1
|
Mastinu M, Grzeschuchna LS, Mignot C, Guducu C, Bogdanov V, Hummel T. Time-frequency analysis of gustatory event related potentials (gERP) in taste disorders. Sci Rep 2024; 14:2512. [PMID: 38291123 PMCID: PMC10827706 DOI: 10.1038/s41598-024-52986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
In taste disorders, the key to a correct diagnosis and an adequate treatment is an objective assessment. Compared to psychophysical tests, EEG-derived gustatory event-related potentials (gERP) could be used as a less biased measure. However, the responses identified using conventional time-domain averaging show a low signal-to-noise ratio. This study included 44 patients with dysgeusia and 59 healthy participants, who underwent a comprehensive clinical examination of gustatory function. gERPs were recorded in response to stimulation with two concentrations of salty solutions, which were applied with a high precision gustometer. Group differences were examined using gERP analyzed in the canonical time domain and with Time-Frequency Analyses (TFA). Dysgeusic patients showed significantly lower scores for gustatory chemical and electrical stimuli. gERPs failed to show significant differences in amplitudes or latencies between groups. However, TFA showed that gustatory activations were characterized by a stronger power in controls than in patients in the low frequencies (0.1-4 Hz), and a higher desynchronization in the alpha-band (8-12 Hz). Hence, gERPs reflect the altered taste sensation in patients with dysgeusia. TFA appears to enhance the signal-to-noise ratio commonly present when using conventional time-domain averaging, and might be of assistance for the diagnosis of dysgeusia.
Collapse
Affiliation(s)
- Mariano Mastinu
- Department of Otorhinolaryngology, Smell & Taste Clinic, Technische Universität Dresden, Dresden, Germany.
| | - Lisa Sophie Grzeschuchna
- Department of Otorhinolaryngology, Smell & Taste Clinic, Technische Universität Dresden, Dresden, Germany
| | - Coralie Mignot
- Department of Otorhinolaryngology, Smell & Taste Clinic, Technische Universität Dresden, Dresden, Germany
| | - Cagdas Guducu
- Department of Otorhinolaryngology, Smell & Taste Clinic, Technische Universität Dresden, Dresden, Germany
- Dokuz Eylül University Faculty of Medicine Department of Biophysics, 35320, Balçova, Izmir, Turkey
| | - Vasyl Bogdanov
- Department of Otorhinolaryngology, Smell & Taste Clinic, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell & Taste Clinic, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Ponnusamy V, Subramanian G, Muthuswamy K, Shanmugamprema D, Vasanthakumar K, Krishnan V, Subramaniam S. Tongue papillae density and fat taster status- a cardinal role on sweet and bitter taste perception among Indian population. Food Res Int 2023; 163:112294. [PMID: 36596198 DOI: 10.1016/j.foodres.2022.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Obesity is a complex nutritional disorder that may be influenced by calorie intake and eating behaviours. Aside from many studies, the influence of papillae count on obesity is still debated. Despite the multiple variables connected to weight gain and altered taste perception, determining the association between papillae count and taste sensitivity to fat, sweet and bitter tastes, in particular, has recently become a focus of attention. This study aimed to rule out the relationship between the number of papillae on different areas of the tongue and taste sensitivity in people (n = 150) among the various groups depending on their body mass index (BMI) and fat taste sensitivity. The general labelled magnitude scale (gLMS) was used for the taste sensitivity analysis, and participants were asked to rate the intensity of each concentration of the different tastants. Using a digital camera to obtain a picture of the tongue, the density of the papillae on the tongue was counted manually by three different operators. The study reveals that the total papillae density and BMI had a direct negative correlation (r = -0.43), with papillae density (PD) decreasing as BMI increased. Concurrently, persons with higher BMIs had lower papillae distributions (32.38 ± 1.85 PD/cm2) and significantly lower perceptions of the intensity of fat taste. Further examining papillae density in the anterior front part of the tongue, the front-right section, showed significantly higher papillae distribution (74.04 ± 2.11 PD/cm2) than the front-left section. When considering the sensitivity in the tip of the tongue, middle tongue, and whole mouth, high-sensitivity individuals for fat are more sensitive to both sweet and bitter tastes. Overall, the results of this study demonstrated a strong relationship between taste sensitivity in the Indian population, BMI, and tongue papillae density in various regions of the tongue.
Collapse
Affiliation(s)
- Vinithra Ponnusamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Gowtham Subramanian
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Deepankumar Shanmugamprema
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India.
| |
Collapse
|
3
|
Mastinu M, Melis M, Yousaf NY, Barbarossa IT, Tepper BJ. Emotional responses to taste and smell stimuli: Self-reports, physiological measures, and a potential role for individual and genetic factors. J Food Sci 2022; 88:65-90. [PMID: 36169921 DOI: 10.1111/1750-3841.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Taste and olfaction elicit conscious feelings by direct connection with the neural circuits of emotions that affects physiological responses in the body (e.g., heart rate and skin conductance). While sensory attributes are strong determinants of food liking, other factors such as emotional reactions to foods may be better predictors of consumer choices even for products that are equally-liked. Thus, important insights can be gained for understanding the full spectrum of emotional reactions to foods that inform the activities of product developers and marketers, eating psychologist and nutritionists, and policy makers. Today, self-reported questionnaires and physiological measures are the most common tools applied to study variations in emotional perception. The present review discusses these methodological approaches, underlining their different strengths and weaknesses. We also discuss a small, emerging literature suggesting that individual differences and genetic variations in taste and smell perception, like the genetic ability to perceive the bitter compound PROP, may also play a role in emotional reactions to aromas and foods.
Collapse
Affiliation(s)
- Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.,Center for Sensory Sciences & Innovation & Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Melania Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Neeta Y Yousaf
- Center for Sensory Sciences & Innovation & Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Beverly J Tepper
- Center for Sensory Sciences & Innovation & Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Naciri LC, Mastinu M, Crnjar R, Tomassini Barbarossa I, Melis M. Automated Classification of 6-n-Propylthiouracil Taster Status with Machine Learning. Nutrients 2022; 14:252. [PMID: 35057433 PMCID: PMC8778915 DOI: 10.3390/nu14020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Abstract
Several studies have used taste sensitivity to 6-n-propylthiouracil (PROP) to evaluate interindividual taste variability and its impact on food preferences, nutrition, and health. We used a supervised learning (SL) approach for the automatic identification of the PROP taster categories (super taster (ST); medium taster (MT); and non-taster (NT)) of 84 subjects (aged 18-40 years). Biological features determined from subjects were included for the training system. Results showed that SL enables the automatic identification of objective PROP taster status, with high precision (97%). The biological features were classified in order of importance in facilitating learning and as prediction factors. The ratings of perceived taste intensity for PROP paper disks (50 mM) and PROP solution (3.2 mM), along with fungiform papilla density, were the most important features, and high estimated values pushed toward ST prediction, while low values leaned toward NT prediction. Furthermore, TAS2R38 genotypes were significant features (AVI/AVI, PAV/PAV, and PAV/AVI to classify NTs, STs, and MTs, respectively). These results, in showing that the SL approach enables an automatic, immediate, scalable, and high-precision classification of PROP taster status, suggest that it may represent an objective and reliable tool in taste physiology studies, with applications ranging from basic science and medicine to food sciences.
Collapse
Affiliation(s)
| | | | | | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (L.C.N.); (M.M.); (R.C.); (M.M.)
| | | |
Collapse
|
5
|
Schumann L, Wilken-Schmitz A, Trautmann S, Vogel A, Schreiber Y, Hahnefeld L, Gurke R, Geisslinger G, Tegeder I. Increased Fat Taste Preference in Progranulin-Deficient Mice. Nutrients 2021; 13:4125. [PMID: 34836380 PMCID: PMC8623710 DOI: 10.3390/nu13114125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Progranulin deficiency in mice is associated with deregulations of the scavenger receptor signaling of CD36/SCARB3 in immune disease models, and CD36 is a dominant receptor in taste bud cells in the tongue and contributes to the sensation of dietary fats. Progranulin-deficient mice (Grn-/-) are moderately overweight during middle age. We therefore asked if there was a connection between progranulin/CD36 in the tongue and fat taste preferences. By using unbiased behavioral analyses in IntelliCages and Phenomaster cages we showed that progranulin-deficient mice (Grn-/-) developed a strong preference of fat taste in the form of 2% milk over 0.3% milk, and for diluted MCTs versus tap water. The fat preference in the 7d-IntelliCage observation period caused an increase of 10% in the body weight of Grn-/- mice, which did not occur in the wildtype controls. CD36 expression in taste buds was reduced in Grn-/- mice at RNA and histology levels. There were no differences in the plasma or tongue lipids of various classes including sphingolipids, ceramides and endocannabinoids. The data suggest that progranulin deficiency leads to a lower expression of CD36 in the tongue resulting in a stronger urge for fatty taste and fatty nutrition.
Collapse
Affiliation(s)
- Lana Schumann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Alexandra Vogel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| |
Collapse
|
6
|
Abstract
Fat is one of the six types of taste. Perceived taste intensity could affect the preference for a food and whether or not it is consumed. Cluster of differentiation 36 (CD36) translocates fatty acids on the cellular membrane and is involved in the oral fat-sensing mechanism. Therefore, genetic variation rs1761667 in CD36 is known to be associated with the perception of fat taste and, hence, its dietary intake. This study examined whether CD36 rs1527479 T>C, a proxy of rs1761667, is associated with fat intake and related dietary behaviour in Koreans. Using the data of the Ansan/Ansung Study, a part of the Korean Genome Epidemiology Study, the association of rs1527479 with the intake of macronutrients, including fat and selected foods, and fat-related dietary behaviours were investigated in 3194 males and 3425 females grouped by their degree of obesity. The findings suggested that rs1527479 did not have a meaningful effect on the intake of fat or other macronutrients or on the selection of food among non-obese females and males. However, in males with obesity, the genetic variation showed a significant association with vegetable intake. Obese males with the mutant CC genotype had substantially lower cruciferous vegetable consumption (adjusted P = 0·0015) than individuals with the TT and CT genotypes. Rs1527479 had no significant effect on the frequency of consuming fried foods or commonly used types of seasoning and cooking oils. In conclusion, CD36 genetic variation was associated with the intake of cruciferous vegetables but not fat intake in obese Korean males.
Collapse
|
7
|
Graham CAM, Pilic L, Mcgrigor E, Brown M, Easton IJ, Kean JN, Sarel V, Wehliye Y, Davis N, Hares N, Barac D, King A, Mavrommatis Y. The Associations Between Bitter and Fat Taste Sensitivity, and Dietary Fat Intake: Are They Impacted by Genetic Predisposition? Chem Senses 2021; 46:6297428. [PMID: 34117880 DOI: 10.1093/chemse/bjab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A relationship between bitter and fat taste sensitivity, CD36 rs1761667 and TAS2R38 has been demonstrated. However, research is scarce and does not take diet into account. This study aimed to explore associations between genetics, fat and bitter taste sensitivity and dietary fat intake in healthy UK adults. A cross-sectional study was carried out on 88 Caucasian participants (49 females and 39 males aged 35 ± 1 years; body mass index 24.9 ± 0.5 kg/m2). Bitter taste sensitivity was assessed using phenylthiocarbamide (PTC) impregnated strips and the general Labeled Magnitude Scale. Fat taste sensitivity was assessed by the Ascending Forced Choice Triangle Procedure and dietary intake with a semi-quantitative food frequency questionnaire. Genotyping for rs713598, rs1726866, rs10246939, and rs1761667 was performed. Participants with TAS2R38 PAV/PAV diplotype perceived PTC strips as more bitter than groups carrying AVI haplotypes (AVI/AVI, P = 1 × 10-6; AVI/AAV, P = 0.029). CD36 rs1761667 was associated with fat taste sensitivity (P = 0.008). A negative correlation between bitter taste sensitivity and saturated fat intake was observed (rs = -0.256, P = 0.016). When combining the CD36 genotypes and TAS2R38 diplotypes into one variable, participants carrying both TAS2R38 AVI haplotype and CD36 A allele had a higher intake of saturated fat compared to carriers of CD36 GG genotype or TAS2R38 PAV/PAV and PAV/AAV diplotypes (13.8 ± 0.3 vs. 12.6 ± 0.5%TEI, P = 0.047) warranting further exploration in a larger cohort.
Collapse
Affiliation(s)
- Catherine Anna-Marie Graham
- Oxford Brookes Centre for Nutrition and Health, Oxford Brookes, Faculty of Health and Life Sciences, Department of Sport, Health and Social Work, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Leta Pilic
- Faculty of Sport, Allied Health and Performance Sciences, Department of Health Science, St Mary's University Twickenham, Waldegrave Road, London TW1 4SX, UK
| | - Ella Mcgrigor
- Oxford Brookes Centre for Nutrition and Health, Oxford Brookes, Faculty of Health and Life Sciences, Department of Sport, Health and Social Work, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Megan Brown
- Faculty of Sport, Allied Health and Performance Sciences, Department of Health Science, St Mary's University Twickenham, Waldegrave Road, London TW1 4SX, UK
| | - Isabelle Jane Easton
- Oxford Brookes Centre for Nutrition and Health, Oxford Brookes, Faculty of Health and Life Sciences, Department of Sport, Health and Social Work, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Jonathan Nyuma Kean
- Faculty of Sport, Allied Health and Performance Sciences, Department of Health Science, St Mary's University Twickenham, Waldegrave Road, London TW1 4SX, UK
| | - Verity Sarel
- Oxford Brookes Centre for Nutrition and Health, Oxford Brookes, Faculty of Health and Life Sciences, Department of Sport, Health and Social Work, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Yasmin Wehliye
- Faculty of Sport, Allied Health and Performance Sciences, Department of Health Science, St Mary's University Twickenham, Waldegrave Road, London TW1 4SX, UK
| | - Natalie Davis
- Oxford Brookes Centre for Nutrition and Health, Oxford Brookes, Faculty of Health and Life Sciences, Department of Sport, Health and Social Work, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Nisrin Hares
- Faculty of Sport, Allied Health and Performance Sciences, Department of Health Science, St Mary's University Twickenham, Waldegrave Road, London TW1 4SX, UK
| | - Deanna Barac
- Oxford Brookes Centre for Nutrition and Health, Oxford Brookes, Faculty of Health and Life Sciences, Department of Sport, Health and Social Work, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Alexandra King
- Faculty of Sport, Allied Health and Performance Sciences, Department of Health Science, St Mary's University Twickenham, Waldegrave Road, London TW1 4SX, UK
| | - Yiannis Mavrommatis
- Faculty of Sport, Allied Health and Performance Sciences, Department of Health Science, St Mary's University Twickenham, Waldegrave Road, London TW1 4SX, UK
| |
Collapse
|
8
|
CYP7A1, NPC1L1, ABCB1, and CD36 Polymorphisms Are Associated with Increased Serum Coenzyme Q 10 after Long-Term Supplementation in Women. Antioxidants (Basel) 2021; 10:antiox10030431. [PMID: 33799730 PMCID: PMC7998724 DOI: 10.3390/antiox10030431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Coenzyme Q10 (CoQ10), an essential component for energy production that exhibits antioxidant activity, is considered a health-supporting and antiaging supplement. However, intervention-controlled studies have provided variable results on CoQ10 supplementation benefits, which may be attributed to individual CoQ10 bioavailability differences. This study aimed to investigate the relationship between genetic polymorphisms and CoQ10 serum levels after long-term supplementation. CoQ10 levels at baseline and after one year of supplementation (150 mg) were determined, and eight single nucleotide polymorphisms (SNPs) in cholesterol metabolism and CoQ10 absorption, efflux, and cellular uptake related genes were assessed. Rs2032582 (ABCB1) and rs1761667 (CD36) were significantly associated with a higher increase in CoQ10 levels in women. In addition, in women, rs3808607 (CYP7A1) and rs2072183 (NPC1L1) were significantly associated with a higher increase in CoQ10 per total cholesterol levels. Subgroup analyses showed that these four SNPs were useful for classifying high- or low-responder to CoQ10 bioavailability after long-term supplementation among women, but not in men. On the other hand, in men, no SNP was found to be significantly associated with increased serum CoQ10. These results collectively provide novel evidence on the relationship between genetics and CoQ10 bioavailability after long-term supplementation, which may help understand and assess CoQ10 supplementation effects, at least in women.
Collapse
|
9
|
Melis M, Pintus S, Mastinu M, Fantola G, Moroni R, Pepino MY, Tomassini Barbarossa I. Changes of Taste, Smell and Eating Behavior in Patients Undergoing Bariatric Surgery: Associations with PROP Phenotypes and Polymorphisms in the Odorant-Binding Protein OBPIIa and CD36 Receptor Genes. Nutrients 2021; 13:nu13010250. [PMID: 33467165 PMCID: PMC7830302 DOI: 10.3390/nu13010250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/08/2023] Open
Abstract
Bariatric surgery is the most effective long-term treatment for severe obesity and related comorbidities. Although patients who underwent bariatric surgery report changes of taste and smell perception, results from sensory studies are discrepant and limited. Here, we assessed taste and smell functions in 51 patients before, one month, and six months after undergoing bariatric surgery. We used taste strip tests to assess gustatory function (including sweetness, saltiness, sourness, umaminess, bitterness and oleic acid, a fatty stimulus), the “Sniffin’ Sticks” test to assess olfactory identification and the 3-Factor Eating Questionnaire to assess eating behavior. We also explored associations between these phenotypes and flavor-related genes. Results showed an overall improvement in taste function (including increased sensitivity to oleic acid and the bitterness of 6-n-propylthiouracil (PROP)) and in olfactory function (which could be related to the increase in PROP and oleic acid sensitivity), an increase in cognitive restraint, and a decrease in disinhibition and hunger after bariatric surgery. These findings indicate that bariatric surgery can have a positive impact on olfactory and gustatory functions and eating behavior (with an important role of genetic factors, such PROP tasting), which in turn might contribute to the success of the intervention.
Collapse
Affiliation(s)
- Melania Melis
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.M.); (I.T.B.)
- Correspondence: ; Tel.: +39-070-675-4142
| | - Stefano Pintus
- Obesity Surgical Unit ARNAS G. Brotzu, 09121 Cagliari, Italy; (S.P.); (G.F.); (R.M.)
| | - Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.M.); (I.T.B.)
| | - Giovanni Fantola
- Obesity Surgical Unit ARNAS G. Brotzu, 09121 Cagliari, Italy; (S.P.); (G.F.); (R.M.)
| | - Roberto Moroni
- Obesity Surgical Unit ARNAS G. Brotzu, 09121 Cagliari, Italy; (S.P.); (G.F.); (R.M.)
| | - Marta Yanina Pepino
- Department of Food Science and Human Nutrition, University of Illinois, Urbana Champaign, Urbana, IL 61801, USA;
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.M.); (I.T.B.)
| |
Collapse
|
10
|
Melis M, Sollai G, Mastinu M, Pani D, Cosseddu P, Bonfiglio A, Crnjar R, Tepper BJ, Tomassini Barbarossa I. Electrophysiological Responses from the Human Tongue to the Six Taste Qualities and Their Relationships with PROP Taster Status. Nutrients 2020; 12:E2017. [PMID: 32645975 PMCID: PMC7400817 DOI: 10.3390/nu12072017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Taste buds containing receptor cells that primarily detect one taste quality provide the basis for discrimination across taste qualities. The molecular receptor multiplicity and the interactions occurring between bud cells encode information about the chemical identity, nutritional value, and potential toxicity of stimuli before transmitting signals to the hindbrain. PROP (6-n-propylthiouracil) tasting is widely considered a marker for individual variations of taste perception, dietary preferences, and health. However, controversial data have been reported. We present measures of the peripheral gustatory system activation in response to taste qualities by electrophysiological recordings from the tongue of 39 subjects classified for PROP taster status. The waveform of the potential variation evoked depended on the taste quality of the stimulus. Direct relationships between PROP sensitivity and electrophysiological responses to taste qualities were found. The largest and fastest responses were recorded in PROP super-tasters, who had the highest papilla density, whilst smaller and slower responses were found in medium tasters and non-tasters with lower papilla densities. The intensities perceived by subjects of the three taster groups correspond to their electrophysiological responses for all stimuli except NaCl. Our results show that each taste quality can generate its own electrophysiological fingerprint on the tongue and provide direct evidence of the relationship between general taste perception and PROP phenotype.
Collapse
Affiliation(s)
- Melania Melis
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy; (G.S.); (M.M.); (R.C.)
| | - Giorgia Sollai
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy; (G.S.); (M.M.); (R.C.)
| | - Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy; (G.S.); (M.M.); (R.C.)
| | - Danilo Pani
- Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi, I 09123 Cagliari, CA, Italy; (D.P.); (P.C.); (A.B.)
| | - Piero Cosseddu
- Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi, I 09123 Cagliari, CA, Italy; (D.P.); (P.C.); (A.B.)
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi, I 09123 Cagliari, CA, Italy; (D.P.); (P.C.); (A.B.)
| | - Roberto Crnjar
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy; (G.S.); (M.M.); (R.C.)
| | - Beverly J. Tepper
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA;
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy; (G.S.); (M.M.); (R.C.)
| |
Collapse
|
11
|
Vesnina A, Prosekov A, Kozlova O, Atuchin V. Genes and Eating Preferences, Their Roles in Personalized Nutrition. Genes (Basel) 2020; 11:genes11040357. [PMID: 32230794 PMCID: PMC7230842 DOI: 10.3390/genes11040357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
At present, personalized diets, which take into account consumer genetic characteristics, are growing popular. Nutrigenetics studies the effect of gene variations on metabolism and nutrigenomics, which branches off further and investigates how nutrients and food compounds affect genes. This work deals with the mutations affecting the assimilation of metabolites, contributing to nutrigenetic studies. We searched for the genes responsible for eating preferences which allow for the tailoring of personalized diets. Presently, genetic nutrition is growing in demand, as it contributes to the prevention and/or rehabilitation of non-communicable diseases, both monogenic and polygenic. In this work, we showed single-nucleotide polymorphisms in genes-missense mutations that change the functions of coded proteins, resulting in a particular eating preferences or a disease. We studied the genes influencing food preferences-particularly those responsible for fats and carbohydrates absorption, food intolerance, metabolism of vitamins, taste sensations, oxidation of xenobiotics, eating preferences and food addiction. As a result, 34 genes were identified that affect eating preferences. Significant shortcomings were found in the methods/programs for developing personalized diets that are used today, and the weaknesses were revealed in the development of nutrigenetics (inconsistency of data on SNP genes, ignoring population genetics data, difficult information to understand consumer, etc.). Taking into account all the shortcomings, an approximate model was proposed in the review for selecting an appropriate personalized diet. In the future, it is planned to develop the proposed model for the compilation of individual diets.
Collapse
Affiliation(s)
- Anna Vesnina
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Correspondence: ; Tel.: +7-(383)-3308889
| |
Collapse
|
12
|
Melis M, Mastinu M, Sollai G, Paduano D, Chicco F, Magrì S, Usai P, Crnjar R, Tepper BJ, Tomassini Barbarossa I. Taste Changes in Patients with Inflammatory Bowel Disease: Associations with PROP Phenotypes and polymorphisms in the salivary protein, Gustin and CD36 Receptor Genes. Nutrients 2020; 12:nu12020409. [PMID: 32033224 PMCID: PMC7071215 DOI: 10.3390/nu12020409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract resulting from interactions among various factors with diet being one of the most significant. IBD-related dietary behaviors are not clearly related to taste dysfunctions. We analyzed body mass index (BMI) and perception of six taste qualities and assessed effects of specific taste genes in IBD patients and healthy subjects (HC). BMI in IBD patients was higher than in HC subjects. Taste sensitivity to taste qualities was reduced in IBD patients, except for sour taste, which was higher than in HC subjects. Genetic variations were related to some taste responses in HC subjects, but not in IBD patients. Frequencies of genotype AA and allele A in CD36 polymorphism (rs1761667) were significantly higher in IBD patients than in HC subjects. The taste changes observed could be explained by the oral pathologies and microbiome variations known for IBD patients and can justify their typical dietary behaviors. The lack of genetic effects on taste in IBD patients indicates that IBD might compromise taste so severely that gene effects cannot be observed. However, the high frequency of the non-tasting form of CD36 substantiates the fact that IBD-associated fat taste impairment may represent a risk factor for IBD.
Collapse
Affiliation(s)
- Melania Melis
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy; (M.M.); (G.S.); (R.C.)
| | - Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy; (M.M.); (G.S.); (R.C.)
| | - Giorgia Sollai
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy; (M.M.); (G.S.); (R.C.)
| | - Danilo Paduano
- Department of Medical Sciences and Public Health, University of Cagliari, Presidio Policlinico of Monserrato, 09042 Monserrato (CA), Italy; (D.P.); (F.C.); (S.M.); (P.U.)
| | - Fabio Chicco
- Department of Medical Sciences and Public Health, University of Cagliari, Presidio Policlinico of Monserrato, 09042 Monserrato (CA), Italy; (D.P.); (F.C.); (S.M.); (P.U.)
| | - Salvatore Magrì
- Department of Medical Sciences and Public Health, University of Cagliari, Presidio Policlinico of Monserrato, 09042 Monserrato (CA), Italy; (D.P.); (F.C.); (S.M.); (P.U.)
| | - Paolo Usai
- Department of Medical Sciences and Public Health, University of Cagliari, Presidio Policlinico of Monserrato, 09042 Monserrato (CA), Italy; (D.P.); (F.C.); (S.M.); (P.U.)
| | - Roberto Crnjar
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy; (M.M.); (G.S.); (R.C.)
| | - Beverly J. Tepper
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA;
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy; (M.M.); (G.S.); (R.C.)
- Correspondence: ; Tel.: +39-070-6754144
| |
Collapse
|
13
|
Nolden AA, Feeney EL. Genetic Differences in Taste Receptors: Implications for the Food Industry. Annu Rev Food Sci Technol 2020; 11:183-204. [PMID: 31922882 DOI: 10.1146/annurev-food-032519-051653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inborn genetic differences in chemosensory receptors can lead to differences in perception and preference for foods and beverages. These differences can drive market segmentation for food products as well as contribute to nutritional status. This knowledge may be essential in the development of foods and beverages because the sensory profiles may not be experienced in the same way across individuals. Rather, distinct consumer groups may exist with different underlying genetic variations. Identifying genetic factors associated with individual variability can help better meet consumer needs through an enhanced understanding of perception and preferences. This review provides an overview of taste and chemesthetic sensations and their receptors, highlighting recent advances linking genetic variations in chemosensory genes to perception, food preference and intake, and health. With growing interest in personalized foods, this information is useful for both food product developers and nutrition health professionals alike.
Collapse
Affiliation(s)
- Alissa A Nolden
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA;
| | - Emma L Feeney
- Institute of Food and Health, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
14
|
Abstract
The sensation of flavour reflects the complex integration of aroma, taste, texture, and chemesthetic (oral and nasal irritation cues) from a food or food component. Flavour is a major determinant of food palatability—the extent to which a food is accepted or rejected—and can profoundly influence diet selection, nutrition, and health. Despite recent progress, there are still gaps in knowledge on how taste and flavour cues are detected at the periphery, conveyed by the brainstem to higher cortical levels and then interpreted as a conscious sensation. Taste signals are also projected to central feeding centers where they can regulate hunger and fullness. Individual differences in sensory perceptions are also well known and can arise from genetic variation, environmental causes, or a variety of metabolic diseases, such as obesity, metabolic syndrome, and cancer. Genetic taste/smell variation could predispose individuals to these same diseases. Recent findings have also opened new avenues of inquiry, suggesting that fatty acids and carbohydrates may provide nutrient-specific signals informing the gut and brain of the nature of the ingested nutrients. This special issue on “Taste, Nutrition, and Health” presents original research communications and comprehensive reviews on topics of broad interest to researchers and educators in sensory science, nutrition, physiology, public health, and health care.
Collapse
|
15
|
Murphy AM, Smith CE, Murphy LM, Follis JL, Tanaka T, Richardson K, Noordam R, Lemaitre RN, Kähönen M, Dupuis J, Voortman T, Marouli E, Mook‐Kanamori DO, Raitakari OT, Hong J, Dehghan A, Dedoussis G, de Mutsert R, Lehtimäki T, Liu C, Rivadeneira F, Deloukas P, Mikkilä V, Meigs JB, Uitterlinden A, Ikram MA, Franco OH, Hughes M, O' Gaora P, Ordovás JM, Roche HM. Potential Interplay between Dietary Saturated Fats and Genetic Variants of the NLRP3 Inflammasome to Modulate Insulin Resistance and Diabetes Risk: Insights from a Meta-Analysis of 19 005 Individuals. Mol Nutr Food Res 2019; 63:e1900226. [PMID: 31432628 PMCID: PMC6864231 DOI: 10.1002/mnfr.201900226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/12/2019] [Indexed: 12/13/2022]
Abstract
SCOPE Insulin resistance (IR) and inflammation are hallmarks of type 2 diabetes (T2D). The nod-like receptor pyrin domain containing-3 (NLRP3) inflammasome is a metabolic sensor activated by saturated fatty acids (SFA) initiating IL-1β inflammation and IR. Interactions between SFA intake and NLRP3-related genetic variants may alter T2D risk factors. METHODS Meta-analyses of six Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 19 005) tested interactions between SFA and NLRP3-related single-nucleotide polymorphisms (SNPs) and modulation of fasting insulin, fasting glucose, and homeostasis model assessment of insulin resistance. RESULTS SFA interacted with rs12143966, wherein each 1% increase in SFA intake increased insulin by 0.0063 IU mL-1 (SE ± 0.002, p = 0.001) per each major (G) allele copy. rs4925663, interacted with SFA (β ± SE = -0.0058 ± 0.002, p = 0.004) to increase insulin by 0.0058 IU mL-1 , per additional copy of the major (C) allele. Both associations are close to the significance threshold (p < 0.0001). rs4925663 causes a missense mutation affecting NLRP3 expression. CONCLUSION Two NLRP3-related SNPs showed potential interaction with SFA to modulate fasting insulin. Greater dietary SFA intake accentuates T2D risk, which, subject to functional validation, may be further elaborated depending on NLRP3-related genetic variants.
Collapse
Affiliation(s)
- Aoife M. Murphy
- Nutrigenomics Research GroupConway Institute of Biomedical and Biomolecular SciencesUniversity College DublinBelfieldDublin 4, D04 V1W8Ireland
| | - Caren E. Smith
- Jean Mayer USDA Human Nutrition Research Centre on AgingTufts UniversityBostonMA02111USA
| | - Leanne M. Murphy
- UCD School of Biomolecular and Biomedical ScienceConway Institute of Biomedical and Biomolecular SciencesUniversity College DublinBelfieldDublin 4, D04 V1W8Ireland
| | - Jack L. Follis
- Department of MathematicsUniversity of St. ThomasHoustonTX77006‐4626USA
| | - Toshiko Tanaka
- Translational Gerontology BranchNational Institute on AgingBaltimoreMD21224USA
| | - Kris Richardson
- Jean Mayer USDA Human Nutrition Research Centre on AgingTufts UniversityBostonMA02111USA
| | - Raymond Noordam
- Department of Internal MedicineSection of Gerontology and Geriatrics, Leiden University Medical CenterLeiden2333 ZA.The Netherlands
| | | | - Mika Kähönen
- Department of Clinical PhysiologyTampere University Hospital and University of Tampere School of Medicine33521TampereFinland
| | - Josée Dupuis
- Department of BiostatisticsBoston University School of Public HealthBostonMA02130USA
| | - Trudy Voortman
- Department of EpidemiologyErasmus MC‐University Medical CenterPostbus 2040, 3000 CARotterdamThe Netherlands
| | - Eirini Marouli
- William Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonE1 4NSUK
| | - Dennis O. Mook‐Kanamori
- Department of Clinical Epidemiology and Department of Public Health and Primary CareLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear MedicineTurku University Hospital, and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku20521TurkuFinland
| | - Jaeyoung Hong
- Department of BiostatisticsBoston University School of Public HealthBostonMA02130USA
| | - Abbas Dehghan
- Department of EpidemiologyErasmus MC‐University Medical CenterPostbus 2040, 3000 CARotterdamThe Netherlands
| | - George Dedoussis
- Department of Nutrition and DieteticsSchool of Health Science and Education, Harokopio UniversityEl. Venizelou 7017671AthensGreece
| | - Renée de Mutsert
- Department of Clinical Epidemiology and Department of Public Health and Primary CareLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Terho Lehtimäki
- Department of Clinical ChemistryFimlab Laboratories and Finnish Cardiovascular Research Center–TampereFaculty of Medicine and Life Sciences, University of TampereTampere33520Finland
| | - Ching‐Ti Liu
- Department of BiostatisticsBoston University School of Public HealthBostonMA02130USA
| | - Fernando Rivadeneira
- Department of Internal MedicineErasmus University Medical CenterPostbus 2040, 3000 CARotterdamThe Netherlands
| | - Panagiotis Deloukas
- William Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonE1 4NSUK
| | - Vera Mikkilä
- Division of NutritionDepartment of Food and Environmental Sciences00014HelsinkiFinland
| | - James B. Meigs
- Division of General Internal MedicineMassachusetts General HospitalBostonMA02114USA
- Harvard Medical SchoolBostonMA02115USA
- Broad InstituteCambridgeMA02142USA
| | - Andre Uitterlinden
- Department of Internal MedicineErasmus University Medical CenterPostbus 2040, 3000 CARotterdamThe Netherlands
| | - Mohammad A. Ikram
- Department of EpidemiologyErasmus MC‐University Medical CenterPostbus 2040, 3000 CARotterdamThe Netherlands
| | - Oscar H. Franco
- Department of EpidemiologyErasmus MC‐University Medical CenterPostbus 2040, 3000 CARotterdamThe Netherlands
| | - Maria Hughes
- Nutrigenomics Research GroupConway Institute of Biomedical and Biomolecular SciencesUniversity College DublinBelfieldDublin 4, D04 V1W8Ireland
| | - Peadar O' Gaora
- UCD School of Biomolecular and Biomedical ScienceConway Institute of Biomedical and Biomolecular SciencesUniversity College DublinBelfieldDublin 4, D04 V1W8Ireland
| | - José M. Ordovás
- Jean Mayer USDA Human Nutrition Research Centre on AgingTufts UniversityBostonMA02111USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)28029MadridSpain
- IMDEA Food Institute, CEI UAM + CSICE ‐ 28049MadridSpain
| | - Helen M. Roche
- Nutrigenomics Research GroupConway Institute of Biomedical and Biomolecular SciencesUniversity College DublinBelfieldDublin 4, D04 V1W8Ireland
- Institute For Global Food SecurityQueen's University BelfastNorthern Ireland
| |
Collapse
|
16
|
Delompré T, Guichard E, Briand L, Salles C. Taste Perception of Nutrients Found in Nutritional Supplements: A Review. Nutrients 2019; 11:nu11092050. [PMID: 31480669 PMCID: PMC6770818 DOI: 10.3390/nu11092050] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
Nutritional supplements are prescribed when one’s nutritional status is not conducive to good health. These foodstuffs constitute concentrated sources of nutrients such as vitamins, minerals, amino acids, and fatty acids. For nutritional supplements to be effective, patients must consume the amount that has been prescribed for the recommended period of time. Therefore, special attention must be given to the sensory attributes of these products. Indeed, the presence of active compounds can cause an off-taste or aftertaste. These negative sensations can lead to a reduction in the consumption of nutritional supplements and reduce the effectiveness of the treatment. In this manuscript, we provide an overview of the sensory characteristics and the sensing receptor mechanism of the main compounds present in oral nutritional supplements, such as amino acids, minerals, fatty acids, and vitamins. Part of this article is devoted to the development of new masking strategies and the corresponding potential influence at the industrial level.
Collapse
Affiliation(s)
- Thomas Delompré
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Elisabeth Guichard
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Loïc Briand
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, 21000 Dijon, France.
| | - Christian Salles
- CSGA (Centre des Sciences du Goût et de l'Alimentation), AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, 21000 Dijon, France.
| |
Collapse
|