinyRNA tools are implemented in Python, C++, Cython, and R, and the workflow is coordinated with CWL. tiny-count and tinyRNA are free and open-source software distributed under the GPLv3 license. tiny-count can be installed via Bioconda (https://anaconda.org/bioconda/tiny-count) and both tiny-count and tinyRNA documentation and software downloads are available at https://github.com/MontgomeryLab/tinyRNA. Reference data, including genome and feature information, for certain species can be found at https://www.MontgomeryLab.org.
Collapse
Affiliation(s)
- Alex J Tate
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Wang H, Wang Z, Zhou T, Morris D, Chen S, Li M, Wang Y, Zheng H, Fu W, Yan W. Small RNA shuffling between murine sperm and their cytoplasmic droplets during epididymal maturation. Dev Cell 2023; 58:779-790.e4. [PMID: 37023748 PMCID: PMC10627525 DOI: 10.1016/j.devcel.2023.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/18/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Reports that mouse sperm gain small RNAs from the epididymosomes secreted by epididymal epithelial cells and that these "foreign" small RNAs act as an epigenetic information carrier mediating the transmission of acquired paternal traits have drawn great attention because the findings suggest that heritable information can flow from soma to germ line, thus invalidating the long-standing Weismann's barrier theory on heritable information flow. Using small RNA sequencing (sRNA-seq), northern blots, sRNA in situ hybridization, and immunofluorescence, we detected substantial changes in the small RNA profile in murine caput epididymal sperm (sperm in the head of the epididymis), and we further determined that the changes resulted from sperm exchanging small RNAs, mainly tsRNAs and rsRNAs, with cytoplasmic droplets rather than the epididymosomes. Moreover, the murine sperm-borne small RNAs were mainly derived from the nuclear small RNAs in late spermatids. Thus, caution is needed regarding sperm gaining foreign small RNAs as an underlying mechanism of epigenetic inheritance.
Collapse
Affiliation(s)
- Hetan Wang
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA 90502, USA; Department of Medical Genetics, China Medical University, Shenyang 110122, China
| | - Zhuqing Wang
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA 90502, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA 90502, USA
| | - Sheng Chen
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA 90502, USA
| | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Yue Wang
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA 90502, USA
| | - Huili Zheng
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA 90502, USA
| | - Weineng Fu
- Department of Medical Genetics, China Medical University, Shenyang 110122, China
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA 90502, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Asci Erkocyigit B, Ozufuklar O, Yardim A, Guler Celik E, Timur S. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics. BIOSENSORS 2023; 13:387. [PMID: 36979600 PMCID: PMC10046104 DOI: 10.3390/bios13030387] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics is very crucial in lab-on-a-chip systems for carrying out operations in a large-scale laboratory environment on a single chip. Microfluidic systems are miniaturized devices in which the fluid behavior and control can be manipulated on a small platform, with surface forces on the platform being greater than volumetric forces depending on the test method used. In recent years, paper-based microfluidic analytical devices (μPADs) have been developed to be used in point-of-care (POC) technologies. μPADs have numerous advantages, including ease of use, low cost, capillary action liquid transfer without the need for power, the ability to store reagents in active form in the fiber network, and the capability to perform multiple tests using various measurement techniques. These benefits are critical in the advancement of paper-based microfluidics in the fields of disease diagnosis, drug application, and environment and food safety. Cancer is one of the most critical diseases for early detection all around the world. Detecting cancer-specific biomarkers provides significant data for both early diagnosis and controlling the disease progression. μPADs for cancer biomarker detection hold great promise for improving cure rates, quality of life, and minimizing treatment costs. Although various types of bioanalytical platforms are available for the detection of cancer biomarkers, there are limited studies and critical reviews on paper-based microfluidic platforms in the literature. Hence, this article aims to draw attention to these gaps in the literature as well as the features that future platforms should have.
Collapse
Affiliation(s)
- Bilge Asci Erkocyigit
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Ozge Ozufuklar
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Aysenur Yardim
- Department of Bioengineering, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
- Central Research Test and Analysis Laboratory Application, Research Center, Ege University, Izmir 35100, Turkey
| |
Collapse
|
18
|
Ghazimoradi MH, Karimpour-Fard N, Babashah S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes (Basel) 2023; 14:131. [PMID: 36672872 PMCID: PMC9859176 DOI: 10.3390/genes14010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.
Collapse
Affiliation(s)
- Mohammad H. Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Naeim Karimpour-Fard
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
19
|
Hariharan N, Ghosh S, Palakodeti D. The story of rRNA expansion segments: Finding functionality amidst diversity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1732. [PMID: 35429135 DOI: 10.1002/wrna.1732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 01/31/2023]
Abstract
Expansion segments (ESs) are multinucleotide insertions present across phyla at specific conserved positions in eukaryotic rRNAs. ESs are generally absent in bacterial rRNAs with some exceptions, while the archaeal rRNAs have microexpansions at regions that coincide with those of eukaryotic ESs. Although there is an increasing prominence of ribosomes, especially the ribosomal proteins, in fine-tuning gene expression through translation regulation, the role of rRNA ESs is relatively underexplored. While rRNAs have been established as the major catalytic hub in ribosome function, the presence of ESs widens their scope as a species-specific regulatory hub of protein synthesis. In this comprehensive review, we have elaborately discussed the current understanding of the functional aspects of rRNA ESs of cytoplasmic eukaryotic ribosomes and discuss their past, present, and future. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Ribosome Structure/Function Translation > Regulation.
Collapse
Affiliation(s)
- Nivedita Hariharan
- Technologies for the Advancement of Science, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,The University of Trans-disciplinary Health Sciences and Technology, Bangalore, India
| | - Sumana Ghosh
- Manipal Academy of Higher Education, Manipal, India
| | - Dasaradhi Palakodeti
- Technologies for the Advancement of Science, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
20
|
Johnson NR, Larrondo LF, Álvarez JM, Vidal EA. Comprehensive re-analysis of hairpin small RNAs in fungi reveals loci with conserved links. eLife 2022; 11:e83691. [PMID: 36484778 PMCID: PMC9757828 DOI: 10.7554/elife.83691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
RNA interference is an ancient mechanism with many regulatory roles in eukaryotic genomes, with small RNAs acting as their functional element. While there is a wide array of classes of small-RNA-producing loci, those resulting from stem-loop structures (hairpins) have received profuse attention. Such is the case of microRNAs (miRNAs), which have distinct roles in plants and animals. Fungi also produce small RNAs, and several publications have identified miRNAs and miRNA-like (mi/milRNA) hairpin RNAs in diverse fungal species using deep sequencing technologies. Despite this relevant source of information, relatively little is known about mi/milRNA features in fungi, mostly due to a lack of established criteria for their annotation. To systematically assess mi/milRNA characteristics and annotation confidence, we searched for publications describing mi/milRNA loci and re-assessed the annotations for 41 fungal species. We extracted and normalized the annotation data for 1727 reported mi/milRNA loci and determined their abundance profiles, concluding that less than half of the reported loci passed basic standards used for hairpin RNA discovery. We found that fungal mi/milRNA are generally more similar in size to animal miRNAs and were frequently associated with protein-coding genes. The compiled genomic analyses identified 25 mi/milRNA loci conserved in multiple species. Our pipeline allowed us to build a general hierarchy of locus quality, identifying more than 150 loci with high-quality annotations. We provide a centralized annotation of identified mi/milRNA hairpin RNAs in fungi which will serve as a resource for future research and advance in understanding the characteristics and functions of mi/milRNAs in fungal organisms.
Collapse
Affiliation(s)
- Nathan R Johnson
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
| | - Luis F Larrondo
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiagoChile
| | - José M Álvarez
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés BelloSantiagoChile
| | - Elena A Vidal
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
| |
Collapse
|
21
|
Moraga C, Sanchez E, Ferrarini MG, Gutierrez RA, Vidal EA, Sagot MF. BrumiR: A toolkit for de novo discovery of microRNAs from sRNA-seq data. Gigascience 2022; 11:giac093. [PMID: 36283679 PMCID: PMC9596168 DOI: 10.1093/gigascience/giac093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/08/2021] [Accepted: 09/15/2022] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are key players in the regulation of gene expression. In the past decade, with the increasing accessibility of high-throughput sequencing technologies, different methods have been developed to identify miRNAs, most of which rely on preexisting reference genomes. However, when a reference genome is absent or is not of high quality, such identification becomes more difficult. In this context, we developed BrumiR, an algorithm that is able to discover miRNAs directly and exclusively from small RNA (sRNA) sequencing (sRNA-seq) data. We benchmarked BrumiR with datasets encompassing animal and plant species using real and simulated sRNA-seq experiments. The results demonstrate that BrumiR reaches the highest recall for miRNA discovery, while at the same time being much faster and more efficient than the state-of-the-art tools evaluated. The latter allows BrumiR to analyze a large number of sRNA-seq experiments, from plants or animal species. Moreover, BrumiR detects additional information regarding other expressed sequences (sRNAs, isomiRs, etc.), thus maximizing the biological insight gained from sRNA-seq experiments. Additionally, when a reference genome is available, BrumiR provides a new mapping tool (BrumiR2reference) that performs an a posteriori exhaustive search to identify the precursor sequences. Finally, we also provide a machine learning classifier based on a random forest model that evaluates the sequence-derived features to further refine the prediction obtained from the BrumiR-core. The code of BrumiR and all the algorithms that compose the BrumiR toolkit are freely available at https://github.com/camoragaq/BrumiR.
Collapse
Affiliation(s)
- Carol Moraga
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
- Inria Lyon Centre, ERABLE team, 56 Bd Niels Bohr, 69100 Villeurbanne, France
- Universidad de O'Higgins, Instituto de Ciencias de la Ingeniería, 2820000 Rancagua, Chile
| | - Evelyn Sanchez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingenieria y Tecnologia, Universidad Mayor, 8580745 Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo–Millennium Science Initiative Program, Millennium Institute for Integrative Biology iBio, 7500565 Santiago, Chile
| | - Mariana Galvão Ferrarini
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
- Inria Lyon Centre, ERABLE team, 56 Bd Niels Bohr, 69100 Villeurbanne, France
- Université de Lyon, INSA-Lyon, INRA, BF2i, UMR0203, Villeurbanne F-69621, France
| | - Rodrigo A Gutierrez
- Agencia Nacional de Investigación y Desarrollo–Millennium Science Initiative Program, Millennium Institute for Integrative Biology iBio, 7500565 Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , 8331010 Santiago, Chile
- Fondo de Desarrollo de Areas Prioritarias, Center for Genome Regulation, Instituto de Ecología y Biodiversidad, 8370415 Santiago, Chile
| | - Elena A Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingenieria y Tecnologia, Universidad Mayor, 8580745 Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo–Millennium Science Initiative Program, Millennium Institute for Integrative Biology iBio, 7500565 Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingenieria y Tecnologia, Universidad Mayor, 8580745 Santiago, Chile
| | - Marie-France Sagot
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
- Inria Lyon Centre, ERABLE team, 56 Bd Niels Bohr, 69100 Villeurbanne, France
| |
Collapse
|
22
|
Sruthi KB, Menon A, P A, Vasudevan Soniya E. Pervasive translation of small open reading frames in plant long non-coding RNAs. FRONTIERS IN PLANT SCIENCE 2022; 13:975938. [PMID: 36352887 PMCID: PMC9638090 DOI: 10.3389/fpls.2022.975938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are primarily recognized as non-coding transcripts longer than 200 nucleotides with low coding potential and are present in both eukaryotes and prokaryotes. Recent findings reveal that lncRNAs can code for micropeptides in various species. Micropeptides are generated from small open reading frames (smORFs) and have been discovered frequently in short mRNAs and non-coding RNAs, such as lncRNAs, circular RNAs, and pri-miRNAs. The most accepted definition of a smORF is an ORF containing fewer than 100 codons, and ribosome profiling and mass spectrometry are the most prevalent experimental techniques used to identify them. Although the majority of micropeptides perform critical roles throughout plant developmental processes and stress conditions, only a handful of their functions have been verified to date. Even though more research is being directed toward identifying micropeptides, there is still a dearth of information regarding these peptides in plants. This review outlines the lncRNA-encoded peptides, the evolutionary roles of such peptides in plants, and the techniques used to identify them. It also describes the functions of the pri-miRNA and circRNA-encoded peptides that have been identified in plants.
Collapse
|
23
|
Current Status of Regulatory Non-Coding RNAs Research in the Tritryp. Noncoding RNA 2022; 8:ncrna8040054. [PMID: 35893237 PMCID: PMC9326685 DOI: 10.3390/ncrna8040054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Trypanosomatids are protozoan parasites that cause devastating vector-borne human diseases. Gene expression regulation of these organisms depends on post-transcriptional control in responding to diverse environments while going through multiple developmental stages of their complex life cycles. In this scenario, non-coding RNAs (ncRNAs) are excellent candidates for a very efficient, quick, and economic strategy to regulate gene expression. The advent of high throughput RNA sequencing technologies show the presence and deregulation of small RNA fragments derived from canonical ncRNAs. This review seeks to depict the ncRNA landscape in trypanosomatids, focusing on the small RNA fragments derived from functional RNA molecules observed in RNA sequencing studies. Small RNA fragments derived from canonical ncRNAs (tsRNAs, snsRNAs, sdRNAs, and sdrRNAs) were identified in trypanosomatids. Some of these RNAs display changes in their levels associated with different environments and developmental stages, demanding further studies to determine their functional characterization and potential roles. Nevertheless, a comprehensive and detailed ncRNA annotation for most trypanosomatid genomes is still needed, allowing better and more extensive comparative and functional studies.
Collapse
|
24
|
Diallo I, Ho J, Lalaouna D, Massé E, Provost P. RNA Sequencing Unveils Very Small RNAs With Potential Regulatory Functions in Bacteria. Front Mol Biosci 2022; 9:914991. [PMID: 35720117 PMCID: PMC9203972 DOI: 10.3389/fmolb.2022.914991] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
RNA sequencing (RNA-seq) is the gold standard for the discovery of small non-coding RNAs. Following a long-standing approach, reads shorter than 16 nucleotides (nt) are removed from the small RNA sequencing libraries or datasets. The serendipitous discovery of an eukaryotic 12 nt-long RNA species capable of modulating the microRNA from which they derive prompted us to challenge this dogma and, by expanding the window of RNA sizes down to 8 nt, to confirm the existence of functional very small RNAs (vsRNAs <16 nt). Here we report the detailed profiling of vsRNAs in Escherichia coli, E. coli-derived outer membrane vesicles (OMVs) and five other bacterial strains (Pseudomonas aeruginosa PA7, P. aeruginosa PAO1, Salmonella enterica serovar Typhimurium 14028S, Legionella pneumophila JR32 Philadelphia-1 and Staphylococcus aureus HG001). vsRNAs of 8–15 nt in length [RNAs (8-15 nt)] were found to be more abundant than RNAs of 16–30 nt in length [RNAs (16–30 nt)]. vsRNA biotypes were distinct and varied within and across bacterial species and accounted for one third of reads identified in the 8–30 nt window. The tRNA-derived fragments (tRFs) have appeared as a major biotype among the vsRNAs, notably Ile-tRF and Ala-tRF, and were selectively loaded in OMVs. tRF-derived vsRNAs appear to be thermodynamically stable with at least 2 G-C basepairs and stem-loop structure. The analyzed tRF-derived vsRNAs are predicted to target several human host mRNAs with diverse functions. Bacterial vsRNAs and OMV-derived vsRNAs could be novel players likely modulating the intricate relationship between pathogens and their hosts.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jeffrey Ho
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - David Lalaouna
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Patrick Provost,
| |
Collapse
|
25
|
Peng G, Zhu C, Sun Q, Li J, Chen Y, Guo Y, Ji H, Yang F, Dong W. Testicular miRNAs and tsRNAs provide insight into gene regulation during overwintering and reproduction of Onychostoma macrolepis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:481-499. [PMID: 35595880 DOI: 10.1007/s10695-022-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The late overwintering period and breeding period are two important developmental stages of testis in Onychostoma macrolepis. Small non-coding RNAs (sncRNAs) are well-known regulators of biological processes associated with numerous biological processes. This study aimed to elucidate the roles of four sncRNA classes (microRNAs [miRNAs], Piwi-interacting RNAs [piRNAs], tRNA-derived small RNAs [tsRNAs], and rRNA-derived small RNAs [rsRNAs]) across testes in the late overwintering period (in March) and breeding period (in June) by high-throughput sequencing. The testis of O. macrolepis displayed the highest levels of piRNAs and lowest levels of rsRNAs. Compared with miRNAs and tsRNAs in June, tsRNAs in March had a higher abundance, while miRNAs in March had a much lower abundance. Bioinformatics analysis identified 1,362 and 1,340 differentially expressed miRNAs and tsRNAs, respectively. Further analysis showed that miR-200-1, miR-143-1, tRFi-Lys-CTT-1, and tRFi-Glu-CTC-1 could play critical roles during the overwintering and breeding periods. Our findings provided an unprecedented insight to reveal the epigenetic mechanism underlying the overwintering and reproduction process of male O. macrolepis.
Collapse
Affiliation(s)
- Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Jincan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yingjie Guo
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Fangxia Yang
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Peng G, Sun Q, Chen Y, Wu X, Guo Y, Ji H, Yang F, Dong W. A comprehensive overview of ovarian small non-coding RNAs in the late overwintering and breeding periods of Onychostoma macrolepis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100967. [PMID: 35168176 DOI: 10.1016/j.cbd.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The development of the ovary of Onychostoma macrolepis undergoes distinct annual cyclic changes in which small non-coding RNAs (sncRNAs) could play vital roles. In this study, four sncRNA classes in the ovary, including miRNA, piRNAs, tsRNA, and rsRNAs, were systematically profiled by high-throughput sequencing. In adult ovaries of O. macrolepis, 247 miRNAs and 235 tsRNAs were identified as differentially expressing in the late overwintering period (in March) and breeding period (in June). Some up-regulated sncRNAs in March, such as miR-125-1 and tRFi-Lys-CTT-1, could be involved in inhibiting biomolecule metabolism and enhancing stress tolerance during the overwintering period. Compared with the level expression of sncRNAs in March, some sncRNAs were up-regulated in June, such as miR-146-1 and tRFi-Gly-GCC-1, and could be involved in influencing molecular synthesis and metabolism, enhancing oocyte proliferation and maturation, accelerating ovarian development, and increasing fertilization of oocytes by regulating related target mRNAs. The results suggested that sncRNAs in the ovary of Onychostoma macrolepis not only reflect characteristics of the fish's physiology at different developmental periods, but also directly affect ovarian development and oocyte maturation during the breeding period. In conclusion, these results significantly advance our understanding of the roles of sncRNA during overwintering and reproduction periods, and provide a novel perspective for uncovering characteristics of the special overwintering ecology and reproductive physiology of an atypical cavefish.
Collapse
Affiliation(s)
- Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingjie Guo
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
27
|
An Expanded Landscape of Unusually Short RNAs in 11 Samples from Six Eukaryotic Organisms. Noncoding RNA 2022; 8:ncrna8030034. [PMID: 35645341 PMCID: PMC9149858 DOI: 10.3390/ncrna8030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Small RNA sequencing (sRNA-Seq) approaches unveiled sequences derived from longer non-coding RNAs, such as transfer RNA (tRNA) and ribosomal RNA (rRNA) fragments, known as tRFs and rRFs, respectively. However, rRNAs and RNAs shorter than 16 nt are often depleted from library preparations/sequencing analyses, although they may be functional. Here, we sought to obtain a complete repertoire of small RNAs by sequencing the total RNA from 11 samples of 6 different eukaryotic organisms, from yeasts to human, in an extended 8- to 30-nt window of RNA length. The 8- to 15-nt window essentially contained fragments of longer non-coding RNAs, such as microRNAs, PIWI-associated RNAs (piRNAs), small nucleolar RNAs (snoRNAs), tRNAs and rRNAs. Notably, unusually short RNAs < 16 nt were more abundant than those >16 nt in bilaterian organisms. A new RT-qPCR method confirmed that two unusually short rRFs of 12 and 13 nt were more overly abundant (~3-log difference) than two microRNAs. We propose to not deplete rRNA and to reduce the lower threshold of RNA length to include unusually short RNAs in sRNA-Seq analyses and datasets, as their abundance and diversity support their potential role and importance as biomarkers of disease and/or mediators of cellular function.
Collapse
|
28
|
Shigematsu M, Kirino Y. Making Invisible RNA Visible: Discriminative Sequencing Methods for RNA Molecules with Specific Terminal Formations. Biomolecules 2022; 12:611. [PMID: 35625540 PMCID: PMC9138997 DOI: 10.3390/biom12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Next generation sequencing of RNA molecules (RNA-seq) has become a common tool to characterize the expression profiles of RNAs and their regulations in normal physiological processes and diseases. Although increasingly accumulating RNA-seq data are widely available through publicly accessible sites, most of the data for short non-coding RNAs (sncRNAs) have been obtained for microRNA (miRNA) analyses by standard RNA-seq, which only capture the sncRNAs with 5'-phosphate (5'-P) and 3'-hydroxyl (3'-OH) ends. The sncRNAs with other terminal formations such as those with a 5'-hydroxyl end (5'-OH), a 3'-phosphate (3'-P) end, or a 2',3'-cyclic phosphate end (2',3'-cP) cannot be efficiently amplified and sequenced by standard RNA-seq. Due to the invisibility in standard RNA-seq data, these non-miRNA-sncRNAs have been a hidden component in the transcriptome. However, as the functional significances of these sncRNAs have become increasingly apparent, specific RNA-seq methods compatible with various terminal formations of sncRNAs have been developed and started shedding light on the previously unrecognized sncRNAs that lack 5'-P/3'-OH ends. In this review, we summarize the expanding world of sncRNAs with various terminal formations and the strategic approaches of specific RNA-seq methods to distinctively characterize their expression profiles.
Collapse
Affiliation(s)
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
29
|
Tchurikov NA, Klushevskaya ES, Alembekov IR, Bukreeva AS, Kretova AN, Chechetkin VR, Kravatskaya GI, Kravatsky YV. Fragments of rDNA Genes Scattered over the Human Genome Are Targets of Small RNAs. Int J Mol Sci 2022; 23:ijms23063014. [PMID: 35328433 PMCID: PMC8954558 DOI: 10.3390/ijms23063014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Small noncoding RNAs of different origins and classes play several roles in the regulation of gene expression. Here, we show that diverged and rearranged fragments of rDNA units are scattered throughout the human genome and that endogenous small noncoding RNAs are processed by the Microprocessor complex from specific regions of ribosomal RNAs shaping hairpins. These small RNAs correspond to particular sites inside the fragments of rDNA that mostly reside in intergenic regions or the introns of about 1500 genes. The targets of these small ribosomal RNAs (srRNAs) are characterized by a set of epigenetic marks, binding sites of Pol II, RAD21, CBP, and P300, DNase I hypersensitive sites, and by enrichment or depletion of active histone marks. In HEK293T cells, genes that are targeted by srRNAs (srRNA target genes) are involved in differentiation and development. srRNA target genes are enriched with more actively transcribed genes. Our data suggest that remnants of rDNA sequences and srRNAs may be involved in the upregulation or downregulation of a specific set of genes in human cells. These results have implications for diverse fields, including epigenetics and gene therapy.
Collapse
Affiliation(s)
- Nickolai A. Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
- Correspondence:
| | - Elena S. Klushevskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Ildar R. Alembekov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Anastasiia S. Bukreeva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Antonina N. Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Vladimir R. Chechetkin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Galina I. Kravatskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Yuri V. Kravatsky
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
30
|
Small Noncoding RNAs in Reproduction and Infertility. Biomedicines 2021; 9:biomedicines9121884. [PMID: 34944700 PMCID: PMC8698561 DOI: 10.3390/biomedicines9121884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Infertility has been reported as one of the most common reproductive impairments, affecting nearly one in six couples worldwide. A large proportion of infertility cases are diagnosed as idiopathic, signifying a deficit in information surrounding the pathology of infertility and necessity of medical intervention such as assisted reproductive therapy. Small noncoding RNAs (sncRNAs) are well-established regulators of mammalian reproduction. Advanced technologies have revealed the dynamic expression and diverse functions of sncRNAs during mammalian germ cell development. Mounting evidence indicates sncRNAs in sperm, especially microRNAs (miRNAs) and transfer RNA (tRNA)-derived small RNAs (tsRNAs), are sensitive to environmental changes and mediate the inheritance of paternally acquired metabolic and mental traits. Here, we review the critical roles of sncRNAs in mammalian germ cell development. Furthermore, we highlight the functions of sperm-borne sncRNAs in epigenetic inheritance. We also discuss evidence supporting sncRNAs as promising biomarkers for fertility and embryo quality in addition to the present limitations of using sncRNAs for infertility diagnosis and treatment.
Collapse
|
31
|
Abstract
In human cells, each rDNA unit consists of the ~13 kb long ribosomal part and ~30 kb long intergenic spacer (IGS). The ribosomal part, transcribed by RNA polymerase I (pol I), includes genes coding for 18S, 5.8S, and 28S RNAs of the ribosomal particles, as well as their four transcribed spacers. Being highly repetitive, intensively transcribed, and abundantly methylated, rDNA is a very fragile site of the genome, with high risk of instability leading to cancer. Multiple small mutations, considerable expansion or contraction of the rDNA locus, and abnormally enhanced pol I transcription are usual symptoms of transformation. Recently it was found that both IGS and the ribosomal part of the locus contain many functional/potentially functional regions producing non-coding RNAs, which participate in the pol I activity regulation, stress reactions, and development of the malignant phenotype. Thus, there are solid reasons to believe that rDNA locus plays crucial role in carcinogenesis. In this review we discuss the data concerning the human rDNA and its closely associated factors as both targets and drivers of the pathways essential for carcinogenesis. We also examine whether variability in the structure of the locus may be blamed for the malignant transformation. Additionally, we consider the prospects of therapy focused on the activity of rDNA.
Collapse
|
32
|
Sellem E, Jammes H, Schibler L. Sperm-borne sncRNAs: potential biomarkers for semen fertility? Reprod Fertil Dev 2021; 34:160-173. [PMID: 35231268 DOI: 10.1071/rd21276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Semen infertility or sub-fertility, whether in humans or livestock species, remains a major concern for clinicians and technicians involved in reproduction. Indeed, they can cause tragedies in human relationships or have a dramatic overall negative impact on the sustainability of livestock breeding. Understanding and predicting semen fertility issues is therefore crucial and quality control procedures as well as biomarkers have been proposed to ensure sperm fertility. However, their predictive values appeared to be too limited and additional relevant biomarkers are still required to diagnose sub-fertility efficiently. During the last decade, the study of molecular mechanisms involved in spermatogenesis and sperm maturation highlighted the regulatory role of a variety of small non-coding RNAs (sncRNAs) and led to the discovery that sperm sncRNAs comprise both remnants from spermatogenesis and post-testicular sncRNAs acquired through interactions with extracellular vesicles along epididymis. This has led to the hypothesis that sncRNAs may be a source of relevant biomarkers, associated either with sperm functionality or embryo development. This review aims at providing a synthetic overview of the current state of knowledge regarding implication of sncRNA in spermatogenesis defects and their putative roles in sperm maturation and embryo development, as well as exploring their use as fertility biomarkers.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012 Paris, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350 Jouy en Josas, France; and Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | | |
Collapse
|
33
|
Kugelberg U, Nätt D, Skog S, Kutter C, Öst A. 5´XP sRNA-seq: efficient identification of transcripts with and without 5´ phosphorylation reveals evolutionary conserved small RNA. RNA Biol 2021; 18:1588-1599. [PMID: 33382953 PMCID: PMC8594926 DOI: 10.1080/15476286.2020.1861770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Small RNA (sRNA) sequencing has been critical for our understanding of many cellular processes, including gene regulation. Nonetheless, the varying biochemical properties of sRNA, such as 5´ nucleotide modifications, make many sRNA subspecies incompatible with common protocols for sRNA sequencing. Here we describe 5XP-seq that outlines a novel strategy that captures a more complete picture of sRNA. By tagging 5´P sRNA during library preparation, 5XP-seq combines an open approach that includes all types of 5'-terminal modifications (5´X), with a selective approach for 5-phosphorylated sRNA (5´P). We show that 5XP-seq not only enriches phosphorylated miRNA and piRNA but successfully discriminates these sRNA from all other sRNA species. We further demonstrate the importance of this strategy by successful inter-species validation of sRNAs that would have otherwise failed, including human to insect translation of several tRNA (tRFs) and rRNA (rRFs) fragments. By combining 5´ insensitive library strategies with 5´ sensitive tagging, we have successfully tackled an intrinsic bias in modern sRNA sequencing that will help us reveal the true complexity and the evolutionary significance of the sRNA world.
Collapse
Affiliation(s)
- Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Nätt
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
34
|
Micheel J, Safrastyan A, Wollny D. Advances in Non-Coding RNA Sequencing. Noncoding RNA 2021; 7:70. [PMID: 34842804 PMCID: PMC8628893 DOI: 10.3390/ncrna7040070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a set of abundant and functionally diverse RNA molecules. Since the discovery of the first ncRNA in the 1960s, ncRNAs have been shown to be involved in nearly all steps of the central dogma of molecular biology. In recent years, the pace of discovery of novel ncRNAs and their cellular roles has been greatly accelerated by high-throughput sequencing. Advances in sequencing technology, library preparation protocols as well as computational biology helped to greatly expand our knowledge of which ncRNAs exist throughout the kingdoms of life. Moreover, RNA sequencing revealed crucial roles of many ncRNAs in human health and disease. In this review, we discuss the most recent methodological advancements in the rapidly evolving field of high-throughput sequencing and how it has greatly expanded our understanding of ncRNA biology across a large number of different organisms.
Collapse
Affiliation(s)
| | | | - Damian Wollny
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University, 07743 Jena, Germany; (J.M.); (A.S.)
| |
Collapse
|
35
|
A New Specific and Sensitive RT-qPCR Method Based on Splinted 5' Ligation for the Quantitative Detection of RNA Species Shorter than microRNAs. Noncoding RNA 2021; 7:ncrna7030059. [PMID: 34564321 PMCID: PMC8482087 DOI: 10.3390/ncrna7030059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, we discovered a new family of unusually short RNAs mapping to 5.8S ribosomal RNA (rRNA) and which we named dodecaRNAs (doRNAs), according to the number of core nucleotides (12 nt) their members contain. To confirm these small RNA-sequencing (RNA-Seq) data, validate the existence of the two overly abundant doRNAs-the minimal core 12-nt doRNA sequence and its + 1-nt variant bearing a 5' Cytosine, C-doRNA-and streamline their analysis, we developed a new specific and sensitive splinted 5' ligation reverse transcription (RT)-quantitative polymerase chain reaction (qPCR) method. This method is based on a splint-assisted ligation of an adapter to the 5' end of doRNAs, followed by RT-qPCR amplification and quantitation. Our optimized protocol, which may discriminate between doRNA, C-doRNA, mutated and precursor sequences, can accurately detect as low as 240 copies and is quantitatively linear over a range of 7 logs. This method provides a unique tool to expand and facilitate studies exploring the molecular and cellular biology of RNA species shorter than microRNAs.
Collapse
|
36
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
37
|
Lambert M, Benmoussa A, Diallo I, Ouellet-Boutin K, Dorval V, Majeau N, Joly-Beauparlant C, Droit A, Bergeron A, Têtu B, Fradet Y, Pouliot F, Provost P. Identification of Abundant and Functional dodecaRNAs (doRNAs) Derived from Ribosomal RNA. Int J Mol Sci 2021; 22:9757. [PMID: 34575920 PMCID: PMC8467515 DOI: 10.3390/ijms22189757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
Using a modified RNA-sequencing (RNA-seq) approach, we discovered a new family of unusually short RNAs mapping to ribosomal RNA 5.8S, which we named dodecaRNAs (doRNAs), according to the number of core nucleotides (12 nt) their members contain. Using a new quantitative detection method that we developed, we confirmed our RNA-seq data and determined that the minimal core doRNA sequence and its 13-nt variant C-doRNA (doRNA with a 5' Cytosine) are the two most abundant doRNAs, which, together, may outnumber microRNAs. The C-doRNA/doRNA ratio is stable within species but differed between species. doRNA and C-doRNA are mainly cytoplasmic and interact with heterogeneous nuclear ribonucleoproteins (hnRNP) A0, A1 and A2B1, but not Argonaute 2. Reporter gene activity assays suggest that C-doRNA may function as a regulator of Annexin II receptor (AXIIR) expression. doRNAs are differentially expressed in prostate cancer cells/tissues and may control cell migration. These findings suggest that unusually short RNAs may be more abundant and important than previously thought.
Collapse
Affiliation(s)
- Marine Lambert
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Abderrahim Benmoussa
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Katheryn Ouellet-Boutin
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Véronique Dorval
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
| | - Nathalie Majeau
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
| | - Charles Joly-Beauparlant
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Arnaud Droit
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Alain Bergeron
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Bernard Têtu
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Yves Fradet
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Frédéric Pouliot
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
38
|
Diallo I, Ho J, Laffont B, Laugier J, Benmoussa A, Lambert M, Husseini Z, Soule G, Kozak R, Kobinger GP, Provost P. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021; 22:ijms22073792. [PMID: 33917562 PMCID: PMC8038836 DOI: 10.3390/ijms22073792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013–2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jeffrey Ho
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Benoit Laffont
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jonathan Laugier
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Abderrahim Benmoussa
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Marine Lambert
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Zeinab Husseini
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Département de Microbiologie Médicale, Université du Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patrick Provost
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
39
|
Dubois C, Kong G, Tran H, Li S, Pang TY, Hannan AJ, Renoir T. Small Non-coding RNAs Are Dysregulated in Huntington's Disease Transgenic Mice Independently of the Therapeutic Effects of an Environmental Intervention. Mol Neurobiol 2021; 58:3308-3318. [PMID: 33675499 DOI: 10.1007/s12035-021-02342-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin gene. Transcriptomic dysregulations are well-documented in HD and alterations in small non-coding RNAs (sncRNAs), particularly microRNAs (miRNAs), could underpin that phenomenon. Additionally, environmental enrichment (EE), which is used to model a stimulating lifestyle in pre-clinical research, has been shown to ameliorate HD-related symptoms. However, the mechanisms mediating the therapeutic effects of EE remain largely unknown. This study assessed the effect of EE on sncRNA expression in the striatum of female R6/1 transgenic HD mice at 12 weeks (prior to over motor deficits) and 20 weeks (fully symptomatic) of age. When comparing wild-type and R6/1 mice in the standard housing condition, we found 6 and 64 miRNAs that were differentially expressed at 12 and 20 weeks of age, respectively. The 6 miRNAs (miR-132, miR-212, miR-222, miR-1a, miR-467a, and miR-669c) were commonly dysregulated at both time points. Additionally, genotype had minor effects on the levels of other sncRNAs, in particular, 1 piRNA was dysregulated at 12 weeks of age, and at 20 weeks of age 11 piRNAs, 1 tRNA- and 2 snoRNA-derived fragments were altered in HD mice. No difference in the abundance of other sncRNA subtypes, including rRNA- and snRNA- derived fragments, were observed. While EE improved locomotor symptoms in HD, we found no effect of the housing condition on any of the sncRNA populations examined. Our findings show that HD mainly affects miRNAs and has a minor effect on other sncRNA populations. Furthermore, the therapeutic effects of EE are not associated with the rescue of these dysregulated sncRNAs and may therefore exert these experience-dependent effects via other molecular mechanisms.
Collapse
Affiliation(s)
- Celine Dubois
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, 3010, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, 3010, Australia
| | - Harvey Tran
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, 3010, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, 3010, Australia
| | - Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, 3010, Australia.
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, 3010, Australia.
| |
Collapse
|
40
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
41
|
MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem Soc Trans 2021; 48:595-612. [PMID: 32267487 PMCID: PMC7200637 DOI: 10.1042/bst20190854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Ribosome biogenesis is the fine-tuned, essential process that generates mature ribosomal subunits and ultimately enables all protein synthesis within a cell. Novel regulators of ribosome biogenesis continue to be discovered in higher eukaryotes. While many known regulatory factors are proteins or small nucleolar ribonucleoproteins, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) are emerging as a novel modulatory layer controlling ribosome production. Here, we summarize work uncovering non-coding RNAs (ncRNAs) as novel regulators of ribosome biogenesis and highlight their links to diseases of defective ribosome biogenesis. It is still unclear how many miRNAs or lncRNAs are involved in phenotypic or pathological disease outcomes caused by impaired ribosome production, as in the ribosomopathies, or by increased ribosome production, as in cancer. In time, we hypothesize that many more ncRNA regulators of ribosome biogenesis will be discovered, which will be followed by an effort to establish connections between disease pathologies and the molecular mechanisms of this additional layer of ribosome biogenesis control.
Collapse
|
42
|
Abstract
The discovery that all cells secrete extracellular vesicles (EVs) to shuttle proteins and nucleic acids to recipient cells suggested they play an important role in intercellular communication. EVs are widely distributed in many body fluids, including blood, cerebrospinal fluid, urine and saliva. Exosomes are nano-sized EVs of endosomal origin that regulate many pathophysiological processes including immune responses, inflammation, tumour growth, and infection. Healthy individuals release exosomes with a cargo of different RNA, DNA, and protein contents into the circulation, which can be measured non-invasively as biomarkers of healthy and diseased states. Cancer-derived exosomes carry a unique set of DNA, RNA, protein and lipid reflecting the stage of tumour progression, and may serve as diagnostic and prognostic biomarkers for various cancers. However, many gaps in knowledge and technical challenges in EVs and extracellular RNA (exRNA) biology, such as mechanisms of EV biogenesis and uptake, exRNA cargo selection, and exRNA detection remain. The NIH Common Fund-supported exRNA Communication Consortium was launched in 2013 to address major scientific challenges in this field. This review focuses on scientific highlights in biomarker discovery of exosome-based exRNA in cancer and its possible clinical application as cancer biomarkers.
Collapse
Affiliation(s)
- Christine Happel
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aniruddha Ganguly
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at the National Institutes of Health, Bethesda, MD 20892, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis. Int J Mol Sci 2021; 22:ijms22031176. [PMID: 33503982 PMCID: PMC7865473 DOI: 10.3390/ijms22031176] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Studies investigating microRNAs as potential biomarkers for cancer, immune-related diseases, or cardiac pathogenic diseases, among others, have exponentially increased in the last years. In particular, altered expression of specific miRNAs correlates with the occurrence of several diseases, making these molecules potential molecular tools for non-invasive diagnosis, prognosis, and response to therapy. Nonetheless, microRNAs are not in clinical use yet, due to inconsistencies in the literature regarding the specific miRNAs identified as biomarkers for a specific disease, which in turn can be attributed to several reasons, including lack of assay standardization and reproducibility. Technological limitations in circulating microRNAs measurement have been, to date, the biggest challenge for using these molecules in clinical settings. In this review we will discuss pre-analytical, analytical, and post-analytical challenges to address the potential technical biases and patient-related parameters that can have an influence and should be improved to translate miRNA biomarkers to the clinical stage. Moreover, we will describe the currently available methods for circulating miRNA expression profiling and measurement, underlining their advantages and potential pitfalls.
Collapse
|
44
|
Geles K, Palumbo D, Sellitto A, Giurato G, Cianflone E, Marino F, Torella D, Mirici Cappa V, Nassa G, Tarallo R, Weisz A, Rizzo F. WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data. F1000Res 2021; 10:1. [PMID: 34316353 PMCID: PMC8276195 DOI: 10.12688/f1000research.27868.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Current bioinformatics workflows for PIWI-interacting RNA (piRNA) analysis focus primarily on germline-derived piRNAs and piRNA-clusters. Frequently, they suffer from outdated piRNA databases, questionable quantification methods, and lack of reproducibility. Often, pipelines specific to miRNA analysis are used for the piRNA research
in silico. Furthermore, the absence of a well-established database for piRNA annotation, as for miRNA, leads to uniformity issues between studies and generates confusion for data analysts and biologists. For these reasons, we have developed WIND (
Workflow for p
IRNAs a
Nd beyon
D), a bioinformatics workflow that addresses the crucial issue of piRNA annotation, thereby allowing a reliable analysis of small RNA sequencing data for the identification of piRNAs and other small non-coding RNAs (sncRNAs) that in the past have been incorrectly classified as piRNAs. WIND allows the creation of a comprehensive annotation track of sncRNAs combining information available in RNAcentral, with piRNA sequences from piRNABank, the first database dedicated to piRNA annotation. WIND was built with Docker containers for reproducibility and integrates widely used bioinformatics tools for sequence alignment and quantification. In addition, it includes Bioconductor packages for exploratory data and differential expression analysis. Moreover, WIND implements a "dual" approach for the evaluation of sncRNAs expression level quantifying the aligned reads to the annotated genome and carrying out an alignment-free transcript quantification using reads mapped to the transcriptome. Therefore, a broader range of piRNAs can be annotated, improving their quantification and easing the subsequent downstream analysis. WIND performance has been tested with several small RNA-seq datasets, demonstrating how our approach can be a useful and comprehensive resource to analyse piRNAs and other classes of sncRNAs.
Collapse
Affiliation(s)
- Konstantinos Geles
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Clinical Research and Innovation, Clinica Montevergine S.p.A., Mercogliano, Mercogliano, 83013, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Valeria Mirici Cappa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| |
Collapse
|
45
|
Kaliatsi EG, Giarimoglou N, Stathopoulos C, Stamatopoulou V. Non-Coding RNA-Driven Regulation of rRNA Biogenesis. Int J Mol Sci 2020; 21:E9738. [PMID: 33419375 PMCID: PMC7766524 DOI: 10.3390/ijms21249738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Ribosomal RNA (rRNA) biogenesis takes place in the nucleolus, the most prominent condensate of the eukaryotic nucleus. The proper assembly and integrity of the nucleolus reflects the accurate synthesis and processing of rRNAs which in turn, as major components of ribosomes, ensure the uninterrupted flow of the genetic information during translation. Therefore, the abundant production of rRNAs in a precisely functional nucleolus is of outmost importance for the cell viability and requires the concerted action of essential enzymes, associated factors and epigenetic marks. The coordination and regulation of such an elaborate process depends on not only protein factors, but also on numerous regulatory non-coding RNAs (ncRNAs). Herein, we focus on RNA-mediated mechanisms that control the synthesis, processing and modification of rRNAs in mammals. We highlight the significance of regulatory ncRNAs in rRNA biogenesis and the maintenance of the nucleolar morphology, as well as their role in human diseases and as novel druggable molecular targets.
Collapse
Affiliation(s)
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (E.G.K.); (N.G.)
| | - Vassiliki Stamatopoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (E.G.K.); (N.G.)
| |
Collapse
|
46
|
Wang GH, Wang LY, Zhang C, Zhang P, Wang CH, Cheng S. MiR-1225-5p acts as tumor suppressor in glioblastoma via targeting FNDC3B. Open Med (Wars) 2020; 15:872-881. [PMID: 33336045 PMCID: PMC7712056 DOI: 10.1515/med-2020-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 11/15/2022] Open
Abstract
This study attempted to research the molecular mechanism underlying the inhibitory role of miR-1225-5p in the malignant progression of glioblastoma. Bioinformatics analyses based on the gene expression omnibus (GEO) and Chinese glioma genome atlas (CGGA) databases showed that miR-1225-5p, as a favorable prognostic factor, was expressed at low levels in glioblastoma, and its expression was also related to WHO grade and age. The subsequent CCK-8 assay indicated that miR-1225-5p might prevent the malignant progression of glioblastoma, which was represented by that miR-1225-5p mimic reduced the viability of glioblastoma cells. Then, we predicted that FNDC3B might be a potential target gene of miR-1225-5p, and it was negatively correlated with the level of miR-1225-5p, which were confirmed by dual-luciferase reporter assay, qRT-PCR and western blot assays. Moreover, based on the analyses of the cancer genome atlas (TCGA), Oncomine and CGGA databases, FNDC3B was enriched in glioblastoma and high expression of FNDC3B led to poor prognosis. Finally, CCK8 and transwell experiments showed that the ability of miR-1225-5p to inhibit glioblastoma cell viability, invasion and migration was at least partially achieved by targeting FNDC3B. In general, these results revealed that the miR-1225-5p/FNDC3B axis contributes to inhibiting the malignant phenotype of glioblastoma cells, which lays a foundation for molecular diagnosis and treatment of glioblastoma.
Collapse
Affiliation(s)
- Guo-Hua Wang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Liang-Yan Wang
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong , 261000, People's Republic of China
| | - Cui Zhang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Peng Zhang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Chuan-Hui Wang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Shuai Cheng
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| |
Collapse
|
47
|
Frequent Germline and Somatic Single Nucleotide Variants in the Promoter Region of the Ribosomal RNA Gene in Japanese Lung Adenocarcinoma Patients. Cells 2020; 9:cells9112409. [PMID: 33153169 PMCID: PMC7692307 DOI: 10.3390/cells9112409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022] Open
Abstract
Ribosomal RNA (rRNA), the most abundant non-coding RNA species, is a major component of the ribosome. Impaired ribosome biogenesis causes the dysfunction of protein synthesis and diseases called “ribosomopathies,” including genetic disorders with cancer risk. However, the potential role of rRNA gene (rDNA) alterations in cancer is unknown. We investigated germline and somatic single-nucleotide variants (SNVs) in the rDNA promoter region (positions −248 to +100, relative to the transcription start site) in 82 lung adenocarcinomas (LUAC). Twenty-nine tumors (35.4%) carried germline SNVs, and eight tumors (9.8%) harbored somatic SNVs. Interestingly, the presence of germline SNVs between positions +1 and +100 (n = 12; 14.6%) was associated with significantly shorter recurrence-free survival (RFS) and overall survival (OS) by univariate analysis (p < 0.05, respectively), and was an independent prognostic factor for RFS and OS by multivariate analysis. LUAC cell line PC9, carrying rDNA promoter SNV at position +49, showed significantly higher ribosome biogenesis than H1650 cells without SNV. Upon nucleolar stress induced by actinomycin D, PC9 retained significantly higher ribosome biogenesis than H1650. These results highlight the possible functional role of SNVs at specific sites of the rDNA promoter region in ribosome biogenesis, the progression of LUAC, and their potential prognostic value.
Collapse
|
48
|
Abstract
Small RNAs (sRNAs), including microRNAs (miRNAs), are noncoding RNA (ncRNA) molecules involved in gene regulation. sRNAs play important roles in development; however, their significance in nutritional control and as metabolic modulators is still emerging. The mechanisms by which diet impacts metabolic genes through miRNAs remain an important area of inquiry. Recent work has established how miRNAs are transported in body fluids often within exosomes, which are small cell-derived vesicles that function in intercellular communication. The abundance of other recently identified ncRNAs and new insights regarding ncRNAs as dietary bioactive compounds could remodel our understanding about how foods impact gene expression. Although controversial, some groups have shown that dietary RNAs from plants and animals (i.e., milk) are functional in consumers. In the future, regulating sRNAs either directly through dietary delivery or indirectly by altered expression of endogenous sRNA may be part of nutritional interventions for regulating metabolism.
Collapse
Affiliation(s)
- Elizabeth M McNeill
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Kendal D Hirschi
- Departments of Pediatrics and Human and Molecular Genetics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
49
|
Cao J, Cowan DB, Wang DZ. tRNA-Derived Small RNAs and Their Potential Roles in Cardiac Hypertrophy. Front Pharmacol 2020; 11:572941. [PMID: 33041815 PMCID: PMC7527594 DOI: 10.3389/fphar.2020.572941] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundantly expressed, small non-coding RNAs that have long been recognized as essential components of the protein translation machinery. The tRNA-derived small RNAs (tsRNAs), including tRNA halves (tiRNAs), and tRNA fragments (tRFs), were unexpectedly discovered and have been implicated in a variety of important biological functions such as cell proliferation, cell differentiation, and apoptosis. Mechanistically, tsRNAs regulate mRNA destabilization and translation, as well as retro-element reverse transcriptional and post-transcriptional processes. Emerging evidence has shown that tsRNAs are expressed in the heart, and their expression can be induced by pathological stress, such as hypertrophy. Interestingly, cardiac pathophysiological conditions, such as oxidative stress, aging, and metabolic disorders can be viewed as inducers of tsRNA biogenesis, which further highlights the potential involvement of tsRNAs in these conditions. There is increasing enthusiasm for investigating the molecular and biological functions of tsRNAs in the heart and their role in cardiovascular disease. It is anticipated that this new class of small non-coding RNAs will offer new perspectives in understanding disease mechanisms and may provide new therapeutic targets to treat cardiovascular disease.
Collapse
Affiliation(s)
- Jun Cao
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
50
|
Nätt D, Öst A. Male reproductive health and intergenerational metabolic responses from a small RNA perspective. J Intern Med 2020; 288:305-320. [PMID: 32415866 DOI: 10.1111/joim.13096] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The world has recently experienced a decline in male reproductive (e.g. sperm counts and motility) and metabolic (e.g. obesity and diabetes) health. Accumulated evidence from animal models also shows that the metabolic health of the father may influence the metabolic health in his offspring. Vectors for such paternal intergenerational metabolic responses (IGMRs) involve small noncoding RNAs (sncRNAs) that often increase in spermatozoa during the last days of maturation in the epididymis. We and others have shown that the metabolic state - depending on factors such as diet, obesity and physical exercise - may affect sperm quality and sperm sncRNA. Together, this suggests that there are overlapping aetiologies between the male metabolic syndrome, male factor infertility and intergenerational responses. In this review, we present a theoretical framework for an overlap of these aetiologies by exploring the advances in our understanding of the roles of sncRNA in spermatogenesis and offspring development. A special focus will lie on novel findings about tRNA-derived small RNA (tsRNA), rRNA-derived small RNA (rsRNA) and small mitochondrial RNA (mitoRNA), and their emerging roles in intergenerational metabolic and reproductive health.
Collapse
Affiliation(s)
- D Nätt
- From the, Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
| | - A Öst
- From the, Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
| |
Collapse
|