1
|
Singh D, Menghini P, Rodriguez-Palacios A, Martino LD, Cominelli F, Basson AR. Leucine-Enriched Diet Reduces Fecal MPO but Does Not Protect Against DSS Colitis in a Mouse Model of Crohn's Disease-like Ileitis. Int J Mol Sci 2024; 25:11748. [PMID: 39519299 PMCID: PMC11545852 DOI: 10.3390/ijms252111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the complex link between inflammation, gut health, and dietary amino acids is becoming increasingly important in the pathophysiology of inflammatory bowel disease (IBD). This study tested the hypothesis that a leucine-rich diet could attenuate inflammation and improve gut health in a mouse model of IBD. Specifically, we investigated the effects of a leucine-rich diet on dextran sulfate sodium (DSS)-induced colitis in germ-free (GF) SAMP1/YitFC (SAMP) mice colonized with human gut microbiota (hGF-SAMP). hGF-SAMP mice were fed one of four different diets: standard mouse diet (CHOW), American diet (AD), leucine-rich AD (AD + AA), or leucine-rich CHOW diet (CH + AA). Body weight, myeloperoxidase (MPO) activity, gut permeability, colonoscopy scores, and histological analysis were measured. Mice on a leucine-rich CHOW diet showed a decrease in fecal MPO prior to DSS treatment as compared to those on a regular diet (p > 0.05); however, after week five, prior to DSS, this effect had diminished. Following DSS treatment, there was no significant difference in gut permeability, fecal MPO activity, or body weight changes between the leucine-supplemented and control groups. These findings suggest that while a leucine-rich diet may transiently affect fecal MPO levels in hGF-SAMP mice, it does not confer protection against DSS-induced colitis symptoms or mitigate inflammation in the long term.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
| | - Paola Menghini
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abigail Raffner Basson
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Posta E, Fekete I, Varkonyi I, Zold E, Barta Z. The Versatile Role of Peroxisome Proliferator-Activated Receptors in Immune-Mediated Intestinal Diseases. Cells 2024; 13:1688. [PMID: 39451206 PMCID: PMC11505700 DOI: 10.3390/cells13201688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that sense lipophilic molecules and act as transcription factors to regulate target genes. PPARs have been implicated in the regulation of innate immunity, glucose and lipid metabolism, cell proliferation, wound healing, and fibrotic processes. Some synthetic PPAR ligands are promising molecules for the treatment of inflammatory and fibrotic processes in immune-mediated intestinal diseases. Some of these are currently undergoing or have previously undergone clinical trials. Dietary PPAR ligands and changes in microbiota composition could modulate PPARs' activation to reduce inflammatory responses in these immune-mediated diseases, based on animal models and clinical trials. This narrative review aims to summarize the role of PPARs in immune-mediated bowel diseases and their potential therapeutic use.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
| | - Istvan Varkonyi
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| |
Collapse
|
3
|
Ou LP, Liu YJ, Qiu ST, Yang C, Tang JX, Li XY, Liu HF, Ye ZN. Glutaminolysis is a Potential Therapeutic Target for Kidney Diseases. Diabetes Metab Syndr Obes 2024; 17:2789-2807. [PMID: 39072347 PMCID: PMC11283263 DOI: 10.2147/dmso.s471711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Metabolic reprogramming contributes to the progression and prognosis of various kidney diseases. Glutamine is the most abundant free amino acid in the body and participates in more metabolic processes than other amino acids. Altered glutamine metabolism is a prominent feature in different kidney diseases. Glutaminolysis converts glutamine into the TCA cycle metabolite, alpha-ketoglutarate, via a cascade of enzymatic reactions. This metabolic pathway plays pivotal roles in inflammation, maladaptive repair, cell survival and proliferation, redox homeostasis, and immune regulation. Given the crucial role of glutaminolysis in bioenergetics and anaplerotic fluxes in kidney pathogenesis, studies on this cascade could provide a better understanding of kidney diseases, thus inspiring the development of potential methods for targeted therapy. Emerging evidence has shown that targeting glutaminolysis is a promising therapeutic strategy for ameliorating kidney disease. In this narrative review, equation including keywords related to glutamine, glutaminolysis and kidney are subjected to an exhaustive search on Pubmed database, we identified all relevant articles published before 1 April, 2024. Afterwards, we summarize the regulation of glutaminolysis in major kidney diseases and its underlying molecular mechanisms. Furthermore, we highlight therapeutic strategies targeting glutaminolysis and their potential clinical applications.
Collapse
Affiliation(s)
- Li-Ping Ou
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Yong-Jian Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shi-Tong Qiu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Chen Yang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Ji-Xin Tang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Xiao-Yu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Hua-Feng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen-Nan Ye
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|
4
|
Xie Y, Li J, Tao Q, Wu Y, Liu Z, Chen Y, Zeng C. Identification of subclusters and prognostic genes based on GLS-associated molecular signature in ulcerative colitis. Sci Rep 2024; 14:13102. [PMID: 38849409 PMCID: PMC11161595 DOI: 10.1038/s41598-024-63891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease that affects the colon and rectum. The response to treatment varies among individuals with UC. Therefore, the aim of this study was to identify and explore potential biomarkers for different subtypes of UC and examine their association with immune cell infiltration. We obtained UC RNA sequencing data from the GEO database, which included the training set GSE92415 and the validation set GSE87473 and GSE72514. UC patients were classified based on GLS and its associated genes using consensus clustering analysis. We identified differentially expressed genes (DEGs) in different UC subtypes through a differential expression analysis of the training cohort. Machine learning algorithms, including Weighted Gene Co-Expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine Recursive Feature Elimination (SVM-RFE), were utilized to identify marker genes for UC. The CIBERSORT algorithm was used to determine the abundance of various immune cells in UC and their correlation with UC signature genes. Finally, we validated the expression of GLS through in vivo and ex vivo experiments. The expression of GLS was found to be elevated in patients with UC compared to normal patients. GLS and its related genes were able to classify UC patients into two subtypes, C1 and C2. The C1 subtype, as compared to the C2 subtype, showed a higher Mayo score and poorer treatment response. A total of 18 DEGs were identified in both subtypes, including 7 up-regulated and 11 down-regulated genes. Four UC signature genes (CWH43, HEPACAM2, IL24, and PCK1) were identified and their diagnostic value was validated in a separate cohort (AUC > 0.85). Furthermore, we found that UC signature biomarkers were linked to the immune cell infiltration. CWH43, HEPACAM2, IL24, and PCK1 may serve as potential biomarkers for diagnosing different subtypes of UC, which could contribute to the development of targeted molecular therapy and immunotherapy for UC.
Collapse
Affiliation(s)
- Yang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qing Tao
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yonghui Wu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zide Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Peng K, Xia S, Xiao S, Zhang M, Liao J, Yu Q. Kuijie decoction ameliorates ulcerative colitis by affecting intestinal barrier functions, gut microbiota, metabolic pathways and Treg/Th17 balance in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117316. [PMID: 37852335 DOI: 10.1016/j.jep.2023.117316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Currently, the clinical treatment is limited and difficult to achieve satisfactory results for ulcerative colitis (UC). The role of traditional Chinese medicine (TCM) in the treatment of UC is very complex. Kuijie decoction (KJD) as a classic TCM, is widely used in the clinical treatment of UC, but the mechanism of its action is still unclear. AIM OF THE STUDY This study is to investigate the protective effects of KJD on UC and the underlying mechanisms. MATERIALS AND METHODS The experimental model of UC was induced by DSS, and KJD was introduced into the model at the same time. Clinical symptoms, including the body weight, colon length and colon histopathological, were used to measure the severity of colitis. The expression of inflammatory cytokines and tight junction proteins was quantified. The effect of KJD on intestinal flora and intestinal metabolism was determined by 16S rRNA and untargeted metabolomics analysis, respectively. The proportion of Th17 cells and Tregs in the spleen was examined by flow cytometry. RESULTS Mice treated with KJD showed significantly alleviated clinical symptoms and histological damage, such as more body weight gain, lower disease activity index (DAI) score, and longer colon length. The administration of KJD also led to the down-regulation of inflammatory mediators, upregulation of the expression of ZO-1, occludin and decreased claudin-2, as well as altered microbiota composition against DSS challenges (especially an increase of Lachnospiraceae). KJD enhanced the percentage of Treg cells but decreased the proportion of Th17 cells to maintain intestinal homeostasis by improving gut microbiota metabolism. CONCLUSIONS In summary, KJD maintained intestinal epithelial homeostasis by regulating epithelial barrier function, intestinal flora, and restoring Th17/Treg balance. KJD has the potential to be a Chinese medicine treatment for UC.
Collapse
Affiliation(s)
- Kaixin Peng
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Suhong Xia
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Siqi Xiao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Mingyu Zhang
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Jiazhi Liao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China.
| | - Qin Yu
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China.
| |
Collapse
|
6
|
Yu Z, Yue B, Gao R, Zhang B, Geng X, Lv C, Wang H, Wang Z, Wang Z, Dou W. Gastrodin Attenuates Colitis and Prevents Tumorigenesis in Mice by Interrupting TLR4/MD2/NF-κB Signaling Transduction. Anticancer Agents Med Chem 2024; 24:853-866. [PMID: 38584532 DOI: 10.2174/0118715206286233240328045215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Chronic inflammation is one of the causative factors for tumorigenesis. Gastrodin is a main active ingredient isolated from Gastrodia elata Blume, a famous medicinal herb with a long edible history. AIM This study aimed to explore the effects of gastrodin on colitis-associated carcinogenesis (CRC) in mice and to elucidate its potential molecular mechanisms. METHODS Balb/c mice were induced with azoxymethane (AOM) and dextran sulfate sodium (DSS) for 12 weeks. Gastrodin (50 mg/kg) was administered via oral gavage three times per week until the end of the experiment. Disease indexes, including body weight, bloody diarrhea, colon length, histopathological score, and tumor size, were measured. Tumor cell proliferation was evaluated by BrdU incorporation assay and tumor cell cytotoxicity was assessed by cell counting kit (CCK-8). The expression levels of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling molecules, NF-κB luciferase, and pro-inflammatory cytokines were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), immunoblotting, immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), or reporter gene assays. The binding affinity between gastrodin and myeloid differentiation protein-2 (MD2) was analyzed by molecular docking and cellular thermal shift assay (CETSA). RESULTS Gastrodin administration was demonstrated to mitigate various CRC-related symptoms in mice, including weight loss, diarrhea, and tissue abnormalities. Notably, gastrodin suppressed tumor cell growth during colitis- associated tumorigenesis, resulting in fewer and smaller adenomas in the colon. Unlike irinotecan, a broadspectrum antitumor drug, gastrodin did not exhibit apparent cytotoxicity in various colorectal adenocarcinoma cell lines. Additionally, gastrodin downregulated TLR4/NF-κB signaling molecules and pro-inflammatory mediators in mice and macrophages. Molecular docking and CETSA experiments suggested that gastrodin binds to the MD2 protein, potentially interfering with the recognition of lipopolysaccharide (LPS) by TLR4, leading to NF-κB pathway inhibition. CONCLUSION This study provides evidence for the first time that gastrodin attenuated colitis and prevented colitisrelated carcinogenesis in mice, at least partially, by diminishing tumor-promoting cytokines through the interruption of TLR4/MD2/NF-κB signaling transduction.
Collapse
Affiliation(s)
- Zhilun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Ruiyang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Beibei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Xiaolong Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Cheng Lv
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Ziyi Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| |
Collapse
|
7
|
Pavel FM, Bungau SG, Tit DM, Ghitea TC, Marin RC, Radu AF, Moleriu RD, Ilias T, Bustea C, Vesa CM. Clinical Implications of Dietary Probiotic Supplement (Associated with L-Glutamine and Biotin) in Ulcerative Colitis Patients' Body Composition and Quality of Life. Nutrients 2023; 15:5049. [PMID: 38140308 PMCID: PMC10745841 DOI: 10.3390/nu15245049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Patients with ulcerative colitis (UC) are reported to have changes in body structure, with negative impact on the course of disease. This study explored the effects of a standardized nutritional supplement containing five bacterial strains of at least five billion bacteria (Bifidobacterium infantis, Bifidobacterium animalis, Lactobacillus bulgaricus, Lactobacillus helveticus, and Enterococcus faecium), L-glutamine, and biotin on the body composition and quality of life of patients with UC. Ninety-three patients over 18 years of age with a confirmed diagnosis of UC, for whom body composition could be accurately determined, were included in this observational follow-up randomized study. These patients were split into two groups: UC-P (44 patients with dietary counselling and supplement with probiotics) and UC-NP (49 patients with dietary counselling, without supplement). Body composition was assessed using the multifrequency bioelectrical impedance device, and the quality of life related to UC was evaluated by applying the short inflammatory bowel disease questionnaire (SIBDQ). The results showed that the average value of muscular mass (MM) and sarcopenic index (SMI) significantly increased (p = 0.043, respectively, p = 0.001) and a large fraction (p = 0.001) of patients had their SMI levels normalized in the UC-P group compared with UC-NP group. The extracellular water to total body water ratio (ECW/TBW) also had significantly different mean values (p = 0.022), favoring the UC-P group. By testing the differences between the average values of body composition parameters before and after treatment, we obtained significant results in body mass index (BMI) (p = 0.046), fat free mass (FFM) (p < 0.001), and ECW/TBW ratio (p = 0.048). The SIBDQ total score increased significantly (p < 0.001) in the UC-P group and was more strongly associated with changes in body parameters. Supplementation with probiotics associated with L-glutamine and biotin can improve body composition parameters, which in turn implies an increase in the overall quality of life of patients with UC.
Collapse
Affiliation(s)
- Flavia Maria Pavel
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.P.); (A.-F.R.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.P.); (A.-F.R.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.P.); (A.-F.R.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Timea Claudia Ghitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | | | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.P.); (A.-F.R.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania
| | - Radu Dumitru Moleriu
- Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timisoara, 300223 Timisoara, Romania;
| | - Tiberia Ilias
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Cristian Bustea
- Department of Surgery, Oradea County Emergency Clinical Hospital, 410169 Oradea, Romania;
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.P.); (A.-F.R.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
8
|
Song X, Liang Y, Zhou S, Xie W, Yang Q, Ma N, Shen X. Glutamine alleviates Lipopolysaccharide-induced corneal epithelial inflammation and oxidative stress in dogs. Exp Eye Res 2023; 234:109607. [PMID: 37517541 DOI: 10.1016/j.exer.2023.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Pseudomonas aeruginosa is a common pathogenic bacteria in canine ophthalmology. Lipopolysaccharide (LPS), a component in the cell wall of gram-negative bacteria, is released following bacterial lysis and causes pathology and inflammation of the cornea. Antibiotics are used to treat bacterial keratitis, and the reuse of antibiotics can easily cause bacterial resistance. Research has shown that glutamine (GLN) has anti-inflammatory and antioxidant biological functions. Herein, we explored the effects and underlying mechanisms of GLN and established an LPS-induced cornea inflammation model. Treatment groups comprised: control check (CK), LPS, LPS + GLN, and Sham groups. Topical GLN treatment alleviated corneal opacity, reduced corneal injury, and accelerated corneal wound healing. Furthermore, GLN treatment altered the uniform distribution of corneal epithelial cells and transformed the healing approach of these cells in the corneal wound from crawling to filling. The expression of Toll-like receptor 4 (TLR4), IL-6, TNF-α, and p-p65 and the activity of myeloperoxidase and superoxide dismutase decreased while the content of malondialdehyde increased in the LPS + GLN group compared with those in the LPS group. Thus, our study suggests that LPS-induced inflammation and oxidative stress may be suppressed via the TLR4/NF-κB signaling pathway by GLN and that GLN could be used as an adjunct therapy to reduce antibiotic use.
Collapse
Affiliation(s)
- Xiaokun Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yuxuan Liang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qifeng Yang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
9
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
10
|
Li B, Guo Y, Jia X, Cai Y, Zhang Y, Yang Q. Luteolin alleviates ulcerative colitis in rats via regulating immune response, oxidative stress, and metabolic profiling. Open Med (Wars) 2023; 18:20230785. [PMID: 37693835 PMCID: PMC10487402 DOI: 10.1515/med-2023-0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease and associated with metabolic imbalance. Luteolin (LUT) reportedly exhibits anti-inflammatory activity. However, its regulatory effects on metabolites remain indistinct. Here, the effects of LUT on immune response and oxidative stress in UC were determined. Serum metabolomics profiles of UC rats treated with LUT were obtained utilizing liquid chromatography-mass spectrometry. The results revealed that LUT treatment alleviated colon tissue injury, colon shortening, weight loss, and inflammatory response in UC rats. Additionally, the levels of superoxide dismutase and total antioxidant capacity were elevated, but malondialdehyde content was reduced in serum of UC rats, while these changes were abrogated by LUT. Metabolomics analysis unveiled that l-malic acid, creatinine, l-glutamine, and l-lactic acid levels were remarkably decreased, while dimethyl sulfone, 5-methylcytosine, cysteine-S-sulfate, and jasmonic acid levels were notably increased after LUT treatment. Furthermore, differential metabolites primarily participated in d-glutamine and d-glutamate metabolism, glutathione metabolism, and citrate cycle pathways. In summary, these results demonstrated that LUT improved immune response, alleviated oxidative stress, and altered metabolites in UC rats. This study lays the root for further exploring the mechanism of LUT in the treatment of UC.
Collapse
Affiliation(s)
- Bolin Li
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Shijiazhuang, Hebei, China
| | - Yuxi Guo
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xuemei Jia
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yanru Cai
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yunfeng Zhang
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Shijiazhuang, Hebei, China
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, 389 Zhongshan East Road, Chang’an District, Shijiazhuang, Hebei, China
| | - Qian Yang
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Shijiazhuang, Hebei, China
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, 389 Zhongshan East Road, Chang’an District, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Xu J, Kong L, Oliver BA, Li B, Creasey EA, Guzman G, Schenone M, Carey KL, Carr SA, Graham DB, Deguine J, Xavier RJ. Constitutively active autophagy in macrophages dampens inflammation through metabolic and post-transcriptional regulation of cytokine production. Cell Rep 2023; 42:112708. [PMID: 37392388 PMCID: PMC10503440 DOI: 10.1016/j.celrep.2023.112708] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Autophagy is an essential cellular process that is deeply integrated with innate immune signaling; however, studies that examine the impact of autophagic modulation in the context of inflammatory conditions are lacking. Here, using mice with a constitutively active variant of the autophagy gene Beclin1, we show that increased autophagy dampens cytokine production during a model of macrophage activation syndrome and in adherent-invasive Escherichia coli (AIEC) infection. Moreover, loss of functional autophagy through conditional deletion of Beclin1 in myeloid cells significantly enhances innate immunity in these contexts. We further analyzed primary macrophages from these animals with a combination of transcriptomics and proteomics to identify mechanistic targets downstream of autophagy. Our study reveals glutamine/glutathione metabolism and the RNF128/TBK1 axis as independent regulators of inflammation. Altogether, our work highlights increased autophagic flux as a potential approach to reduce inflammation and defines independent mechanistic cascades involved in this control.
Collapse
Affiliation(s)
- Jinjin Xu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lingjia Kong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Blayne A Oliver
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bihua Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elizabeth A Creasey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gaelen Guzman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monica Schenone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Wang F, Qian F, Zhang Q, Zhao J, Cen J, Zhang J, Zhou J, Luo M, Jia C, Rong X, Chu M. The reduced SCFA-producing gut microbes are involved in the inflammatory activation in Kawasaki disease. Front Immunol 2023; 14:1124118. [PMID: 37398673 PMCID: PMC10309029 DOI: 10.3389/fimmu.2023.1124118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Kawasaki disease (KD), an acute febrile systemic vasculitis in children, has become the leading cause of acquired heart disease in developed countries. Recently, the altered gut microbiota was found in KD patients during the acute phase. However, little is known about its characteristics and role in the pathogenesis of KD. In our study, an altered gut microbiota composition featured by the reduction in SCFAs-producing bacteria was demonstrated in the KD mouse model. Next, probiotic Clostridium butyricum (C. butyricum) and antibiotic cocktails were respectively employed to modulate gut microbiota. The use of C. butyricum significantly increased the abundance of SCFAs-producing bacteria and attenuated the coronary lesions with reduced inflammatory markers IL-1β and IL-6, but antibiotics depleting gut bacteria oppositely deteriorated the inflammation response. The gut leakage induced by dysbiosis to deteriorate the host's inflammation was confirmed by the decreased intestinal barrier proteins Claudin-1, Jam-1, Occludin, and ZO-1, and increased plasma D-lactate level in KD mice. Mechanistically, SCFAs, the major beneficial metabolites of gut microbes to maintain the intestinal barrier integrity and inhibit inflammation, was also found decreased, especially butyrate, acetate and propionate, in KD mice by gas chromatography-mass spectrometry (GC-MS). Moreover, the reduced expression of SCFAs transporters, monocarboxylate transporter 1 (MCT-1) and sodium-dependent monocarboxylate transporter 1 (SMCT-1), was also shown in KD mice by western blot and RT-qPCR analyses. As expected, the decrease of fecal SCFAs production and barrier dysfunction were improved by oral C. butyricum treatment but was deteriorated by antibiotics. In vitro, butyrate, not acetate or propionate, increased the expression of phosphatase MKP-1 to dephosphorylate activated JNK, ERK1/2 and p38 MAPK against excessive inflammation in RAW264.7 macrophages. It suggests a new insight into probiotics and their metabolites supplements to treat KD.
Collapse
Affiliation(s)
- Fangyan Wang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- The Research Institute of Microbiota and Host Inflammation-Related Diseases, Wenzhou Medical University, Wenzhou, China
| | - Fanyu Qian
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qihao Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Jian Zhao
- The Research Institute of Microbiota and Host Inflammation-Related Diseases, Wenzhou Medical University, Wenzhou, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jianke Cen
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- The Research Institute of Microbiota and Host Inflammation-Related Diseases, Wenzhou Medical University, Wenzhou, China
| | - Jiamin Zhang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- The Research Institute of Microbiota and Host Inflammation-Related Diseases, Wenzhou Medical University, Wenzhou, China
| | - Jinhui Zhou
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Ming Luo
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Xing Rong
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Guo X, Li X, Dong Y, Xie W, Jin T, Xu D, Liu L. Cod (Gadus) skin collagen peptide powder reduces inflammation, restores mucosal barrier function, and inhibits fibrosis in dextran sodium sulfate-induced colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023:116728. [PMID: 37277083 DOI: 10.1016/j.jep.2023.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology. Cod (Gadus), a kind of herb from the Chinese herb. Traditionally, it has used to treat trauma, reduce swelling and relieve pain in order to exert its anti-inflammatory activity. Recent reports based on its hydrolyzed or enzymatic extracts have shown its anti-inflammatory, mucosal barrier protecting properties. However, its mechanism of improvement in ulcerative colitis is not clear. AIM OF THE STUDY This study aimed to explore the preventive and protective effect of cod skin collagen peptide powder (CP) on mice with UC and to explore the underlying mechanism. MATERIALS AND METHODS Mice with dextran sodium sulfate (DSS)-induced UC were treated with CP by gavage, and the anti-inflammatory effects of CP were assessed using general physical, pro-inflammatory cytokine, histopathological, immunohistochemical, macrophage flow cytometry, and inflammatory signaling pathway assays. RESULTS CP ameliorates inflammation by upregulating mitogen-activated protein kinase phosphatase-1 (MKP-1) and thereby decreasing the phosphorylation levels of P38 and JNK. It also polarizes macrophages in the colon towards the M2 phenotype, which helps to reduce tissue damage and promotes colon repair. At the same time, CP also inhibits the development of fibrosis, one of the complications of UC, by upregulating ZO-1, Occludin, and downregulating α-SMA, Vimentin, Snail, and Slug. CONCLUSION In this study, we found CP reduced inflammation in mice with UC by inducing MKP-1 expression, which caused dephosphorylation of mitogen-activated protein kinase (MAPK). CP also restored mucosal barrier function and inhibited the development of fibrosis complicating UC in these mice. Taken together, these results suggested that CP improved the pathological manifestations of UC in mice, suggesting that it can play a biological role as a nutritional supplement for preventing and treating UC.
Collapse
Affiliation(s)
- Xiangyu Guo
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Xiangdan Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Yanru Dong
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Wei Xie
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Toufeng Jin
- Department of General Surgery, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.
| | - Lan Liu
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin Province, China.
| |
Collapse
|
14
|
Protective Effect of Lactiplantibacillus plantarum subsp. plantarum SC-5 on Dextran Sulfate Sodium-Induced Colitis in Mice. Foods 2023; 12:foods12040897. [PMID: 36832972 PMCID: PMC9957050 DOI: 10.3390/foods12040897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a specific immune-associated intestinal disease. At present, the conventional treatment for patients is not ideal. Probiotics are widely used in the treatment of IBD patients due to their ability to restore the function of the intestinal mucosal barrier effectively and safely. Lactiplantibacillus plantarum subsp. plantarum is a kind of probiotic that exists in the intestines of hosts and is considered to have good probiotic properties. In this study, we evaluated the therapeutic effect of Lactiplantibacillus plantarum subsp. plantarum SC-5 (SC-5) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. We estimated the effect of SC-5 on the clinical symptoms of mice through a body weight change, colon length, and DAI score. The inhibitory effects of SC-5 on the levels of cytokine IL-1β, IL-6, and TNF-α were determined by ELISA. The protein expression levels of NF-κB, MAPK signaling pathway, and the tight junction proteins occludin, claudin-3, and ZO-1 were verified using Western Blot and immunofluorescence. 16S rRNA was used to verify the modulatory effect of SC-5 on the structure of intestinal microbiota in DSS-induced colitis mice. The results showed that SC-5 could alleviate the clinical symptoms of DSS-induced colitis mice, and significantly reduce the expression of pro-inflammatory cytokines in the colon tissue. It also attenuated the inflammatory response by inhibiting the protein expression of NF-κB and MAPK signaling pathways. SC-5 improved the integrity of the intestinal mucosal barrier by strengthening tight junction proteins. In addition, 16S rRNA sequencing demonstrated that SC-5 was effective in restoring intestinal flora balance, as well as in increasing the relative abundance and diversity of beneficial microbiota. These results indicated that SC-5 has the potential to be developed as a new probiotic candidate that prevents or alleviates IBD.
Collapse
|
15
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Chai Y, Ding S, Jiang L, Wang S, Yuan X, Jiang H, Fang J. The mitigative effect of ovotransferrin-derived peptide IQW on DSS-induced colitis via alleviating intestinal injury and reprogramming intestinal microbes. Front Nutr 2022; 9:927363. [PMID: 36118755 PMCID: PMC9478110 DOI: 10.3389/fnut.2022.927363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with multiple complications during its development, and it is difficult to cure. The aim of this study was to evaluate the alleviating effect of different concentrations of the bioactive peptide IQW (Ile-Gln-Trp) on dextran sodium sulfate (DSS)-induced colitis in mice. For this study, we randomly divided 56 ICR mice into seven groups: the (I) control (CON), (II) dextran sodium sulfate treatment (2.5% DSS), (III) IQW-DSS (20 μg/ml) treatment, (IV) IQW-DSS (40 μg/ml) treatment, (V) IQW-DSS (60 μg/ml) treatment, (VI) IQW-DSS (80 μg/ml) treatment, and (VII) IQW-DSS (100 μg/ml) groups. The results showed that IQW at 60 μg/ml alleviated body weight loss, improved the liver index (p < 0.05), and improved histomorphological and pathological changes in the colon compared to the DSS-treated group. IQW at 60 μg/ml and IQW at 80 μg/ml modified intestinal microbial disorders. In addition, IQW at 60 μg/ml significantly increased butyric acid levels and decreased valeric acid levels, while IQW at 80 μg/ml significantly increased isobutyric acid and isovaleric acid levels. Hence, IQW at a concentration of 60 μg/ml alleviates DSS-induced colitis by enhancing the body's anti-inflammatory ability and regulating intestinal flora and metabolic changes. In the above context, IQW at 60 μg/ml could be a potential candidate for IBD prevention and treatment.
Collapse
Affiliation(s)
- Yajuan Chai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Lihong Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People's Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xiangnan Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- *Correspondence: Hongmei Jiang
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Jun Fang
| |
Collapse
|
17
|
L-Glutamine alleviates osteoarthritis by regulating lncRNA-NKILA expression through the TGF-β1/SMAD2/3 signalling pathway. Clin Sci (Lond) 2022; 136:1053-1069. [PMID: 35730575 PMCID: PMC9264285 DOI: 10.1042/cs20220082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022]
Abstract
Osteoarthritis (OA) is a heterogeneous condition characterized by cartilage degradation, subchondral sclerosis, and osteophyte formation, and accompanied by the generation of pro-inflammatory mediators and degradation of extracellular matrix. The current treatment for early OA is focused on the relief of symptoms, such as pain, but this treatment cannot delay the pathological process. L-Glutamine (L-Gln), which has anti-inflammatory and anti-apoptotic effects, is the most abundant amino acid in human blood. However, its role in OA has not been systematically studied. Therefore, the objective of this work was to explore the therapeutic effect and molecular mechanism of L-Gln on OA. In vitro, we found that L-Gln could up-regulate the expression of the long non-coding RNA NKILA, which is regulated by the transforming growth factor-β1/SMAD2/3 pathway, and inhibit the activity of nuclear factor-κB, thereby decreasing the expression of nitric oxide synthase, cyclooxygenase-2, and matrix metalloproteinase-13 (MMP-13). This led to a reduction in the generation of nitrous oxide, prostaglandin E-2, tumour necrosis factor-α, and degradation of the extracellular matrix (i.e. aggrecan and collagen II) in rat OA chondrocytes. Moreover, intragastric administration of L-Gln reduced the degradation of cartilage tissue and expression of MMP-13 in a rat OA model. L-Gln also relieved the clinical symptoms in some patients with early knee joint OA. These findings highlight that L-Gln is a potential therapeutic drug to delay the occurrence and development of OA.
Collapse
|
18
|
Kim J, Im YN, Chung Y, Youm J, Im SY, Han MK, Lee HK. Glutamine deficiency shifts the asthmatic state toward neutrophilic airway inflammation. Allergy 2022; 77:1180-1191. [PMID: 34601745 PMCID: PMC9293426 DOI: 10.1111/all.15121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022]
Abstract
Background The administration of L‐glutamine (Gln) suppresses allergic airway inflammation via the rapid upregulation of MAPK phosphatase (MKP)‐1, which functions as a negative regulator of inflammation by deactivating p38 and JNK mitogen‐activated protein kinases (MAPKs). However, the role of endogenous Gln remains to be elucidated. Therefore, we investigated the mechanism by which endogenous Gln regulates MKP‐1 induction and allergic airway inflammation in an ovalbumin‐based murine asthma model. Methods We depleted endogenous Gln levels using L‐γ‐glutamyl‐p‐nitroanilide (GPNA), an inhibitor of the Gln transporter ASCT2 and glutamine synthetase small interfering siRNA. Lentivirus expressing MKP‐1 was injected to achieve overexpression of MKP‐1. Asthmatic phenotypes were assessed using our previously developed ovalbumin‐based murine model, which is suitable for examining sequential asthmatic events, including neutrophil infiltration. Gln levels were analyzed using a Gln assay kit. Results GPNA or glutamine synthetase siRNA successfully depleted endogenous Gln levels. Importantly, homeostatic MKP‐1 induction did not occur at all, which resulted in prolonged p38 MAPK and cytosolic phospholipase A2 (cPLA2) phosphorylation in Gln‐deficient mice. Gln deficiency augmented all examined asthmatic reactions, but it exhibited a strong bias toward increasing the neutrophil count, which was not observed in MKP‐1‐overexpressing lungs. This neutrophilia was inhibited by a cPLA2 inhibitor and a leukotriene B4 inhibitor but not by dexamethasone. Conclusion Gln deficiency leads to the impairment of MKP‐1 induction and activation of p38 MAPK and cPLA2, resulting in the augmentation of neutrophilic, more so than eosinophilic, airway inflammation.
Collapse
Affiliation(s)
- June‐Mo Kim
- Department of Immunology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| | - Yoo Na Im
- Department of Immunology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| | - Yun‐Jo Chung
- Center for University‐wide Research Facilities Jeonbuk National University Medical School Jeonju South Korea
| | - Jung‐ho Youm
- Department of Preventive Medicine Jeonbuk National University Medical School Jeonju South Korea
| | - Suhn Young Im
- Department of Biological Sciences College of Natural Sciences Chonnam National University Gwangju South Korea
| | - Myung Kwan Han
- Department of Microbiology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| | - Hern Ku Lee
- Department of Immunology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| |
Collapse
|
19
|
Effect of Shenling Baizhu San on Intestinal Flora in a Rat Model of Ulcerative Colitis with Spleen Deficiency and Dampness. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9985147. [PMID: 35190749 PMCID: PMC8858063 DOI: 10.1155/2022/9985147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/06/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Shenling Baizhu San (SLBZS) is reported as an effective drug for ulcerative colitis (UC); however, its effect on intestinal flora remains unknown. In this study, we investigated the effect of SLBZS on intestinal flora in a rat model of UC with spleen deficiency and dampness. METHODS UC was induced in rats using 2,4,6-trinitrobenzene sulfonic acid on the basis of a model of spleen deficiency and dampness. The 16S rDNA sequencing was used to detect structural changes in the intestinal flora; the phylogenetic investigation of communities by reconstruction of unobserved state (PICRUSt) analysis was used to predict the altered pathways. RESULTS Compared with the model group, rats in the SLBZS group exhibited decreased levels of TNF-α(P < 0.05), and increased abundance and diversity of the intestinal flora. The abundance of Actinobacteria (P < 0.001) and Bacteroides (P < 0.01) increased and that of Firmicutes decreased (P < 0.001), and the abundance of Bifidobacterium(P < 0.05) and Allobaculum increased. PICRUSt analysis showed that the altered pathways between the groups were those of fatty acid and antibiotic biosynthesis, amino acid metabolism, and the pentose phosphate pathway. CONCLUSIONS SLBZS can regulate the structure and function of the intestinal flora, alter expression levels of certain metabolic pathways, and has the potential to treat UC.
Collapse
|
20
|
Huang J, Liu J, Chang G, Wang Y, Ma N, Roy AC, Shen X. Glutamine Supplementation Attenuates the Inflammation Caused by LPS-Induced Acute Lung Injury in Mice by Regulating the TLR4/MAPK Signaling Pathway. Inflammation 2021; 44:2180-2192. [PMID: 34160729 DOI: 10.1007/s10753-021-01491-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
Bacterial infection is one of the main causes of bovine respiratory disease (BRD), which can cause tremendous losses for the herd farming industry worldwide. L-Glutamine (GLN), a neutral amino acid, has been reported to have anti-inflammatory properties. This study aims to explore the potential protective effects and mechanisms of GLN on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. Forty ICR mice were randomly divided into four groups (n = 10): a PBS intratracheal instillation group, a LPS intratracheal instillation group, a GLN gavage group, and a LPS+GLN group (GLN was given 1 h before the LPS stimulation). Twelve hours after LPS administration, the lung tissue and blood were collected. The results showed that the concentrations of IL-6, IL-8, and IL-1β; the protein abundance of the toll-like receptor 4 (TLR4), phosphorylated p38 (p-p38), phosphorylated ERK1/2 (p-ERK1/2), and phosphorylated JNK (p-JNK); and the expression level of genes associated with inflammation, such as IL-1β, IL-8, TNF-α, IL-6, TLR4, p38, ERK1/2, and JNK, were significantly increased in the LPS group compared with those in the PBS group. However, these increases were attenuated by GLN pretreatment in the LPS+GLN group. Furthermore, the pathological change of the structure of lung tissue from the LPS group was obvious compared to that from the PBS group; however, with GLN administration, these pathological changes were alleviated. Additionally, the secretion level of mucus and the percentage of positive MUC5AC staining on the epithelial surface area of the airway increased dramatically in the LPS group; however, GLN pretreatment in the LPS+GLN group markedly decreased these phenomena compared with that of the LPS group. These results indicate that GLN supplementation ameliorates LPS-induced ALI in mice and this effect may be mediated by the TLR4/MAPK signaling pathway.
Collapse
Affiliation(s)
- Jie Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jing Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Animesh Chadra Roy
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
21
|
Anti-inflammatory activities of the mixture of strawberry and rice powder as materials of fermented rice cake on RAW264.7 macrophage cells and mouse models. Food Sci Biotechnol 2021; 30:1409-1416. [PMID: 34790424 DOI: 10.1007/s10068-021-00929-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Rice cake is a traditional food in Korea, and is made by rice alone, or with other grain powder. To improve the health benefits of fermented rice cake, the rice powder was supplemented with strawberry powder. Anti-inflammatory activities of the mixture of strawberry and rice powder were evaluated. Treatment with the mixture significantly decreased the production of nitric oxide (NO). The mixture of strawberry and rice powder in the ratio 10: 90 effectively and dose-dependently reduced the immune-associated genes iNOS, IL-1β, IL-6, COX-2, and TNF-α. Furthermore, carrageenan-injected mice were used to study the anti-inflammatory effect of the mixture. Pre-oral administration of the mixture of strawberry and rice powder at doses of 50 and 100 mg/kg BW significantly reduced paw edema induced by carrageenan. These results suggest that for fermented rice cake production and processing, the strawberry and rice powder mixture may be a potential source of anti-inflammatory activity.
Collapse
|
22
|
Alleviation of Androgenetic Alopecia with Aqueous Paeonia lactiflora and Poria cocos Extract Intake through Suppressing the Steroid Hormone and Inflammatory Pathway. Pharmaceuticals (Basel) 2021; 14:ph14111128. [PMID: 34832910 PMCID: PMC8621879 DOI: 10.3390/ph14111128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 01/28/2023] Open
Abstract
Paeonia lactiflora Pallas (PL) and Poria cocos Wolf (PC) have been traditionally used to treat inflammatory diseases reported in Dongui Bogam and Shen Nong Ben Cao Jing, traditional medical books in Korean and China, respectively. We determined the efficacies and the molecular mechanisms of PL, PC, and PL + PC aqueous extracts on androgenetic alopecia (AGA) induced by testosterone propionate in C57BL/6 mice. The molecular mechanisms of PL and PC in AGA treatment were examined using experimental assays and network pharmacology. The AGA model was generated by topically applying 0.5% testosterone propionate in 70% ethanol solution to the backs of mice daily for 28 days while the normal-control (Normal-Con; no AGA induction) mice applied 70% ethanol. The 0.1% PL (AGA-PL), 0.1% PC (AGA-PC), 0.05% PL + 0.05% PC (AGA-MIX), and 0.1% cellulose (AGA-Con; control) were supplemented in a high-fat diet for 28 days in AGA-induced mice. Positive-control (AGA-Positive) were administered 2% finasteride daily on the backs of the AGA mice. Hair growth rates decreased in the order of AGA-PL, AGA-MIX, AGA-PC, AGA-Positive, and AGA-Con after 21 days of treatment (ED21). On ED28, skins were completely covered with hair in the AGA-PL and AGA-MIX groups. Serum testosterone concentrations were lower in the AGA-PL group than in the AGA-Con group and similar to concentrations in the Normal-Con group, whereas serum 17β-estradiol concentrations showed the opposite pattern with increasing aromatase mRNA expression (p < 0.05). In the dorsal skin, DKK1 and NR3C2 mRNA expressions were significantly lower, but TGF-β2, β-Catenin, and PPARG expressions were higher in the AGA-PL and AGA-PC groups than in the AGA-Con group (p < 0.05), whereas TNF-α and IL-6 mRNA expressions were lower in the AGA-PL, AGA-MIX, and Normal-Con groups than in the AGA-Con group (p < 0.05). The phosphorylation of Akt and GSK-3β in the dorsal skin was lower in AGA-Con than normal-Con, and PL and MIX ingestion suppressed their decrease similar to the Normal-Con. In conclusion, PL or PL + PC intake had beneficial effects on hair growth similar to Normal-Con. The promotion was related to lower serum testosterone concentrations and pro-inflammatory cytokine levels, and inhibition of the steroid hormone pathway, consistent with network pharmacology analysis findings.
Collapse
|
23
|
Park S, Yuan H, Zhang T, Wu X, Huang SK, Cho SM. Long-term silk peptide intake promotes skeletal muscle mass, reduces inflammation, and modulates gut microbiota in middle-aged female rats. Biomed Pharmacother 2021; 137:111415. [PMID: 33761619 DOI: 10.1016/j.biopha.2021.111415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Abstract
Aging alters body composition to induce sarcopenia, particularly in women, but the mechanism remains unclear. We hypothesized that silk peptide(SP) intake could prevent an age-related decrease in muscle mass and strength in middle-aged female rats and explored the action mechanism. After the acute intake of SP and defatted soybean peptides, serum concentrations of amino acids were measured in ten middle-aged rats in each group. Forty 12-month-old female Sprague-Dawley rats were fed a high-fat and high-carbohydrate diet for 12 weeks including 0.5 g casein/kg body weight(BW)/day(Aged), 0.15 g SP plus 0.35 g casein/kg BW/day(Low-SP), 0.5 g SP/kg BW/day(High-SP), or 40 mg metformin plus 0.5 g casein/kg BW/day(Metformin). Ten rats aged 7-week old(Young) had the same treatment as the Aged-group. The body composition, grip strength, glucose metabolism, intestinal tissue morphology, and gut microbiota were also determined. After an acute consumption, total amino acids were more quickly absorbed and maintained at higher levels in SP than soybean peptides. Lean body mass(LBM) and grip strength were lower in the Aged-group than the Young and Low-SP groups, and the High-SP regimen increased these parameters as much as the Young-group. Serum concentrations and mRNA expression of TNF-α in the gastrocnemius and quadriceps muscles were higher in the Aged-group than the Young-group, whereas SP intake reduced their serum levels and skeletal muscles. Glucose and insulin tolerance indicated that insulin resistance was elevated in the Aged-group compared to the Young-group, while Low-SP and High-SP alleviated them as much as the Young-group. High-SP increased serum propionate and butyrate concentrations compared to the Aged-group. SP intake increased the relative abundance of Bacteroides and Prevotella and decreased Blautia and Clostridium in the feces. In conclusion, SP intake protects against a decrease in lean body mass and grip strength in middle-aged female rats. The protection was partly related to maintaining higher serum concentrations of total amino acids after SP consumption and decreasing inflammation and insulin resistance through gut microbiota modulation.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; Department of Bio-Convergence System, Hoseo University, Asan 31499, Republic of Korea.
| | - Heng Yuan
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Republic of Korea
| | - Ting Zhang
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Republic of Korea
| | - Xuangao Wu
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Republic of Korea
| | - Shao Kai Huang
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Republic of Korea
| | - Song Mee Cho
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
24
|
Severo JS, da Silva Barros VJ, Alves da Silva AC, Luz Parente JM, Lima MM, Moreira Lima AÂ, Dos Santos AA, Matos Neto EM, Tolentino Bento da Silva M. Effects of glutamine supplementation on inflammatory bowel disease: A systematic review of clinical trials. Clin Nutr ESPEN 2021; 42:53-60. [PMID: 33745622 DOI: 10.1016/j.clnesp.2020.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 01/16/2023]
Abstract
CONTEXT Glutamine supplementation has been applied clinical practice to treat inflammatory bowel disease (IBD). However, scientific evidence about this is still controversial. OBJECTIVE In this review, we systematically evaluated the effects of glutamine supplementation on IBD, based on evidence from randomized clinical trials. DATA SOURCE This review was conducted in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We used the PubMed and SciVerse Scopus databases. The Cochrane collaboration tool was used to assess the risk of bias in clinical trials. DATA EXTRACTION The review was carried out by two independent researchers according to the established inclusion criteria. The PICO (patient, intervention, comparison, and outcomes) strategy was used, with the descriptors: "glutamine," "supplementation," "inflammatory bowel diseases," "Crohn's disease," and "ulcerative colitis". DATA SYNTHESIS Seven research articles were selected for this systematic review. In these studies, glutamine was administered to the participants through oral (21-30g or 0.5g per kg of participant's body weight), enteral (7.87g-8.3 g/100g of the enteral formula), and/or parenteral (0.3 g/kg of the participant's body weight) routes. No changes in anthropometry or biochemical parameters were observed. However, in one study reduced intestinal permeability and morphometry were reported. In two other studies, a slight effect of glutamine on inflammation and oxidative stress was observed. Additionally, two other studies reported an effect of glutamine supplementation on disease activity. CONCLUSIONS The findings obtained through this systematic review indicate that glutamine supplementation has no effect on disease course, anthropometric measurements, intestinal permeability and morphology, disease activity, intestinal symptoms, biochemical parameters, oxidative stress and inflammation markers in patients with IBD, regardless of the route of administration, either treated at a hospital or as outpatients.
Collapse
Affiliation(s)
- Juliana Soares Severo
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | | | - Murilo Moura Lima
- University Hospital, Federal University of Piauí, Teresina, PI, Brazil
| | - Aldo Ângelo Moreira Lima
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Moisés Tolentino Bento da Silva
- Graduate Program in Food and Nutrition, Graduate Program in Pharmacology, Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
25
|
de Oliveira Santos R, da Silva Cardoso G, da Costa Lima L, de Sousa Cavalcante ML, Silva MS, Cavalcante AKM, Severo JS, de Melo Sousa FB, Pacheco G, Alves EHP, Nobre LMS, Medeiros JVR, Lima-Junior RC, Dos Santos AA, Tolentino M. L-Glutamine and Physical Exercise Prevent Intestinal Inflammation and Oxidative Stress Without Improving Gastric Dysmotility in Rats with Ulcerative Colitis. Inflammation 2020; 44:617-632. [PMID: 33128666 DOI: 10.1007/s10753-020-01361-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate the effects of glutamine supplementation or exercise on gastric emptying and intestinal inflammation in rats with ulcerative colitis (UC). Strength exercise consisted of jump training 4 × 10 repetitions/5 days a week/8 weeks with progressive overload. Endurance exercise consisted of swimming without overload for a period of 1 h a day/5 days a week/8 weeks. Another group (sedentary) of animals was supplemented with L-glutamine (1 g/kg of body weight) orally for 8 weeks before induction of UC. Colitis was induced by intra-colonic administration of 1 mL of 4% acetic acid. We assessed gastric emptying, macroscopic and microscopic scoring, oxidative stress markers, and IL-1β, IL-6, and (TNF-α) levels. The UC significantly increased (p < 0.05) the gastric emptying compared with the saline control group. We observed a significantly decrease (p < 0.05) in body weight gain in UC rats compared with the control groups. Both exercise interventions and L-glutamine supplementation significantly prevented (p < 0.05) weight loss compared with the UC group. Strength and endurance exercises significantly prevented (p < 0.05) the increase of microscopic scores and oxidative stress (p < 0.05). L-glutamine supplementation in UC rats prevented hemorrhagic damage and improved oxidative stress markers (p < 0.05). Strength and endurance exercises and glutamine decreased the concentrations of inflammatory cytokines IL-1β, IL-6, and TNF-α compared with the UC group (p < 0.05). Strength and endurance exercises and L-glutamine supplementation prevented intestinal inflammation and improved cytokines and oxidative stress levels without altering gastric dysmotility in rats with UC.
Collapse
Affiliation(s)
| | - Geovane da Silva Cardoso
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Center for Health Sciences, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Lara da Costa Lima
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Center for Health Sciences, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | | | - Mariana Sousa Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Juliana Soares Severo
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Gabriella Pacheco
- Graduate Program in Biotechnology, Federal University of Piauí, Parnaiba, PI, Brazil
| | | | - Lívia Maria Soares Nobre
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Roberto Cesar Lima-Junior
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Moisés Tolentino
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil. .,Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Center for Health Sciences, Federal University of Piauí, Teresina, PI, 64049-550, Brazil. .,Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
26
|
Chen L, Collij V, Jaeger M, van den Munckhof ICL, Vich Vila A, Kurilshikov A, Gacesa R, Sinha T, Oosting M, Joosten LAB, Rutten JHW, Riksen NP, Xavier RJ, Kuipers F, Wijmenga C, Zhernakova A, Netea MG, Weersma RK, Fu J. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat Commun 2020; 11:4018. [PMID: 32782301 PMCID: PMC7419557 DOI: 10.1038/s41467-020-17840-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome is an ecosystem that involves complex interactions. Currently, our knowledge about the role of the gut microbiome in health and disease relies mainly on differential microbial abundance, and little is known about the role of microbial interactions in the context of human disease. Here, we construct and compare microbial co-abundance networks using 2,379 metagenomes from four human cohorts: an inflammatory bowel disease (IBD) cohort, an obese cohort and two population-based cohorts. We find that the strengths of 38.6% of species co-abundances and 64.3% of pathway co-abundances vary significantly between cohorts, with 113 species and 1,050 pathway co-abundances showing IBD-specific effects and 281 pathway co-abundances showing obesity-specific effects. We can also replicate these IBD microbial co-abundances in longitudinal data from the IBD cohort of the integrative human microbiome (iHMP-IBD) project. Our study identifies several key species and pathways in IBD and obesity and provides evidence that altered microbial abundances in disease can influence their co-abundance relationship, which expands our current knowledge regarding microbial dysbiosis in disease.
Collapse
Affiliation(s)
- Lianmin Chen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Valerie Collij
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Inge C L van den Munckhof
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Joost H W Rutten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ramnik J Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- University of Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
27
|
Zhang T, Qiu J, Wu X, Huang S, Yuan H, Park S. Schizonepeta Tenuifolia with Alpinia Oxyphylla Alleviates Atopic Dermatitis and Improves the Gut Microbiome in Nc/Nga Mice. Pharmaceutics 2020; 12:E722. [PMID: 32751987 PMCID: PMC7465453 DOI: 10.3390/pharmaceutics12080722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that may be related to gut microbes. Schizonepeta Tenuifolia Briquet (STB) and Alpinia Oxyphylla Miquel (AOM) has traditionally been used for anti-inflammatory activity. We evaluated the effects of STB, AOM and STB+AOM extracts on 2,4-dinitro-1-chlorobenzene (DNCB)-induced AD skin lesions in Nc/Nga mice and action mechanism was explored. AD lesions were induced in the dorsal skin of Nc/Nga mice by topical application of 1% followed by 0.2% DNCB. After DNCB was applied, the mice had topical applications of either 30% water, 0.01% dexamethasone, 30% STB, 30% AOM, 15% STB + 15% AOM extracts in butylene glycol (BG). Each group was also fed corresponding high-fat diets with 1% dextrin (AD-Con and AD-Positive), 1% STB (AD-STB), 1% AOM (AD-AOM) and 0.5% STB + 0.5% (AD-MIX). Normal-control mice had no DNCB application. The study evaluated the skin AD severity, scratching behavior and weight changes of AD mice for 5 weeks. Compared with AD-Con, AD-STB, AD-AOM and AD-MIX alleviated the clinical AD symptoms (erythema, pruritus, edema, erosion and lichenification and scratching behaviors), normalized immune chemistry (serum IgE concentration, mast cells and eosinophil infiltration), improved skin hyperplasia and enhanced the gut microbiome. AD-STB, AD-AOM, AD-MIX and AD-positive treatments inhibited cutaneous mRNA expression of TNF-α, IL-4 and IL-13 and serum IgE concentrations. AD-MIX most effectively reduced clinical AD symptoms and proinflammatory cytokines. AD-Positive also reduced them but serum GOT and GPT concentrations were abnormally high. AD-STB and AD-MIX increased the alpha-diversity of fecal bacteria and reduced the serum acetate concentration, compared to the AD-Con. In conclusion, the mixture of STB and AOM is effective for treating AD symptoms locally and systemically without adverse effects and are potential interventions for atopic dermatitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea; (T.Z.); (J.Q.); (X.W.); (S.H.); (H.Y.)
| |
Collapse
|
28
|
Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc 2020; 4:bvz039. [PMID: 32099951 PMCID: PMC7033038 DOI: 10.1210/jendso/bvz039] [Citation(s) in RCA: 345] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
The intestinal barrier is complex and consists of multiple layers, and it provides a physical and functional barrier to the transport of luminal contents to systemic circulation. While the epithelial cell layer and the outer/inner mucin layer constitute the physical barrier and are often referred to as the intestinal barrier, intestinal alkaline phosphatase (IAP) produced by epithelial cells and antibacterial proteins secreted by Panneth cells represent the functional barrier. While antibacterial proteins play an important role in the host defense against gut microbes, IAP detoxifies bacterial endotoxin lipopolysaccharide (LPS) by catalyzing the dephosphorylation of the active/toxic Lipid A moiety, preventing local inflammation as well as the translocation of active LPS into systemic circulation. The causal relationship between circulating LPS levels and the development of multiple diseases underscores the importance of detailed examination of changes in the “layers” of the intestinal barrier associated with disease development and how this dysfunction can be attenuated by targeted interventions. To develop targeted therapies for improving intestinal barrier function, it is imperative to have a deeper understanding of the intestinal barrier itself, the mechanisms underlying the development of diseases due to barrier dysfunction (eg, high circulating LPS levels), the assessment of intestinal barrier function under diseased conditions, and of how individual layers of the intestinal barrier can be beneficially modulated to potentially attenuate the development of associated diseases. This review summarizes the current knowledge of the composition of the intestinal barrier and its assessment and modulation for the development of potential therapies for barrier dysfunction-associated diseases.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia
| | - Paul J Yannie
- Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia.,Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
29
|
Berberine regulates fecal metabolites to ameliorate 5-fluorouracil induced intestinal mucositis through modulating gut microbiota. Biomed Pharmacother 2020; 124:109829. [PMID: 31958765 DOI: 10.1016/j.biopha.2020.109829] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid, which has been used in the treatment of intestinal mucositis. However, BBR on chemotherapy-induced mucositis in cancer patients remains largely unknown. Here, we investigated the effect of BBR on intestinal mucositis induced by 5-fluorouracil (5-Fu) using rat model. We detected the degree of intestinal mucosal damage and inflammatory response in 5-Fu treated rats with or without BBR administration, and investigated the changes of fecal metabolites and gut microbiota using 1H NMR spectroscopy and 16S rRNA. The mechanism was further explored by fecal microbiota transplantation (FMT). Results showed that BBR treated rats displayed less weight loss, lower diarrhea score and longer colon length in 5-Fu treated rats. Meanwhile, BBR treatment significantly increased the expression of Occludin in ileum and decreased the d-lactate content in serum. Moreover, the expression of IL-1β, IL-6 and TNF-α in ileum were suppressed by BBR treatment. The pattern of fecal metabolism changed obviously after treated with 5-Fu, which was reversed by BBR. Importantly, BBR significantly increased the levels of butyrate and glutamine in feces from 5-Fu treated rats. In terms of gut microbiota, BBR enriched the relative abundance of Firmicutes and decreased Proteobacteria at the phylum level. Meanwhile, BBR increased the propotion of unclassified_f_ Porphyromonadaceae, unclassified_f_ Lachnospiraceae, Lactobacillus, unclassified_o_ Clostridiales, Ruminococcus, Prevotella, Clostridium IV, and decreased Escherichia/Shigella at the genera level. Furthermore, principal component analysis (PCA) showed that fecal transplantation led to changes in fecal metabolites. Fecal transplantation from BBR treated rats had low diarrhea score, reduced inflammatory response in ileum, and relieved intestinal mucosal injury, which may be caused by the increased of butyrate level in fecal metabolites. In conclusion, our study provides evidence that BBR regulates fecal metabolites to ameliorate 5-Fu induced intestinal mucositis by modifying gut microbiota.
Collapse
|
30
|
Zhou JY, Zhang SW, Lin HL, Gao CQ, Yan HC, Wang XQ. Hydrolyzed wheat gluten alleviates deoxynivalenol-induced intestinal injury by promoting intestinal stem cell proliferation and differentiation via upregulation of Wnt/β-catenin signaling in mice. Food Chem Toxicol 2019; 131:110579. [PMID: 31202940 DOI: 10.1016/j.fct.2019.110579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
Abstract
Disintegration of the intestine caused by deoxynivalenol (DON), which is a fungal metabolite found in cereal grain-based human and animal diets, triggers severe intestinal inflammatory disease. Hydrolyzed wheat gluten (HWG) can promote the development of intestine. Therefore, HWG was administered orally to male mice on 1-14 days, and DON was administered to them on 4-11 days. Feed, water intake and body weight were recorded all over the experimental period. Blood samples were collected then the mice were sacrificed to collect the jejunum for crypt isolation and culture. The intestinal morphology was observed by electron microscopy, and Western blotting was used to investigate intestinal stem cell (ISC) proliferation and differentiation, as well as the primary regulatory mechanism of the Wnt/β-catenin signaling. The results showed that HWG increased the average daily gain and average daily water intake of mice under DON-induced injury conditions, and increased the jejunum weight, villous height in the jejunum, and promoted jejunal crypt cell expansion. The DON-induced decrease in Wnt/β-catenin activity, the expression of Ki67, PCNA and KRT20 were rescued by HWG in the jejunum, crypt and enteroid, as well as the number of goblet cells and Paneth cells. Furthermore, HWG increased jejunum diamine oxidase (DAO) activity. In conclusion, HWG alleviates DON-induced intestinal injury by enhancing ISC proliferation and differentiation in a Wnt/β-catenin-dependent manner.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, 510642, China
| | - Sai-Wu Zhang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, 510642, China
| | - Hua-Lin Lin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
31
|
Hu X, Deng J, Yu T, Chen S, Ge Y, Zhou Z, Guo Y, Ying H, Zhai Q, Chen Y, Yuan F, Niu Y, Shu W, Chen H, Ma C, Liu Z, Guo F. ATF4 Deficiency Promotes Intestinal Inflammation in Mice by Reducing Uptake of Glutamine and Expression of Antimicrobial Peptides. Gastroenterology 2019; 156:1098-1111. [PMID: 30452920 DOI: 10.1053/j.gastro.2018.11.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Activating transcription factor 4 (ATF4) regulates genes involved in the inflammatory response, amino acid metabolism, autophagy, and endoplasmic reticulum stress. We investigated whether its activity is altered in patients with inflammatory bowel diseases (IBDs) and mice with enterocolitis. METHODS We obtained biopsy samples during endoscopy from inflamed and/or uninflamed regions of the colon from 21 patients with active Crohn's disease (CD), 22 patients with active ulcerative colitis (UC), and 38 control individuals without IBD and of the ileum from 19 patients with active CD and 8 individuals without IBD in China. Mice with disruption of Atf4 specifically in intestinal epithelial cells (Atf4ΔIEC mice) and Atf4-floxed mice (controls) were given dextran sodium sulfate (DSS) to induce colitis. Some mice were given injections of recombinant defensin α1 (DEFA1) and supplementation of l-alanyl-glutamine or glutamine in drinking water. Human and mouse ileal and colon tissues were analyzed by quantitative real-time polymerase chain reaction, immunoblots, and immunohistochemistry. Serum and intestinal epithelial cell (IEC) amino acids were measured by high-performance liquid chromatography-tandem mass spectrometry. Levels of ATF4 were knocked down in IEC-18 cells with small interfering RNAs. Microbiomes were analyzed in ileal feces from mice by using 16S ribosomal DNA sequencing. RESULTS Levels of ATF4 were significantly decreased in inflamed intestinal mucosa from patients with active CD or active UC compared with those from uninflamed regions or intestinal mucosa from control individuals. ATF4 was also decreased in colonic epithelia from mice with colitis vs mice without colitis. Atf4ΔIEC mice developed spontaneous enterocolitis and colitis of greater severity than control mice after administration of DSS. Atf4ΔIEC mice had decreased serum levels of glutamine and reduced levels of antimicrobial peptides, such as Defa1, Defa4, Defa5, Camp, and Lyz1, in ileal Paneth cells. Atf4ΔIEC mice had alterations in ileal microbiomes compared with control mice; these changes were reversed by administration of glutamine. Injections of DEFA1 reduced the severity of spontaneous enteritis and DSS-induced colitis in Atf4ΔIEC mice. We found that expression of solute carrier family 1 member 5 (SLC1A5), a glutamine transporter, was directly regulated by ATF4 in cell lines. Overexpression of SLC1A5 in IEC-18 or primary IEC cells increased glutamine uptake and expression of antimicrobial peptides. Knockdown of ATF4 in IEC-18 cells increased expression of inflammatory cytokines, whereas overexpression of SLC1A5 in the knockdown cells reduced cytokine expression. Levels of SLC1A5 were decreased in inflamed intestinal mucosa of patients with CD and UC and correlated with levels of ATF4. CONCLUSIONS Levels of ATF4 are decreased in inflamed intestinal mucosa from patients with active CD or UC. In mice, ATF4 deficiency reduces glutamine uptake by intestinal epithelial cells and expression of antimicrobial peptides by decreasing transcription of Slc1a5. ATF4 might therefore be a target for the treatment of IBD.
Collapse
Affiliation(s)
- Xiaoming Hu
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shanghai Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yadong Ge
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ziheng Zhou
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajie Guo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Ying
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuguo Niu
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weigang Shu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Huimin Chen
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Caiyun Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Feifan Guo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
32
|
Exogenous glutamine impairs neutrophils migration into infections sites elicited by lipopolysaccharide by a multistep mechanism. Amino Acids 2018; 51:451-462. [PMID: 30449005 DOI: 10.1007/s00726-018-2679-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022]
Abstract
Glutamine (GLN) is the most abundant free amino acid in the body, and is considered as a conditionally essential amino acid under stress conditions, acting as an important modulator of the immune response. We here investigated the role of exogenous GLN treatment on leukocyte migration after the onset of endotoxemia and the intracellular mechanisms of GLN actions on neutrophils. Two in vivo models of endotoxemia caused by lipopolysaccharide of Escherichia coli (LPS) injection were carried out in male outbred Balb/C mice 2-3 months old, as follow: (1) LPS (50 μg/kg) was intravenously injected 1 h prior to intravenous injection of GLN (0.75 mg/kg) and samples were collected 2 h later to investigate the role of GLN on the acute lung inflammation; (2) LPS (1 mg/kg) was intraperitoneally injected 1 h prior to intravenous injection of GLN (0.75 mg/kg) and samples were collected 18 h later to measure the effects of GLN on local and later phases of inflammation in the peritoneum. Results showed that GLN administration reduced the number of neutrophils in the inflamed lungs, partially recovery of the reduced number of leukocytes in the blood; reduced adhesion molecules on lung endothelium and on circulating neutrophils. Moreover, GLN treatment diminished the number of neutrophils, levels of chemotactic cytokine CXCL2 in the inflamed peritoneum, and neutrophils collected from the peritoneum of GLN-treated mice presented lower levels of Rho, Rac, and JNK. Together, our data show novel mechanisms involved in the actions of GLN on neutrophils migration.
Collapse
|
33
|
Long M, Yang S, Li P, Song X, Pan J, He J, Zhang Y, Wu R. Combined Use of C. butyricum Sx-01 and L. salivarius C-1-3 Improves Intestinal Health and Reduces the Amount of Lipids in Serum via Modulation of Gut Microbiota in Mice. Nutrients 2018; 10:nu10070810. [PMID: 29937527 PMCID: PMC6073611 DOI: 10.3390/nu10070810] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023] Open
Abstract
The study was conducted to investigate whether combined use of C. butyricum Sx-01 and L. salivarius C-1-3 could improve the intestinal health and reduce the lipid levels in sera of mice and whether these benefits were related to regulating the intestinal microflora. Eighty Kunming male mice were divided into four groups with five replicates per group and four mice per replicate. Mice in the control group were administrated with 0.2 mL normal saline; mice in three experimental groups were daily orally administrated with 4 × 108 cfu of L. salivarius, 4 × 108 cfu of C. butyricum, and a combination thereof (2 × 108 cfu of L. salivarius, and 2 × 108 cfu of C. butyricum), respectively. The experiment lasted for 14 days. The results showed that the average daily feed intake (ADFI) and feed/gain (F/G) ratio of growing mice underwent no significant changes (p > 0.05); however, the average daily gain (ADG) tended to increase over short periods of time. The activities of SOD and GSH-Px in serum in the combination group were significantly increased (p < 0.05); The triglyceride, and total cholesterol, contents in serum in the combined treatment group were significantly decreased (p < 0.05); The total volatile fatty acids and butyric acid in faecal matter of mice in the experimental groups were all significantly increased at 14 days (p < 0.05); The length of villi, and the mucosal thickness of colon and caecum (p < 0.05) were significantly improved; The relative abundance of some bacteria with antioxidant capacity or decomposing cholesterol capacity or butyrate producing capacity was increased, while the relative abundance of some pathogenic bacteria was decreased in the colon. Furthermore, our results showed that the beneficial effects of the combined use of the two strains was higher than that of single use. Overall, the results demonstrated that the combined use of C. butyricum Sx-01 and L. salivarius C-1-3 can significantly improve intestinal health and reduce the amount of lipids in sera of mice. The reason for these effects might be that besides their own probiotic effects, combined use of the two strains could regulate the intestinal microflora.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xin Song
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|