1
|
Yu D, Yuan J, Ou C, Chen Q, Li H, Hao C, Zheng J, Liu S, Li M, Cheng D. Bidirectional amplification of oxidative stress via mitochondria-targeted Co-Delivery of nanogolds and chlorin e6 Using ROS-responsive organosilica nanocarriers. Acta Biomater 2025:S1742-7061(25)00071-6. [PMID: 39900273 DOI: 10.1016/j.actbio.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/29/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Bidirectional amplification of oxidative stress within the mitochondria is essential to enhance photodynamic therapy (PDT), and efficient co-delivery of reducing agents and reactive oxygen species (ROS)-generating agents is critical for achieving this with minimal side effects. However, the absence of an effective platform for mitochondria-targeted co-delivery and spatially controlled tumor-specific therapy limits the potential applicability of this strategy. In this study, we developed an ROS-sensitive organosilica nanocarrier, encapsulating nanogold and introducing chlorin e6 (Ce6) and triphenylphosphine (TPP) through a one-pot sol-gel process. Following TPP-mediated mitochondria-targeted delivery, ROS generated by Ce6 under near-infrared (NIR) irradiation not only damaged the mitochondria but also disrupted the nanoparticles within the tumor, leading to the release of nanogold. These ultra-small nanogolds, due to their high surface area, exhibited enhanced glutathione scavenging capacity, which, in combination with ROS, synergistically amplified oxidative stress to overcome the high resistance of tumor cells. Both in vitro and in vivo experiments confirmed the effectiveness of this strategy, demonstrating efficient co-delivery, controlled drug release, spatially targeted oxidative stress amplification, and synergistic antitumor effects. Thus, we present a facile platform for the spatially controlled bidirectional amplification of oxidative stress with minimal side effects. STATEMENT OF SIGNIFICANCE: Mitochondrial oxidative stress involves both ROS generation and GSH depletion, indicating that bidirectional amplification is required for mitochondria-targeted antitumor therapy. However, most of existing strategies just focus on ROS generation, which limits the amplification level of oxidative stress. Thus, the mitochondria-targeted co-delivery of photodynamic agent and GSH scavenging agent is an effective approach to address this limitation. Besides, the lack of facile nanoplatform also hinders the application of strategies aimed at bidirectionally amplifying oxidative stress. In this study, we developed a facile nanoplatform for mitochondria-targeted co-delivery of the photodynamic agent Chlorin e6 and GSH scavenging agent nanogold using a ROS-responsive organosilica nanocarrier. This approach successfully achieved bidirectional amplification of oxidative stress, resulting in a synergistic antitumor effect with minimal side effects.
Collapse
Affiliation(s)
- Dongsheng Yu
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Yuedong Hospital, Meizhou 514700, PR China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jianming Yuan
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chiyi Ou
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qinghua Chen
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Haowen Li
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chenhui Hao
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiaojiao Zheng
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shuang Liu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mingqiang Li
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Yuedong Hospital, Meizhou 514700, PR China.
| | - Du Cheng
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Chen G, Wang Y, Liu X, Liu F. Enhancing the effects of curcumin on oxidative stress injury in brain vascular endothelial cells using lactoferrin peptide nano-micelles: antioxidant activity and mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:372-381. [PMID: 39210730 DOI: 10.1002/jsfa.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Curcumin is widely known for its antioxidant and anti-inflammatory properties, but its mechanism of action in mitigating oxidative stress injury in brain vascular endothelial cells remains unclear. Due to the poor bioavailability of curcumin, it is challenging to achieve effective concentrations at the target sites. Nano-micelles are known for their ability to improve the solubility, stability, and bioavailability of hydrophobic compounds like curcumin. This study investigated the effects and mechanisms of free curcumin and curcumin embedded in nano-micelles (M(Cur)) on oxidative stress-induced injury in bEnd.3 cells. RESULTS At a protective concentration of 10 μg mL-1, micellar curcumin was better able to recover the morphology of bEnd.3 cells under oxidative stress while increasing cell viability, restoring mitochondrial membrane electrical potential, and effectively inhibiting reactive oxygen species generation with a positive cell rate of 2.21%. These results indicate that curcumin significantly improves H2O2-induced oxidative stress damage in endothelial cells by maintaining the cellular antioxidant balance. CONCLUSION This study adds to knowledge regarding the role of nano-micelles in curcumin intervention for endothelial cell oxidative damage and provides insights for the development of curcumin-based dietary supplements. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guipan Chen
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yiyang Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Di Pietrantonio D, Pace Palitti V, Cichelli A, Tacconelli S. Protective Effect of Caffeine and Chlorogenic Acids of Coffee in Liver Disease. Foods 2024; 13:2280. [PMID: 39063364 PMCID: PMC11276147 DOI: 10.3390/foods13142280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coffee is one of the most widely consumed beverages in the world due to its unique aroma and psychostimulant effects, mainly due to the presence of caffeine. In recent years, experimental evidence has shown that the moderate consumption of coffee (3/4 cups per day) is safe and beneficial to human health, revealing protective effects against numerous chronic metabolic diseases such as diabetes, cardiovascular, neurodegenerative, and hepatic diseases. This review focuses on two of coffee's main bioactive compounds, i.e., caffeine and chlorogenic acids, and their effects on the progression of chronic liver diseases, demonstrating that regular coffee consumption correlates with a lower risk of the development and progression of non-alcoholic steatohepatitis, viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. In particular, this review analyzes caffeine and chlorogenic acid from a pharmacological point of view and explores the molecular mechanism through which these compounds are responsible for the protective role of coffee. Both bioactive compounds, therefore, have antifibrotic effects on hepatic stellate cells and hepatocytes, induce a decrease in connective tissue growth factor, stimulate increased apoptosis with anti-cancer effects, and promote a major inhibition of focal adhesion kinase, actin, and protocollagen synthesis. In conclusion, coffee shows many beneficial effects, and experimental data in favor of coffee consumption in patients with liver diseases are encouraging, but further prospective studies are needed to demonstrate its preventive and therapeutic role in chronic liver diseases.
Collapse
Affiliation(s)
- Daniela Di Pietrantonio
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Valeria Pace Palitti
- Internal Medicine and Hepatology Unit, Azienda Sanitaria Locale, Via R. Paolini 47, 65125 Pescara, Italy;
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
4
|
Direito R, Barbalho SM, Sepodes B, Figueira ME. Plant-Derived Bioactive Compounds: Exploring Neuroprotective, Metabolic, and Hepatoprotective Effects for Health Promotion and Disease Prevention. Pharmaceutics 2024; 16:577. [PMID: 38794239 PMCID: PMC11124874 DOI: 10.3390/pharmaceutics16050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing trend among consumers to seek out natural foods and products with natural ingredients. This shift in consumer preferences had a direct impact on both food and pharmaceutical industries, leading to a focus of scientific research and commercial efforts to meet these new demands. The aim of this work is to review recent available scientific data on foods of interest, such as the artichoke, gooseberry, and polygonoideae plants, as well as olive oil and red raspberries. Interestingly, the urgency of solutions to the climate change emergency has brought new attention to by-products of grapevine bunch stem and cane, which have been found to contain bioactive compounds with potential health benefits. There is a pressing need for a faster process of translating scientific knowledge from the laboratory to real-world applications, especially in the face of the increasing societal burden associated with non-communicable diseases (NCDs), environmental crises, the post-pandemic world, and ongoing violent conflicts around the world.
Collapse
Affiliation(s)
- Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Bruno Sepodes
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
5
|
Gaggini M, Fenizia S, Vassalle C. Sphingolipid Levels and Signaling via Resveratrol and Antioxidant Actions in Cardiometabolic Risk and Disease. Antioxidants (Basel) 2023; 12:antiox12051102. [PMID: 37237968 DOI: 10.3390/antiox12051102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Resveratrol (RSV) is a phenolic compound with strong antioxidant activity, which is generally associated with the beneficial effects of wine on human health. All resveratrol-mediated benefits exerted on different systems and pathophysiological conditions are possible through resveratrol's interactions with different biological targets, along with its involvement in several key cellular pathways affecting cardiometabolic (CM) health. With regard to its role in oxidative stress, RSV exerts its antioxidant activity not only as a free radical scavenger but also by increasing the activity of antioxidant enzymes and regulating redox genes, nitric oxide bioavailability and mitochondrial function. Moreover, several studies have demonstrated that some RSV effects are mediated by changes in sphingolipids, a class of biolipids involved in a number of cellular functions (e.g., apoptosis, cell proliferation, oxidative stress and inflammation) that have attracted interest as emerging critical determinants of CM risk and disease. Accordingly, this review aimed to discuss the available data regarding the effects of RSV on sphingolipid metabolism and signaling in CM risk and disease, focusing on oxidative stress/inflammatory-related aspects, and the clinical implications of this relationship.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Via Moruzzi 1, I-56124 Pisa, Italy
| | - Simona Fenizia
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Via Moruzzi 1, I-56124 Pisa, Italy
| | - Cristina Vassalle
- Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
6
|
Kim E, Jeon S. The Impact of Phytochemicals in Obesity-Related Metabolic Diseases: Focus on Ceramide Metabolism. Nutrients 2023; 15:703. [PMID: 36771408 PMCID: PMC9920427 DOI: 10.3390/nu15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
The prevalence of obesity and related metabolic diseases has increased dramatically worldwide. As obesity progresses, various lipid species accumulate in ectopic tissues. Amongst them, ceramides-a deleterious sphingolipid species-accumulate and cause lipotoxicity and metabolic disturbances. Dysregulated ceramide metabolism appears to be a key feature in the pathogenesis of obesity-related metabolic diseases. Notably, dietary modification might have an impact on modulating ceramide metabolism. Phytochemicals are plant-derived compounds with various physiological properties, which have been shown to protect against obesity-related metabolic diseases. In this review, we aim to examine the impact of a myriad of phytochemicals and their dietary sources in altering ceramide deposition and ceramide-related metabolism from in vitro, in vivo, and human clinical/epidemiological studies. This review discusses how numerous phytochemicals are able to alleviate ceramide-induced metabolic defects and reduce the risk of obesity-related metabolic diseases via diverse mechanisms.
Collapse
Affiliation(s)
| | - Sookyoung Jeon
- Department of Food Science and Nutrition and the Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
7
|
The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021680. [PMID: 36675194 PMCID: PMC9863215 DOI: 10.3390/ijms24021680] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.
Collapse
|
8
|
Gupta DS, Kaur G, Bhushan S, Sak K, Garg VK, Aggarwal D, Joshi H, Kumar P, Yerer MB, Tuli HS. Phyto nanomedicine for cancer therapy. NANOTECHNOLOGY IN HERBAL MEDICINE 2023:313-347. [DOI: 10.1016/b978-0-323-99527-6.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
9
|
Zhao M, Wei F, Sun G, Wen Y, Xiang J, Su F, Zhan L, Nian Q, Chen Y, Zeng J. Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review. Front Pharmacol 2022; 13:1004383. [PMID: 36438836 PMCID: PMC9684197 DOI: 10.3389/fphar.2022.1004383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 09/23/2023] Open
Abstract
Gastric cancer, a common malignant disease, seriously endangers human health and life. The high mortality rate due to gastric cancer can be attributed to a lack of effective therapeutic drugs. Cancer cells utilize the glycolytic pathway to produce energy even under aerobic conditions, commonly referred to as the Warburg effect, which is a characteristic of gastric cancer. The identification of new targets based on the glycolytic pathway for the treatment of gastric cancer is a viable option, and accumulating evidence has shown that phytochemicals have extensive anti-glycolytic properties. We reviewed the effects and mechanisms of action of phytochemicals on aerobic glycolysis in gastric cancer cells. Phytochemicals can effectively inhibit aerobic glycolysis in gastric cancer cells, suppress cell proliferation and migration, and promote apoptosis, via the PI3K/Akt, c-Myc, p53, and other signaling pathways. These pathways affect the expressions of HIF-1α, HK2, LDH, and other glycolysis-related proteins. This review further assesses the potential of using plant-derived compounds for the treatment of gastric cancer and sheds insight into the development of new drugs.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangwei Sun
- Department of Oncology, Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juyi Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Rocchetti G, Vitali M, Zappaterra M, Righetti L, Sirri R, Lucini L, Dall’Asta C, Davoli R, Galaverna G. A molecular insight into the lipid changes of pig Longissimus thoracis muscle following dietary supplementation with functional ingredients. PLoS One 2022; 17:e0264953. [PMID: 35324931 PMCID: PMC8947141 DOI: 10.1371/journal.pone.0264953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, the Longissimus thoracis pig skeletal muscle was used as a model to investigate the impact of two different diets, supplemented with n-3 polyunsaturated fatty acids from extruded linseed (L) and polyphenols from grape skin and oregano extracts (L+P), on the lipidomic profile of meat. A standard diet for growing-finishing pigs (CTRL) was used as a control. Changes in lipids profile were investigated through an untargeted lipidomics and transcriptomics combined investigation. The lipidomics identified 1507 compounds, with 195 compounds fitting with the MS/MS spectra of LipidBlast database. When compared with the CTRL group, the L+P diet significantly increased 15 glycerophospholipids and 8 sphingolipids, while the L diet determined a marked up-accumulation of glycerolipids. According to the correlations outlined between discriminant lipids and genes, the L diet may act preventing adipogenesis and the related inflammation processes, while the L+P diet promoted the expression of genes involved in lipids' biosynthesis and adipogenic extracellular matrix formation and functioning.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marika Vitali
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Laura Righetti
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Rubina Sirri
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Chiara Dall’Asta
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Roberta Davoli
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Gianni Galaverna
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| |
Collapse
|
11
|
Ersöz NŞ, Adan A. Differential in vitro anti-leukemic activity of resveratrol combined with serine palmitoyltransferase inhibitor myriocin in FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) carrying AML cells. Cytotechnology 2022; 74:271-281. [PMID: 35464162 PMCID: PMC8975961 DOI: 10.1007/s10616-022-00527-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/04/2022] [Indexed: 01/12/2023] Open
Abstract
Treatment of FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) AML is restricted due to toxicity, drug resistance and relapse eventhough targeted therapies are clinically available. Resveratrol with its multi-targeted nature is a promising chemopreventive remaining limitedly studied in FLT3-ITD AML regarding to ceramide metabolism. Here, its cytotoxic, cytostatic and apoptotic effects are investigated in combination with serine palmitoyltransferase (SPT), the first enzyme of de novo pathway of ceramide production, inhibitor myriocin on MOLM-13 and MV4-11 cells. We assessed dose-dependent cell viability, flow cytometric cell death and cell cycle profiles of resveratrol in combination with myriocin by MTT assay, annexin-V/PI staining and PI staining respectively. Resveratrol's dose-dependent effect on SPT protein expression was also checked by western blot. Resveratrol decreased cell viability in a dose- dependent manner whereas myriocin did not affect cell proliferation effectively in both cell lines after 48h treatments. Although resveratrol induced both apoptosis and a significant S phase arrest in MV4-11 cells, it triggered apoptosis and non-significant S phase accumulation in MOLM-13 cells. Co-administrations reduced cell viability. Increased cytotoxic effect of co-treatments was further proved mechanistically through induction of apoptosis via phosphatidylserine relocalization. The cell cycle alteration in co-treatment was significant with an S phase arrest in MV4-11 cells, however, it was not effective on cell cycle progression of MOLM-13 cells. Resveratrol also increased SPT expression. Overall, modulation of SPT together with resveratrol might be the possible explanation for resveratrol's action. It could be an integrative medicine for FLT3-ITD AML after investigating its detailed mechanism of action in relation to de novo pathway of ceramide production.
Collapse
Affiliation(s)
- Nur Şebnem Ersöz
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
12
|
Ersöz NŞ, Adan A. Resveratrol triggers anti-proliferative and apoptotic effects in FLT3-ITD-positive acute myeloid leukemia cells via inhibiting ceramide catabolism enzymes. Med Oncol 2022; 39:35. [DOI: 10.1007/s12032-021-01627-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
|
13
|
Oğuz O, Adan A. Involvement of Sphingolipid Metabolism Enzymes in Resveratrol-Mediated Cytotoxicity in Philadelphia-Positive Acute Lymphoblastic Leukemia. Nutr Cancer 2021; 74:2508-2521. [PMID: 34806508 DOI: 10.1080/01635581.2021.2005806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting the key enzymes of sphingolipid metabolism including serine palmitoyltransferase (SPT), sphingosine kinase (SK) and glucosylceramide synthase (GCS) has a therapeutic importance. However, sphingolipid metabolism-mediated anti-leukemic actions of resveratrol in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) remain unknown. Therefore, we explored potential mechanisms behind resveratrol-mediated cytotoxicity in SD1 and SUP-B15 Ph + ALL cells in the context of sphingolipid metabolism and apoptosis induction. The anti-proliferative and apoptotic effects of resveratrol alone and in combination with SPT inhibitor (myriocin), SK inhibitor (SKI II), GCS inhibitor (PDMP) were determined by MTT cell proliferation assay and flow cytometry, respectively. The effects of resveratrol on PARP cleavage, SPT, SK and GCS protein levels were investigated by Western blot. Resveratrol inhibited proliferation and triggered apoptosis via PARP activation and externalization of phosphatidylserine (PS). Resveratrol increased the expression of SPT whereas it downregulated SK and GCS. Resveratrol's combinations with SKI II and PDMP intensified its anti-leukemic activity by increasing the relocalization of PS while its combination with myriocin suppressed apoptosis. Therefore, resveratrol inhibited cell proliferation and induced apoptosis through modulating SK, GCS and SPT expression, which may be considered as novel biomarkers of resveratrol-induced cytotoxicity in Ph + ALL.
Collapse
Affiliation(s)
- Osman Oğuz
- Program of Bioengineering, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
14
|
Pop TD, Diaconeasa Z. Recent Advances in Phenolic Metabolites and Skin Cancer. Int J Mol Sci 2021; 22:9707. [PMID: 34575899 PMCID: PMC8471058 DOI: 10.3390/ijms22189707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Skin cancer represents any tumor development from the cutaneous structures within the epidermis, dermis or subcutaneous tissue, and is considered to be the most prevalent type of cancer. Compared to other types of cancer, skin cancer is proven to have a positive growth rate of prevalence and mortality. There are available various treatments, including chemotherapy, immunotherapy, radiotherapy and targeted therapy, but because of the multidrug resistance development, a low success has been registered. By this, the importance of studying naturally occurring compounds that are both safe and effective in the chemoprevention of skin cancer is emphasized. This review focuses on melanoma because it is the deadliest form of skin cancer, with a significantly increasing incidence in the last decades. As chemopreventive agents, we present polyphenols and their antioxidant activity, anti-inflammatory effect, their ability to balance the cell cycle and to induce apoptosis and their various other effects on skin melanoma. Besides chemoprevention, studies suggest that polyphenols can have treating abilities in some conditions. The limitations of using polyphenols are also pointed out, which are related to their poor bioavailability and stability, but as the technology is well developed, it is possible to augment the efficacy of polyphenols in the case of melanoma.
Collapse
Affiliation(s)
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
15
|
Di Santo MC, D' Antoni CL, Domínguez Rubio AP, Alaimo A, Pérez OE. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications - A review. Biomed Pharmacother 2021; 142:111970. [PMID: 34333289 DOI: 10.1016/j.biopha.2021.111970] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Plant-based polyphenols are natural compounds, present in fruits and vegetables. During recent years, polyphenols have gained special attention due to their nutraceutical and pharmacological activities for the prevention and treatment of human diseases. Nevertheless, their photosensitivity and low bioavailability, rapid metabolism and short biological half-life represent the major limitations for their use, which could be overcome by polyphenols encapsulation (flavonoids and non-flavonoids) into chitosan (CS)-tripolyphosphate (TPP) based nanoparticles (NP). In this review, we particularly focused on the ionic gelation method for the NP design. This contribution exhaustively discusses and compares results of scientific reports published in the last decade referring to ionic gelation applied for the protection, controlled and site-directed delivery of polyphenols. As a consequence, CS-TPP NP would constitute true platforms to transport polyphenols, or a combination of them, to be used for the designing of a new generation of drugs or nutraceuticals.
Collapse
Affiliation(s)
- Mariana Carolina Di Santo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Cecilia Luciana D' Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Balakrishnan B, Liang Q, Fenix K, Tamang B, Hauben E, Ma L, Zhang W. Combining the Anticancer and Immunomodulatory Effects of Astragalus and Shiitake as an Integrated Therapeutic Approach. Nutrients 2021; 13:nu13082564. [PMID: 34444724 PMCID: PMC8401741 DOI: 10.3390/nu13082564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Astragalus root (Huang Qi) and Shiitake mushrooms (Lentinus edodes) are both considered medicinal foods and are frequently used in traditional Chinese medicine due to their anticancer and immunomodulating properties. Here, the scientific literatures describing evidence for the anticancer and immunogenic properties of Shiitake and Astragalus were reviewed. Based on our experimental data, the potential to develop medicinal food with combined bioactivities was assessed using Shiitake mushrooms grown over Astragalus beds in a proprietary manufacturing process, as a novel cancer prevention approach. Notably, our data suggest that this new manufacturing process can result in transfer and increased bioavailability of Astragalus polysaccharides with therapeutic potential into edible Shiitake. Further research efforts are required to validate the therapeutic potential of this new Hengshan Astragalus Shiitake medicinal food.
Collapse
Affiliation(s)
- Biju Balakrishnan
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
| | - Qi Liang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030600, China
| | - Kevin Fenix
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Bunu Tamang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
| | - Ehud Hauben
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- AusHealth Corporate Pty Ltd., Adelaide, SA 5032, Australia
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| |
Collapse
|
17
|
Gu Y, Chen Y, Jin R, Wang C, Wen C, Zhou Y. Protective effects of curcumin on laying hens fed soybean meal with heat-induced protein oxidation. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1913653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yunfeng Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Rui Jin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
18
|
Minerals, Essential Oils, and Biological Properties of Melissa officinalis L. PLANTS 2021; 10:plants10061066. [PMID: 34073337 PMCID: PMC8229312 DOI: 10.3390/plants10061066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/21/2021] [Indexed: 12/04/2022]
Abstract
This study describes the minerals elements, chemical composition, antioxidant and antimicrobial activities of Algerian Melissa officinalis plant. The essential oil (EO) was extracted by hydrodistillation (HD) using a Clevenger-type apparatus of dry leaves of M. officinalis and was analyzed by two techniques, gas chromatography coupled with flame ionization (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). Eighteen minerals comprising both macro- and microelements (As, Br, K, La, Na, Sb, Sm, Ba, Ca, Ce, Co, Cr, Cs, Fe, Rb, Sc, Th, and Zn) were determined using neutron activation analysis technique for the first time from Algerian Melissa officinalis plant. Seventy-eight compounds were identified in the essential oil, representing 94.090% of the total oil and the yields were 0.470%. The major component was geranial (45.060%). Other predominant components were neral (31.720%) and citronellal (6.420%). The essential oil presented high antimicrobial activity against microorganisms, mainly five human pathogenic bacteria, one yeast, Candida albicans, and two phytopathogenic fungi. The results can be used as a source of information for the pharmaceutical industry and medical research.
Collapse
|
19
|
Alaswad HA, Mahbub AA, Le Maitre CL, Jordan-Mahy N. Molecular Action of Polyphenols in Leukaemia and Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22063085. [PMID: 33802972 PMCID: PMC8002821 DOI: 10.3390/ijms22063085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Leukaemia is a malignant disease of the blood. Current treatments for leukaemia are associated with serious side-effects. Plant-derived polyphenols have been identified as potent anti-cancer agents and have been shown to work synergistically with standard chemotherapy agents in leukaemia cell lines. Polyphenols have multiple mechanisms of action and have been reported to decrease cell proliferation, arrest cell cycle and induce apoptosis via the activation of caspase (3, 8 and 9); the loss of mitochondrial membrane potential and the release of cytochrome c. Polyphenols have been shown to suppress activation of transcription factors, including NF-kB and STAT3. Furthermore, polyphenols have pro-oxidant properties, with increasing evidence that polyphenols inhibit the antioxidant activity of glutathione, causing oxidative DNA damage. Polyphenols also induce autophagy-driven cancer cell death and regulate multidrug resistance proteins, and thus may be able to reverse resistance to chemotherapy agents. This review examines the molecular mechanism of action of polyphenols and discusses their potential therapeutic targets. Here, we discuss the pharmacological properties of polyphenols, including their anti-inflammatory, antioxidant, anti-proliferative, and anti-tumour activities, and suggest that polyphenols are potent natural agents that can be useful therapeutically; and discuss why data on bioavailability, toxicity and metabolism are essential to evaluate their clinical use.
Collapse
Affiliation(s)
- Hamza A. Alaswad
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
| | - Amani A. Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia;
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
| | - Nicola Jordan-Mahy
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
- Correspondence: ; Tel.: +44-0114-225-3120
| |
Collapse
|
20
|
Mo F, Xiao Y, Zeng H, Fan D, Song J, Liu X, Luo M, Ma X. Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells. Front Cell Dev Biol 2021; 8:588299. [PMID: 33511113 PMCID: PMC7835540 DOI: 10.3389/fcell.2020.588299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Curcumin, one of the promising candidates for supplementary therapy in cancer treatment, has been demonstrated by numerous preclinical and clinical evidence to be beneficial in treating various cancers. Apart from the critical role in a deluge of pathological processes, some mRNAs, in particular, microRNAs (miRNAs), are also involved in the anti-tumor activity. Therefore, our research focused on the possible effects of curcumin on small cell lung cancer (SCLC) cells and drew a comprehensive transcriptomes profile by high throughput sequencing to understand the molecular mechanism of curcumin as an anti-tumor agent. METHODS First, we calculated the apoptosis rate of H446 cells (a human SCLC cell line) cultured with curcumin. The high output sequencing uncovered the altered expression profile of genes and miRNAs. KEGG analysis selected the potential signal pathway associated with the antiproliferative property of curcumin. Finally, miRNAs significantly changed, as well as the regulatory roles of those miRNAs in cell apoptosis were determined. RESULT The apoptosis rate of H446 cells increased under the elevated concentration of curcumin treatment. And cell cycle-related genes downregulated in the curcumin-treated cells. Besides, miRNA-548ah-5p of a high level acted as a negative role in the anticarcinogenic activity of curcumin. CONCLUSION Our findings not only enriched the understanding of anti-tumor activity initiated by curcumin through figuring out the downregulated cell cycle-related pathways but also shed light on its novel therapeutic application.
Collapse
Affiliation(s)
- Fei Mo
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinan Xiao
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dian Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinen Song
- Laboratory of Tumor Targeted and Immune Therapy, State Key Laboratory of Biotherapy, Clinical Research Center for Breast, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaobei Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Franck M, de Toro-Martín J, Garneau V, Guay V, Kearney M, Pilon G, Roy D, Couture P, Couillard C, Marette A, Vohl MC. Effects of Daily Raspberry Consumption on Immune-Metabolic Health in Subjects at Risk of Metabolic Syndrome: A Randomized Controlled Trial. Nutrients 2020; 12:E3858. [PMID: 33348685 PMCID: PMC7767072 DOI: 10.3390/nu12123858] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Consumption of red raspberries has been reported to exert acute beneficial effects on postprandial glycemia, insulinemia, triglyceridemia, and cytokine levels in metabolically disturbed subjects. In a two-arm parallel-group, randomized, controlled trial, 59 subjects with overweight or abdominal obesity and with slight hyperinsulinemia or hypertriglyceridemia were randomized to consume 280 g/day of frozen raspberries or to maintain their usual diet for 8 weeks. Primary analyses measured metabolic differences between the groups. Secondary analyses performed with omics tools in the intervention group assessed blood gene expression and plasma metabolomic changes following the raspberry supplementation. The intervention did not significantly affect plasma insulin, glucose, inflammatory marker concentrations, nor blood pressure. Following the supplementation, 43 genes were differentially expressed, and several functional pathways were enriched, a major portion of which were involved in the regulation of cytotoxicity, immune cell trafficking, protein signal transduction, and interleukin production. In addition, 10 serum metabolites were found significantly altered, among which β-alanine, trimethylamine N-oxide, and bioactive lipids. Although the supplementation had no meaningful metabolic effects, these results highlight the impact of a diet rich in raspberry on the immune function and phospholipid metabolism, thus providing novel insights into potential immune-metabolic pathways influenced by regular raspberry consumption.
Collapse
Affiliation(s)
- Maximilien Franck
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
- School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Juan de Toro-Martín
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
| | - Véronique Garneau
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
| | - Valérie Guay
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
| | - Michèle Kearney
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
| | - Geneviève Pilon
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
- Quebec Heart and Lung Institute (IUCPQ) Research Center, 2725 Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada
| | - Denis Roy
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
| | - Patrick Couture
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Charles Couillard
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
- School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - André Marette
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
- Quebec Heart and Lung Institute (IUCPQ) Research Center, 2725 Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada
| | - Marie-Claude Vohl
- Centre Nutrition, Santé et Société (NUTRISS) and Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (M.F.); (J.d.T.-M.); (V.G.); (V.G.); (M.K.); (G.P.); (D.R.); (P.C.); (C.C.); (A.M.)
- School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
22
|
Echeverri-Cuartas CE, Agudelo NA, Gartner C. Chitosan-PEG-folate-Fe(III) complexes as nanocarriers of epigallocatechin–3–gallate. Int J Biol Macromol 2020; 165:2909-2919. [DOI: 10.1016/j.ijbiomac.2020.10.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
|
23
|
Yamanashi Y, Takada T, Yamamoto H, Suzuki H. NPC1L1 Facilitates Sphingomyelin Absorption and Regulates Diet-Induced Production of VLDL/LDL-associated S1P. Nutrients 2020; 12:nu12092641. [PMID: 32872588 PMCID: PMC7551898 DOI: 10.3390/nu12092641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/22/2023] Open
Abstract
Niemann-Pick C1-Like 1 (NPC1L1) is a cholesterol importer and target of ezetimibe, a cholesterol absorption inhibitor used clinically for dyslipidemia. Recent studies demonstrated that NPC1L1 regulates the intestinal absorption of several fat-soluble nutrients, in addition to cholesterol. The study was conducted to reveal new physiological roles of NPC1L1 by identifying novel dietary substrate(s). Very low-density lipoprotein and low-density lipoprotein (VLDL/LDL) are increased in Western diet (WD)-fed mice in an NPC1L1-dependent manner, so we comprehensively analyzed the NPC1L1-dependent VLDL/LDL components. Apolipoprotein M (apoM), a binding protein of sphingosine-1-phosphate (S1P: a lipid mediator), and S1P were NPC1L1-dependently increased in VLDL/LDL by WD feeding. S1P is metabolized from sphingomyelin (SM) and SM is abundant in WD, so we focused on intestinal SM absorption. In vivo studies with Npc1l1 knockout mice and in vitro studies with NPC1L1-overexpressing cells revealed that SM is a physiological substrate of NPC1L1. These results suggest a scenario in which dietary SM is absorbed by NPC1L1 in the intestine, followed by SM conversion to S1P and, after several steps, S1P is exported into the blood as the apoM-bound form in VLDL/LDL. Our findings provide insight into the functions of NPC1L1 for a better understanding of sphingolipids and S1P homeostasis.
Collapse
Affiliation(s)
| | - Tappei Takada
- Correspondence: ; Tel.: +81-3-3815-5411 (ext. 37514)
| | | | | |
Collapse
|
24
|
Hyun DH. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts. Cancers (Basel) 2020; 12:cancers12071822. [PMID: 32645959 PMCID: PMC7408991 DOI: 10.3390/cancers12071822] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Modest levels of reactive oxygen species (ROS) are necessary for intracellular signaling, cell division, and enzyme activation. These ROS are later eliminated by the body’s antioxidant defense system. High amounts of ROS cause carcinogenesis by altering the signaling pathways associated with metabolism, proliferation, metastasis, and cell survival. Cancer cells exhibit enhanced ATP production and high ROS levels, which allow them to maintain elevated proliferation through metabolic reprograming. In order to prevent further ROS generation, cancer cells rely on more glycolysis to produce ATP and on the pentose phosphate pathway to provide NADPH. Pro-oxidant therapy can induce more ROS generation beyond the physiologic thresholds in cancer cells. Alternatively, antioxidant therapy can protect normal cells by activating cell survival signaling cascades, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in response to radio- and chemotherapeutic drugs. Nrf2 is a key regulator that protects cells from oxidative stress. Under normal conditions, Nrf2 is tightly bound to Keap1 and is ubiquitinated and degraded by the proteasome. However, under oxidative stress, or when treated with Nrf2 activators, Nrf2 is liberated from the Nrf2-Keap1 complex, translocated into the nucleus, and bound to the antioxidant response element in association with other factors. This cascade results in the expression of detoxifying enzymes, including NADH-quinone oxidoreductase 1 (NQO1) and heme oxygenase 1. NQO1 and cytochrome b5 reductase can neutralize ROS in the plasma membrane and induce a high NAD+/NADH ratio, which then activates SIRT1 and mitochondrial bioenergetics. NQO1 can also stabilize the tumor suppressor p53. Given their roles in cancer pathogenesis, redox homeostasis and the metabolic shift from glycolysis to oxidative phosphorylation (through activation of Nrf2 and NQO1) seem to be good targets for cancer therapy. Therefore, Nrf2 modulation and NQO1 stimulation could be important therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
25
|
Braicu C, Zanoaga O, Zimta AA, Tigu AB, Kilpatrick KL, Bishayee A, Nabavi SM, Berindan-Neagoe I. Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells. Semin Cancer Biol 2020; 80:218-236. [PMID: 32502598 DOI: 10.1016/j.semcancer.2020.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
Due to the high number of annual cancer-related deaths, and the economic burden that this malignancy affects today's society, the study of compounds isolated from natural sources should be encouraged. Most cancers are the result of a combined effect of lifestyle, environmental factors, and genetic and hereditary components. Recent literature reveals an increase in the interest for the study of phytochemicals from traditional medicine, this being a valuable resource for modern medicine to identify novel bioactive agents with potential medicinal applications. Phytochemicals are components of traditional medicine that are showing promising application in modern medicine due to their antitumor activities. Recent studies regarding two major mechanisms underlying cancer development and regulation, apoptosis and autophagy, have shown that the signaling pathways of both these processes are significantly interconnected through various mechanisms of crosstalk. Phytochemicals are able to activate pro-autophagic and pro-apoptosis mechanisms. Understanding the molecular mechanism involved in apoptosis-autophagy relationship modulated by phytochemicals plays a key role in development of a new therapeutic strategy for cancer treatment. The purpose of this review is to outline the bioactive properties of the natural phytochemicals with validated antitumor activity, focusing particularly on their role in the regulation of apoptosis and autophagy crosstalk that triggers the uncontrolled expansion of tumor cells. Furthermore, we have also critically discussed the limitations and challenges of existing research strategies and the prospective research directions in this field.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania; Babeș-Bolyai University, Faculty of Biology and Geology, 42 Republicii Street, 400015, Cluj-Napoca, Romania
| | | | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015, Cluj-Napoca, Romania.
| |
Collapse
|
26
|
The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100547] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Cas MD, Roda G, Li F, Secundo F. Functional Lipids in Autoimmune Inflammatory Diseases. Int J Mol Sci 2020; 21:E3074. [PMID: 32349258 PMCID: PMC7246500 DOI: 10.3390/ijms21093074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lipids are apolar small molecules known not only as components of cell membranes but also, in recent literature, as modulators of different biological functions. Herein, we focused on the bioactive lipids that can influence the immune responses and inflammatory processes regulating vascular hyperreactivity, pain, leukocyte trafficking, and clearance. In the case of excessive pro-inflammatory lipid activity, these lipids also contribute to the transition from acute to chronic inflammation. Based on their biochemical function, these lipids can be divided into different families, including eicosanoids, specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids, and endocannabinoids. These bioactive lipids are involved in all phases of the inflammatory process and the pathophysiology of different chronic autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type-1 diabetes, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| |
Collapse
|
28
|
Kwak JH, Kim Y, Ryu SI, Lee M, Lee H, Lim YP, Paik JK. Anti-inflammatory effect from extracts of Red Chinese cabbage and Aronia in LPS-stimulated RAW 264.7 cells. Food Sci Nutr 2020; 8:1898-1903. [PMID: 32328255 PMCID: PMC7174213 DOI: 10.1002/fsn3.1472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
A chronic inflammatory environment facilitates tumor growth and proliferation. Fruits and vegetables are important sources of anthocyanins, polyphenols, and other biologically active substances that can favorably affect the pathogenesis of cancer. The objective of the study was to investigate the anti-inflammatory effects of Red Chinese cabbage (RC) and mixture of commercial Red Chinese cabbage leaves and Aronia fruits (ARC) in LPS-stimulated RAW 264.7 cells. The RAW 264.7 cells were cultured and measured the cytotoxicity by using an MTT assay. The inflammatory markers, such as nitrite, IL-6, and TNF-alpha expression, were evaluated using ELISA, and protein expression of inflammatory markers like iNOS and COX-2 was analyzed using Western blot. MTT assays showed that pretreatment of RAW 264.7 cells with RC and ARC did not change cell growth or cytotoxicity. We also found that ARC extracts reduced inflammation-related biomarker (TNF-a, IL-6, and NO) production and gene expression (iNOS, COX-2). Our results suggested that ARC has good anti-inflammatory properties compared with RC that maybe used as potential nutrients for treating inflammatory diseases.
Collapse
Affiliation(s)
- Jung Hyun Kwak
- Department of Food and NutritionEulji UniversitySeongnamKorea
| | - Yoonji Kim
- Department of Food and NutritionEulji UniversitySeongnamKorea
- Nutrition TeamWonkwang University Sanbon HospitalGunpoKorea
| | - Soo In Ryu
- Department of Food Technology and ServicesEulji UniversitySeongnamKorea
| | - Minho Lee
- Department of Food Technology and ServicesEulji UniversitySeongnamKorea
| | - Hyo‐Jeong Lee
- Department of Science in Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics LaboratoryDepartment of HorticultureChungnam National UniversityDaejeonKorea
| | - Jean Kyung Paik
- Department of Food and NutritionEulji UniversitySeongnamKorea
| |
Collapse
|
29
|
Vitalini S, Dei Cas M, Rubino FM, Vigentini I, Foschino R, Iriti M, Paroni R. LC-MS/MS-Based Profiling of Tryptophan-Related Metabolites in Healthy Plant Foods. Molecules 2020; 25:E311. [PMID: 31940983 PMCID: PMC7024187 DOI: 10.3390/molecules25020311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Food plants contain hundreds of bioactive phytochemicals arising from different secondary metabolic pathways. Among these, the metabolic route of the amino acid Tryptophan yields a large number of plant natural products with chemically and pharmacologically diverse properties. We propose the identifier "indolome" to collect all metabolites in the Tryptophan pathway. In addition, Tryptophan-rich plant sources can be used as substrates for the fermentation by yeast strains to produce pharmacologically active metabolites, such as Melatonin. To pursue this technological development, we have developed a UHPLC-MS/MS method to monitor 14 Tryptophan, Tryptamine, amino-benzoic, and pyridine metabolites. In addition, different extraction procedures to improve the recovery of Tryptophan and its derivatives from the vegetal matrix were tested. We investigated soybeans, pumpkin seeds, sesame seeds, and spirulina because of their botanical diversity and documented healthy effects. Four different extractions with different solvents and temperatures were tested, and water extraction at room temperature was chosen as the most suitable procedure to extract the whole Tryptophan metabolites pattern (called by us "indolome") in terms of ease, high efficiency, short time, low cost, and sustainability. In all plant matrices, Tryptophan was the most abundant indole compound, while the pattern of its metabolites was different in the diverse plants extracts. Overall, 5-OH Tryptamine and Kynurenine were the most abundant compounds, despite being 100-1000-fold lower than Tryptophan. Melatonin was undetected in all extracts, but sesame showed the presence of a Melatonin isomer. The results of this study highlight the variability in the occurrence of indole compounds among diverse food plants. The knowledge of Tryptophan metabolism in plants represents a relevant issue for human health and nutrition.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (F.M.R.); (R.P.)
| | - Federico Maria Rubino
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (F.M.R.); (R.P.)
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.V.); (R.F.)
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.V.); (R.F.)
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (F.M.R.); (R.P.)
| |
Collapse
|
30
|
Wang D, Huang J, Gui T, Yang Y, Feng T, Tzvetkov NT, Xu T, Gai Z, Zhou Y, Zhang J, Atanasov AG. SR-BI as a target of natural products and its significance in cancer. Semin Cancer Biol 2020; 80:18-38. [PMID: 31935456 DOI: 10.1016/j.semcancer.2019.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Scavenger receptor class B type I (SR-BI) protein is an integral membrane glycoprotein. SR-BI is emerging as a multifunctional protein, which regulates autophagy, efferocytosis, cell survival and inflammation. It is well known that SR-BI plays a critical role in lipoprotein metabolism by mediating cholesteryl esters selective uptake and the bi-directional flux of free cholesterol. Recently, SR-BI has also been identified as a potential marker for cancer diagnosis, prognosis, or even a treatment target. Natural products are a promising source for the discovery of new drug leads. Multiple natural products were identified to regulate SR-BI protein expression. There are still a number of challenges in modulating SR-BI expression in cancer and in using natural products for modulation of such protein expression. In this review, our purpose is to discuss the relationship between SR-BI protein and cancer, and the molecular mechanisms regulating SR-BI expression, as well as to provide an overview of natural products that regulate SR-BI expression.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, 318 Preston Research Building, 2200 Pierce Avenue, Nashville, Tennessee, 37232, USA
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaxin Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Tingting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China.
| | - Jingjie Zhang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzębiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
31
|
Mhlanga P, Perumal PO, Somboro AM, Amoako DG, Khumalo HM, Khan RB. Mechanistic Insights into Oxidative Stress and Apoptosis Mediated by Tannic Acid in Human Liver Hepatocellular Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20246145. [PMID: 31817549 PMCID: PMC6940809 DOI: 10.3390/ijms20246145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022] Open
Abstract
The study investigated the cytotoxic effect of a natural polyphenolic compound Tannic acid (TA) on human liver hepatocellular carcinoma (HepG2) cells and elucidated the possible mechanisms that lead to apoptosis and oxidative stress HepG2 cell. The HepG2 cells were treated with TA for 24 h and various assays were conducted to determine whether TA could induce cell death and oxidative stress. The cell viability assay was used to determine the half maximal inhibitory concentration (IC50), caspase activity and cellular ATP were determined by luminometry. Microscopy was employed to determine deoxyribonucleic acid (DNA) integrity, while thiobarbituric acid (TBARS) and nitric oxide synthase (NOS) assays were used to elucidate cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS), respectively. Western blotting was used to confirm protein expression. The results revealed that tannic acid induced caspase activation and increased the presence of cellular ROS and RNS, while downregulating antioxidant expression. Tannic acid also showed increased cell death and increased DNA fragmentation. In conclusion, TA was able to induce apoptosis by DNA fragmentation via caspase-dependent and caspase-independent mechanism. It was also able to induce oxidative stress, consequently contributing to cell death.
Collapse
Affiliation(s)
- Priscilla Mhlanga
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.M.); (P.O.P.); (H.M.K.)
| | - Pearl O. Perumal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.M.); (P.O.P.); (H.M.K.)
| | - Anou M. Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Daniel G. Amoako
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
- Correspondence: (D.G.A.); (R.B.K.); Tel.: +270-73-200-1919 (D.G.A.); +27-829-065-934 (R.B.K.)
| | - Hezekiel M. Khumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.M.); (P.O.P.); (H.M.K.)
| | - Rene B. Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.M.); (P.O.P.); (H.M.K.)
- Correspondence: (D.G.A.); (R.B.K.); Tel.: +270-73-200-1919 (D.G.A.); +27-829-065-934 (R.B.K.)
| |
Collapse
|
32
|
Silva LBAR, Pinheiro-Castro N, Novaes GM, Pascoal GDFL, Ong TP. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res Int 2019; 125:108646. [PMID: 31554120 DOI: 10.1016/j.foodres.2019.108646] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
|
33
|
Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics 2019; 11:pharmaceutics11100545. [PMID: 31635183 PMCID: PMC6836080 DOI: 10.3390/pharmaceutics11100545] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
Resveratrol and oxyresveratrol are natural polyphenolic stilbenes with several important pharmacological activities. However, low solubility and aqueous instability are the major limitations in their drug delivery applications. In the present work, we demonstrated the encapsulation of resveratrol and oxyresveratrol with nanosponge to improve solubility and stability. Several characterization techniques were used to confirm the encapsulation of both drug molecules within the nanosponges. The high encapsulation efficiency of resveratrol (77.73%) and oxyresveratrol (80.33%) was achieved within the nanosponges. Transmission electron microscopy suggested uniform spherical size particles of resveratrol and oxyresveratrol loaded nanosponges. Compared to free drugs, better protection against UV degradation was observed for resveratrol-loaded nanosponge (2-fold) and oxyresveratrol-loaded nanosponge (3-fold). Moreover, a higher solubilization of resveratrol- and oxyresveratrol-loaded nanosponges lead to a better antioxidant activity compared to drug molecules alone. Cytotoxicity studies against DU-145 prostate cancer cell lines further suggested improved activity of both resveratrol and oxyresveratrol-loaded nanosponges without any significant toxicity of blank nanosponges.
Collapse
|
34
|
Dei Cas M, Ghidoni R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients 2019; 11:nu11092147. [PMID: 31500361 PMCID: PMC6770259 DOI: 10.3390/nu11092147] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
The yellow pigment curcumin, extracted from turmeric, is a renowned polyphenol with a broad spectrum of health properties such as antioxidant, anti-inflammatory, anti-cancer, antidiabetic, hepatoprotective, anti-allergic, anti-dermatophyte, and neuroprotective. However, these properties are followed by a poor pharmacokinetic profile which compromises its therapeutic potential. The association of low absorption by the small intestine and the extensive reductive and conjugative metabolism in the liver dramatically weakens the oral bioavailability. Several strategies such as inhibition of curcumin metabolism with adjuvants as well as novel solid and liquid oral delivery systems have been tried to counteract curcumin poor absorption and rapid elimination from the body. Some of these drug deliveries can successfully enhance the solubility, extending the residence in plasma, improving the pharmacokinetic profile and the cellular uptake.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Riccardo Ghidoni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy.
| |
Collapse
|
35
|
Zhu XH, Lang HD, Wang XL, Hui SC, Zhou M, Kang C, Yi L, Mi MT, Zhang Y. Synergy between dihydromyricetin intervention and irinotecan chemotherapy delays the progression of colon cancer in mouse models. Food Funct 2019; 10:2040-2049. [PMID: 30907395 DOI: 10.1039/c8fo01756e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is the third highest cause of cancer-related death and the main option for prolonged survival is chemotherapeutic intervention. There is increasing interest in dietary intervention using natural agents to enhance the sensitivity of such invasive chemical treatment. In this study, the chemotherapeutic efficacy of dihydromyricetin (DMY) intervention on treatments involving irinotecan (CPT-11) or gemcitabine (GM) was evaluated in an AOM/DSS-induced colitis-associated colon cancer model and a Min (Apc Min/+) mice model. Our data showed that DMY could promote the CPT-11 effect both in the mouse model of AOM/DSS and Apc Min/+ cancer and had no influence on the GM effect. In AOM/DSS cancer, tumors were sensitive to 100 mg kg-1 DMY chemotherapy under 100 mg kg-1 or 200 mg kg-1 CPT-11. DMY-driven CPT-11 chemotherapy induced enhanced IgG levels and the reduction of Fusobacterium abundance in the gut. In the Min model, CPT-11 with 20 mg kg-1 DMY prevented tumor formation but not with 100 mg kg-1 DMY. Mechanically, chloride ion-dependent CFTR, CLCN4, and CLIC4 signaling are not involved in DMY mediated chemotherapeutic colon tumorigenesis. These results suggested that a suitable dose of DMY could act as a coadjuvant to CPT-11 chemotherapy.
Collapse
Affiliation(s)
- Xiao-Hui Zhu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Multicomponent self nano emulsifying delivery systems of resveratrol with enhanced pharmacokinetics profile. Eur J Pharm Sci 2019; 137:105011. [PMID: 31330260 DOI: 10.1016/j.ejps.2019.105011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/25/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Resveratrol is a drug with high potential for clinical application based on experimental models. Though, resveratrol translation to clinical use has not been successful yet due to its poor pharmacokinetics, related to poor solubility and fast metabolism. The use of drug delivery systems, namely self-emulsifying drug delivery systems (SEDDS), may be a viable strategy to overcome the poor in vivo performance of resveratrol. In this work, a rational development of two different ternary SEDDS was conducted. Experimental data showed that quantitative variations on SEDDS composition impacted dispersion and robustness to dilution of SEDDS, as well as loading capacity and droplet size. Formulations composed of Lauroglycol® 90/Labrasol®/Capryol® PGMC (12.5/75.0/12.5) (Lau/Lab/Cap) and Tween® 80/Transcutol®/Imwitor® 742 (33.3/33.3/33.3) (T80/Trans/Imw) featured improved performance and were selected for further studies. T80/Trans/Imw formulation yield faster emulsification and originated smaller droplet size, with lower cumulative percentile of 90% of particles (D90) (below 200 nm), as compared to the than Lau/Lab/Cap formulation. Higher resveratrol permeation rate was observed in Caco-2 cell monolayer permeability studies for both formulations as compared to the free drug. Reduction of the metabolization and/or efflux of resveratrol was also noticed in the case of SEDDs, as suggested by the increased recovery of total drug. Plasmatic drug concentrations in rats observed after oral gavage indicate that both formulations provided faster resveratrol absorption than free drug, resulting in shorter Tmax values (30 min vs. 2 h). No statistically significant differences were observed for AUC0-t values of both formulations and the free drug. Still, Cmax for the Lau/Lab/Cap SEDDs formulation was 2-fold higher than for the free drug. These findings suggest that SEDDS can increase resveratrol solubility and reduce its metabolization, resulting in an overall improvement of its oral pharmacokinetics profile.
Collapse
|
37
|
Muller AG, Sarker SD, Saleem IY, Hutcheon GA. Delivery of natural phenolic compounds for the potential treatment of lung cancer. Daru 2019; 27:433-449. [PMID: 31115871 PMCID: PMC6593021 DOI: 10.1007/s40199-019-00267-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The application of natural products to treat various diseases, such as cancer, has been an important area of research for many years. Several phytochemicals have demonstrated anticarcinogenic activity to prevent or reduce the progression of cancer by modulating various cellular mechanisms. However, poor bioavailability has hindered clinical success and the incorporation of these drugs into efficient drug delivery systems would be beneficial. For lung cancer, local delivery via the pulmonary route would also be more effective. In this article, recent in vitro scientific literature on phenolic compounds with anticancer activity towards lung cancer cell lines is reviewed and nanoparticulate delivery is mentioned as a possible solution to the problem of bioavailability. The first part of the review will explore the different classes of natural phenolic compounds and discuss recent reports on their activity on lung cancer cells. Then, the problem of the poor bioavailability of phenolic compounds will be explored, followed by a summary of recent advances in improving the efficacy of these phenolic compounds using nanoparticulate drug delivery systems. Graphical abstract The rationale for direct delivery of phenolic compounds loaded in microparticles to the lungs.
Collapse
Affiliation(s)
- Ashley G Muller
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK.
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| | - Imran Y Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| | - Gillian A Hutcheon
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
38
|
Chen HY, Lin PH, Shih YH, Wang KL, Hong YH, Shieh TM, Huang TC, Hsia SM. Natural Antioxidant Resveratrol Suppresses Uterine Fibroid Cell Growth and Extracellular Matrix Formation In Vitro and In Vivo. Antioxidants (Basel) 2019; 8:antiox8040099. [PMID: 31013842 PMCID: PMC6523898 DOI: 10.3390/antiox8040099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022] Open
Abstract
Resveratrol (RSV) is a polyphenolic phytoalexin found in peanuts, grapes, and other plants. Uterine fibroids (UF) are benign growths that are enriched in extracellular matrix (ECM) proteins. In this study, we aimed to investigate the effects of RSV on UF using in vivo and in vitro approaches. In mouse xenograft models, tumors were implanted through the subcutaneous injection of Eker rat-derived uterine leiomyoma cells transfected with luciferase (ELT-3-LUC) in five-week-old female nude (Foxn1nu) mice. When the tumors reached a size of 50-100 mm3, the mice were randomly assigned to intraperitoneal treatment with RSV (10 mg·kg-1) or vehicle control (dimethyl sulfoxide). Tumor tissues were assayed using an immunohistochemistry analysis. We also used primary human leiomyoma cells as in vitro models. Cell viability was determined using the sodium bicarbonate and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression was assayed using Western blot analysis. The messenger ribonucleic acid (mRNA) expression was assayed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell apoptosis was assayed using Annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) and Hoechst 33342 staining. RSV significantly suppressed tumor growth in vivo and decreased the proportion of cells showing expression of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA). In addition, RSV decreased the protein expression of PCNA, fibronectin, and upregulated the ratio of Bax (Bcl-2-associated X) and Bcl-2 (B-cell lymphoma/leukemia 2) in vivo. Furthermore, RSV reduced leiomyoma cell viability, and decreased the mRNA levels of fibronectin and the protein expression of collagen type 1 (COL1A1) and α-SMA (ECM protein marker), as well as reducing the levels of β-catenin protein. RSV induced apoptosis and cell cycle arrest at sub-G1 phase. Our findings indicated the inhibitory effects of RSV on the ELT-3-LUC xenograft model and indicated that RSV reduced ECM-related protein expression in primary human leiomyoma cells, demonstrating its potential as an anti-fibrotic therapy for UF.
Collapse
Affiliation(s)
- Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Po-Han Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan.
| | - Kei-Lee Wang
- Department of Nursing, Ching Kuo Institute of Managemnet and Health, Keelung 20301, Taiwan.
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University, Kaohsiung 84001, Taiwan.
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung 40402, Taiwan.
| | - Tsui-Chin Huang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|
39
|
Micek A, Gniadek A, Kawalec P, Brzostek T. Coffee consumption and colorectal cancer risk: a dose-response meta-analysis on prospective cohort studies. Int J Food Sci Nutr 2019; 70:986-1006. [PMID: 30922134 DOI: 10.1080/09637486.2019.1591352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evidence regarding the influence of coffee drinking on colorectal cancer (CRC) is limited, and it remains unclear whether coffee consumption is associated with the risk of the disease. To clarify this association, a comprehensive meta-analysis was performed. The risk of CRC was compared between the categories of coffee consumption, and a dose-response relationship was studied using restricted cubic splines. We did not find evidence for the association between coffee consumption and CRC risk. Among alternative study inclusions, when using pooled projects, coffee consumption was related with a decreased risk of colon cancer in a subgroup analysis of never-smokers and in Asian countries, and with an increased risk of rectal cancer in an analysis of the general population and after restriction to women, never-smokers, and European countries. In conclusion, the association between coffee consumption and CRC risk is controversial and should be clarified in further cohort studies.
Collapse
Affiliation(s)
- Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Faculty of Health Sciences, Jagiellonian University Medical College , Krakow , Poland
| | - Agnieszka Gniadek
- Department of Nursing Management and Epidemiology Nursing, Faculty of Health Sciences, Jagiellonian University Medical College , Krakow , Poland
| | - Paweł Kawalec
- Drug Management Department, Faculty of Health Sciences, Jagiellonian University Medical College , Krakow , Poland
| | - Tomasz Brzostek
- Department of Internal Medicine and Community Nursing, Faculty of Health Sciences, Jagiellonian University Medical College , Krakow , Poland
| |
Collapse
|
40
|
Mężyńska M, Brzóska MM, Rogalska J, Piłat-Marcinkiewicz B. Extract from Aronia melanocarpa L. Berries Prevents Cadmium-Induced Oxidative Stress in the Liver: A Study in A Rat Model of Low-Level and Moderate Lifetime Human Exposure to this Toxic Metal. Nutrients 2018; 11:E21. [PMID: 30577648 PMCID: PMC6357096 DOI: 10.3390/nu11010021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 12/25/2022] Open
Abstract
The study investigated, in a rat model of low-level and moderate environmental exposure to cadmium (Cd; 1 or 5 mg Cd/kg diet, respectively, for 3 to 24 months), whether the co-administration of 0.1% extract from Aronia melanocarpa L. berries (AE) may protect against oxidative stress in the liver and in this way mediate this organ status. The intoxication with Cd, dose- and duration-dependently, weakened the enzymatic antioxidative barrier, decreased the concentrations of reduced glutathione and total thiol groups, and increased the concentrations of oxidized glutathione, hydrogen peroxide, xanthine oxidase, and myeloperoxidase in this organ. These resulted in a decrease in the total antioxidative status, increase in the total oxidative status and development of oxidative stress (increased oxidative stress index and malondialdehyde concentration) and histopathological changes in the liver. The administration of AE at both levels of Cd treatment significantly improved the enzymatic and nonenzymatic antioxidative barrier, decreased pro-oxidant concentration, and protected from the development of oxidative stress in the liver and changes in its morphology, as well as normalized the serum activities of liver enzymes markers. In conclusion, consumption of aronia products may prevent Cd-induced destroying the oxidative/antioxidative balance and development of oxidative stress in the liver protecting against this organ damage.
Collapse
Affiliation(s)
- Magdalena Mężyńska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland.
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland.
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland.
| | - Barbara Piłat-Marcinkiewicz
- Department of Histology and Embryology, Medical University of Bialystok, Jerzego Waszyngtona 13 street, 15-269 Bialystok, Poland.
| |
Collapse
|
41
|
Chen CY, Kao CL, Liu CM. The Cancer Prevention, Anti-Inflammatory and Anti-Oxidation of Bioactive Phytochemicals Targeting the TLR4 Signaling Pathway. Int J Mol Sci 2018; 19:ijms19092729. [PMID: 30213077 PMCID: PMC6164406 DOI: 10.3390/ijms19092729] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) are a well-known family of pattern recognition receptors that play an important role in a host immune system. TLR triggering leads to the induction of pro-inflammatory cytokines and chemokines, driving the activation of both innate and adaptive immunity. Recently, an increasing number studies have shown the link between TLRs and cancer. Among them, the toll-like receptor 4 (TLR4) signaling pathway is associated with inflammatory response and cancer progression. Dietary phytochemicals are potential modulators of immunological status with various pharmacological properties including anti-cancer, anti-oxidant and anti-inflammatory. Curcumin, 6-gingerol, 6-shogaol, 1-dehydro-10-gingerdione, epigallocatechin gallate (EGCG), luteolin, quercetin, resveratrol, caffeic acid phenethyl ester, xanthohumol, genistein, berberine, and sulforaphane can inhibit TLR4 activation. The aim of the present review is to describe the role of the TLR4 signaling pathway between inflammatory response and cancer progression. We further introduce bioactive phytochemicals with potential anti-inflammation and chemoprevention by inhibiting TLR activation.
Collapse
Affiliation(s)
- Chung-Yi Chen
- School of Medical and Health Sciences, Fooyin University, Ta-Liao District, Kaohsiung 83102, Taiwan.
| | - Chiu-Li Kao
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung County 92641, Taiwan.
| | - Chi-Ming Liu
- School of Medicine, Yichun University, Yuanzhou District, Yichun 336000, China.
| |
Collapse
|