1
|
Pugazhendhi A, Alshehri MA, Kandasamy S, Sarangi PK, Sharma A. Deciphering the importance of nanoencapsulation to improve the availability of bioactive molecules in food sources to the human body. Food Chem 2025; 464:141762. [PMID: 39509889 DOI: 10.1016/j.foodchem.2024.141762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Various bodily functions are maintained, and health benefits are provided by food-derived bioactive components. Fruits and vegetables contain numerous beneficial components, including vitamins, minerals, antioxidants, enzymes, and phytonutrients. However, the body's ability to absorb these substances at a given rate and degree frequently limits their bioavailability. If food-derived bio actives are used as therapeutic or dietary interventions, this limitation can result in low efficacy and suboptimal results. Recently, nanotechnology has been a useful method for increasing the bioavailability of bioactive compounds produced from food. Active ingredients can be delivered and absorbed more efficiently with the help of nanotechnology. By altering their size or surface properties, bioactive components can be made more soluble, permeable, and bioavailable through nanotechnology. The present review will provide an overview of the various bioactive components, the application of nanotechnology to improve the availability of bioactive molecules to humans and animals, and the challenges and safety concerns associated with nanotechnology in the production of food-derived bioactive molecules.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico.
| |
Collapse
|
2
|
Hitl M, Kladar N, Banović Fuentes J, Bijelić K, Đermanović M, Torović L. Knowledge and Consumption Patterns of Omega-3 Fatty Acids Among the Central Balkan Population-A Prospective Cross-Sectional Study. Nutrients 2024; 17:122. [PMID: 39796557 DOI: 10.3390/nu17010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Omega-3 fatty acids (ω-3-FAs) represent a group of essential nutrients, but modern diets often do not allow for a balanced ratio between the intakes of ω-6-FA and ω-3-FA, which is vital for health. ω-3-FA can be found primarily in algae and fish, while the intake of ω-3-FA dietary supplements can be seen as an efficient way of providing nutrients important for many physiological functions. BACKGROUND/OBJECTIVES The aim of this research was to investigate the use of ω-3-FA-rich food and supplements, as well as the knowledge and attitudes on these nutrients among residents of the central Balkans-the Republic of Serbia and the Republic of Srpska. METHODS The research was performed as a prospective, cross-section, online survey. RESULTS A total of 895 responses were collected, with relatively high usage of ω-3-FA supplements (34.2%). It was found that the respondents use these supplements due to inadequate dietary intake, but also in therapy or prevention of certain diseases and conditions. Users take the supplements on a regular basis, although for short periods of time. The respondents reported the dietary intake of food rich in ω-3-FA. It was found that more than half of parents give these supplements to their children, with similar purposes, although more frequently and for longer periods of time. The use of ω-3-FA via supplements in pregnant and breastfeeding women is also present. CONCLUSIONS The residents of the investigated territory seem to have an awareness of the importance of ω-3-FA use, with its consumption being registered in both the general population and specific subpopulations. Future steps would include further promotion and education on the given topic.
Collapse
Affiliation(s)
- Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jelena Banović Fuentes
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mirjana Đermanović
- Department of Bromatology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
- Public Health Institute, 78000 Banja Luka, Bosnia and Herzegovina
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Schön C, Micka A, Gourineni V, Bosi R. Superior bioavailability of EPA and DHA from a L-lysine salt formulation: a randomized, three-way crossover study. Food Nutr Res 2024; 68:11028. [PMID: 39781273 PMCID: PMC11708499 DOI: 10.29219/fnr.v68.11028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Background Omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are polyunsaturated fatty acids (PUFAs) with notable health benefits. Due to limited physiological production and insufficient dietary supply, external supplementation is important. Objective This study aimed to compare the pharmacokinetics and bioavailability of EPA and DHA in AvailOm® omega-3-lysine salt (Lys-FFA) versus standard ethyl ester (EE) and triglyceride (TG) formulations after a single oral dose in healthy subjects. Design A randomized, three-way crossover study was conducted with 21 healthy subjects. Results Twenty-one subjects (10 men, 11 women) completed the study. The average age was 41.7 years, and the mean body mass index was 23.0 kg/m2. The Lys-FFA formulation showed significantly higher uptake of omega-3 fatty acids (EPA+DHA combined and each individually) compared to EE. Specifically, Lys-FFA had a 9.33-fold (0-12 h) and 8.09-fold (0-24 h) higher bioavailability of EPA+DHA than EE and a 1.57-fold (0-12 h) and 1.44-fold (0-24 h) higher bioavailability than TG. ΔCmax and Tmax also favored Lys-FFA over EE. Discussion Under fasting conditions, the absorption of EPA and DHA from EE is limited due to the need for enzymatic cleavage before absorption. This requirement is bypassed with Lys-FFA, which does not need cleavage. Conclusions The study demonstrates that EPA and DHA lysine salt (Lys-FFA) offers superior bioavailability compared to EE and triglyceride forms, presenting a more effective supplementation option.German Clinical Trials Register, DRKS-ID: DRKS00029183.
Collapse
|
4
|
Montebugnoli T, Antonelli G, Babini E, Vasini EM, Danesi F, Jónasdóttir SH, Gudjónsdóttir M, Capozzi F, Bordoni A. Comparative Analysis of Fatty Acid Bioaccessibility in Commercial Marine Oil Supplements: An In Vitro Integrated Analytical Study. Foods 2024; 13:4177. [PMID: 39767119 PMCID: PMC11675117 DOI: 10.3390/foods13244177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Zooplankton such as copepods and krill are currently used to produce marine oil supplements, with the aim of helping consumers achieve the recommended intake of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs). Oils from lower trophic levels differ from fish oil in the distribution of lipids into different classes, and this can influence the bioaccessibility of fatty acids, i.e., the percentage of fatty acids that are released into the intestine in a form that can be absorbed by enterocytes. We evaluated fatty acid release after in vitro digestion in four commercial marine oil supplements containing fish, krill and Calanus finmarchicus oils using two different analytical approaches, TLC-FID and 1H-NMR spectroscopy. The results clearly indicated that the release of free fatty acids (FFAs) after simulated digestion mainly depends on the oil source and is mainly related to the partitioning of lipids into different classes. In fact, the lowest FFA release was detected in Calanus oils, which contain high amounts of wax esters. The different release of FFAs, which appeared secondarily related to encapsulation, can modulate the absorption and blood concentration of the administered n-3 LC-PUFAs and therefore their efficacy. This may partly explain the inconsistencies in intervention studies using marine oil supplements.
Collapse
Affiliation(s)
- Thomas Montebugnoli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (T.M.); (G.A.); (E.B.); (E.M.V.); (F.D.); (A.B.)
| | - Giorgia Antonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (T.M.); (G.A.); (E.B.); (E.M.V.); (F.D.); (A.B.)
| | - Elena Babini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (T.M.); (G.A.); (E.B.); (E.M.V.); (F.D.); (A.B.)
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| | - Ester Maria Vasini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (T.M.); (G.A.); (E.B.); (E.M.V.); (F.D.); (A.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, 50019 Sesto Fiorentino, Italy
| | - Francesca Danesi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (T.M.); (G.A.); (E.B.); (E.M.V.); (F.D.); (A.B.)
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| | | | - María Gudjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavík, Iceland;
- Matís Food and Biotech R&D, 113 Reykjavík, Iceland
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (T.M.); (G.A.); (E.B.); (E.M.V.); (F.D.); (A.B.)
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (T.M.); (G.A.); (E.B.); (E.M.V.); (F.D.); (A.B.)
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
5
|
Capece U, Gugliandolo S, Morciano C, Avolio A, Splendore A, Di Giuseppe G, Ciccarelli G, Soldovieri L, Brunetti M, Mezza T, Pontecorvi A, Giaccari A, Cinti F. Erythrocyte Membrane Fluidity and Omega-3 Fatty Acid Intake: Current Outlook and Perspectives for a Novel, Nutritionally Modifiable Cardiovascular Risk Factor. Nutrients 2024; 16:4318. [PMID: 39770939 PMCID: PMC11676811 DOI: 10.3390/nu16244318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Omega-3 fatty acids reduce triglycerides and have several positive effects on different organs and systems. They are also found in the plasma membrane in variable amounts in relation to genetics and diet. However, it is still unclear whether omega-3 supplementation can reduce the occurrence of major cardiovascular events (MACEs). Two trials, REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial), with highly purified EPA, and STRENGTH (Effect of High-Dose Omega-3 Fatty Acids vs. Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk), with a combination of EPA and DHA, have produced different outcomes, triggering a scientific debate on possible explanations for the discrepancies. Furthermore, doubts have arisen as to the anti-inflammatory and anti-aggregating activity of these compounds. Recent studies have, however, highlighted interesting effects of EPA and DHA on erythrocyte membrane fluidity (EMF). EMF is governed by a complex and dynamic biochemical framework, with fatty acids playing a central role. Furthermore, it can be easily measured in erythrocytes from a blood sample using fluorescent probes. Recent research has also shown that EMF could act as a possible cardiovascular risk factor biomarker. This review aims to synthetize the latest evidence on erythrocyte membrane fluidity, exploring its potential role as a biomarker of residual cardiovascular risk and discussing its clinical relevance. Further, we aim to dissect the possible biological mechanisms that link omega-3 modifiable membrane fluidity to cardiovascular health.
Collapse
Affiliation(s)
- Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Shawn Gugliandolo
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Cassandra Morciano
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Adriana Avolio
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Amelia Splendore
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Mezza
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
Neprelyuk OA, Irza OL, Kriventsov MA. Omega-3 fatty acids as a treatment option in periodontitis: Systematic review of preclinical studies. Nutr Health 2024; 30:671-685. [PMID: 39319422 DOI: 10.1177/02601060241284694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Background: Periodontitis presents as a chronic inflammatory disease that affects the gingival tissues and structures surrounding the tooth. However, the existing approaches for periodontitis do not allow complete control of the disease. In this regard, an active search is being carried out both in preclinical and clinical studies for new approaches based, among other things, on nutraceuticals. Aim: This systematic review aimed to summarize and systematize data from preclinical studies on the effects of the use of polyunsaturated omega-3 fatty acids in experimentally induced periodontitis. Methods: A systematic search for research articles was performed using electronic scientific databases. Only original in vivo experimental studies investigating the use of omega-3 polyunsaturated fatty acids in experimentally induced periodontitis were included. Quality and risk of bias assessment (Systematic Review Centre for Laboratory Animal Experimentation) and quality of evidence assessment (using the modified Grading of Recommendations Assessment, Development and Evaluation approach) were performed. Results: Nineteen studies were included in this systematic review. It has been shown that omega-3 polyunsaturated fatty acids may decrease the progression of periodontitis with amelioration of alveolar bone loss along with decreased pro-inflammatory response and inhibition of osteoclasts. Despite the promising results, most of the analyzed studies were characterized by low to moderate quality and a significant risk of bias. Conclusion: Based on the retrieved data, the possibility of extrapolating the obtained results to humans is limited, indicating the need for additional studies to elucidate the key patterns and mechanisms of action of omega-3 polyunsaturated fatty acids and their endogenous metabolites in experimentally induced periodontitis.
Collapse
Affiliation(s)
- Olga A Neprelyuk
- Department of Orthopedic Dentistry, Medical Institute named after SI Georgievsky, VI Vernadsky Crimean Federal University, Simferopol, Russia
| | - Oksana L Irza
- Department of Orthopedic Dentistry, Medical Institute named after SI Georgievsky, VI Vernadsky Crimean Federal University, Simferopol, Russia
| | - Maxim A Kriventsov
- Pathomorphology Department, Medical Institute named after SI Georgievsky, VI Vernadsky Crimean Federal University, Simferopol, Russia
| |
Collapse
|
7
|
Azevedo T, Ferreira T, Peña‐Corona SI, Cortes H, Silva‐Reis R, da Costa RMG, Faustino‐Rocha AI, Oliveira PA, Calina D, Cardoso SM, Büsselberg D, Leyva‐Gómez G, Sharifi‐Rad J, Cho WC. Natural products‐based antiangiogenic agents: New frontiers in cancer therapy. FOOD FRONTIERS 2024; 5:2423-2466. [DOI: 10.1002/fft2.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractAngiogenesis, vital for tumor growth and metastasis, is a promising target in cancer therapy. Natural compounds offer potential as antiangiogenic agents with reduced toxicity. This review provides a comprehensive overview of natural product‐based antiangiogenic therapies, focusing on molecular mechanisms and therapeutic potential. A systematic search identified relevant articles from 2019 to 2023. Various natural compounds, including polyphenols, terpenes, alkaloids, cannabinoids, omega‐3 fatty acids, polysaccharides, proteins, and carotenoids, were investigated for their antiangiogenic properties. Challenges such as dose standardization, routes of administration, and potential side effects remain. Further studies, including in‐depth animal models and human epidemiological studies, must elucidate clinical efficacy and safety. Synergistic effects with current antiangiogenic therapies, such as bevacizumab and tyrosine kinase inhibitors, should be explored. Additionally, the potential hormone‐dependent effects of compounds like genistein highlight the need for safety evaluation. In conclusion, natural products hold promise as adjunctive therapies to conventional antineoplastic drugs in modulating angiogenesis in cancer. However, robust clinical trials are needed to validate preclinical findings and ensure safety and efficacy.
Collapse
Affiliation(s)
- Tiago Azevedo
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Tiago Ferreira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Sheila I. Peña‐Corona
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genómica Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Ciudad de México Mexico
| | - Rita Silva‐Reis
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC) Porto Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering University of Porto Porto Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering University of Porto Porto Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology Federal University of Maranhão (UFMA), UFMA University Hospital (HUUFMA) São Luís Brazil
| | - Ana I. Faustino‐Rocha
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Comprehensive Health Research Center, Department of Zootechnics, School of Sciences and Technology University of Évora Evora Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| | - Susana M. Cardoso
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | | | - Gerardo Leyva‐Gómez
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Javad Sharifi‐Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo Veracruz Mexico
- Department of Medicine, College of Medicine Korea University Seoul Republic of Korea
- Facultad de Medicina Universidad del Azuay Cuenca Ecuador
| | - William C. Cho
- Department of Clinical Oncology Queen Elizabeth Hospital Kowloon Hong Kong
| |
Collapse
|
8
|
Guerrero-Elias HY, Camacho-Ruiz MA, Espinosa-Salgado R, Mateos-Díaz JC, Camacho-Ruiz RM, Asaff-Torres A, Rodríguez JA. Spectrophotometric assay for the screening of selective enzymes towards DHA and EPA ethyl esters hydrolysis. Enzyme Microb Technol 2024; 182:110531. [PMID: 39486155 DOI: 10.1016/j.enzmictec.2024.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), hold notable significance due to their pharmaceutical relevance. Obtaining PUFAs from diverse sources like vegetables, fish oils, and algae poses challenges due to the mixed fatty acid (FA) composition. Therefore, focusing on particular FAs necessitates purification and resolution processes. To address this, we propose a continuous assay for screening lipases selective for ethyl EPA (E-EPA) or ethyl DHA (E-DHA). Utilizing microplate spectrophotometry, the method enables quantification of liberated fatty acids from ethyl esters (E-EPA or E-DHA). This involves assessing enzyme selectivity by measuring the release of FAs through p-nitrophenolate protonation, either separately for each substrate or in competition with a reference substrate, resorufin acetate. Ten lipases underwent screening, revealing Burkholderia cepacia lipase's (BCL) preference for ethyl DHA hydrolysis (E-EPA/E-DHA = 0.82 ± 0.07 and the lipase selectivity ratio (S) for E-EPA/E-DHA = 0.13 ± 0.04) and Candida antarctica lipase B's (CALB) high specific activity towards both E-EPA and E-DHA (531.14 ± 37.76 and 281.79 ± 2.79 U/mg, respectively) and E-EPA preference (E-EPA/E-DHA = 1.86 ± 0.15 and S E-EPA/E-DHA = 2.59±0.15). Candida rugosa recombinant isoform 4 (rCRLip4) and commercial Candida rugosa lipase (CRL) exhibited significant preference for E-EPA hydrolysis (E-EPA/E-DHA = 2.18 ±0.51 and 2.26 ±0.36, respectively; and S E-EPA/E-DHA = 7.59 ± 1.59 and 7.88 ± 2.13, respectively). Docking analyses of rCRLip4, BCL, and CALB demonstrated no statistically significant differences in activation energies or distances to the catalytic serine; however, they agreed with the experimental results. These findings suggest potential mutagenesis or directed evolution strategies for CALB to enhance E-EPA selectivity, with rCRLip4 emerging as a promising candidate for further investigation. This assay offers a valuable tool for identifying lipases with desired substrate selectivity, with broad implications for pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Hiram Y Guerrero-Elias
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - M Angeles Camacho-Ruiz
- Laboratorio de Investigación en Biotecnología, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco 46200, Mexico
| | - Ruben Espinosa-Salgado
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - Juan Carlos Mateos-Díaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - Rosa María Camacho-Ruiz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - Ali Asaff-Torres
- Centro de Investigación en Alimentación y Desarrollo A.C. (Coordinación de Ciencia de los Alimentos), Carretera Gustavo Enrique Astiazaran Rosas 46, Hermosillo, Sonora 83304, Mexico
| | - Jorge A Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico.
| |
Collapse
|
9
|
Giaretta J, Oveissi F, Naficy S, Farajikhah S, Dehghani F. Thread-Based Bienzymatic Biosensor for Linoleic Acid Detection. ACS OMEGA 2024; 9:43184-43192. [PMID: 39464462 PMCID: PMC11500365 DOI: 10.1021/acsomega.4c07394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
The concentration of nonesterified fatty acids (NEFAs) in biological media is associated with metabolic and cardiovascular disorders (e.g., diabetes, cancer, and cystic fibrosis) and in food products is indicative of their quality. Therefore, the early identification of NEFAs is crucial for both medical diagnosis and food quality assessment. However, the development of a portable and scalable sensor capable of detecting these compounds at a low cost presents challenges due to their considerable chemical and physical stability. This research endeavors to illustrate the viability of detecting linoleic acid using a chemiresistive bienzymatic sensor constructed with cotton thread. The sensor's design incorporates the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) within the thread, alongside the enzymes horseradish peroxidase (HRP) and lipoxygenase (LOX). By implementing this technology, a sensitive detection range spanning from 161 nM to 16.1 μM is achieved when the PEDOT:PSS/HRP/LOX system is integrated into a single thread. The sensor exhibits exceptional selectivity toward linoleic acid, owing to the specific enzymatic reaction between LOX and linoleic acid. This selectivity is upheld even in the presence of other unsaturated fatty acids. This system can be used for future designs with the capability to detect polyunsaturated fatty acids and other intricate biomolecules.
Collapse
Affiliation(s)
- Jacopo Giaretta
- School
of Chemical and Biomolecular Engineering, and the Centre for Advanced
Food Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Farshad Oveissi
- School
of Chemical and Biomolecular Engineering, and the Centre for Advanced
Food Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sina Naficy
- School
of Chemical and Biomolecular Engineering, and the Centre for Advanced
Food Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Syamak Farajikhah
- School
of Chemical and Biomolecular Engineering, and the Centre for Advanced
Food Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Fariba Dehghani
- School
of Chemical and Biomolecular Engineering, and the Centre for Advanced
Food Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Reyes-Pérez SD, González-Becerra K, Barrón-Cabrera E, Muñoz-Valle JF, Armendáriz-Borunda J, Martínez-López E. FADS1 Genetic Variant and Omega-3 Supplementation Are Associated with Changes in Fatty Acid Composition in Red Blood Cells of Subjects with Obesity. Nutrients 2024; 16:3522. [PMID: 39458515 PMCID: PMC11509948 DOI: 10.3390/nu16203522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Obesity is characterized by low-grade chronic inflammation, which can be modulated by lipid mediators derived from omega-3 (n-3) polyunsaturated fatty acids (PUFA). Obesity is a multifactorial disease, where genetic and environmental factors strongly interact to increase its development. In this context, the FADS1 gene encodes the delta-5 desaturase protein, which catalyzes the desaturation of PUFA. The rs174547 genetic variant of FADS1 has been associated with alterations in lipid metabolism, particularly with decreases in eicosapentaenoic acid (EPA) and arachidonic acid (AA) concentrations. OBJECTIVE To analyze the effect of an n-3-supplemented diet on the fatty acid profile and composition in red blood cells (RBCs) of obese subjects carrying the rs174547 variant of the FADS1 gene. METHODOLOGY Seventy-six subjects with obesity were divided into two groups: omega-3 (1.5 g of n-3/day) and placebo (1.5 g of sunflower oil/day). The dietary intervention consisted of a four-month follow-up. Anthropometric, biochemical, and dietary variables were evaluated monthly. The total fatty acid profile in RBC was determined using gas chromatography. The rs174547 variant was analyzed through allelic discrimination. RESULTS The n-3 index (O3I) increased at the end of the intervention in both groups. Subjects carrying the CC genotype showed significant differences (minor increase) in n-6, n-3, total PUFA, EPA, DHA, and the O3I in RBCs compared to TT genotype carriers in the n-3 group. CONCLUSIONS The diet supplemented with EPA and DHA is ideal for providing the direct products that bypass the synthesis step affected by the FADS1 rs174547 variant in subjects carrying the CC genotype. The O3I confirmed an increase in n-3 fatty acids in RBCs at the end of the intervention.
Collapse
Affiliation(s)
- Samantha Desireé Reyes-Pérez
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico
| | - Karina González-Becerra
- Instituto de Investigación en Genética Molecular, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Jalisco, Mexico;
| | - Elisa Barrón-Cabrera
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma Sinaloa, Av. Cedros y Calle Sauces S/N, Culiacán 80010, Sinaloa, Mexico;
| | - José Francisco Muñoz-Valle
- Instituto de Ciencias Biomédicas, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
| | - Juan Armendáriz-Borunda
- Instituto de Biología Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45201, Jalisco, Mexico
| | - Erika Martínez-López
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
11
|
Yaeger MJ, Leuenberger L, Shaikh SR, Gowdy KM. Omega-3 Fatty Acids and Chronic Lung Diseases: A Narrative Review of Impacts from Womb to Tomb. J Nutr 2024:S0022-3166(24)01105-2. [PMID: 39424068 DOI: 10.1016/j.tjnut.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The lungs are a mucosal organ constantly exposed to potentially harmful compounds and pathogens. Beyond their role in gas exchange, they must perform a well-orchestrated protective response against foreign invaders. The lungs identify these foreign compounds, respond to them by eliciting an inflammatory response, and restore tissue homeostasis after inflammation to ensure the lungs continue to function. In addition, lung function can be affected by genetics, environmental exposures, and age, leading to pulmonary diseases that infringe on quality of life. Recent studies indicate that diet can influence pulmonary health including the incidence and/or severity of lung diseases. Specifically, long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have gained attention because of their potential to reduce inflammation and promote resolution of inflammation. Docosahexaenoic acid and eicosapentaenoic acid are 2 potentially beneficial n-3 PUFAs primarily acquired through dietary intake. Here we review current literature examining the role of n-3 PUFAs and the biological mechanisms by which these fatty acids alter the incidence and pathologies of chronic lung diseases including asthma, chronic obstructive pulmonary disease, and interstitial lung disease. We also highlight the role of n-3 PUFAs in vulnerable populations such as pre/postnatal children, those with obesity, and the elderly. Lastly, we review the impact of n-3 PUFA intake and supplementation to evaluate if increasing consumption can mitigate mechanisms driving chronic lung diseases.
Collapse
Affiliation(s)
- Michael J Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| | - Laura Leuenberger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
12
|
Maliha A, Tahsin M, Fabia TZ, Rahman SM, Rahman MM. Pro-resolving metabolites: Future of the fish oil supplements. J Funct Foods 2024; 121:106439. [DOI: 10.1016/j.jff.2024.106439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
13
|
Guertler A, Neu K, Lill D, Clanner-Engelshofen B, French LE, Reinholz M. Exploring the potential of omega-3 fatty acids in acne patients: A prospective intervention study. J Cosmet Dermatol 2024; 23:3295-3304. [PMID: 38982829 DOI: 10.1111/jocd.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Omega-3 fatty acids (ω-3 FA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are essential nutrients known for their anti-inflammatory properties, which involve reducing pro-inflammatory cytokines, eicosanoids, and insulin-like growth factor-1. This suggests their potential to alleviate acne severity, especially when deficits are present. AIMS To elevate EPA/DHA levels in acne patients through dietary intervention and supplementation, observing subsequent clinical effects. METHODS Over 16 weeks, 60 patients without prescription medication (n = 23 acne comedonica [AC], n = 37 acne papulopustulosa [AP]) adhered to a Mediterranean diet, incorporating oral algae-derived ω-3 FA supplementation (600 mg DHA/300 mg EPA week 1-8, 800 mg DHA/400 mg EPA week 8-16). At four visits (V1-V4), blood EPA/DHA levels were tracked using the HS-omega 3 index® (EPA/DHA (%) of total identified fatty acids in erythrocytes; target 8%-11%, deficit <8%, severe deficit <4%), alongside clinical assessments and standardized questionnaires. RESULTS At baseline, 98.3% of patients had an EPA/DHA deficit, with the mean HS-omega 3 index® rising from 4.9% at V1 to 8.3% at V4 (p < 0.001). AC showed significantly higher indices than AP at V4 (p = 0.035). Objective improvements in both inflammatory and non-inflammatory lesions were observed (p < 0.001). While self-reported appearance worsened in four patients, overall quality of life improved (p < 0.001), particularly in AP. Dietary triggers were more clearly defined than beneficial foods. Intake of cow's milk and dairy products reduced (p < 0.001). Compliance was good; no adverse events were reported. CONCLUSION Many acne patients have a ω-3 FA deficit. The HS-omega 3 index® can be increased by a Mediterranean diet and oral supplementation with algae-derived ω-3 FA. Acne severity improved significantly in patients with target ω-3 FA levels.
Collapse
Affiliation(s)
- Anne Guertler
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Neu
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Diana Lill
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | | | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Coral Gables, USA
| | - Markus Reinholz
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Ouagueni A, Shi Z, Shraim M, Al-Zoubi RM, Zarour A, Al-Ansari A, Bawadi H. Omega-3 Supplementation in Coronary Artery Bypass Graft Patients: Impact on ICU Stay and Hospital Stay-A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3298. [PMID: 39408265 PMCID: PMC11478518 DOI: 10.3390/nu16193298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Coronary artery bypass graft (CABG) is associated with inflammation and complications, potentially leading to prolonged ICU and hospital stays. Omega-3 PUFA has anti-inflammatory properties, thought to potentially reduce complications in CABG patients. This study aims to systematically review and meta-analyze the impact of perioperative omega-3 PUFA supplementation on total ICU and total hospital stays in CABG patients; Methods: Randomized controlled trials examining the effects of omega-3 PUFA supplementation (IV/oral) on ICU and hospital stays in CABG patients were included. Studies were searched for in PubMed, EMBASE, PsychINFO, CINAHL, and the Cochrane Central Register of Controlled Trial databases, along with hand searching of reference lists. The quality and risk of bias of the included studies were evaluated by two independent reviewers using the revised Cochrane risk-of-bias tool. Meta-analysis was performed using fixed or random effects models according to the level of heterogeneity by mean difference with their 95% confidence intervals; Results: Twelve studies were included in the qualitative analysis and seven in the meta-analysis. Omega-3 PUFA was associated with a significant reduction in days of hospital stay (-0.58 (95% CI -1.13, -0.04)). Subgroup analysis showed that only oral omega-3 PUFA supplementation resulted in a statistically significant reduction in length of hospitalization after subgroup analysis with MD -0.6 (95% CI -1.17, -0.04); Conclusions: This study suggests that perioperative omega-3 PUFA supplementation may reduce the length of hospitalization in CABG patients, especially when administered orally. However, the findings should be interpreted cautiously due to the high level of heterogeneity.
Collapse
Affiliation(s)
- Asma Ouagueni
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar; (A.O.); (Z.S.)
| | - Zumin Shi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar; (A.O.); (Z.S.)
| | - Mujahed Shraim
- Department of Public Health, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Department of Biomedical Sciences, College of Health Science, Qatar University, Doha 2713, Qatar
| | - Ahmad Zarour
- Acute Care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar;
| | - Abdulla Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha 576214, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar; (A.O.); (Z.S.)
| |
Collapse
|
15
|
Koutsaliaris IK, Pantazi D, Tsouka AN, Argyropoulou O, Tellis CC, Tselepis AD. Differential Effect of Omega-3 Fatty Acids on Platelet Inhibition by Antiplatelet Drugs In Vitro. Int J Mol Sci 2024; 25:10136. [PMID: 39337620 PMCID: PMC11432081 DOI: 10.3390/ijms251810136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The omega-3 polyunsaturated fatty acids (PUFAs) Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) exert multiple cardioprotective effects, influencing inflammation, platelet activation, endothelial function and lipid metabolism, besides their well-established triglyceride lowering properties. It is not uncommon for omega-3 PUFAs to be prescribed for hypertriglyceridemia, alongside antiplatelet therapy in cardiovascular disease (CVD) patients. In this regard, we studied the effect of EPA and DHA, in combination with antiplatelet drugs, in platelet aggregation and P-selectin and αIIbβ3 membrane expression. The antiplatelet drugs aspirin and triflusal, inhibitors of cyclooxygenase-1 (COX-1); ticagrelor, an inhibitor of the receptor P2Y12; vorapaxar, an inhibitor of the PAR-1 receptor, were combined with DHA or EPA and evaluated against in vitro platelet aggregation induced by agonists arachidonic acid (AA), adenosine diphosphate (ADP) and TRAP-6. We further investigated procaspase-activating compound 1 (PAC-1) binding and P-selectin membrane expression in platelets stimulated with ADP and TRAP-6. Both DHA and EPA displayed a dose-dependent inhibitory effect on platelet aggregation induced by AA, ADP and TRAP-6. In platelet aggregation induced by AA, DHA significantly improved acetylsalicylic acid (ASA) and triflusal's inhibitory activity, while EPA enhanced the inhibitory effect of ASA. In combination with EPA, ASA and ticagrelor expressed an increased inhibitory effect towards ADP-induced platelet activation. Both fatty acids could not improve the inhibitory effect of vorapaxar on AA- and ADP-induced platelet aggregation. In the presence of EPA, all antiplatelet drugs displayed a stronger inhibitory effect towards TRAP-6-induced platelet activation. Both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though they had no effect on P-selectin expression induced by ADP or TRAP-6. The antiplatelet drugs exhibited heterogeneity regarding their effect on P-selectin and αIIbβ3 membrane expression, while both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though had no effect on P-selectin expression induced by ADP or TRAP-6. The combinatory effect of DHA and EPA with the antiplatelet drugs did not result in enhanced inhibitory activity compared to the sum of the individual effects of each component.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandros D. Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece; (I.K.K.); (D.P.); (A.N.T.); (O.A.); (C.C.T.)
| |
Collapse
|
16
|
Zhao W, Wang Y, Li J, Chen T, Yin D, Dai H, Yao Z, Zhao S. Efficacy and safety of omega-3-acid ethyl acetate 90 capsules in severe hypertriglyceridemia: A randomized, controlled, multicenter study. Lipids 2024; 59:145-157. [PMID: 38830807 DOI: 10.1002/lipd.12406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Omega-3-acid ethyl acetate 90 capsules (containing 465 mg of eicosapentaenoic acid and 375 mg docosahexaenoic acid) is composed of highly purified omega-3 polyunsaturated fatty acid (PUFA) ethyl esters, whose lipid-lowering effect for severe hypertriglyceridemia (HTG) treatment is unclear. This study aimed to evaluate the efficacy and safety of omega-3-acid ethyl acetate 90 capsules in patients with severe HTG. In this randomized, double-blind, placebo-controlled, multicenter study, 239 patients with severe HTG were enrolled and randomized (1:1) into omega-3 group (N = 122) and placebo group (N = 117) to receive 12-week corresponding treatments. Lipid-related indexes were obtained at treatment initiation (W0), 4 weeks (W4), W8, and W12 after treatment. Adverse events and adverse drug reactions were recorded. Triacylglycerols (TAG), total cholesterol (TC), non-high-density lipoprotein cholesterol (non-HDL-C), very-low-density lipoprotein cholesterol (VLDL-C), and apolipoprotein C-III (Apo C-III) at W4, W8, and W12 were decreased in the omega-3 group versus the placebo group (all p < 0.05). Moreover, the percentage changes of TAG, TC, non-HDL-C, and VLDL-C from W0 to W4, W8, and W12, and the percentage change of Apo C-III from W0 to W4 and W8, were more obvious in the omega-3 group compared with the placebo group (all p < 0.05). However, no difference was observed in the percentage changes of HDL-C, low-density lipoprotein cholesterol (LDL-C), and LDL-C/HDL-C ratio during follow-up between groups (all p > 0.05). Additionally, there was no discrepancy in adverse events and adverse drug reactions between groups (all p > 0.05). Omega-3-acid ethyl acetate 90 capsules exhibit satisfied lipid-lowering effect with tolerable safety profile in patients with severe HTG.
Collapse
Affiliation(s)
- Wang Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jin Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tao Chen
- Department of Endocrinology and Metabolism, Adrenal Center, West China Hospital of SiChuan University, Chengdu, Sichuan, China
| | - Delu Yin
- Department of Cardiology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Hailong Dai
- Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Yunnan Cardiovascular Hospital, Kunming, Yunnan, China
| | - Zhuhua Yao
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Shuiping Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Bayram SŞ, Kızıltan G. The Role of Omega- 3 Polyunsaturated Fatty Acids in Diabetes Mellitus Management: A Narrative Review. Curr Nutr Rep 2024; 13:527-551. [PMID: 39031306 PMCID: PMC11327211 DOI: 10.1007/s13668-024-00561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) is a group of metabolic illnesses characterized by elevated levels of glucose in the bloodstream as a result of abnormalities in the generation or function of insulin. Medical Nutrition Therapy (MNT) is an essential component of diabetes management. Dietary fats are essential in both the prevention and progression of chronic diseases. Omega-3 polyunsaturated fatty acids are recognized for their advantageous impact on health. They assist in controlling blood sugar levels and lipid profile in patients with all types of diabetes. Furthermore, they reduce the occurrence of cardiovascular events and death linked to DM. RECENT FINDINGS After evaluating the antioxidant, anti-inflammatory, antilipidemic, and antidiabetic mechanisms of omega-3 fatty acid supplements, as well as the results from randomized controlled studies, it is clear that these supplements have positive effects in both preventing and treating diabetes, as well as preventing and treating complications related to diabetes, specifically cardiovascular diseases. However, current evidence does not support the use of omega-3 supplementation in people with diabetes for the purpose of preventing or treating cardiovascular events. People with all types of diabetes are suggested to include fatty fish and foods high in omega-3 fatty acids in their diet twice a week, as is prescribed for the general population.
Collapse
Affiliation(s)
- Sümeyra Şahin Bayram
- Faculty of Health Sciences, Nutrition and Dietetics Department, Selcuk University, Konya, Turkey.
| | - Gül Kızıltan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Baskent University, Ankara, Turkey
| |
Collapse
|
18
|
Gonzalez-Gutierrez L, Motiño O, Barriuso D, de la Puente-Aldea J, Alvarez-Frutos L, Kroemer G, Palacios-Ramirez R, Senovilla L. Obesity-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:8836. [PMID: 39201522 PMCID: PMC11354800 DOI: 10.3390/ijms25168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Colorectal cancer (CRC) affects approximately 2 million people worldwide. Obesity is the major risk factor for CRC. In addition, obesity contributes to a chronic inflammatory stage that enhances tumor progression through the secretion of proinflammatory cytokines. In addition to an increased inflammatory response, obesity-associated cancer presents accrued molecular factors related to cancer characteristics, such as genome instability, sustained cell proliferation, telomere dysfunctions, angiogenesis, and microbial alteration, among others. Despite the evidence accumulated over the last few years, the treatments for obesity-associated CRC do not differ from the CRC treatments in normal-weight individuals. In this review, we summarize the current knowledge on obesity-associated cancer, including its epidemiology, risk factors, molecular factors, and current treatments. Finally, we enumerate possible new therapeutic targets that may improve the conditions of obese CRC patients. Obesity is key for the development of CRC, and treatments resulting in the reversal of obesity should be considered as a strategy for improving antineoplastic CRC therapies.
Collapse
Affiliation(s)
- Lucia Gonzalez-Gutierrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Omar Motiño
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Daniel Barriuso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Juan de la Puente-Aldea
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Lucia Alvarez-Frutos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Roberto Palacios-Ramirez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Laura Senovilla
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
19
|
Serefko A, Jach ME, Pietraszuk M, Świąder M, Świąder K, Szopa A. Omega-3 Polyunsaturated Fatty Acids in Depression. Int J Mol Sci 2024; 25:8675. [PMID: 39201362 PMCID: PMC11354246 DOI: 10.3390/ijms25168675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids have received considerable attention in the field of mental health, in particular regarding the treatment of depression. This review presents an overview of current research on the role of omega-3 fatty acids in the prevention and treatment of depressive disorders. The existing body of evidence demonstrates that omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have antidepressant effects that can be attributed to their modulation of neuroinflammation, neurotransmitter function, and neuroplasticity. Nevertheless, clinical trials of omega-3 supplementation have yielded inconsistent results. Some studies have demonstrated significant reductions in depressive symptoms following omega-3 treatment, whereas others have shown minimal to no beneficial impact. A range of factors, encompassing dosage, the ratio of EPA to DHA, and baseline nutritional status, have been identified as having a potential impact on the noted results. Furthermore, it has been suggested that omega-3 fatty acids may act as an adjunctive treatment for those undergoing antidepressant treatment. Notwithstanding these encouraging findings, discrepancies in study designs and variability in individual responses underscore the necessity of further research in order to establish uniform, standardized guidelines for the use of omega-3 fatty acids in the management of depressive disorders.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland;
| | - Marlena Pietraszuk
- Student Scientific Club, Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| | - Małgorzata Świąder
- Student Scientific Club, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
- Student Scientific Club, Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 8b Jaczewskiego, 20-090 Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| |
Collapse
|
20
|
Nikolajeva K, Aizbalte O, Rezgale R, Cauce V, Zacs D, Meija L. The Intake of Omega-3 Fatty Acids, the Omega-3 Index in Pregnant Women, and Their Correlations with Gestational Length and Newborn Birth Weight. Nutrients 2024; 16:2150. [PMID: 38999896 PMCID: PMC11242972 DOI: 10.3390/nu16132150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND During pregnancy, the demand for omega-3 fatty acids, notably docosahexaenoic acid (DHA), escalates for both maternal and foetal health. Insufficient levels can lead to complications and can affect foetal development. This study investigated omega-3 status and its relation to dietary intake in pregnant Latvian women, along with its impact on gestational duration and newborn birth weight. METHODS The study comprised 250 pregnant and postpartum women with a mean age of 31.6 ± 4.8 years. Nutrition and omega-3 supplementation data were collected through a questionnaire covering 199 food items and 12 supplements. Fatty acids in erythrocyte membrane phospholipids were analysed via gas chromatography with flame ionization detection. RESULTS The median omega-3 fatty acid intake, including eicosapentaenoic acid (EPA) and DHA from diet and supplements, was 0.370 g/day, which is deemed sufficient. However, the median weekly fish intake (126.0 g) and daily nut/seed intake (7.4 g) were insufficient. The median omega-3 supplement intake was 1.0 g/day. No correlation between omega-3 supplement intake and the omega-3 index was observed. There was a weak correlation between the DHA intake from fish and the omega-3 index (r = 0.126, p = 0.047), while a significant correlation between the total EPA and DHA intake from various sources and the omega-3 index was noted (r = 0.163, p = 0.01). Most women (61.6%) had an omega-3 index < 4%, while 34.8% had an index between 4 and 8%, and only 3.6% had an index > 8%. Notably, significant differences in EPA levels and the omega-3 index were found among respondents with differing infant birth weights (p < 0.05). CONCLUSIONS The omega-3 intake during pregnancy adheres to the established guidelines, although fish consumption remains insufficient. A preconception evaluation of the omega-3 index is advocated to optimize prenatal intake. The indications suggest potential correlations between EPA levels, the omega-3 index, and infant birth weight.
Collapse
Affiliation(s)
- Ksenija Nikolajeva
- Riga East Clinical University Hospital, 2 Hipokrata Street, LV-1038 Rīga, Latvia
- Doctoral Department, Faculty of Medicine, Rīga Stradiņš University, 16 Dzirciema Street, LV-1007 Rīga, Latvia
| | - Olga Aizbalte
- Faculty of Master's Study Program, Nutrition Science, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Rīga, Latvia
| | - Roberta Rezgale
- Faculty of Medicine, Rīga Stradiņš University, 16 Dzirciema Street, LV-1007 Rīga, Latvia
| | - Vinita Cauce
- Faculty of Medicine, Rīga Stradiņš University, 16 Dzirciema Street, LV-1007 Rīga, Latvia
| | - Dzintars Zacs
- Scientific Institute of Food Safety, Animal Health, and Environment, Lejupes Street 3, LV-1076 Rīga, Latvia
| | - Laila Meija
- Riga East Clinical University Hospital, 2 Hipokrata Street, LV-1038 Rīga, Latvia
- Department of Public Health and Epidemiology, Rīga Stradiņš University, 9 Kronvalda bulvāris, LV-1010 Rīga, Latvia
| |
Collapse
|
21
|
Amza M, Haj Hamoud B, Sima RM, Dinu MD, Gorecki GP, Popescu M, Gică N, Poenaru MO, Pleș L. Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA)-Should They Be Mandatory Supplements in Pregnancy? Biomedicines 2024; 12:1471. [PMID: 39062044 PMCID: PMC11274850 DOI: 10.3390/biomedicines12071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are essential fatty acids for the human body. Seafood and microalgae are the most important sources of omega-3 fatty acids. Supplementation with 200 mg/day of DHA during pregnancy and breastfeeding has been suggested for women and infants in countries with low seafood consumption. Maternal concentration of DHA and EPA was associated with concentration in cord blood and breast milk. High concentrations of DHA and EPA were identified at the level of retinal photoreceptors and neuronal cell membranes. It was observed that supplementation with DHA and EPA during pregnancy had beneficial effects on the neurological development of the fetus and infant by improving language, memory, attention, and hand coordination, affecting sleep patterns, and improving visual acuity. Beneficial effects on the development of the infant were also associated with the maternal intake of omega-3 fatty acids during breastfeeding. Supplementation with DHA and EPA may reduce the risk of preterm birth but also of preeclampsia in low-risk pregnancies. Women of childbearing age should have an intake of 250 mg/day of DHA + EPA from their diet or supplements. To reduce the risk of premature birth, pregnant women must additionally receive at least 100-200 mg of DHA every day. It is recommended that supplementation with omega-3 fatty acids starts before 20 weeks of pregnancy. Beneficial effects on the mother have been identified, such as the reduction of postpartum depression symptoms, the decrease of cardiovascular risk, and the anti-inflammatory role.
Collapse
Affiliation(s)
- Mihaela Amza
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.); (N.G.); (M.-O.P.); (L.P.)
- “Bucur” Maternity, Saint John Hospital, 012361 Bucharest, Romania
- Department PhD, IOSUD, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Bashar Haj Hamoud
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, Kirrberger Straße 100, Building 9, 66421 Homburg, Germany;
| | - Romina-Marina Sima
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.); (N.G.); (M.-O.P.); (L.P.)
- “Bucur” Maternity, Saint John Hospital, 012361 Bucharest, Romania
| | - Mihai-Daniel Dinu
- Department PhD, IOSUD, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - Mihai Popescu
- Department of Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Anaesthesia and Intensive Care, Bucharest University Emergency Hospital, 050098 Bucharest, Romania
| | - Nicolae Gică
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.); (N.G.); (M.-O.P.); (L.P.)
- Filantropia Clinical Hospital Bucharest, 011132 Bucharest, Romania
| | - Mircea-Octavian Poenaru
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.); (N.G.); (M.-O.P.); (L.P.)
- “Bucur” Maternity, Saint John Hospital, 012361 Bucharest, Romania
| | - Liana Pleș
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.); (N.G.); (M.-O.P.); (L.P.)
- “Bucur” Maternity, Saint John Hospital, 012361 Bucharest, Romania
| |
Collapse
|
22
|
Li Y, Ye Y, Yuan H, Li S, Rihan N, Liu X, Zhao Y, Che X. Dietary lipid supplementation alleviated the impacts of polystyrene nanoplastic exposure in Litopenaeus vannamei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106974. [PMID: 38815344 DOI: 10.1016/j.aquatox.2024.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
The widespread occurrence of nanoplastic (NP) pollution in the environment is a growing concern, and its presence poses a potential threat to cultured aquatic animals. Previously, we found that NPs can significantly affect the lipid metabolism of shrimp. However, relevant reports about the effects of increasing dietary lipid levels on NP toxicity are lacking. Therefore, we explored the effects of dietary supplementation with different lipid levels on the growth and lipid metabolism of Pacific white shrimp (Litopenaeus vannamei). We cultured L. vannamei at three dietary lipid levels (3 %, 6 %, and 9 %) and three NP concentrations (0, 1, and 3 mg/L) for 2 months. We evaluated the effects of lipid levels on growth indexes, hepatopancreas morphological structure, lipid metabolism-related enzyme activity, and gene expression of the shrimp. The results showed that as lipid intake increased, the survival rate, body weight growth rate, and hepatosomatic ratio of the shrimp increased while the feed conversion rate decreased. Additionally, the crude protein and crude lipid contents increased, whereas the moisture and ash contents did not change much. We found that the morphological structure of the hepatopancreas was seriously damaged in the 3 mg/L NPs and 3 % dietary lipid group. Finally, lipid metabolism-related enzyme activities and gene expression levels increased with increased dietary lipid levels. Together, these results suggest that increasing dietary lipid content can improve shrimp growth and alleviate lipid metabolism disorders caused by NPs. This study is the first to show that nutrition regulation can alleviate the toxicity of NPs, and it provides a theoretical basis for the green and healthy culture of L. vannamei.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Haojuan Yuan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
23
|
D’Angelo A, Vitiello L, Gagliardi V, Salerno G, De Pascale I, Coppola A, Abbinante G, Pellegrino A, Giannaccare G. The Role of Oral Supplementation for the Management of Age-Related Macular Degeneration: A Narrative Review. J Pers Med 2024; 14:653. [PMID: 38929874 PMCID: PMC11204429 DOI: 10.3390/jpm14060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The majority of neurodegenerative eye disorders occur with aging and significantly impair quality of life. Age-related macular degeneration (AMD) is the third most common cause of visual impairment and blindness worldwide. One of the most important elements in the pathophysiology of neurodegenerative eye disease is certainly oxidative stress, with neuroinflammation and ocular ischemia which may also be significant factors. Antioxidants, either by food or oral supplementation, may be able to mitigate the deleterious effects of reactive oxygen species that build as a result of oxidative stress, ischemia, and inflammation. Over the past few decades, a number of research works examining the potential adjuvant impact of antioxidants in AMD have been published. In fact, there is not only more and more interest in already known molecules but also in new molecules that can help clinicians in the management of this complex multifactorial disease, such as astaxanthin and melatonin. However, while some studies showed encouraging outcomes, others were conflicting. In addition, more and more attention is also being paid to nutrition, considered a pivotal key point, especially to prevent AMD. For this reason, the purpose of this review is to analyze the main antioxidant molecules currently used as oral supplements for AMD treatment, as well as the role of diet and food intake in this ocular disease, to better understand how all these factors can improve the clinical management of AMD patients.
Collapse
Affiliation(s)
- Angela D’Angelo
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, MI, Italy;
| | - Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Vincenzo Gagliardi
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giulio Salerno
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Ilaria De Pascale
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Alessia Coppola
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giulia Abbinante
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Alfonso Pellegrino
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy
| |
Collapse
|
24
|
Abstract
Owing to environmental, ethical, health, and safety concerns, there has been considerable interest in replacing traditional animal-sourced foods like meat, seafood, egg, and dairy products with next-generation plant-based analogs that accurately mimic their properties. Numerous plant-based foods have already been successfully introduced to the market, but there are still several challenges that must be overcome before they are adopted by more consumers. In this article, we review the current status of the science behind the development of next-generation plant-based foods and highlight areas where further research is needed to improve their quality, increase their variety, and reduce their cost, including improving ingredient performance, developing innovative processing methods, establishing structure-function relationships, and improving nutritional profiles.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
25
|
Gill R, Al-Badr M, Alghouti M, Mohamed NA, Abou-Saleh H, Rahman MM. Revolutionizing Cardiovascular Health with Nano Encapsulated Omega-3 Fatty Acids: A Nano-Solution Approach. Mar Drugs 2024; 22:256. [PMID: 38921567 PMCID: PMC11204627 DOI: 10.3390/md22060256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) offer diverse health benefits, such as supporting cardiovascular health, improving cognitive function, promoting joint and musculoskeletal health, and contributing to healthy aging. Despite their advantages, challenges like oxidation susceptibility, low bioavailability, and potential adverse effects at high doses persist. Nanoparticle encapsulation emerges as a promising avenue to address these limitations while preserving stability, enhanced bioavailability, and controlled release. This comprehensive review explores the therapeutic roles of omega-3 fatty acids, critically appraising their shortcomings and delving into modern encapsulation strategies. Furthermore, it explores the potential advantages of metal-organic framework nanoparticles (MOF NPs) compared to other commonly utilized nanoparticles in improving the therapeutic effectiveness of omega-3 fatty acids within drug delivery systems (DDSs). Additionally, it outlines future research directions to fully exploit the therapeutic benefits of these encapsulated omega-3 formulations for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Richa Gill
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mashael Al-Badr
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mohammad Alghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nura Adam Mohamed
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| |
Collapse
|
26
|
Dicklin MR, Anthony JC, Winters BL, Maki KC. ω-3 Polyunsaturated Fatty Acid Status Testing in Humans: A Narrative Review of Commercially Available Options. J Nutr 2024; 154:1487-1504. [PMID: 38522783 DOI: 10.1016/j.tjnut.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
There is an increasing body of evidence supporting a link between low intakes of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) and numerous diseases and health conditions. However, few people are achieving the levels of fish/seafood or eicosapentaenoic acid and docosahexaenoic acid intake recommended in national and international guidelines. Knowledge of a person's ω-3 LCPUFA status will benefit the interpretation of research results and could be expected to lead to an increased effort to increase intake. Dietary intake survey methods are often used as a surrogate for measuring ω-3 PUFA tissue status and its impact on health and functional outcomes. However, because individuals vary widely in their ability to digest and absorb ω-3 PUFA, analytical testing of biological samples is desirable to accurately evaluate ω-3 PUFA status. Adipose tissue is the reference biospecimen for measuring tissue fatty acids, but less-invasive methods, such as measurements in whole blood or its components (e.g., plasma, serum, red blood cell membranes) or breast milk are often used. Numerous commercial laboratories provide fatty acid testing of blood and breast milk samples by different methods and present their results in a variety of reports such as a full fatty acid profile, ω-3 and ω-6 fatty acid profiles, fatty acid ratios, as well as the Omega-3 Index, the Holman Omega-3 Test, OmegaScore, and OmegaCheck, among others. This narrative review provides information about the different ways to measure ω-3 LCPUFA status (including both dietary assessments and selected commercially available analytical tests of blood and breast milk samples) and discusses evidence linking increased ω-3 LCPUFA intake or status to improved health, focusing on cardiovascular, neurological, pregnancy, and eye health, in support of recommendations to increase ω-3 LCPUFA intake and testing.
Collapse
Affiliation(s)
| | | | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, United States; Indiana University School of Public Health, Bloomington, IN, United States.
| |
Collapse
|
27
|
Ouagueni A, Al-Zoubi RM, Zarour A, Al-Ansari A, Bawadi H. Effects of Omega-3 Polyunsaturated Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid, on Post-Surgical Complications in Surgical Trauma Patients: Mechanisms, Nutrition, and Challenges. Mar Drugs 2024; 22:207. [PMID: 38786598 PMCID: PMC11123418 DOI: 10.3390/md22050207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 05/25/2024] Open
Abstract
This paper aims to provide an in-depth review of the specific outcomes associated with omega-3 polyunsaturated fatty acids (PUFAs), focusing on their purported effects on post-surgical complications in trauma patients. A comprehensive investigation of omega-3 polyunsaturated fatty acids was conducted until February 2023 using the PubMed database. Surgical trauma is characterized by a disruption in immune response post surgery, known to induce systemic inflammation. Omega-3 PUFAs are believed to offer potential improvements in multiple post-surgical complications because of their anti-inflammatory and antioxidant properties. Inconsistent findings have emerged in the context of cardiac surgeries, with the route of administration playing a mediating role in these outcomes. The effects of omega-3 PUFAs on post-operative atrial fibrillation have exhibited variability across various studies. Omega-3 PUFAs have demonstrated positive effects in liver surgery outcomes and in patients with acute respiratory distress syndrome. Omega-3 is suggested to offer potential benefits, particularly in the perioperative care of patients undergoing traumatic procedures. Incorporating omega-3 in such cases is hypothesized to contribute to a reduction in certain surgical outcomes, such as hospitalization duration and length of stay in the intensive care unit. Therefore, comprehensive assessments of adverse effects can aid in identifying the presence of subtle or inconspicuous side effects associated with omega-3.
Collapse
Affiliation(s)
- Asma Ouagueni
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Department of Biomedical Sciences, College of Health Science, Qatar University, Doha 2713, Qatar
| | - Ahmad Zarour
- Acute Care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar;
| | - Abdulla Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha 576214, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
28
|
Kim H, Bang WY, Choi B, Lee HB, Yang J. A frontier approach for the production of enteric soft capsules containing omega-3 fatty acids and probiotics. CZECH JOURNAL OF FOOD SCIENCES 2024; 42:127-135. [DOI: 10.17221/181/2023-cjfs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Guertler A, Fiedler T, Lill D, Kuna AC, Volsky A, Wallmichrath J, Kämmerer T, French LE, Reinholz M. Deficit of Omega-3 Fatty Acids in Acne Patients-A Cross-Sectional Pilot Study in a German Cohort. Life (Basel) 2024; 14:519. [PMID: 38672789 PMCID: PMC11050840 DOI: 10.3390/life14040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Omega-3 fatty acids (ω-3 FAs) exert anti-inflammatory effects, including the downregulation of pro-inflammatory cytokines, eicosanoids, and insulin-like growth factor-1. Therefore, they may improve acne severity as an adjunct treatment. However, there is a paucity of data regarding patients' existing deficits. The aim of this study was to determine ω-3 FA levels in acne patients in correlation with self-reported dietary preferences and clinical severity. A single-center, cross-sectional study of 100 acne patients was conducted. Patients' blood parameters, including ω-3 FAs levels, were assessed using the HS-omega-3 Index® in erythrocytes (Omegametrix® GmbH, Martinsried, Germany). Dietary preferences were assessed using a standardized food frequency questionnaire. Clinical dermatologic evaluation was performed using the Investigator Global Assessment (IGA) of acne. The values of the HS-omega-3 Index® were outside the recommended range of 8-11% in 96 patients (mean 5.15%), independent of the clinical severity or affected anatomic sites. A severe deficit (HS-omega-3 Index® < 4%) was seen more commonly in men than in women (p = 0.021). The regular consumption of legumes was significantly associated with higher ω-3 FA levels (p = 0.003), as was oral ω-3 FA supplementation (p = 0.006) and the lack of sunflower oil intake (p = 0.008). This pilot study demonstrated a deficit of ω-3 FAs in a German acne cohort. Higher ω-3 FAs levels were observed in patients with regular legume intake and oral ω-3 FAs supplementation. Further prospective studies are needed to investigate whether the clinical severity of acne improves in patients with normal HS-omega-3 Index®.
Collapse
Affiliation(s)
- Anne Guertler
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Tobias Fiedler
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Diana Lill
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Anne-Charlotte Kuna
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Arina Volsky
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Jens Wallmichrath
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Till Kämmerer
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Lars E. French
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Markus Reinholz
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| |
Collapse
|
30
|
Suárez-Medina MD, Sáez-Casado MI, Martínez-Moya T, Rincón-Cervera MÁ. The Effect of Low Temperature Storage on the Lipid Quality of Fish, Either Alone or Combined with Alternative Preservation Technologies. Foods 2024; 13:1097. [PMID: 38611401 PMCID: PMC11011431 DOI: 10.3390/foods13071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Marine foods are highly perishable products due to their high content of polyunsaturated fatty acids, which can be readily oxidized to form peroxides and secondary oxidation products, thus conferring such foods undesirable organoleptic characteristics and generating harmful compounds that are detrimental to the health of consumers. The use of preservation methods that minimize lipid oxidation is required in the fishing and aquaculture industries. Low temperature storage (chilling or freezing) is one of the most commonly used preservation methods for fish and seafood, although it has been shown that the oxidation of the lipid fraction of such products is partially but not completely inhibited at low temperatures. The extent of lipid oxidation depends on the species and the storage temperature and time, among other factors. This paper reviews the effect of low temperature storage on the lipid quality of fish, either alone or in combination with other preservation techniques. The use of antioxidant additives, high hydrostatic pressure, irradiation, ozonation, ultrasounds, pulsed electric fields, and the design of novel packaging can help preserve chilled or frozen fish products, although further research is needed to develop more efficient fish preservation processes from an economic, nutritional, sensory, and sustainable standpoint.
Collapse
Affiliation(s)
- María Dolores Suárez-Medina
- Department of Biology and Geology, CEIMAR, University of Almería, 04120 Almería, Spain; (M.D.S.-M.); (M.I.S.-C.); (T.M.-M.)
| | - María Isabel Sáez-Casado
- Department of Biology and Geology, CEIMAR, University of Almería, 04120 Almería, Spain; (M.D.S.-M.); (M.I.S.-C.); (T.M.-M.)
| | - Tomás Martínez-Moya
- Department of Biology and Geology, CEIMAR, University of Almería, 04120 Almería, Spain; (M.D.S.-M.); (M.I.S.-C.); (T.M.-M.)
| | - Miguel Ángel Rincón-Cervera
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
- Food Technology Division, University of Almería, 04120 Almería, Spain
| |
Collapse
|
31
|
Pei Q, Zhao Q, Lang C, Feng S, Meng J, Tan G, Cui W, Zhang C, Luo X, Xu L, Chen J. Alleviating Severe Cytoskeletal Destruction of Spinal Motor Neurons: Another Effect of Docosahexaenoic Acid in Spinal Cord Injury. ACS Chem Neurosci 2024; 15:1456-1468. [PMID: 38472087 DOI: 10.1021/acschemneuro.3c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Spinal cord injury (SCI) treatment remains a major challenge. Spinal motor neurons (MNs) are seriously injured in the early stage after SCI, but this has not received sufficient attention. Oxidative stress is known to play a crucial role in SCI pathology. Our studies demonstrated that oxidative stress can cause severe damage to the cytoskeleton of spinal MNs. Docosahexaenoic acid (DHA) has been shown to have beneficial effects on SCI, but the mechanism remains unclear, and no study has investigated the effect of DHA on oxidative stress-induced spinal MN injury. Here, we investigated the effect of DHA on spinal MN injury through in vivo and in vitro experiments, focusing on the cytoskeleton. We found that DHA not only promoted spinal MN survival but, more importantly, alleviated the severe cytoskeletal destruction of these neurons induced by oxidative stress in vitro and in mice with SCI in vivo. In addition, the mechanisms involved were investigated and elucidated. These results not only suggested a beneficial role of DHA in spinal MN cytoskeletal destruction caused by oxidative stress and SCI but also indicated the important role of the spinal MN cytoskeleton in the recovery of motor function after SCI. Our study provides new insights for the formulation of SCI treatment.
Collapse
Affiliation(s)
- Qinqin Pei
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qiurong Zhao
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Chunhui Lang
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Shilong Feng
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Juanjuan Meng
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Guangjiao Tan
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Wei Cui
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Cheng Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiaohe Luo
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Lixin Xu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404000, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jian Chen
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404000, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
32
|
Renaud D, Höller A, Michel M. Potential Drug-Nutrient Interactions of 45 Vitamins, Minerals, Trace Elements, and Associated Dietary Compounds with Acetylsalicylic Acid and Warfarin-A Review of the Literature. Nutrients 2024; 16:950. [PMID: 38612984 PMCID: PMC11013948 DOI: 10.3390/nu16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In cardiology, acetylsalicylic acid (ASA) and warfarin are among the most commonly used prophylactic therapies against thromboembolic events. Drug-drug interactions are generally well-known. Less known are the drug-nutrient interactions (DNIs), impeding drug absorption and altering micronutritional status. ASA and warfarin might influence the micronutritional status of patients through different mechanisms such as binding or modification of binding properties of ligands, absorption, transport, cellular use or concentration, or excretion. Our article reviews the drug-nutrient interactions that alter micronutritional status. Some of these mechanisms could be investigated with the aim to potentiate the drug effects. DNIs are seen occasionally in ASA and warfarin and could be managed through simple strategies such as risk stratification of DNIs on an individual patient basis; micronutritional status assessment as part of the medical history; extensive use of the drug-interaction probability scale to reference little-known interactions, and application of a personal, predictive, and preventive medical model using omics.
Collapse
Affiliation(s)
- David Renaud
- DIU MAPS, Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France
- DIU MAPS, Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
- Fundacja Recover, 05-124 Skrzeszew, Poland
| | - Alexander Höller
- Department of Nutrition and Dietetics, University Hospital Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Khalil MNA, Afifi SM, Eltanany BM, Pont L, Benavente F, El-Sonbaty SM, Sedeek MS. Assessment of the effect of drying on Brassica greens via a multiplex approach based on LC-QTOF-MS/MS, molecular networking, and chemometrics along with their antioxidant and anticancer activities. Food Res Int 2024; 180:114053. [PMID: 38395547 DOI: 10.1016/j.foodres.2024.114053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Turnip (Brassica rapa var rapa L.) leaves are a rich source of versatile bioactive phytochemicals with great potential in the food and herbal industries. However, the effect of drying on its constituents has never been studied before. Hereto, three drying techniques were compared, namely, lyophilization (LY), vacuum oven (VO), and shade drying (SD). Chemical profiling utilizing liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS) combined with chemometrics showed the different impacts of the drying methods on the phytochemical composition of the alcoholic leaf extracts. Unsupervised principal component analysis (PCA) and supervised partial least squares-discriminant analysis (PLS-DA) of the LC-QTOF-MS/MS data showed distinct distant clustering across the three drying techniques. Loading plots and VIP scores demonstrated that sinapic acid, isorhamnetin glycosides, and sinapoyl malate were key markers for LY samples. Meanwhile, oxygenated and polyunsaturated fatty acids were characteristic for SD samples and oxygenated polyunsaturated fatty acids and verbascoside were characteristic for VO samples. LY resulted in the highest total phenolics (TP) and total flavonoid (TF) contents followed by SD and VO. LY and SD samples had much higher antioxidant activity than VO measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC), and iron metal chelation assays. According to the anticancer activity, the drying methods were ranked in descending order as SD > LY ≫ VO when tested against colon, breast, liver, and lung cancer cell lines. Among the identified compounds, flavonoids and omega-3 fatty acids were key metabolites responsible for the anticancer activity as revealed by partial least squares (PLS) regression and correlation analyses. In conclusion, compared to LY, SD projected out as a cost-effective drying method without compromising the phytochemical and biological activities of Brassica greens. The current findings lay the foundation for further studies concerned with the valorization of Brassica greens.
Collapse
Affiliation(s)
- Mohammed N A Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Sherif M Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona 08028, Spain; Serra Húnter Program, Generalitat de Catalunya, Barcelona 08007, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona 08028, Spain.
| | - Sawsan M El-Sonbaty
- Department of Radiation Microbiology, The National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City 11787, Egypt
| | - Mohamed S Sedeek
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
34
|
Dunn SB, Orchard TS, Andridge R, Rymut SM, Slesnick N, Hatsu IE. Mental health in society's margins: poor n-3 PUFA intake and psychological well-being of homeless youth. Br J Nutr 2024; 131:698-706. [PMID: 37737219 PMCID: PMC10803817 DOI: 10.1017/s000711452300212x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Dietary intake of long-chain n-3 PUFA (n-3 PUFA), particularly EPA and DHA, has been associated with psychological well-being, but little is known about the n-3 PUFA intake of homeless youth. The current study determined the association between depression and anxiety symptoms and n-3 PUFA intake and erythrocytes status in homeless youth. Totally, 114 homeless youth aged 18-24 years were recruited from a drop-in centre. n-3 PUFA dietary intake was assessed using an FFQ, and erythrocytes status was determined by gas chromatography (GC). Linear regression models were used to determine the relationship between psychological well-being and n-3 PUFA intake and status. The mean intakes of EPA and DHA for all participants (0·06 ± 0·13 g/d and 0·11 ± 0·24 g/d) were well below recommended levels, and mean erythrocytes EPA + DHA (n-3 index) in the cohort (2·42 %) was lower than reported for healthy, housed adolescents and those with clinical depression. There was no association of n-3 PUFA intake and erythrocytes status with either depression or anxiety. However, the relationships of depression with dietary EPA (P = 0·017) and DHA (P = 0·008), as well as erythrocytes DHA (P = 0·007) and n 3-index (P = 0·009), were significantly moderated by sex even after adjusting for confounders. Specifically, among females, as the intake and status of these n-3 PUFA decreased, depression increased. Our findings show poor dietary intake and low erythrocytes status of n-3 PUFA among homeless youth, which is associated with depressive symptoms among females.
Collapse
Affiliation(s)
- Sarah Beth Dunn
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH43210, USA
| | - Tonya S. Orchard
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH43210, USA
| | - Rebecca Andridge
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Susan M. Rymut
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH43210, USA
| | - Natasha Slesnick
- Human Development and Family Science Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Irene E. Hatsu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH43210, USA
- OSU Extension, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Derbyshire EJ, Birch CS, Bonwick GA, English A, Metcalfe P, Li W. Optimal omegas - barriers and novel methods to narrow omega-3 gaps. A narrative review. Front Nutr 2024; 11:1325099. [PMID: 38371504 PMCID: PMC10869628 DOI: 10.3389/fnut.2024.1325099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
Dietary intakes of omega-3 long chain polyunsaturated fatty acids (O3LC-PUFAs) such as eicosapentaenoic and docosahexaenoic acid are central to development and health across the life course. O3LC-PUFAs have been linked to neurological development, maternal and child health and the etiology of certain non-communicable diseases including age-related cognitive decline, cardiovascular disease, and diabetes. However, dietary inadequacies exist in the United Kingdom and on a wider global scale. One predominant dietary source of O3LC-PUFAs is fish and fish oils. However, growing concerns about overfishing, oceanic contaminants such as dioxins and microplastics and the trend towards plant-based diets appear to be acting as cumulative barriers to O3LC-PUFAs from these food sources. Microalgae are an alternative provider of O3LC-PUFA-rich oils. The delivery of these into food systems is gaining interest. The present narrative review aims to discuss the present barriers to obtaining suitable levels of O3LC-PUFAs for health and wellbeing. It then discusses potential ways forward focusing on innovative delivery methods to utilize O3LC-PUFA-rich oils including the use of fortification strategies, bioengineered plants, microencapsulation, and microalgae.
Collapse
Affiliation(s)
| | | | | | | | - Phil Metcalfe
- Efficiency Technologies Limited, Milton Keynes, England, United Kingdom
| | - Weili Li
- University of Chester, Chester, United Kingdom
| |
Collapse
|
36
|
Sasaki N, Jones LE, Carpenter DO. Fish consumption and omega-3 polyunsaturated fatty acids from diet are positively associated with cognitive function in older adults even in the presence of exposure to lead, cadmium, selenium, and methylmercury: a cross-sectional study using NHANES 2011-2014 data. Am J Clin Nutr 2024; 119:283-293. [PMID: 38110038 DOI: 10.1016/j.ajcnut.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Long-chain omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are reported to be beneficial for cognition, but limited consumption of some fish is recommended due to high concentrations of heavy metals and persistent organics. OBJECTIVE We aimed to determine whether dietary ω-3 PUFAs from fish consumption are associated with higher cognitive scores in older adults and explored the associations of mixtures of ω-3 PUFAs and blood concentrations of lead, cadmium, selenium, and methylmercury on cognitive performance. METHODS We conducted a cross-sectional study with data from the NHANES 2011-2014, assessing cognitive scores of immediate recall, delayed recall, and executive function in adults ≥60 y (n = 3123). We performed multivariate linear regressions and mixture models utilizing the quantile-based g-computation method to identify associations between monthly fish consumption or dietary ω-3 PUFAs with blood concentrations of lead, cadmium, methyl mercury, and selenium on cognitive scores. RESULTS Fish consumption had significant positive associations with all 3 cognitive scores, whereas dietary ω-3 PUFAs were only significantly associated with the Digit Symbol Substitution Test (DSST) scores. Mixture analysis showed significant positive associations with DSST scores for fish consumption (β: 0.88; 95% CI: 0.48, 1.29) and dietary ω-3 PUFAs (β: 0.41; 95% CI: 0.03, 0.78) with positive component weights for fish consumption, dietary ω-3 PUFAs, and blood selenium and negative component weight for blood cadmium concentrations. CONCLUSIONS Our findings support dietary recommendations for older adults to consume fish to maintain cognitive function, likely due to biomolecular actions of ω-3 PUFAs that increase neuronal membrane fluidity, have antioxidation activity, and restore cell damage. The combination of selenium and fish consumption or ω-3 PUFAs was associated with reduced decline in cognitive scores and less negative associations from exposures to lead, cadmium, and mercury compounds.
Collapse
Affiliation(s)
- Nozomi Sasaki
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, United States.
| | - Laura E Jones
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, United States; Department of Biostatistics and Epidemiology, School of Public Health, University at Albany, Rensselaer, NY, United States; Center for Biostatistics, Bassett Research Institute, Cooperstown, NY, United States
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, United States
| |
Collapse
|
37
|
Sublette ME, Daray FM, Ganança L, Shaikh SR. The role of polyunsaturated fatty acids in the neurobiology of major depressive disorder and suicide risk. Mol Psychiatry 2024; 29:269-286. [PMID: 37993501 DOI: 10.1038/s41380-023-02322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are obtained from diet or derived from essential shorter-chain fatty acids, and are crucial for brain development and functioning. Fundamentally, LC-PUFAs' neurobiological effects derive from their physicochemical characteristics, including length and double bond configuration, which differentiate LC-PUFA species and give rise to functional differences between n(omega)-3 and n-6 LC-PUFAs. LC-PUFA imbalances are implicated in psychiatric disorders, including major depression and suicide risk. Dietary intake and genetic variants in enzymes involved in biosynthesis of LC-PUFAs from shorter chain fatty acids influence LC-PUFA status. Domains impacted by LC-PUFAs include 1) cell signaling, 2) inflammation, and 3) bioenergetics. 1) As major constituents of lipid bilayers, LC-PUFAs are determinants of cell membrane properties of viscosity and order, affecting lipid rafts, which play a role in regulation of membrane-bound proteins involved in cell-cell signaling, including monoaminergic receptors and transporters. 2) The n-3:n-6 LC-PUFA balance profoundly influences inflammation. Generally, metabolic products of n-6 LC-PUFAs (eicosanoids) are pro-inflammatory, while those of n-3 LC-PUFAs (docosanoids) participate in the resolution of inflammation. Additionally, n-3 LC-PUFAs suppress microglial activation and the ensuing proinflammatory cascade. 3) N-3 LC-PUFAs in the inner mitochondrial membrane affect oxidative stress, suppressing production of and scavenging reactive oxygen species (ROS), with neuroprotective benefits. Until now, this wealth of knowledge about LC-PUFA biomechanisms has not been adequately tapped to develop translational studies of LC-PUFA clinical effects in humans. Future studies integrating neurobiological mechanisms with clinical outcomes may suggest ways to identify depressed individuals most likely to respond to n-3 LC-PUFA supplementation, and mechanistic research may generate new treatment strategies.
Collapse
Affiliation(s)
- M Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA.
| | - Federico Manuel Daray
- University of Buenos Aires, School of Medicine, Institute of Pharmacology, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Licínia Ganança
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Saame Raza Shaikh
- Nutritional Obesity Research Center, Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Kusy B, Parzecka K, Kucharczyk P, Szczepanik K. Long-chain polyunsaturated fatty acids and brain functions - literature review. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:1277-1283. [PMID: 39106392 DOI: 10.36740/wlek202406125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Long-chain ω-3 PUFAs such as DHA and EPA are often present in high amounts in algae and fish. DHA in particular is crucial for the proper development and functioning of the brain because it is the main structural component of ω-3 PUFA in the brain. This makes it an indispensable element of the phospholipids of the nervous membrane. The purpose of this article is to present the benefits of Omega-3 acids in the functioning of the nervous system. The text discusses a literature review focusing on the impact of omega-3 fatty acids. Polyunsaturated fatty acids (PUFAs) are essential for overall health and have been extensively studied for their contributions to human well-being and disease management. Recent research indicates their effectiveness in preventing and treating various diseases. Omega-3 PUFAs have been identified as therapeutic agents, particularly in combating inflammatory conditions like cardiovascular and neurodegenerative diseases. The aim of this article is to present the benefits of omega-3 fatty acids supplementation. Publications outlining properties of polyunsaturated fatty acids on the brain and articles presenting the effects of polyunsaturated fatty acids were reviewed using the Pubmed platform. The review included the keywords "Omega-3 fatty acids" "DHA" "EPA" "PUFA.
Collapse
Affiliation(s)
| | | | | | - Kinga Szczepanik
- HOSPITAL OF OUR LADY OF PERPETUAL HELP IN WOLOMIN, WOLOMIN, POLAND
| |
Collapse
|
39
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
40
|
Erbay MI, Gamarra Valverde NN, Patel P, Ozkan HS, Wilson A, Banerjee S, Babazade A, Londono V, Sood A, Gupta R. Fish Oil Derivatives in Hypertriglyceridemia: Mechanism and Cardiovascular Prevention: What Do Studies Say? Curr Probl Cardiol 2024; 49:102066. [PMID: 37657524 DOI: 10.1016/j.cpcardiol.2023.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Hypertriglyceridemia is a type of dyslipidemia characterized by high triglyceride levels in the blood and increases the risk of cardiovascular disease. Conventional management includes antilipidemic medications such as statins, lowering LDL and triglyceride levels as well as raising HDL levels. However, the treatment may be stratified using omega-3 fatty acid supplements such as eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA), aka fish oil derivatives. Studies have shown that fish oil supplements reduce the risk of cardiovascular diseases; however, the underlying mechanism and the extent of reduction in CVD need more clarification. Our paper aims to review the clinical trials and observational studies in the current literature, investigating the use of fish oil and its benefits on the cardiovascular system as well as the proposed underlying mechanism.
Collapse
Affiliation(s)
- Muhammed Ibrahim Erbay
- Department of Medicine, Istanbul University Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Norma Nicole Gamarra Valverde
- Department of Medicine, Alberto Hurtado Faculty of Human Medicine, Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Parth Patel
- Department of Medicine, University of Missouri Kansas City School of Medicine, Kansas City, MI
| | - Hasan Selcuk Ozkan
- Department of Medicine, Ege University, School of Medicine, Izmir, Turkey
| | - Andre Wilson
- Department of Medicine, Howard University College of Medicine, Washington, D.C
| | - Suvam Banerjee
- Department of Health and Family Welfare, Burdwan Medical College and Hospital, The West Bengal University of Health Sciences, Government of West Bengal, India
| | - Aydan Babazade
- Department of Medicine, Azerbaijan Medical University, School of Medicine, Baku, Azerbaijan
| | - Valeria Londono
- Department of Medicine, Georgetown University School of Medicine, Washington, D.C
| | - Aayushi Sood
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA.
| |
Collapse
|
41
|
Tobin D, Svensen H, Stoknes I, Dornish M. Genotoxicity evaluation of a fish oil concentrate containing Very Long Chain Fatty Acids. Toxicol Rep 2023; 11:249-258. [PMID: 37752908 PMCID: PMC10518352 DOI: 10.1016/j.toxrep.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023] Open
Abstract
Very long chain fatty acids (VLCFAs) are lipids found in fish with a chain length longer than C22. They represent a minor lipid fraction composing of less than 1% of the total lipid. EPAX® EVOLVE 05 is a concentrate of VLCFAs providing roughly 10 times the amount found in fish. Here we report genotoxocity studies performed in cell culture and using a rat model. No genotoxicity was noted in a bacterial reverse mutation test (AMES test). An in vitro micronucleus assay was negative with a 4-hr test item incubation but a 24-hr incubation resulted in a positive signal. This prompted further study using an in vivo Sprague Dawley rat model. Test item exposure was demonstrated by plasma measurements from Sprague Dawley rats with peak absorption at 2-4 h post administration, as expected for fatty acids. The micronucleus assay showed no genotoxicity for fish oil containing VLCFAs. Together, the data shows that VLCFAs up to the test dose of 1200 mg/kg b.w. do not show genotoxicity.
Collapse
|
42
|
Chauhan AS, Chen CW, Yadav H, Parameswaran B, Singhania RR, Dong CD, Patel AK. Assessment of thraustochytrids potential for carotenoids, terpenoids and polyunsaturated fatty acids biorefinery. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2955-2967. [PMID: 37786601 PMCID: PMC10542083 DOI: 10.1007/s13197-023-05740-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 10/04/2023]
Abstract
Heterotrophic fast-growing thraustochytrids have been identified as promising candidates for the bioconversion of organic sources into industrially important valuable products. Marine thraustochytrids exhibit remarkable potential for high-value polyunsaturated fatty acids (PUFAs) production however their potential is recently discovered for high-value carotenoids and terpenoids which also have a role as a dietary supplement and health promotion. Primarily, omega-3 and 6 PUFAs (DHA, EPA, and ARA) from thraustochytrids are emerging sources of nutrient supplements for vegetarians replacing animal sources and active pharmaceutical ingredients due to excellent bioactivities. Additionally, thraustochytrids produce reasonable amounts of squalene (terpenoid) and carotenoids which are also high-value products with great market potential. Hence, these can be coextracted as a byproduct with PUFAs under the biorefinery concept. There is still quite a few printed information on bioprocess conditions for decent (co)-production of squalene and carotenoid from selective protists such as lutein, astaxanthin, canthaxanthin, and lycopene. The current review seeks to provide a concise overview of the coproduction and application of PUFAs, carotenoids, and terpenoids from oleaginous thraustochytrids and their application to human health.
Collapse
Affiliation(s)
- Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Hema Yadav
- Plant Quarantine Division, National Bureau of Plant Genetic Resources, ICAR-NBPGR, Pusa, New Delhi 110012 India
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala 695 019 India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| |
Collapse
|
43
|
Hull MA, Ow PL, Ruddock S, Brend T, Smith AF, Marshall H, Song M, Chan AT, Garrett WS, Yilmaz O, Drew DA, Collinson F, Cockbain AJ, Jones R, Loadman PM, Hall PS, Moriarty C, Cairns DA, Toogood GJ. Randomised, placebo-controlled, phase 3 trial of the effect of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) on colorectal cancer recurrence and survival after surgery for resectable liver metastases: EPA for Metastasis Trial 2 (EMT2) study protocol. BMJ Open 2023; 13:e077427. [PMID: 38030258 PMCID: PMC10689403 DOI: 10.1136/bmjopen-2023-077427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION There remains an unmet need for safe and cost-effective adjunctive treatment of advanced colorectal cancer (CRC). The omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) is safe, well-tolerated and has anti-inflammatory as well as antineoplastic properties. A phase 2 randomised trial of preoperative EPA free fatty acid 2 g daily in patients undergoing surgery for CRC liver metastasis showed no difference in the primary endpoint (histological tumour proliferation index) compared with placebo. However, the trial demonstrated possible benefit for the prespecified exploratory endpoint of postoperative disease-free survival. Therefore, we tested the hypothesis that EPA treatment, started before liver resection surgery (and continued postoperatively), improves CRC outcomes in patients with CRC liver metastasis. METHODS AND ANALYSIS The EPA for Metastasis Trial 2 trial is a randomised, double-blind, placebo-controlled, phase 3 trial of 4 g EPA ethyl ester (icosapent ethyl (IPE; Vascepa)) daily in patients undergoing liver resection surgery for CRC liver metastasis with curative intent. Trial treatment continues for a minimum of 2 years and maximum of 4 years, with 6 monthly assessments, including quality of life outcomes, as well as annual clinical record review after the trial intervention. The primary endpoint is CRC progression-free survival. Key secondary endpoints are overall survival, as well as the safety and tolerability of IPE. A minimum 388 participants are estimated to provide 247 CRC progression events during minimum 2-year follow-up, allowing detection of an HR of 0.7 in favour of IPE, with a power of 80% at the 5% (two sided) level of significance, assuming drop-out of 15%. ETHICS AND DISSEMINATION Ethical and health research authority approval was obtained in January 2018. All data will be collected by 2025. Full trial results will be published in 2026. Secondary analyses of health economic data, biomarker studies and other translational work will be published subsequently. TRIAL REGISTRATION NUMBER NCT03428477.
Collapse
Affiliation(s)
- Mark A Hull
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Pei Loo Ow
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sharon Ruddock
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Tim Brend
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Alexandra F Smith
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Helen Marshall
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Mingyang Song
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Omer Yilmaz
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fiona Collinson
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | - Robert Jones
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Peter S Hall
- Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
| | | | - David A Cairns
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Giles J Toogood
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
44
|
He WS, Wang Q, Zhao L, Li J, Li J, Wei N, Chen G. Nutritional composition, health-promoting effects, bioavailability, and encapsulation of tree peony seed oil: a review. Food Funct 2023; 14:10265-10285. [PMID: 37929791 DOI: 10.1039/d3fo04094a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Tree peony is cultivated worldwide in large quantities due to its exceptional ornamental and medicinal value. In recent years, the edible value of tree peony seed oil (TPSO) has garnered significant attention for its high content of alpha-linolenic acid (ALA, >40%) and other beneficial minor components, including phytosterols, tocopherols, squalene, and phenolics. This review provides a systematic summary of the nutritional composition and health-promoting effects of TPSO, with a specific focus on its digestion, absorption, bioavailability, and encapsulation status. Additionally, information on techniques for extracting and identifying adulteration of TPSO, as well as its commercial applications and regulated policies, is included. Thanks to its unique nutrients, TPSO offers a wide range of health benefits, such as hypolipidemic, anti-obesity, cholesterol-lowering, antioxidant and hypoglycemic activities, and regulation of the intestinal microbiota. Consequently, TPSO shows promising potential in the food and cosmetic industries and should be cultivated in more countries. However, the application of TPSO is hindered by its low bioavailability, poor stability, and limited water dispersibility. Therefore, it is crucial to develop effective delivery strategies, such as microencapsulation and emulsion, to overcome these limitations. In conclusion, this review provides a comprehensive understanding of the nutritional value of TPSO and emphasizes the need for further research on its nutrition and product development.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Qingzhi Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Liying Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Junjie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Na Wei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
45
|
Fabjanowska J, Kowalczuk-Vasilev E, Klebaniuk R, Milewski S, Gümüş H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle-A Review. Animals (Basel) 2023; 13:3589. [PMID: 38003206 PMCID: PMC10668692 DOI: 10.3390/ani13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This paper focuses on the role of n-3 fatty acids as a nutrient crucial to the proper functioning of reproductive and immune systems in cattle. Emphasis was placed on the connection between maternal and offspring immunity. The summarized results confirm the importance and beneficial effect of n-3 family fatty acids on ruminant organisms. Meanwhile, dietary n-3 fatty acids supplementation, especially during the critical first week for dairy cows experiencing their peripartum period, in general, is expected to enhance reproductive performance, and the impact of its supplementation appears to be dependent on body condition scores of cows during the drying period, the severity of the negative energy balance, and the amount of fat in the basic feed ration. An unbalanced, insufficient, or excessive fatty acid supplementation of cows' diets in the early stages of pregnancy (during fetus development) may affect both the metabolic and nutritional programming of the offspring. The presence of the polyunsaturated fatty acids of the n-3 family in the calves' ration affects not only the performance of calves but also the immune response, antioxidant status, and overall metabolism of the future adult cow.
Collapse
Affiliation(s)
- Julia Fabjanowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Szymon Milewski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Hıdır Gümüş
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030 Burdur, Türkiye;
| |
Collapse
|
46
|
Li X, Lu Z, Qi Y, Chen B, Li B. The Role of Polyunsaturated Fatty Acids in Osteoarthritis: Insights from a Mendelian Randomization Study. Nutrients 2023; 15:4787. [PMID: 38004181 PMCID: PMC10674676 DOI: 10.3390/nu15224787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The prior observational research on the impact of polyunsaturated fatty acid (PUFA) supplementation on osteoarthritis (OA) patients had yielded inclusive outcomes. This study utilized the Mendelian randomization (MR) approach to explore potential causal relationships between PUFAs and OA. The MR study was performed using GWAS summary statistics for PUFAs, encompassing omega-3 and omega-6 fatty acids, and for knee OA (KOA) and hip OA (HOA). The primary inverse-variance-weighted (IVW) method and two supplementary MR approaches were used to establish robust causality. Heterogeneity and horizontal pleiotropy were assessed using Cochrane's Q and MR-Egger intercept tests. Additionally, a range of sensitivity analyses were conducted to strengthen the precision and reliability of the results. The IVW method indicated a potential genetic association between omega-3 fatty acids and KOA risk (odd ratio (OR) = 0.94, 95% confidence interval (CI): 0.89-1.00, p = 0.048). No significant correlation was found between omega-3 levels and HOA. Moreover, genetically predicted higher levels of omega-6 fatty acids were associated with a decreased risk of KOA (OR = 0. 93, 95% CI: 0.86-1.00, p = 0.041) and HOA (OR = 0.89, 95% CI: 0.82-0.96; p = 0.003). The MR-Egger intercept evaluation showed no horizontal pleiotropy affecting the MR analysis (all p > 0.05). Our findings supported the causal relationship between PUFAs and OA susceptibility and offered a novel insight that high omega-6 fatty acids may reduce the risk of KOA and HOA. These results underscore the importance of maintaining optimal levels of PUFAs, particularly omega-6 fatty acids, in individuals with a genetic predisposition to OA. Future research is necessary to validate these findings and elucidate the underlying mechanisms involved.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Zhengjie Lu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (B.C.)
| | - Yongjian Qi
- Department of Spine Surgery and Musculoskeletal Tumor, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Biao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (B.C.)
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (B.C.)
| |
Collapse
|
47
|
Nagata A, Oishi S, Kirishita N, Onoda K, Kobayashi T, Terada Y, Minami A, Senoo N, Yoshioka Y, Uchida K, Ito K, Miura S, Miyoshi N. Allyl Isothiocyanate Maintains DHA-Containing Glycerophospholipids and Ameliorates the Cognitive Function Decline in OVX Mice. ACS OMEGA 2023; 8:43118-43129. [PMID: 38024702 PMCID: PMC10652735 DOI: 10.1021/acsomega.3c06622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Low-temperature-induced fatty acid desaturation is highly conserved in animals, plants, and bacteria. Allyl isothiocyanate (AITC) is an agonist of the transient receptor potential ankyrin 1 (TRPA1), which is activated by various chemophysiological stimuli, including low temperature. However, whether AITC induces fatty acid desaturation remains unknown. We showed here that AITC increased levels of glycerophospholipids (GP) esterified with unsaturated fatty acids, especially docosahexaenoic acid (DHA) in TRPA1-expressing HEK cells. Additionally, GP-DHA including phosphatidylcholine (18:0/22:6) and phosphatidylethanolamine (18:0/22:6) was increased in the brain and liver of AITC-administered mice. Moreover, intragastrical injection of AITC in ovariectomized (OVX) female C57BL/6J mice dose-dependently shortened the Δlatency time determined by the Morris water maze test, indicating AITC ameliorated the cognitive function decline in these mice. Thus, the oral administration of AITC maintains GP-DHA in the liver and brain, proving to be a potential strategy for preventing cognitive decline.
Collapse
Affiliation(s)
- Akika Nagata
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shiori Oishi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanako Kirishita
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keita Onoda
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Takuma Kobayashi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yuko Terada
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Akira Minami
- Department
of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanami Senoo
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yasukiyo Yoshioka
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Kunitoshi Uchida
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keisuke Ito
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shinji Miura
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Noriyuki Miyoshi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| |
Collapse
|
48
|
Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023; 14:1280296. [PMID: 38029217 PMCID: PMC10662050 DOI: 10.3389/fmicb.2023.1280296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body's inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
49
|
Magalhães TR, Corbee RJ, Queiroga FL, Lourenço AL. Dietary omega-3 fatty acids in the management of feline periodontal disease: What is the evidence? J Anim Physiol Anim Nutr (Berl) 2023; 107:1465-1472. [PMID: 37403250 DOI: 10.1111/jpn.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/20/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023]
Abstract
Periodontal disease is an oral disorder with high prevalence in cats from 2 years of age, resulting from an inflammatory response against bacterial plaque. Treatment depends on the stage of the disease and may include dental scaling, local application of perioceutics, tissue regeneration and/or even tooth extraction and periodontal surgery. As multimodal therapy is often required, new strategies have been developed to improve the therapeutic response in these patients. Adjuvant use of omega-3 fatty acids has been reported in humans with periodontal disease, but the current evidence of its effect in companion animals, especially cats, is still considered to be scarce and conflicting. This review describes the state of the art regarding feline periodontal disease and seeks to clarify the potential effect of omega-3 fatty acids on its clinical management in light of the evidence available in the current literature.
Collapse
Affiliation(s)
- Tomás R Magalhães
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ronald J Corbee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Felisbina L Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| | - Ana L Lourenço
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Animal Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
50
|
Caffrey C, Leamy A, O’Sullivan E, Zabetakis I, Lordan R, Nasopoulou C. Cardiovascular Diseases and Marine Oils: A Focus on Omega-3 Polyunsaturated Fatty Acids and Polar Lipids. Mar Drugs 2023; 21:549. [PMID: 37999373 PMCID: PMC10672651 DOI: 10.3390/md21110549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death across the globe, hence, establishing strategies to counteract CVD are imperative to reduce mortality and the burden on health systems. Dietary modification is an effective primary prevention strategy against CVD. Research regarding dietary supplementation has become increasingly popular. This review focuses on the current in vivo, in vitro, and epidemiological studies associated with that of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and polar lipids (PLs) and how they play a role against CVD. Furthermore, this review focuses on the results of several major clinical trials examining n-3 PUFAs regarding both primary and secondary prevention of CVD. Notably, we place a lens on the REDUCE-IT and STRENGTH trials. Finally, supplementation of PLs has recently been suggested as a potential alternative avenue for the reduction of CVD incidence versus neutral forms of n-3 PUFAs. However, the clinical evidence for this argument is currently rather limited. Therefore, we draw on the current literature to suggest future clinical trials for PL supplementation. We conclude that despite conflicting evidence, future human trials must be completed to confirm whether PL supplementation may be more effective than n-3 PUFA supplementation to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Cliodhna Caffrey
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Anna Leamy
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ellen O’Sullivan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantina Nasopoulou
- Laboratory of Food Chemistry—Technology and Quality of Food of Animal Origin, Department of Food Science and Nutrition, University of the Aegean, 814 00 Lemnos, Greece
| |
Collapse
|