1
|
Natal ACDC, de Paula Menezes R, de Brito Röder DVD. Role of maternal milk in providing a healthy intestinal microbiome for the preterm neonate. Pediatr Res 2024:10.1038/s41390-024-03751-x. [PMID: 39663425 DOI: 10.1038/s41390-024-03751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
The immature gastrointestinal tract of preterm neonates leads to a delayed and distinctive establishment of the gut microbiome, making them susceptible to potentially pathogenic bacteria and increasing the risk of infections. Maternal milk, recognized as the optimal source of nutrition, plays a multifaceted role in modulating the gut microbiome of premature newborns. Human milk oligosaccharides, acting as prebiotics, provide essential nourishment for key bacteria such as Bifidobacterium, contributing to the proliferation of beneficial bacterial populations. Additionally, maternal milk is rich in Immunoglobulins that stimulate immune cell responses, providing protective effects on the infant's gut mucosa. Moreover, bioactive proteins such as secretory immunoglobulin A (SIgA), lactoferrin, lysozyme, and mucins play a crucial role in defending against pathogens and regulating the immune system at the cellular level. These proteins contribute not only to infection prevention but also emphasize the impact of breast milk in fortifying the body's innate defenses. This multifaceted role of maternal milk, including essential nutrients, beneficial bacteria, and bioactive proteins, highlights the importance of promoting the mother's own milk feeding in the Neonatal Intensive Care Unit (NICU). It not only optimizes the long-term outcomes and well-being of preterm infants but also provides a holistic approach to their health and development. IMPACT: This article contributes to the current understanding of the relationship between breastfeeding and the intestinal microbiota. Fill gaps in existing literature about the subject. Provides new insights for future research.
Collapse
Affiliation(s)
- Ana Catarina de Castro Natal
- Undergraduate Nursing, Faculty of Medicine (FAMED), Federal University of Uberlandia UFU, Uberlandia, MG, Brazil.
| | | | | |
Collapse
|
2
|
Dahiya P, Kumari S, Behl M, Kashyap A, Kumari D, Thakur K, Devi M, Kumari N, Kaushik N, Walia A, Bhatt AK, Bhatia RK. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Probiotics Antimicrob Proteins 2024; 16:1937-1953. [PMID: 38733461 DOI: 10.1007/s12602-024-10281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.
Collapse
Affiliation(s)
- Pushpak Dahiya
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Sangeeta Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Manya Behl
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Aakash Kashyap
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Deeksha Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Kalpana Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Mamta Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kumari
- Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kaushik
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK HPKV, Palampur, HP, 176062, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India.
| |
Collapse
|
3
|
Liu Y, Wu F, Zhang M, Jin Y, Yuan X, Hao Y, Chen L, Fang B. 2'-Fucosyllactose and 3'-Sialyllactose Reduce Mortality in Neonatal Enteroaggregative Escherichia coli Infection by Improving the Construction of Intestinal Mucosal Immunity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26165-26177. [PMID: 39535070 DOI: 10.1021/acs.jafc.4c06524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Human milk oligosaccharides could prevent pathogenic bacterial infections in neonates; however, direct in vivo anti-infection evidence was still lacking. Here, we systematically evaluated the effects of 2'-fucosyllactose (2'-FL) and 3'-sialyllactose (3'-SL) on the structural development and functional maturation in neonates and their defense against enteroaggregative Escherichia coli infection. It was found that supplementation with 2'-FL and 3'-SL improved the resistance of weaned mice to enteroaggregative E. coli. The mechanism related to the promotion of 2'-FL and 3'-SL in the maturation of intestinal mucosal immunity by promoting stem cell differentiation, mucus layer integrity, and tight junction formation. 2'-FL and 3'-SL significantly increased the ratio of Th1 and Treg cells in the lamina propria, contents of short-chain fatty acids, as well as the serum content of IgA. This study lays a theoretical basis for the application of 2'-FL and 3'-SL in infant formula, as well as the development of intestinal health products.
Collapse
Affiliation(s)
- Yaqiong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fang Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yutong Jin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xinlei Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lishui Chen
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Luo F, Zhang M, Zhang L, Zhou P. Nutritional and health effects of bovine colostrum in neonates. Nutr Rev 2024; 82:1631-1645. [PMID: 38052234 DOI: 10.1093/nutrit/nuad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
High concentrations of immunoglobulins, bioactive peptides, and growth factors are found in bovine colostrum (BC), the milk produced by cows in the first few days after parturition. Various biological functions make it increasingly used to provide nutritional support and immune protection to the offspring of many species, including humans. These biological functions include cell growth stimulation, anti-infection, and immunomodulation. The primary components and biological functions of colostrum were reviewed in the literature, and the authors also looked at its latent effects on the growth and development of neonates as well as on conditions such as infections, necrotizing enterocolitis, short bowel syndrome, and feeding intolerance. The importance of BC in neonatal nutrition, immune support, growth and development, and gut health has been demonstrated in a number of experimental and animal studies. BC has also been shown to be safe at low doses without adverse effects in newborns. BC supplementation has been shown to be efficient in preventing several disorders, including rotavirus diarrhea, necrotizing enterocolitis, and sepsis in animal models of prematurity and some newborn studies. Therefore, BC supplementation should be considered in cases where maternal milk is insufficient or donor milk is unavailable. The optimal age, timing, dosage, and form of BC administration still require further investigation.
Collapse
Affiliation(s)
- Fangmei Luo
- Department of Neonatology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Lian Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Ping Zhou
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| |
Collapse
|
5
|
Zhan X, Li Q, Tian P, Wang D. The attachment factors and attachment receptors of human noroviruses. Food Microbiol 2024; 123:104591. [PMID: 39038896 DOI: 10.1016/j.fm.2024.104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Human noroviruses (HuNoVs) are the leading etiological agent causing the worldwide outbreaks of acute epidemic non-bacterial gastroenteritis. Histo-blood group antigens (HBGAs) are commonly acknowledged as cellular receptors or co-receptors for HuNoVs. However, certain genotypes of HuNoVs cannot bind with any HBGAs, suggesting potential additional co-factors and attachment receptors have not been identified yet. In addition, food items, such as oysters and lettuce, play an important role in the transmission of HuNoVs. In the past decade, a couple of attachment factors other than HBGAs have been identified and analyzed from foods and microbiomes. Attachment factors exhibit potential as inhibitors of viral binding to receptors on host cells. Therefore, it is imperative to further characterize the attachment factors for HuNoVs present in foods to effectively control the spread of HuNoVs within the food chain. This review summarizes the potential attachment factors/receptors of HuNoVs in humans, foods, and microbiome.
Collapse
Affiliation(s)
- Xiangjun Zhan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service-United States Department of Agriculture, Albany, CA, 94706, USA
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Du Z, Li Z, Guang C, Zhu Y, Mu W. Recent advances of 3-fucosyllactose in health effects and production. Arch Microbiol 2024; 206:378. [PMID: 39143417 DOI: 10.1007/s00203-024-04104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Human milk oligosaccharides (HMOs) have been recognized as gold standard for infant development. 3-Fucosyllactose (3-FL), being one of the Generally Recognized as Safe HMOs, represents a core trisaccharide within the realm of HMOs; however, it has received comparatively less attention in contrast to extensively studied 2'-fucosyllactose. The objective of this review is to comprehensively summarize the health effects of 3-FL, including its impact on gut microbiota proliferation, antimicrobial effects, immune regulation, antiviral protection, and brain maturation. Additionally, the discussion also covers the commercial application and regulatory approval status of 3-FL. Lastly, an organized presentation of large-scale production methods for 3-FL aims to provide a comprehensive guide that highlights current strategies and challenges in optimization.
Collapse
Affiliation(s)
- Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Welp A, Laser E, Seeger K, Haiß A, Hanke K, Faust K, Stichtenoth G, Fortmann-Grote C, Pagel J, Rupp J, Göpel W, Gembicki M, Scharf JL, Rody A, Herting E, Härtel C, Fortmann I. Effects of multistrain Bifidobacteria and Lactobacillus probiotics on HMO compositions after supplementation to pregnant women at threatening preterm delivery: design of the randomized clinical PROMO trial. Mol Cell Pediatr 2024; 11:6. [PMID: 39085734 PMCID: PMC11291828 DOI: 10.1186/s40348-024-00179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As an indigestible component of human breast milk, Human Milk Oligosaccharides (HMOs) play an important role as a substrate for the establishing microbiome of the newborn. They have further been shown to have beneficial effects on the immune system, lung and brain development. For preterm infants HMO composition of human breast milk may be of particular relevance since the establishment of a healthy microbiome is challenged by multiple disruptive factors associated with preterm birth, such as cesarean section, hospital environment and perinatal antibiotic exposure. In a previous study it has been proposed that maternal probiotic supplementation during late stages of pregnancy may change the HMO composition in human milk. However, there is currently no study on pregnancies which are threatened to preterm birth. Furthermore, HMO composition has not been investigated in association with clinically relevant outcomes of vulnerable infants including inflammation-mediated diseases such as sepsis, necrotizing enterocolitis (NEC) or chronic lung disease. MAIN BODY A randomized controlled intervention study (PROMO = probiotics for human milk oligosaccharides) has been designed to analyze changes in HMO composition of human breast milk after supplementation of probiotics (Lactobacillus acidophilus, Bifidobacterium lactis and Bifidobacterium infantis) in pregnancies at risk for preterm birth. The primary endpoint is HMO composition of 3-fucosyllactose and 3'-sialyllactose in expressed breast milk. We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. As secondary outcomes we will measure preterm infants' clinical outcomes (preterm birth, sepsis, weight gain growth, gastrointestinal complications) and effects on microbiome composition in the rectovaginal tract of mothers at delivery and in the gut of term and preterm infants by sequencing at high genomic resolution. Therefore, we will longitudinally collect bio samples in the first 4 weeks after birth as well as in follow-up investigations at 3 months, one year, and five years of age. CONCLUSIONS We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. The PROMO study will gain insight into the microbiome-HMO interaction at the fetomaternal interface and its consequences for duration of pregnancy and outcome of infants.
Collapse
Affiliation(s)
- A Welp
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany.
| | - E Laser
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Seeger
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - A Haiß
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Hanke
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Faust
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - G Stichtenoth
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Fortmann-Grote
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - J Pagel
- Department of Pediatrics, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Lübeck, Germany
| | - J Rupp
- German Center for Infection Research, Lübeck, Germany
- Institute for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - W Göpel
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - M Gembicki
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - J L Scharf
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - A Rody
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - E Herting
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Härtel
- Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - I Fortmann
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
- German Center for Infection Research, Lübeck, Germany
| |
Collapse
|
8
|
Yang R, Wang H, Chen D, Cai Q, Zhu J, Yuan S, Wang F, Xu X. The effect of in-hospital breast milk intake on the gut microbiota of preterm infants. Clin Nutr ESPEN 2024; 60:146-155. [PMID: 38479903 DOI: 10.1016/j.clnesp.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE The aim of this study was to explore the effect of in-hospital breast milk intake on the development of early gut microbiota in preterm infants in two dimensions: longitudinal over time and cross-sectional between groups. METHODS Researchers collected preterm infants' general data baseline characteristics, recorded their daily breast milk intake, probiotics, and antibiotics use, and collected their stool specimens at 1st week, 2 nd week, 3rd week and 4th week after birth. The researchers analyzed the effect of breast milk on gut microbiota of preterm infants by bioinformatics methods of intra-group longitudinal variation of gut microbiota structure and diversity in preterm infants and cross-sectional differences between >70 % in-hospital breast milk intake (BM) group and ≤70 % (PF) group. RESULTS A total of 60 preterm infants were included in this study, and a total of 213 stool specimens were retained. BM had statistically different Shannon and Simpson indices between the first and fourth week after admission (P < 0.05), both of them showed a lower diversity in the later week than in the previous week. The Shannon index and Simpson index of BM from week 3 onwards were statistically different from PF (P < 0.05), and the Shannon index and Simpson index of BM were lower than those of PF. Significantly statistical differences (P < 0.05) were found in the beta diversity of gut microbiota in preterm infants as time progressed, and both showed a lower beta diversity in the later week than in the preceding week. The dominant taxa of PF in the first postnatal week were Bifidobacterium animalis, etc., the dominant taxa of BM in the third postnatal week were Clostridium_sensu_stricto _1, etc. CONCLUSIONS: The development and evolution of gut microbiota in preterm infants' in-hospital period was a continuous, non-random process, and similar trends in species composition and changes in gut microbes emerged in preterm infants with different ratio of breast milk intake. In the NICU setting, alpha diversity was lower in preterm infants in the >70 % breast milk intake group than in the ≤70 % group when compared between groups at the same time, which may be related to delayed maturation of gut microbes and represents a more developmental gut time window.
Collapse
Affiliation(s)
- Rui Yang
- School of Nursing, Capital Medical University, Beijing, China
| | - Hua Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danqi Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Cai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajun Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuiqin Yuan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinfen Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
McDonald AG, Lisacek F. Simulated digestions of free oligosaccharides and mucin-type O-glycans reveal a potential role for Clostridium perfringens. Sci Rep 2024; 14:1649. [PMID: 38238389 PMCID: PMC10796942 DOI: 10.1038/s41598-023-51012-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024] Open
Abstract
The development of a stable human gut microbiota occurs within the first year of life. Many open questions remain about how microfloral species are influenced by the composition of milk, in particular its content of human milk oligosaccharides (HMOs). The objective is to investigate the effect of the human HMO glycome on bacterial symbiosis and competition, based on the glycoside hydrolase (GH) enzyme activities known to be present in microbial species. We extracted from UniProt a list of all bacterial species catalysing glycoside hydrolase activities (EC 3.2.1.-), cross-referencing with the BRENDA database, and obtained a set of taxonomic lineages and CAZy family data. A set of 13 documented enzyme activities was selected and modelled within an enzyme simulator according to a method described previously in the context of biosynthesis. A diverse population of experimentally observed HMOs was fed to the simulator, and the enzymes matching specific bacterial species were recorded, based on their appearance of individual enzymes in the UniProt dataset. Pairs of bacterial species were identified that possessed complementary enzyme profiles enabling the digestion of the HMO glycome, from which potential symbioses could be inferred. Conversely, bacterial species having similar GH enzyme profiles were considered likely to be in competition for the same set of dietary HMOs within the gut of the newborn. We generated a set of putative biodegradative networks from the simulator output, which provides a visualisation of the ability of organisms to digest HMO and mucin-type O-glycans. B. bifidum, B. longum and C. perfringens species were predicted to have the most diverse GH activity and therefore to excel in their ability to digest these substrates. The expected cooperative role of Bifidobacteriales contrasts with the surprising capacities of the pathogen. These findings indicate that potential pathogens may associate in human gut based on their shared glycoside hydrolase digestive apparatus, and which, in the event of colonisation, might result in dysbiosis. The methods described can readily be adapted to other enzyme categories and species as well as being easily fine-tuneable if new degrading enzymes are identified and require inclusion in the model.
Collapse
Affiliation(s)
- Andrew G McDonald
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland.
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland.
- Computer Science Department, University of Geneva, Geneva, Switzerland.
- Section of Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
10
|
Li R, Roy R. Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Appl Biochem Biotechnol 2023; 195:6809-6823. [PMID: 36930406 DOI: 10.1007/s12010-023-04423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The gut microbiota widely varies from individual to individual, but the variation shows stability over a period of time. The presence of abundant bacterial taxa is a common structure that determines the microbiota of human being. The presence of this microbiota greatly varies from geographic location, sex, food habits and age. Microbiota existing within the gut plays a significant role in nutrient absorption, development of immunity, curing of diseases and various developmental phases. With change in age, chronology diversification and variation of gut microbiota are observed within human being. But it has been observed that with the enhancement of age the richness of the microbial diversity has shown a sharp decline. The enhancement of age also results in the drift of the characteristic of the microbes associated with the microbiota from commensals to pathogenic. Various studies have shown that age associated gut-dysbiosis may result in decrease in tlongevity along with unhealthy aging. The host signalling pathways regulate the presence of the gut microbiota and their longevity. The presence of various nutrients regulates the presence of various microbial species. Innate immunity can be triggered due to the mechanism of gut dysbiosis resulting in the development of various age-related pathological syndromes and early aging. The gut microbiota possesses the ability to communicate with the host system with the help of various types of biomolecules, epigenetic mechanisms and various types of signalling-independent pathways. Drift in this mechanism of communication may affect the life span along with the health of the host. Thus, this review would focus on the use of gut-microbiota in anti-aging and healthy conditions of the host system.
Collapse
Affiliation(s)
- Ruishan Li
- Guiyang Healthcare Vocational University, Guiyang, China.
| | - Rupak Roy
- SHRM Biotechnologies Pvt. Ltd, Kolkata, India
| |
Collapse
|
11
|
Zhu L, Li H, Luo T, Deng Z, Li J, Zheng L, Zhang B. Human Milk Oligosaccharides: A Critical Review on Structure, Preparation, Their Potential as a Food Bioactive Component, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15908-15925. [PMID: 37851533 DOI: 10.1021/acs.jafc.3c04412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Human milk is the gold standard for infant feeding. Human milk oligosaccharides (HMOs) are a unique group of oligosaccharides in human milk. Great interest in HMOs has grown in recent years due to their positive effects on various aspects of infant health. HMOs provide various physiologic functions, including establishing a balanced infant's gut microbiota, strengthening the gastrointestinal barrier, preventing infections, and potential support to the immune system. However, the clinical application of HMOs is challenging due to their specificity to human milk and the difficulties and high costs associated with their isolation and synthesis. Here, the differences in oligosaccharides in human and other mammalian milk are compared, and the synthetic strategies to access HMOs are summarized. Additionally, the potential use and molecular mechanisms of HMOs as a new food bioactive component in different diseases, such as infection, necrotizing enterocolitis, diabetes, and allergy, are critically reviewed. Finally, the current challenges and prospects of HMOs in basic research and application are discussed.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
12
|
Liu Y, Huang Y, He Q, Dou Z, Zeng M, Wang X, Li S. From heart to gut: Exploring the gut microbiome in congenital heart disease. IMETA 2023; 2:e144. [PMID: 38868221 PMCID: PMC10989834 DOI: 10.1002/imt2.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 06/14/2024]
Abstract
Congenital heart disease (CHD) is a prevalent birth defect and a significant contributor to childhood mortality. The major characteristics of CHD include cardiovascular malformations and hemodynamical disorders. However, the impact of CHD extends beyond the circulatory system. Evidence has identified dysbiosis of the gut microbiome in patients with CHD. Chronic hypoxia and inflammation associated with CHD affect the gut microbiome, leading to alterations in its number, abundance, and composition. The gut microbiome, aside from providing essential nutrients, engages in direct interactions with the host immune system and indirect interactions via metabolites. The abnormal gut microbiome or its products can translocate into the bloodstream through an impaired gut barrier, leading to an inflammatory state. Metabolites of the gut microbiome, such as short-chain fatty acids and trimethylamine N-oxide, also play important roles in the development, treatment, and prognosis of CHD. This review discusses the role of the gut microbiome in immunity, gut barrier, neurodevelopment, and perioperative period in CHD. By fostering a better understanding of the cross-talk between CHD and the gut microbiome, this review aims to contribute to improve clinical management and outcomes for CHD patients.
Collapse
Affiliation(s)
- Yuze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yuan Huang
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qiyu He
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Zheng Dou
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Min Zeng
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xu Wang
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Shoujun Li
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
13
|
Beharry KD, Latkowska M, Valencia AM, Allana A, Soto J, Cai CL, Golombek S, Hand I, Aranda JV. Factors Influencing Neonatal Gut Microbiome and Health with a Focus on Necrotizing Enterocolitis. Microorganisms 2023; 11:2528. [PMID: 37894186 PMCID: PMC10608807 DOI: 10.3390/microorganisms11102528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Maturational changes in the gut start in utero and rapidly progress after birth, with some functions becoming fully developed several months or years post birth including the acquisition of a full gut microbiome, which is made up of trillions of bacteria of thousands of species. Many factors influence the normal development of the neonatal and infantile microbiome, resulting in dysbiosis, which is associated with various interventions used for neonatal morbidities and survival. Extremely low gestational age neonates (<28 weeks' gestation) frequently experience recurring arterial oxygen desaturations, or apneas, during the first few weeks of life. Apnea, or the cessation of breathing lasting 15-20 s or more, occurs due to immature respiratory control and is commonly associated with intermittent hypoxia (IH). Chronic IH induces oxygen radical diseases of the neonate, including necrotizing enterocolitis (NEC), the most common and devastating gastrointestinal disease in preterm infants. NEC is associated with an immature intestinal structure and function and involves dysbiosis of the gut microbiome, inflammation, and necrosis of the intestinal mucosal layer. This review describes the factors that influence the neonatal gut microbiome and dysbiosis, which predispose preterm infants to NEC. Current and future management and therapies, including the avoidance of dysbiosis, the use of a human milk diet, probiotics, prebiotics, synbiotics, restricted antibiotics, and fecal transplantation, for the prevention of NEC and the promotion of a healthy gut microbiome are also reviewed. Interventions directed at boosting endogenous and/or exogenous antioxidant supplementation may not only help with prevention, but may also lessen the severity or shorten the course of the disease.
Collapse
Affiliation(s)
- Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Magdalena Latkowska
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Arwin M. Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saddleback Memorial Medical Center, Laguna Hills, CA 92653, USA;
| | - Ahreen Allana
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Jatnna Soto
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Sergio Golombek
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Ivan Hand
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Kings County Hospital Center, Brooklyn, NY 11203, USA;
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| |
Collapse
|
14
|
Wei J, Meng Z, Li Z, Dang D, Wu H. New insights into intestinal macrophages in necrotizing enterocolitis: the multi-functional role and promising therapeutic application. Front Immunol 2023; 14:1261010. [PMID: 37841247 PMCID: PMC10568316 DOI: 10.3389/fimmu.2023.1261010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory intestinal disease that profoundly affects preterm infants. Currently, the pathogenesis of NEC remains controversial, resulting in limited treatment strategies. The preterm infants are thought to be susceptible to gut inflammatory disorders because of their immature immune system. In early life, intestinal macrophages (IMφs), crucial components of innate immunity, demonstrate functional plasticity and diversity in intestinal development, resistance to pathogens, maintenance of the intestinal barrier, and regulation of gut microbiota. When the stimulations of environmental, dietary, and bacterial factors interrupt the homeostatic processes of IMφs, they will lead to intestinal disease, such as NEC. This review focuses on the IMφs related pathogenesis in NEC, discusses the multi-functional roles and relevant molecular mechanisms of IMφs in preterm infants, and explores promising therapeutic application for NEC.
Collapse
Affiliation(s)
- Jiaqi Wei
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital of Jilin University, Changchun, China
| | - Zhenyu Li
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Dan Dang
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Hui Wu
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Hu M, Miao M, Li K, Luan Q, Sun G, Zhang T. Human milk oligosaccharide lacto-N-tetraose: Physiological functions and synthesis methods. Carbohydr Polym 2023; 316:121067. [PMID: 37321746 DOI: 10.1016/j.carbpol.2023.121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable attention due to their unique role in boosting infant health. Among the HMOs, lacto-N-tetraose (LNT) is a significant constituent associated with various health benefits, such as prebiotic effects, antiadhesive antimicrobials, antiviral protection, and immune modulators. LNT has received a "Generally Recognized as Safe" status by the American Food and Drug Administration and was approved as a food ingredient for infant formula. However, the limited availability of LNT poses a major challenge for its application in food and medicine. In this review, we first explored the physiological functions of LNT. Next, we describe several synthesis methods for production of LNT, including chemical, enzymatic, and cell factory approaches, and summarize the pivotal research results. Finally, challenges and opportunities for the large-scale synthesis of LNT were discussed.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kewen Li
- Baolingbao Biology Co., Ltd., Yucheng, Shandong 251200, China
| | - Qingmin Luan
- Baolingbao Biology Co., Ltd., Yucheng, Shandong 251200, China
| | - Guilian Sun
- Baolingbao Biology Co., Ltd., Yucheng, Shandong 251200, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Manohar K, Hosfield BD, Mesfin FM, Colgate C, Shelley WC, Liu J, Zeng L, Brokaw JP, Markel TA. Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis. Physiol Rep 2023; 11:e15819. [PMID: 37697223 PMCID: PMC10495347 DOI: 10.14814/phy2.15819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Necrotizing enterocolitis (NEC) continues to be a devastating disease in preterm neonates and has a paucity of medical management options. Chondroitin sulfate (CS) is a naturally occurring glycosaminoglycan (GAG) in human breast milk (HM) and has been shown to reduce inflammation. We hypothesized that supplementation with CS in an experimental NEC model would alter microbial diversity, favorably alter the cytokine profile, and (like other sulfur compounds) improve outcomes in experimental NEC via the eNOS pathway. NEC was induced in 5-day-old pups. Six groups were studied (n = 9-15/group): (1) WT breastfed and (2) Formula fed controls, (3) WT NEC, (4) WT NEC + CS, (5) eNOS KO (knockout) NEC, and (6) eNOS KO NEC + CS. Pups were monitored for clinical sickness score and weights. On postnatal day 9, the pups were killed. Stool was collected from rectum and microbiome analysis was done with 16 s rRNA sequencing. Intestinal segments were examined histologically using a well-established injury scoring system and segments were homogenized and analyzed for cytokine profile. Data were analyzed using GraphPad Prism with p < 0.05 considered significant. CS supplementation in formula improved experimental NEC outcomes when compared to NEC alone. CS supplementation resulted in similar improvement in NEC in both the WT and eNOS KO mice. CS supplementation did not result in microbial changes when compared to NEC alone. Our data suggest that although CS supplementation improved outcomes in NEC, this protection is not conferred via the eNOS pathway or alteration of microbial diversity. CS therapy in NEC does improve the intestinal cytokine profile and further experiments will explore the mechanistic role of CS in altering immune pathways in this disease.
Collapse
Affiliation(s)
- Krishna Manohar
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Brian D. Hosfield
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Fikir M. Mesfin
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Cameron Colgate
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - William Christopher Shelley
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Jianyun Liu
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Lifan Zeng
- Department of Biochemistry and Molecular BiologyIUSMIndianapolisIndianaUSA
| | - John P. Brokaw
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Troy A. Markel
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| |
Collapse
|
17
|
Park H, Park NY, Koh A. Scarring the early-life microbiome: its potential life-long effects on human health and diseases. BMB Rep 2023; 56:469-481. [PMID: 37605613 PMCID: PMC10547969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
The gut microbiome is widely recognized as a dynamic organ with a profound influence on human physiology and pathology. Extensive epidemiological and longitudinal cohort studies have provided compelling evidence that disruptions in the early-life microbiome can have long-lasting health implications. Various factors before, during, and after birth contribute to shaping the composition and function of the neonatal and infant microbiome. While these alterations can be partially restored over time, metabolic phenotypes may persist, necessitating research to identify the critical period for early intervention to achieve phenotypic recovery beyond microbiome composition. In this review, we provide current understanding of changes in the gut microbiota throughout life and the various factors affecting these changes. Specifically, we highlight the profound impact of early-life gut microbiota disruption on the development of diseases later in life and discuss perspectives on efforts to recover from such disruptions. [BMB Reports 2023; 56(9): 469-481].
Collapse
Affiliation(s)
- Hyunji Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Na-Young Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
18
|
Xiang Q, Yan X, Shi W, Li H, Zhou K. Early gut microbiota intervention in premature infants: Application perspectives. J Adv Res 2023; 51:59-72. [PMID: 36372205 PMCID: PMC10491976 DOI: 10.1016/j.jare.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preterm birth is the leading cause of death in children under the age of five. One of the major factors contributing to the high risk of diseases and deaths in premature infants is the incomplete development of the intestinal immune system. The gut microbiota has been widely recognized as a critical factor in promoting the development and function of the intestinal immune system after birth. However, the gut microbiota of premature infants is at high risk of dysbiosis, which is highly associated with adverse effects on the development and education of the early life immune system. Early intervention can modulate the colonization and development of gut microbiota and has a long-term influence on the development of the intestinal immune system. AIM OF REVIEW This review aims to summarize the characterization, interconnection, and underlying mechanism of gut microbiota and intestinal innate immunity in premature infants, and to discuss the status, applicability, safety, and prospects of different intervention strategies in premature infants, thus providing an overview and outlook of the current applications and remaining gaps of early intervention strategies in premature infants. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, the gut microbiota of premature infants is at high risk of dysbiosis, resulting in dysfunctional intestinal immune system processes. Secondly, contributing roles of early intervention have been observed in improving the intestinal environment and promoting gut microbiota colonization, which is significant in the development and function of gut immunity in premature infants. Thirdly, different strategies of early intervention, such as probiotics, fecal microbiota transplantation, and nutrients, show different safety, applicability, and outcome in premature infants, and the underlying mechanism is complex and poorly understood.
Collapse
Affiliation(s)
- Quanhang Xiang
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Xudong Yan
- Department of Neonatal Intensive Care Unit, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, the first affiliated hospital of Southern University of Science and Technology of China, Shenzhen People's Hospital, Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
19
|
Fu C, Sun W, Wang X, Zhu X. Human breast milk: A promising treatment for necrotizing enterocolitis. Early Hum Dev 2023; 184:105833. [PMID: 37523802 DOI: 10.1016/j.earlhumdev.2023.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disorder occurring in newborns, with a mortality rate ranging from 20 % to 30 %. The existing therapeutic approaches for NEC are limited in their effectiveness. Various factors contribute to the development of NEC, including disruption of barrier function, dysregulation of the intestinal immune system, and abnormal colonization of the intestinal microbiota. Researchers have shown considerable interest in exploring the therapeutic potential of the constituents present in human breast milk (HBM) for treating NEC. HBM contains numerous bioactive components, such as exosomes, growth factors, and oligosaccharides. However, the precise mechanisms by which HBM exerts its protective effects against NEC remain incompletely understood. In this study, our objective was to comprehensively review the bioactive substances present in HBM, aiming to facilitate the development of novel therapeutic strategies for NEC.
Collapse
Affiliation(s)
- Changchang Fu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Wenqiang Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
20
|
Liu K, Guo J, Yang J, Su Y. The Association of Human Milk Proportion with the Clinical Outcomes of Necrotizing Enterocolitis in Preterm Infants: A Retrospective Study. Nutrients 2023; 15:3796. [PMID: 37686828 PMCID: PMC10490326 DOI: 10.3390/nu15173796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Human milk (HM) has been associated with a lower risk of necrotizing enterocolitis (NEC). However, the association of precise HM proportion with the outcome of NEC remains unclear. A total of 77 cases and 154 matched controls were included in this study. The samples were divided into three groups based on the HM proportion of the total enteral intake before NEC onset: ≥70% (HHM), <70% (LHM), and 0% (NHM). The study cohort did not show a significant association between different HM proportions and NEC risk. The adjusted odds ratio (OR) for the highest versus the lowest intake was 0.599. In the prognosis of NEC, different HM proportions significantly affected weight gain, the timing of NEC onset, diagnosis time, hospitalization cost, and the severity of NEC (p < 0.05). Our findings support the beneficial effects of HM on reducing NEC in preterm infants, particularly when a greater proportion of HM of the total enteral intake is included in their feeding. Additionally, the study indicates that preterm infants fed with lower proportions of HM of the total enteral feeding are more prone to experiencing severe cases of NEC.
Collapse
Affiliation(s)
- Keqin Liu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (K.L.); (J.G.)
| | - Jinjin Guo
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (K.L.); (J.G.)
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yanwei Su
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (K.L.); (J.G.)
| |
Collapse
|
21
|
Cui C, Chen FL, Li LQ. [Recent research on machine learning in the diagnosis and treatment of necrotizing enterocolitis in neonates]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:767-773. [PMID: 37529961 PMCID: PMC10414163 DOI: 10.7499/j.issn.1008-8830.2302165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 08/03/2023]
Abstract
Necrotizing enterocolitis (NEC), with the main manifestations of bloody stool, abdominal distension, and vomiting, is one of the leading causes of death in neonates, and early identification and diagnosis are crucial for the prognosis of NEC. The emergence and development of machine learning has provided the potential for early, rapid, and accurate identification of this disease. This article summarizes the algorithms of machine learning recently used in NEC, analyzes the high-risk predictive factors revealed by these algorithms, evaluates the ability and characteristics of machine learning in the etiology, definition, and diagnosis of NEC, and discusses the challenges and prospects for the future application of machine learning in NEC.
Collapse
Affiliation(s)
- Cheng Cui
- Department of Neonatology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| | - Fei-Long Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| | - Lu-Quan Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| |
Collapse
|
22
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
23
|
Salazar J, Durán P, Díaz MP, Chacín M, Santeliz R, Mengual E, Gutiérrez E, León X, Díaz A, Bernal M, Escalona D, Hernández LAP, Bermúdez V. Exploring the Relationship between the Gut Microbiota and Ageing: A Possible Age Modulator. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5845. [PMID: 37239571 PMCID: PMC10218639 DOI: 10.3390/ijerph20105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The gut microbiota (GM) has been the subject of intense research in recent years. Therefore, numerous factors affecting its composition have been thoroughly examined, and with them, their function and role in the individual's systems. The gut microbiota's taxonomical composition dramatically impacts older adults' health status. In this regard, it could either extend their life expectancy via the modulation of metabolic processes and the immune system or, in the case of dysbiosis, predispose them to age-related diseases, including bowel inflammatory and musculoskeletal diseases and metabolic and neurological disorders. In general, the microbiome of the elderly tends to present taxonomic and functional changes, which can function as a target to modulate the microbiota and improve the health of this population. The GM of centenarians is unique, with the faculty-promoting metabolic pathways capable of preventing and counteracting the different processes associated with age-related diseases. The molecular mechanisms by which the microbiota can exhibit anti-ageing properties are mainly based on anti-inflammatory and antioxidant actions. This review focuses on analysing the current knowledge of gut microbiota characteristics and modifiers, its relationship with ageing, and the GM-modulating approaches to increase life expectancy.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Maricarmen Chacín
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Sociedad Internacional de Rejuvenecimiento Facial No Quirúrgico (SIRF), Barranquilla 080002, Colombia
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Edgardo Mengual
- Biological Research Institute “Doctors Orlando Castejon and Haydee V Castejon”, Faculty of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Emma Gutiérrez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Xavier León
- Instituto Ecuatoriano de Seguridad Social, Cuenca 010101, Ecuador
| | - Andrea Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Marycarlota Bernal
- Facultad de Ingenierias, Universidad Simón Bolívar, Cúcuta 540001, Colombia
| | - Daniel Escalona
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | | | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
24
|
Wilson A, Bogie B, Chaaban H, Burge K. The Nonbacterial Microbiome: Fungal and Viral Contributions to the Preterm Infant Gut in Health and Disease. Microorganisms 2023; 11:909. [PMID: 37110332 PMCID: PMC10144239 DOI: 10.3390/microorganisms11040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
The intestinal microbiome is frequently implicated in necrotizing enterocolitis (NEC) pathogenesis. While no particular organism has been associated with NEC development, a general reduction in bacterial diversity and increase in pathobiont abundance has been noted preceding disease onset. However, nearly all evaluations of the preterm infant microbiome focus exclusively on the bacterial constituents, completely ignoring any fungi, protozoa, archaea, and viruses present. The abundance, diversity, and function of these nonbacterial microbes within the preterm intestinal ecosystem are largely unknown. Here, we review findings on the role of fungi and viruses, including bacteriophages, in preterm intestinal development and neonatal intestinal inflammation, with potential roles in NEC pathogenesis yet to be determined. In addition, we highlight the importance of host and environmental influences, interkingdom interactions, and the role of human milk in shaping fungal and viral abundance, diversity, and function within the preterm intestinal ecosystem.
Collapse
Affiliation(s)
| | | | - Hala Chaaban
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathryn Burge
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
25
|
Necrotizing Enterocolitis: The Role of Hypoxia, Gut Microbiome, and Microbial Metabolites. Int J Mol Sci 2023; 24:ijms24032471. [PMID: 36768793 PMCID: PMC9917134 DOI: 10.3390/ijms24032471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening disease that predominantly affects very low birth weight preterm infants. Development of NEC in preterm infants is accompanied by high mortality. Surgical treatment of NEC can be complicated by short bowel syndrome, intestinal failure, parenteral nutrition-associated liver disease, and neurodevelopmental delay. Issues surrounding pathogenesis, prevention, and treatment of NEC remain unclear. This review summarizes data on prenatal risk factors for NEC, the role of pre-eclampsia, and intrauterine growth retardation in the pathogenesis of NEC. The role of hypoxia in NEC is discussed. Recent data on the role of the intestinal microbiome in the development of NEC, and features of the metabolome that can serve as potential biomarkers, are presented. The Pseudomonadota phylum is known to be associated with NEC in preterm neonates, and the role of other bacteria and their metabolites in NEC pathogenesis is also discussed. The most promising approaches for preventing and treating NEC are summarized.
Collapse
|
26
|
The Milk Active Ingredient, 2'-Fucosyllactose, Inhibits Inflammation and Promotes MUC2 Secretion in LS174T Goblet Cells In Vitro. Foods 2023; 12:foods12010186. [PMID: 36613400 PMCID: PMC9818439 DOI: 10.3390/foods12010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
In several mice inflammatory models, human milk oligosaccharides (HMOs) were shown to protect the intestinal barrier by promoting mucin secretion and suppressing inflammation. However, the functions of the individual HMOs in enhancing mucin expression in vivo have not been compared, and the related mechanisms are not yet to be clarified. In this study, we investigated the modulatory effects of 2′-fucosyllactose (2′-FL), 3′-sialyllactose (3′-SL), galacto-oligosaccharide (GOS) and lactose (Lac) on goblet cells’ functions in vitro. The appropriate dosage of the four chemicals was assessed in LS174T cells using the CCK-8 method. Then they were supplemented into a homeostasis and inflammatory environment to further investigate their effects under different conditions. Mucin secretion-related genes, including mucin 2 (MUC2), trefoil factor family 3 (TFF3), resistin-like β (RETNLB), carbohydrate sulfotransferase 5 (CHST5) and galactose-3-O-sulfotransferase 2 (GAL3ST2), in LS174T cells were detected using quantitative RT-qPCR. The results showed that 2′-FL (2.5 mg/mL, 72 h) was unable to increase MUC2 secretion in a steady-state condition. Comparatively, it exhibited a greater ability to improve mucin secretion under an inflammatory condition compared with GOS, demonstrated by a significant increase in TFF3 and CHST5 mRNA expression levels (p > 0.05). However, 3′-SL and Lac exhibited no effects on mucin secretion. To further investigate the underlying mechanism via which 2′-FL enhanced goblet cells’ secretion function, the NOD-like receptor family pyrin domain containing 6 (NLRP6) gene, which is closely related to MUC2 secretion, was silenced using the siRNA method. After silencing the NLRP6 gene, the mRNA expression levels of MUC2, TFF3 and CHST5 in the (2′-FL + tumor necrosis factor α (TNF-α) + NLRP6 siRNA) group were significantly decreased compared with the (2′-FL + TNF-α) group (p > 0.05), indicating that NLRP6 was essential for MUC2 expression in goblet cells. We further found that 2′-FL could significantly decrease toll-like receptor 4 (TLR4, p < 0.05), myeloid differential protein-88 (MyD88, p < 0.05) and nuclear factor kappa-B (NF-κB, p < 0.05) levels in LS174T inflammatory cells, even when the NLRP6 was silenced. Altogether, these results indicated that in goblet cells, 2′-FL exerts its function via multiple processes, i.e., by promoting mucin secretion through NLRP6 and suppressing inflammation by inhibiting the TLR4/MyD88/NF-κB pathway.
Collapse
|
27
|
Manohar K, Mesfin FM, Liu J, Shelley WC, Brokaw JP, Markel TA. Gut-Brain cross talk: The pathogenesis of neurodevelopmental impairment in necrotizing enterocolitis. Front Pediatr 2023; 11:1104682. [PMID: 36873645 PMCID: PMC9975605 DOI: 10.3389/fped.2023.1104682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating condition of multi-factorial origin that affects the intestine of premature infants and results in high morbidity and mortality. Infants that survive contend with several long-term sequelae including neurodevelopmental impairment (NDI)-which encompasses cognitive and psychosocial deficits as well as motor, vision, and hearing impairment. Alterations in the gut-brain axis (GBA) homeostasis have been implicated in the pathogenesis of NEC and the development of NDI. The crosstalk along the GBA suggests that microbial dysbiosis and subsequent bowel injury can initiate systemic inflammation which is followed by pathogenic signaling cascades with multiple pathways that ultimately lead to the brain. These signals reach the brain and activate an inflammatory cascade in the brain resulting in white matter injury, impaired myelination, delayed head growth, and eventual downstream NDI. The purpose of this review is to summarize the NDI seen in NEC, discuss what is known about the GBA, explore the relationship between the GBA and perinatal brain injury in the setting of NEC, and finally, highlight the existing research into possible therapies to help prevent these deleterious outcomes.
Collapse
Affiliation(s)
- Krishna Manohar
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - W Christopher Shelley
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States.,Riley Hospital for Children, Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
28
|
Moliner-Calderón E, Verd S, Leiva A, Ponce-Taylor J, Ginovart G, Moll-McCarthy P, Gelabert C, Figueras-Aloy J. Human Milk Feeding for Septic Newborn Infants Might Minimize Their Exposure to Ventilation Therapy. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101450. [PMID: 36291386 PMCID: PMC9600066 DOI: 10.3390/children9101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Background. It has been well established that human milk feeding contributes to limiting lung diseases in vulnerable neonates. The primary aim of this study was to compare the need for mechanical ventilation between human milk-fed neonates with sepsis and formula-fed neonates with sepsis. Methods. All late preterm and full-term infants from a single center with sepsis findings from 2002 to 2017 were identified. Data on infant feeding during hospital admission were also recorded. Multivariate logistic regression analyses were performed to assess the impact of feeding type on ventilation support and main neonatal morbidities. Results. The total number of participants was 322 (human milk group = 260; exclusive formula group = 62). In the bivariate analysis, 72% of human milk-fed neonates did not require oxygen therapy or respiratory support versus 55% of their formula-fed counterparts (p < 0.0001). Accordingly, invasive mechanical ventilation was required in 9.2% of any human milk-fed infants versus 32% of their exclusively formula-fed counterparts (p = 0.0085). These results held true in multivariate analysis; indeed, any human milk-fed neonates were more likely to require less respiratory support (OR = 0.44; 95% CI:0.22, 0.89) than those who were exclusively formula-fed. Conclusion. Human milk feeding may minimize exposure to mechanical ventilation.
Collapse
Affiliation(s)
- Elisenda Moliner-Calderón
- Neonatal Unit, Department of Paediatrics, Santa Creu i Sant Pau Hospital, 90 Mas Casanovas Street, 08041 Barcelona, Spain
| | - Sergio Verd
- Pediatric Unit, La Vileta Surgery, Department of Primary Care, Matamusinos Street, 07013 Palma de Mallorca, Spain
- Balearic Islands Health Research Institute (IdISBa), 79 Valldemossa Road, 07120 Palma de Mallorca, Spain
- Correspondence: ; Tel.: +34-600-505-246; Fax: +34-(9)-71-799534
| | - Alfonso Leiva
- Research Unit, Department of Primary Care, Escola Graduada Street, 07002 Palma de Mallorca, Spain
| | - Jaume Ponce-Taylor
- A & E Unit, Department of Primary Care, Illes Balears Street, 07014 Palma de Mallorca, Spain
| | - Gemma Ginovart
- Neonatal Unit, Department of Paediatrics, Germans Trias i Pujol Hospital, Canyet Road, 08916 Badalona, Spain
| | - Pia Moll-McCarthy
- A & E Division, Manacor Hospital, Alcudia Road, 07500 Manacor, Spain
| | - Catian Gelabert
- Department of Paediatrics, Son Espases Hospital, 79 Valldemossa Road, 07120 Palma de Mallorca, Spain
| | - Josep Figueras-Aloy
- Neonatal Unit, ICGON, Clinic Hospital, Sabino Arana Street, 08028 Barcelona, Spain
| |
Collapse
|
29
|
In silico analysis of the human milk oligosaccharide glycome reveals key enzymes of their biosynthesis. Sci Rep 2022; 12:10846. [PMID: 35760821 PMCID: PMC9237113 DOI: 10.1038/s41598-022-14260-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
Human milk oligosaccharides (HMOs) form the third most abundant component of human milk and are known to convey several benefits to the neonate, including protection from viral and bacterial pathogens, training of the immune system, and influencing the gut microbiome. As HMO production during lactation is driven by enzymes that are common to other glycosylation processes, we adapted a model of mucin-type GalNAc-linked glycosylation enzymes to act on free lactose. We identified a subset of 11 enzyme activities that can account for 206 of 226 distinct HMOs isolated from human milk and constructed a biosynthetic reaction network that identifies 5 new core HMO structures. A comparison of monosaccharide compositions demonstrated that the model was able to discriminate between two possible groups of intermediates between major subnetworks, and to assign possible structures to several previously uncharacterised HMOs. The effect of enzyme knockouts is presented, identifying β-1,4-galactosyltransferase and β-1,3-N-acetylglucosaminyltransferase as key enzyme activities involved in the generation of the observed HMO glycosylation patterns. The model also provides a synthesis chassis for the most common HMOs found in lactating mothers.
Collapse
|
30
|
Agrawal M, Allin KH, Petralia F, Colombel JF, Jess T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat Rev Gastroenterol Hepatol 2022; 19:399-409. [PMID: 35301463 PMCID: PMC9214275 DOI: 10.1038/s41575-022-00593-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated disease of the intestinal tract, with complex pathophysiology involving genetic, environmental, microbiome, immunological and potentially other factors. Epidemiological data have provided important insights into risk factors associated with IBD, but are limited by confounding, biases and data quality, especially when pertaining to risk factors in early life. Multiomics platforms provide granular high-throughput data on numerous variables simultaneously and can be leveraged to characterize molecular pathways and risk factors for chronic diseases, such as IBD. Herein, we describe omics platforms that can advance our understanding of IBD risk factors and pathways, and available omics data on IBD and other relevant diseases. We highlight knowledge gaps and emphasize the importance of birth, at-risk and pre-diagnostic cohorts, and neonatal blood spots in omics analyses in IBD. Finally, we discuss network analysis, a powerful bioinformatics tool to assemble high-throughput data and derive clinical relevance.
Collapse
Affiliation(s)
- Manasi Agrawal
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
31
|
Sharif S, Heath PT, Oddie SJ, McGuire W. Synbiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev 2022; 3:CD014067. [PMID: 35230697 PMCID: PMC8887627 DOI: 10.1002/14651858.cd014067.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Intestinal dysbiosis may contribute to the pathogenesis of necrotising enterocolitis (NEC) in very preterm or very low birth weight (VLBW) infants. Dietary supplementation with synbiotics (probiotic micro-organisms combined with prebiotic oligosaccharides) to modulate the intestinal microbiome has been proposed as a strategy to reduce the risk of NEC and associated mortality and morbidity. OBJECTIVES To assess the effect of enteral supplementation with synbiotics (versus placebo or no treatment, or versus probiotics or prebiotics alone) for preventing NEC and associated morbidity and mortality in very preterm or VLBW infants. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, the Maternity and Infant Care database and CINAHL, from earliest records to 17 June 2021. We searched clinical trials databases and conference proceedings, and examined the reference lists of retrieved articles. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs comparing prophylactic synbiotics supplementation with placebo or no synbiotics in very preterm (< 32 weeks' gestation) or very low birth weight (< 1500 g) infants. DATA COLLECTION AND ANALYSIS Two review authors separately performed the screening and selection process, evaluated risk of bias of the trials, extracted data, and synthesised effect estimates using risk ratio (RR), risk difference (RD), and mean difference, with associated 95% confidence intervals (CIs). We used the GRADE approach to assess the level of certainty for effects on NEC, all-cause mortality, late-onset invasive infection, and neurodevelopmental impairment. MAIN RESULTS We included six trials in which a total of 925 infants participated. Most trials were small (median sample size 200). Lack of clarity on methods used to conceal allocation and mask caregivers or investigators were potential sources of bias in four of the trials. The studied synbiotics preparations contained lactobacilli or bifidobacteria (or both) combined with fructo- or galacto-oligosaccharides (or both). Meta-analyses suggested that synbiotics may reduce the risk of NEC (RR 0.18, 95% CI 0.09 to 0.40; RD 70 fewer per 1000, 95% CI 100 fewer to 40 fewer; number needed to treat for an additional beneficial outcome (NNTB) 14, 95% CI 10 to 25; six trials (907 infants); low certainty evidence); and all-cause mortality prior to hospital discharge (RR 0.53, 95% CI 0.33 to 0.85; RD 50 fewer per 1000, 95% CI 120 fewer to 100 fewer; NNTB 20, 95% CI 8 to 100; six trials (925 infants); low-certainty evidence). Synbiotics may have little or no effect on late-onset invasive infection, but the evidence is very uncertain (RR 0.84, 95% CI 0.58 to 1.21; RD 20 fewer per 1000, 95% CI 70 fewer to 30 more; five trials (707 infants); very low-certainty evidence). None of the trials assessed neurodevelopmental outcomes. In the absence of high levels of heterogeneity, we did not undertake any subgroup analysis (including the type of feeding). AUTHORS' CONCLUSIONS The available trial data provide only low-certainty evidence about the effects of synbiotics on the risk of NEC and associated morbidity and mortality for very preterm or very low birth weight infants. Our confidence in the effect estimates is limited; the true effects may be substantially different from these estimates. Large, high-quality trials would be needed to provide evidence of sufficient validity and applicability to inform policy and practice.
Collapse
Affiliation(s)
- Sahar Sharif
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Paul T Heath
- Division of Child Health and Vaccine Institute, St. George's, University of London, London, UK
| | - Sam J Oddie
- Bradford Neonatology, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - William McGuire
- Centre for Reviews and Dissemination, University of York, York, UK
| |
Collapse
|
32
|
Panwar D, Panesar PS, Saini A. Prebiotics and their Role in Functional Food Product Development. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:233-271. [DOI: 10.1002/9781119702160.ch11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Jang KB, Kim SW. Role of milk carbohydrates in intestinal health of nursery pigs: a review. J Anim Sci Biotechnol 2022; 13:6. [PMID: 34983676 PMCID: PMC8729129 DOI: 10.1186/s40104-021-00650-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal health is essential for the resistance to enteric diseases and for nutrient digestion and absorption to support growth. The intestine of nursery pigs are immature and vulnerable to external challenges, which cause negative impacts on the structure and function of the intestine. Among nutritional interventions, the benefits of milk are significant for the intestinal health of pigs. Milk coproducts have traditionally been used in starter feeds to improve the growth of nursery pigs, but their use is somewhat limited due to the high costs and potential risks of excessive lactose on the intestine. Thus, understanding a proper feeding level of milk carbohydrates is an important start of the feeding strategy. For nursery pigs, lactose is considered a highly digestible energy source compared with plant-based starch, whereas milk oligosaccharides are considered bioactive compounds modulating intestinal immunity and microbiota. Therefore, milk carbohydrates, mainly composed of lactose and oligosaccharides, have essential roles in the intestinal development and functions of nursery pigs. The proper feeding levels of lactose in starter feeds could be variable by weaning age, body weight, or genetic lines. Effects of lactose and milk oligosaccharides have been broadly studied in human health and animal production. Therefore, this review focuses on the mechanisms of lactose and milk oligosaccharides affecting intestinal maturation and functions through modulation of enterocyte proliferation, intestinal immunity, and intestinal microbiota of nursery pigs.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
34
|
Kong C, Akkerman R, Klostermann CE, Beukema M, Oerlemans MMP, Schols HA, de Vos P. Distinct fermentation of human milk oligosaccharides 3-FL and LNT2 and GOS/inulin by infant gut microbiota and impact on adhesion of Lactobacillus plantarum WCFS1 to gut epithelial cells. Food Funct 2021; 12:12513-12525. [PMID: 34811557 DOI: 10.1039/d1fo02563e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human milk oligosaccharides (hMOs) are unique bioactive components in human milk. 3-Fucosyllactose (3-FL) is an abundantly present hMO that can be produced in sufficient amounts to allow application in infant formula. Lacto-N-triaose II (LNT2) can be obtained by acid hydrolysis of lacto-N-neotetraose (LNnT). Both 3-FL and LNT2 have been shown to have health benefits, but their impact on infant microbiota composition and microbial metabolic products such as short-chain fatty acids (SCFAs) is unknown. To gain more insight in fermentability, we performed in vitro fermentation studies of 3-FL and LNT2 using pooled fecal microbiota from 12-week-old infants. The commonly investigated galacto-oligosaccharides (GOS)/inulin (9 : 1) served as control. Compared to GOS/inulin, we observed a delayed utilization of 3-FL, which was utilized at 60.3% after 36 h of fermentation, and induced the gradual production of acetic acid and lactic acid. 3-FL specifically enriched bacteria of Bacteroides and Enterococcus genus. LNT2 was fermented much faster. After 14 h of fermentation, 90.1% was already utilized, and production of acetic acid, succinic acid, lactic acid and butyric acid was observed. LNT2 specifically increased the abundance of Collinsella, as well as Bifidobacterium. The GOS present in the GOS/inulin mixture was completely fermented after 14 h, while for inulin, only low DP was rapidly utilized after 14 h. To determine whether the fermentation might lead to enhanced colonization of commensal bacteria to gut epithelial cells, we investigated adhesion of the commensal Lactobacillus plantarum WCFS1 to Caco-2 cells. The fermentation digesta of LNT2 collected after 14 h, 24 h, and 36 h, and GOS/inulin after 24 h of fermentation significantly increased the adhesion of L. plantarum WCFS1 to Caco-2 cells, while 3-FL had no such effect. Our findings illustrate that fermentation of hMOs is very structure-dependent and different from the commonly applied GOS/inulin, which might lead to differential potencies to stimulate adhesion of commensal cells to gut epithelium and consequent microbial colonization. This knowledge might contribute to the design of tailored infant formulas containing specific hMO molecules to meet the need of infants during the transition from breastfeeding to formula.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China. .,Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Renate Akkerman
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martin Beukema
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Marjolein M P Oerlemans
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
35
|
How far is it from infant formula to human milk? A look at the human milk oligosaccharides. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Jang KB, Duarte ME, Purvis JM, Kim SW. Impacts of weaning age on dietary needs of whey permeate for pigs at 7 to 11 kg body weight. J Anim Sci Biotechnol 2021; 12:111. [PMID: 34782016 PMCID: PMC8594115 DOI: 10.1186/s40104-021-00637-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background Whey permeate is an effective lactose source for nursery pigs and the most benefits are obtained when pigs are at 7 to 11 kg BW. Altering weaning ages could cause different length of early-weaner phases until 7 kg BW and thus it would influence the dietary need of whey permeate during 7 to 11 kg BW of pigs. This study aimed to evaluate if weaning ages would affect the dietary needs of whey permeate for optimum growth performance of pigs at 7 to 11 kg BW. Methods A total of 1,632 pigs were weaned at d 21 (d 21.2 ± 1.3) or d 25 (d 24.6 ± 1.1) after birth. All pigs had a common early-weaner feeds until they reached 7 kg BW. When pigs reached 7 kg BW within a weaning age group, they were allotted in a randomized complete block design (2 × 4 factorial). Two factors were weaning age groups (21 and 25 d of age) and varying whey permeate levels (7.50%, 11.25%, 15.00%, and 18.75%). Data were analyzed using the GLM and NLIN procedures of SAS for slope-ratio and broken-line analyses to determine the growth response to whey permeate and optimal daily whey permeate intake for the growth of the pigs weaned at different ages. Results Pigs weaned at 21 d of age had a common diet for 11 d to reach 7 kg BW whereas pigs weaned at 25 d of age needed 2 d. The G:F of pigs weaned at 25 d of age responded to increased daily whey permeate intake greater (P < 0.05) than pigs weaned at 21 d of age. Breakpoints were obtained (P < 0.05) at 88 and 60 g/d daily whey permeate intake or 17.0% and 14.4% of whey permeate for G:F of pigs weaned at 21 and 25 d of age, respectively. Conclusion Pigs weaned at an older age with a short early-weaner phase had a greater growth response to whey permeate intake compared with pigs weaned at a younger age with a long early-weaner phase. Altering weaning ages affected dietary needs of whey permeate for optimum growth performance of pigs from 7 to 11 kg BW.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
37
|
Sudarma V, Hegar B, Hidayat A, Agustina R. Human Milk Oligosaccharides as a Missing Piece in Combating Nutritional Issues during Exclusive Breastfeeding. Pediatr Gastroenterol Hepatol Nutr 2021; 24:501-509. [PMID: 34796094 PMCID: PMC8593363 DOI: 10.5223/pghn.2021.24.6.501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/02/2021] [Accepted: 09/05/2021] [Indexed: 11/14/2022] Open
Abstract
Extensive studies have shown that breast milk is the best source of nutrition for infants, especially during the first six months, because it fulfills almost all of their nutritional needs. Among the many functional building blocks in breast milk, human milk oligosaccharides (HMOs) have been receiving more attention recently. Furthermore, it is the third most common group of compounds in human milk, and studies have demonstrated the health benefits it provides for infants, including improved nutritional status. HMOs were previously known as the 'bifidus factor' due to their 'bifidogenic' or prebiotic effects, which enabled the nourishment of the gastrointestinal microbiota. Healthy gastrointestinal microbiota are intestinal health substrates that increase nutrient absorption and reduce the incidence of diarrhea. In addition, HMOs, directly and indirectly, protect infants against infections and strengthen their immune system, leading to a positive energy balance and promoting normal growth. Non-modifiable factors, such as genetics, and modifiable factors (e.g., maternal health, diet, nutritional status, environment) can influence the HMO profile. This review provides an overview of the current understanding of how HMOs can contribute to the prevention and treatment of nutritional issues during exclusive breastfeeding.
Collapse
Affiliation(s)
- Verawati Sudarma
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.,Department of Nutrition, Faculty of Medicine, Trisakti University, Jakarta, Indonesia
| | - Badriul Hegar
- Department of Child Health, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Adi Hidayat
- Department of Public Health, Faculty of Medicine, Trisakti University, Jakarta, Indonesia
| | - Rina Agustina
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.,Human Nutrition Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
38
|
Milk Formula Diet Alters Bacterial and Host Protein Profile in Comparison to Human Milk Diet in Neonatal Piglet Model. Nutrients 2021; 13:nu13113718. [PMID: 34835974 PMCID: PMC8618976 DOI: 10.3390/nu13113718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
The metaproteome profiling of cecal contents collected from neonatal piglets fed pasteurized human milk (HM) or a dairy-based infant formula (MF) from postnatal day (PND) 2 to 21 were assessed. At PND 21, a subset of piglets from each group (n = 11/group) were euthanized, and cecal contents were collected for further metaproteome analysis. Cecal microbiota composition showed predominantly more Firmicutes phyla and Lachnospiraceae family in the lumen of cecum of HM-fed piglets in comparison to the MF-fed group. Ruminococcus gnavus was the most abundant species from the Firmicutes phyla in the cecal contents of the HM-fed piglets at 21 days of age. A greater number of expressed proteins were identified in the cecal contents of the HM-fed piglets relative to the MF-fed piglets. Greater abundances of proteins potentially expressed by Bacteroides spp. such as glycoside enzymes were noted in the cecal lumen of HM-fed piglets relative to the MF. Additionally, lyases associated with Lachnospiraceae family were abundant in the cecum of the HM group relative to the MF group. Overall, our findings indicate that neonatal diet impacts the gut bacterial taxa and microbial proteins prior to weaning. The metaproteomics data were deposited into PRIDE, PXD025432 and 10.6019/PXD025432.
Collapse
|
39
|
Untargeted Metabolomic Analysis of Human Milk from Mothers of Preterm Infants. Nutrients 2021; 13:nu13103604. [PMID: 34684605 PMCID: PMC8540315 DOI: 10.3390/nu13103604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022] Open
Abstract
The application of metabolomics in neonatology offers an approach to investigate the complex relationship between nutrition and infant health. Characterization of the metabolome of human milk enables an investigation into nutrients that affect the neonatal metabolism and identification of dietary interventions for infants at risk of diseases such as necrotizing enterocolitis (NEC). In this study, we aimed to identify differences in the metabolome of breast milk of 48 mothers with preterm infants with NEC and non-NEC healthy controls. A minimum significant difference was observed in the human milk metabolome between the mothers of infants with NEC and mothers of healthy control infants. However, significant differences in the metabolome related to fatty acid metabolism, oligosaccharides, amino sugars, amino acids, vitamins and oxidative stress-related metabolites were observed when comparing milk from mothers with control infants of ≤1.0 kg birth weight and >1.5 kg birth weight. Understanding the functional biological features of mothers’ milk that may modulate infant health is important in the future of tailored nutrition and care of the preterm newborn.
Collapse
|
40
|
Evidence of Lactobacillus reuteri to reduce colic in breastfed babies: Systematic review and meta-analysis. Complement Ther Med 2021; 63:102781. [PMID: 34627993 DOI: 10.1016/j.ctim.2021.102781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To investigate evidence for the treatment of childhood colic by supplementing Lactobacillus reuteri in infants breastfed with breast milk. METHODS The study was conducted according to the PRISMA protocol. The databases used for acquiring data were PubMed and Web of Science, applying MeSH terms and free terms. Meta-analysis was conducted using Stata ™ 12.0. The risk of bias was evaluated by the Review Manager (RevMan) 5.3 tool, and the strength of evidence was assessed by the Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS Ten clinical trials were included in the review. The administration of L. reuteri (DSM 17938 or ATCC55730) was tested in infants (n = 248) versus the control/placebo group (n = 229). Eight articles were included in the meta-analysis. There was a significant response in reducing crying time (minutes/day) and treatment effectiveness (reduction ≥ 50% in average daily crying time) in the first week (p = 0.001 and p = 0.003, respectively). These results were similar in the second, third weeks (p < 0.001 for both outcomes) and fourth weeks (p<0.001 and p = 0.002, respectively). The risk of bias was low for the majority of the studies. Confidence in evidence was considered very low for crying time and low for effectiveness treatment. CONCLUSIONS The evidence shows that the administration of Lactobacillus reuteri to babies fed with breast milk reduces the crying time in babies diagnosed with colic. But our confidence in the effect estimate is limited.
Collapse
|
41
|
Abstract
Mother's own milk provides personalized nutrition and immune protection to the developing infant. The presence of healthy microbes plays an important role in the infant's gut by programming the microbiota and excluding potential pathogens. This review describes the important components in mother's own milk that contribute to its superiority for infant nutrition and suggest potential strategies to replicate these factors in alternative feedings when sufficient milk is unavailable. Current strategies to supplement, substitute and replicate mother's own milk including microbial restoration, use of unpasteurized donor human milk, probiotics and fortification are discussed. Critical work remains to be done in understanding the human milk microbiome and metabolome and in improving lactation support for mothers of preterm infants. Increasing delivery of mother's own milk and milk components to infants would likely positively impact infant mortality and health worldwide.
Collapse
Affiliation(s)
- Evon DeBose-Scarlett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road Rm 307, Gainesville, FL 32610 USA.
| | - Marion M Bendixen
- College of Nursing, University of Florida, PO Box 100197, Gainesville, FL 32610-0197 USA.
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road Rm 307, Gainesville, FL 32610 USA.
| | - Leslie Ann Parker
- College of Nursing, University of Florida, PO Box 100197, Gainesville, FL 32610-0197 USA.
| |
Collapse
|
42
|
Figueroa-Lozano S, Akkerman R, Beukema M, van Leeuwen SS, Dijkhuizen L, de Vos P. 2′-Fucosyllactose impacts the expression of mucus-related genes in goblet cells and maintains barrier function of gut epithelial cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
43
|
Hill DR, Chow JM, Buck RH. Multifunctional Benefits of Prevalent HMOs: Implications for Infant Health. Nutrients 2021; 13:3364. [PMID: 34684364 PMCID: PMC8539508 DOI: 10.3390/nu13103364] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Breastfeeding is the best source of nutrition during infancy and is associated with a broad range of health benefits. However, there remains a significant and persistent need for innovations in infant formula that will allow infants to access a wider spectrum of benefits available to breastfed infants. The addition of human milk oligosaccharides (HMOs) to infant formulas represents the most significant innovation in infant nutrition in recent years. Although not a direct source of calories in milk, HMOs serve as potent prebiotics, versatile anti-infective agents, and key support for neurocognitive development. Continuing improvements in food science will facilitate production of a wide range of HMO structures in the years to come. In this review, we evaluate the relationship between HMO structure and functional benefits. We propose that infant formula fortification strategies should aim to recapitulate a broad range of benefits to support digestive health, immunity, and cognitive development associated with HMOs in breastmilk. We conclude that acetylated, fucosylated, and sialylated HMOs likely confer important health benefits through multiple complementary mechanisms of action.
Collapse
Affiliation(s)
| | | | - Rachael H. Buck
- Abbott Nutrition, 3300 Stelzer Road, Columbus, OH 43219, USA; (D.R.H.); (J.M.C.)
| |
Collapse
|
44
|
Abbas S, Keir AK, Makrides M, Klein LD, Grzeskowiak LE, McPhee AJ, Rumbold AR. Tailoring Human Milk Oligosaccharides to Prevent Necrotising Enterocolitis Among Preterm Infants. Front Nutr 2021; 8:702888. [PMID: 34395496 PMCID: PMC8357978 DOI: 10.3389/fnut.2021.702888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Necrotising enterocolitis (NEC) is a devastating disease affecting preterm infants, with little improvement in mortality rates and treatment strategies in the last 30 years. Human milk oligosaccharides (HMOs) are emerging as a potential preventive therapy, with multiple protective functions postulated. Our aim is to summarise the evidence concerning the role of HMOs in NEC development and emerging strategies to tailor the delivery of HMOs to preterm infants. Most research efforts to date have focused on supplementing preterm infants with simple oligosaccharides, which are structurally different to HMOs and derived mainly from plants. Clinical trials demonstrate limited benefits for NEC prevention arising from the use of these supplements. Alternative strategies under investigation include optimising HMOs for infants receiving donor human milk, concentrating oligosaccharides from donor human milk and from animal milks, as well as more sophisticated synthetic oligosaccharide production strategies. Critically, high quality evidence to support implementation of any of these approaches in the neonatal unit is lacking. Whether it is a specific HMO alone or a combination of HMOs that exert protective effects remains to be elucidated. Further challenges include how best to manufacture and administer oligosaccharides whilst retaining bioactivity and safety, including evaluation of the long-term effects of altering the balance of HMOs and gut microbiota in preterm infants. While several human clinical trials are underway, further research is needed to understand whether a tailored approach to oligosaccharide supplementation is beneficial for preterm infants.
Collapse
Affiliation(s)
- Safiyyah Abbas
- Women's and Children's Health Network, Adelaide, SA, Australia
| | - Amy K Keir
- Women's and Children's Health Network, Adelaide, SA, Australia.,SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Maria Makrides
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Laura D Klein
- Business Growth and Innovation, Australian Red Cross Lifeblood, Sydney, NSW, Australia
| | - Luke E Grzeskowiak
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Andrew J McPhee
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Alice R Rumbold
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
45
|
Sangild PT, Vonderohe C, Melendez Hebib V, Burrin DG. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2021; 13:nu13082551. [PMID: 34444709 PMCID: PMC8402036 DOI: 10.3390/nu13082551] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Bovine colostrum (BC), the first milk produced from cows after parturition, is increasingly used as a nutritional supplement to promote gut function and health in other species, including humans. The high levels of whey and casein proteins, immunoglobulins (Igs), and other milk bioactives in BC are adapted to meet the needs of newborn calves. However, BC supplementation may improve health outcomes across other species, especially when immune and gut functions are immature in early life. We provide a review of BC composition and its effects in infants and children in health and selected diseases (diarrhea, infection, growth-failure, preterm birth, necrotizing enterocolitis (NEC), short-bowel syndrome, and mucositis). Human trials and animal studies (mainly in piglets) are reviewed to assess the scientific evidence of whether BC is a safe and effective antimicrobial and immunomodulatory nutritional supplement that reduces clinical complications related to preterm birth, infections, and gut disorders. Studies in infants and animals suggest that BC should be supplemented at an optimal age, time, and level to be both safe and effective. Exclusive BC feeding is not recommended for infants because of nutritional imbalances relative to human milk. On the other hand, adverse effects, including allergies and intolerance, appear unlikely when BC is provided as a supplement within normal nutrition guidelines for infants and children. Larger clinical trials in infant populations are needed to provide more evidence of health benefits when patients are supplemented with BC in addition to human milk or formula. Igs and other bioactive factors in BC may work in synergy, making it critical to preserve bioactivity with gentle processing and pasteurization methods. BC has the potential to become a safe and effective nutritional supplement for several pediatric subpopulations.
Collapse
Affiliation(s)
- Per Torp Sangild
- Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark;
- Department of Neonatology, Rigshospitalet, DK-1870 Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, DK-5000 Odense, Denmark
| | - Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Valeria Melendez Hebib
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Douglas G. Burrin
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
- Correspondence: ; Tel.: +1-713-798-7049
| |
Collapse
|
46
|
Presence and Levels of Galactosyllactoses and Other Oligosaccharides in Human Milk and Their Variation during Lactation and According to Maternal Phenotype. Nutrients 2021; 13:nu13072324. [PMID: 34371833 PMCID: PMC8308909 DOI: 10.3390/nu13072324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Among the human milk oligosaccharides (HMOS), the galactosyllactoses (GLs) are only limitedly studied. This study aims to describe the presence and relative levels of HMOS, including GLs, in human milk (HM) according to maternal Secretor and Lewis (SeLe) phenotype and lactation stage. Relative levels of 19 HMOS were measured in 715 HM samples collected in the first 4 months postpartum from 371 donors participating in the PreventCD study. From a subset of 24 Dutch women (171 HM samples), samples were collected monthly up to 12 months postpartum and were additionally analyzed for relative and absolute levels of β6′-GL, β3′-GL and α3′-GL. Maternal SeLe phenotype or HM group was assigned based on the presence of specific fucosylated HMOS. Most HMOS, including β6′- and β3′-GL, were present in the vast majority (≥75%) of HM samples, whereas others (e.g., LNDFH II, 2′-F-LNH and α3′-GL) only occurred in a low number (<25%) of samples. Clear differences were observed between the presence and relative levels of the HMOS according to the maternal phenotype and lactation stage. Absolute concentrations of β6′-GL and β3′-GL were higher in HM group IV samples compared to samples of the other three HM groups. β3′-GL was also higher in HM group II samples compared to HM group I samples. β3′-GL and β6′-GL were stable over lactation stages. In conclusion, presence and levels of HMOS vary according to HM group and lactation stage. Not all HMOS behave similarly: some HMOS depend strongly on maternal phenotype and/or lactation stage, whereas others do not. β3′-GL and β6′-GL were present in low concentrations in over 75% of the analyzed HM samples and showed differences between HM groups, but not between the lactation stages.
Collapse
|
47
|
Buffet-Bataillon S, Bellanger A, Boudry G, Gangneux JP, Yverneau M, Beuchée A, Blat S, Le Huërou-Luron I. New Insights Into Microbiota Modulation-Based Nutritional Interventions for Neurodevelopmental Outcomes in Preterm Infants. Front Microbiol 2021; 12:676622. [PMID: 34177860 PMCID: PMC8232935 DOI: 10.3389/fmicb.2021.676622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota and the central nervous system have parallel developmental windows during pre and post-natal life. Increasing evidences suggest that intestinal dysbiosis in preterm infants predisposes the neonate to adverse neurological outcomes later in life. Understanding the link between gut microbiota colonization and brain development to tailor therapies aimed at optimizing initial colonization and microbiota development are promising strategies to warrant adequate brain development and enhance neurological outcomes in preterm infants. Breast-feeding has been associated with both adequate cognitive development and healthy microbiota in preterms. Infant formula are industrially produced substitutes for infant nutrition that do not completely recapitulate breast-feeding benefices and could be largely improved by the understanding of the role of breast milk components upon gut microbiota. In this review, we will first discuss the nutritional and bioactive component information on breast milk composition and its contribution to the assembly of the neonatal gut microbiota in preterms. We will then discuss the emerging pathways connecting the gut microbiota and brain development. Finally, we will discuss the promising microbiota modulation-based nutritional interventions (including probiotic and prebiotic supplementation of infant formula and maternal nutrition) for improving neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | - Amandine Bellanger
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Pediatrics-Neonatology, CHU Rennes, Rennes, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Alain Beuchée
- Department of Pediatrics-Neonatology, Univ Rennes, CHU Rennes, LTSI-UMR 1099, Rennes, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | |
Collapse
|
48
|
Moubareck CA. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021; 13:1123. [PMID: 33805503 PMCID: PMC8067037 DOI: 10.3390/nu13041123] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human milk represents a cornerstone for growth and development of infants, with extensive array of benefits. In addition to exceptionally nutritive and bioactive components, human milk encompasses a complex community of signature bacteria that helps establish infant gut microbiota, contributes to maturation of infant immune system, and competitively interferes with pathogens. Among bioactive constituents of milk, human milk oligosaccharides (HMOs) are particularly significant. These are non-digestible carbohydrates forming the third largest solid component in human milk. Valuable effects of HMOs include shaping intestinal microbiota, imparting antimicrobial effects, developing intestinal barrier, and modulating immune response. Moreover, recent investigations suggest correlations between HMOs and milk microbiota, with complex links possibly existing with environmental factors, genetics, geographical location, and other factors. In this review, and from a physiological and health implications perspective, milk benefits for newborns and mothers are highlighted. From a microbiological perspective, a focused insight into milk microbiota, including origins, diversity, benefits, and effect of maternal diet is presented. From a metabolic perspective, biochemical, physiological, and genetic significance of HMOs, and their probable relations to milk microbiota, are addressed. Ongoing research into mechanistic processes through which the rich biological assets of milk promote development, shaping of microbiota, and immunity is tackled.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai 19282, United Arab Emirates
| |
Collapse
|
49
|
Jang KB, Purvis JM, Kim SW. Dose-response and functional role of whey permeate as a source of lactose and milk oligosaccharides on intestinal health and growth of nursery pigs. J Anim Sci 2021; 99:skab008. [PMID: 33521816 PMCID: PMC7849970 DOI: 10.1093/jas/skab008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
Two experiments were conducted to evaluate dose-response and supplemental effects of whey permeate on growth performance and intestinal health of nursery pigs. In experiment (exp.) 1, 1,080 pigs weaned at 6.24 kg body weight (BW) were allotted to five treatments (eight pens/treatment) with increasing levels of whey permeate in three phases (from 10% to 30%, 3% to 23%, and 0% to 9% for phase 1, 2, and 3, respectively) fed until 11 kg BW and then fed a common phase 4 diet (0% whey permeate) until 25 kg BW in a 48-d feeding trial. Feed intake and BW were measured at the end of each phase. In exp. 2, 1,200 nursery pigs at 7.50 kg BW were allotted to six treatments (10 pens/treatment) with increasing levels of whey permeate from 0% to 18.75% fed until 11 kg BW. Feed intake and BW were measured during 11 d. Six pigs per treatment (1 per pens) were euthanized to collect the jejunum to evaluate tumor necrosis factor-alpha, interleukin-8 (IL-8), transforming growth factor-beta 1, mucin 2, histomorphology, digestive enzyme activity, crypt cell proliferation rate, and jejunal mucosa-associated microbiota. Data were analyzed using contrasts in the MIXED procedure and a broken-line analysis using the NLIN procedure of SAS. In exp. 1, increasing whey permeate had a quadratic effect (P < 0.05) on feed efficiency (G:F; maximum: 1.35 at 18.3%) in phase 1. Increasing whey permeate linearly increased (P < 0.05) average daily gain (ADG; 292 to 327 g/d) and G:F (0.96 to 1.04) of pigs in phase 2. In exp. 2, increasing whey permeate linearly increased (P < 0.05) ADG (349 to 414 g/d) and G:F (0.78 to 0.85) and linearly increased (P < 0.05) crypt cell proliferation rate (27.8% to 37.0%). The breakpoint from a broken-line analysis was obtained at 13.6% whey permeate for maximal G:F. Increasing whey permeate tended to change IL-8 (quadratic, P = 0.052; maximum: 223 pg/mg at 10.9%), to decrease Firmicutes:Bacteroidetes (P = 0.073, 1.59 to 1.13), to increase (P = 0.089) Bifidobacteriaceae (0.73% to 1.11%), and to decrease Enterobacteriaceae (P = 0.091, 1.04% to 0.52%) and Streptococcaceae (P = 0.094, 1.50% to 0.71%) in the jejunal mucosa. In conclusion, dietary inclusion of whey permeate increased the growth of nursery pigs from 7 to 11 kg BW. Pigs grew most efficiently with 13.6% whey permeate. Improvement in growth performance is partly attributed to stimulating intestinal immune response and enterocyte proliferation with positive changes in jejunal mucosa-associated microbiota in nursery pigs.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | | | - Sung W Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
50
|
Schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|