1
|
Ma S, Zuo J, Chen B, Fu Z, Lin X, Wu J, Zheng B, Lu X. Structural, properties and digestion in vitro changes of starch subjected to high pressure homogenization: An update review. Int J Biol Macromol 2024; 282:137118. [PMID: 39489250 DOI: 10.1016/j.ijbiomac.2024.137118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
High pressure homogenization (HPH) is considered as a promising method for improving the ideal metabolic reaction of starch-based foods in the body, but there is still no comprehensive understanding of the structure-property relationship of starch treated with HPH. This study reviews the advantages and limitations of HPH in starch-based foods processing in recent years. It also elaborates the bidirectional regulation of HPH on starch structure-property and its potential in improving nutritional quality, which includes the regular modification effects of HPH on the multi-scale structure, physicochemical properties, and digestion characteristics of starch. It was found that HPH could lead to the degradation of amylopectin, destruction of amorphous structure, and homogenization of fine particles, promoting gelatinization and ultimately endowing starch with good solubility and digestibility. Moreover, it could reorganize and reorder the internal starch chains, or cause the particles to disintegrate into an amorphous state, thereby enhancing the anti-digestibility of starch. The interaction of starch with different nutrients during the HPH process could be further investigated in future studies and explored with other techniques for structure-property modifications, which would help expand the development of personalized starch foods to meet growing consumer demands.
Collapse
Affiliation(s)
- Shuang Ma
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Zuo
- Centre of Excellence in Agri-food Technologies, National Centre for Food Manufacturing, College of Health and Science, University of Lincoln, Holbeach, Spalding, UK
| | - Bingbing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoxia Fu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lin
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaqi Wu
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Xiao D, Li X, Li Y, Mo L, Li X, Fu Y, Zhang F, Wang T, Cheng Y, Li Y, Zhou P. Influence of autonomic nervous dysfunction on eating during hemodialysis sessions: An observational study. Medicine (Baltimore) 2024; 103:e39680. [PMID: 39312360 PMCID: PMC11419433 DOI: 10.1097/md.0000000000039680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Although some studies have indicated that eating during hemodialysis may induce hypotension and cardiovascular events, some patients still consume food during their treatment. This prospective study was conducted to determine whether the need to eat during hemodialysis treatment was related to abnormal glucose metabolism and autonomic nerve dysfunction. Seventy patients were enrolled in this study, and their demographic features and various laboratory parameters were analyzed. At each routine hemodialysis visit, predialysis, intradialysis, and postdialysis blood pressure measurements were systematically conducted. A 24-hour ambulatory electrocardiogram (ECG) was performed during the hemodialysis interval, and heart rate variability (HRV) values were calculated. Additionally, whether the patients ate during the hemodialysis treatments was recorded. Another 20 people who underwent physical examinations during the same period and were matched for sex and age were included in the control group. The HRV values of the hemodialysis patients were generally lower than those of the control group. Univariate analysis revealed significant differences in sex, age, calcium antagonist use, blood calcium levels, insulin levels, diastolic blood pressure (DBP) measurements, and HRV indices between hemodialysis patients who ate and those who did not eat during hemodialysis (P < .05), whereas there were no significant differences in diabetes status or in the hemoglobin, albumin, blood glucose and C-peptide levels (P > .05). Multivariate analysis revealed that low values for very low frequency (VLF) and postdialysis DBP were risk factors for fasting intolerance during hemodialysis treatments. Autonomic dysfunction may affect whether hemodialysis patients tolerate fasting during dialysis. VLF evaluation may provide information that can be used to develop a more reasonable intradialytic nutritional supplementation method.
Collapse
Affiliation(s)
- Dan Xiao
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Xia Li
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Yi Li
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Liwen Mo
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Xianglian Li
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Yonggang Fu
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Fan Zhang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Tao Wang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Yue Cheng
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
- College of Medicine, Southwest Jiaotong University, Chengdu, PR China
| | - Yunming Li
- Department of Information, Statistical Office, General Hospital of Western Theater Command, Chengdu, PR China
- Department of Statistics, College of Mathematics, Southwest Jiaotong University, Chengdu, PR China
| | - Pengfei Zhou
- Department of Information, Statistical Office, General Hospital of Western Theater Command, Chengdu, PR China
| |
Collapse
|
3
|
Baccari MC, Vannucchi MG, Idrizaj E. The Possible Involvement of Glucagon-like Peptide-2 in the Regulation of Food Intake through the Gut-Brain Axis. Nutrients 2024; 16:3069. [PMID: 39339669 PMCID: PMC11435434 DOI: 10.3390/nu16183069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Food intake regulation is a complex mechanism involving the interaction between central and peripheral structures. Among the latter, the gastrointestinal tract represents one of the main sources of both nervous and hormonal signals, which reach the central nervous system that integrates them and sends the resulting information downstream to effector organs involved in energy homeostasis. Gut hormones released by nutrient-sensing enteroendocrine cells can send signals to central structures involved in the regulation of food intake through more than one mechanism. One of these is through the modulation of gastric motor phenomena known to be a source of peripheral satiety signals. In the present review, our attention will be focused on the ability of the glucagon-like peptide 2 (GLP-2) hormone to modulate gastrointestinal motor activity and discuss how its effects could be related to peripheral satiety signals generated in the stomach and involved in the regulation of food intake through the gut-brain axis. A better understanding of the possible role of GLP-2 in regulating food intake through the gut-brain axis could represent a starting point for the development of new strategies to treat some pathological conditions, such as obesity.
Collapse
Affiliation(s)
- Maria Caterina Baccari
- Department of Experimental & Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy;
| | - Maria Giuliana Vannucchi
- Department of Experimental & Clinical Medicine, Research Unit of Histology & Embryology, University of Florence, 50139 Florence, Italy;
| | - Eglantina Idrizaj
- Department of Experimental & Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
4
|
Zeng Y, Zhou L, Wan Y, Fu T, Xu P, Zhang H, Guan Y. Effects of Saikosaponin D on Apoptosis, Autophagy, and Morphological Structure of Intestinal Cells of Cajal with Functional Dyspepsia. Comb Chem High Throughput Screen 2024; 27:1513-1522. [PMID: 37818570 PMCID: PMC11340291 DOI: 10.2174/0113862073262404231004053116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Functional dyspepsia (FD) is one of the most common gastrointestinal diseases, with a global prevalence of 10%-30%. However, the specific pathogenesis of FD has not yet been determined. As such, the aim of this study was to investigate the effects of saikosaponin D (SSD) administration on the apoptosis, autophagy, and morphological structure of the intestinal cells of Cajal (ICCs) in FD. METHODS A rat model of FD was constructed by stimulating the rat tail with a sponge clamp at one-third of the distal tail length. An autophagy model was constructed for ICCs using glutamate. The apoptosis rate in each group of cells was determined using flow cytometry. The expressions of ghrelin and substance P (SP) were detected using ELISA. RESULTS The body weight and food intake of male and female rats in the SSD group were consistently higher than those in the model group. The SSD group showed substantial improvement compared with the model group, with no inflammatory cell infiltration and normal gastric mucosal structures. After intervention with SSD, the ultrastructure of the ICCs considerably improved and was clear. Compared with the model group, the expressions of LC3 I/II, ghrelin, and SP proteins in the SSD group were significantly upregulated, and the apoptosis rate was significantly reduced. CONCLUSION The administration of SSD improved ICC morphology and structure, inhibited excessive autophagy, and improved FD, a gastrointestinal motility disorder, by regulating ghrelin and SP levels.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Hospital Infection Management Office, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Li Zhou
- Department of Rehabilitation, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Ying Wan
- Department of Gastroenterology, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Ting Fu
- Department of Traditional Chinese Medicine, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Paidi Xu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, China
| | | | - Ying Guan
- Department of Hospital Infection Management Office, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
5
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1's cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|
6
|
Liu W, Choi SJ, George D, Li L, Zhong Z, Zhang R, Choi SY, Selaru FM, Gracias DH. Untethered shape-changing devices in the gastrointestinal tract. Expert Opin Drug Deliv 2023; 20:1801-1822. [PMID: 38044866 PMCID: PMC10872387 DOI: 10.1080/17425247.2023.2291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Advances in microfabrication, automation, and computer engineering seek to revolutionize small-scale devices and machines. Emerging trends in medicine point to smart devices that emulate the motility, biosensing abilities, and intelligence of cells and pathogens that inhabit the human body. Two important characteristics of smart medical devices are the capability to be deployed in small conduits, which necessitates being untethered, and the capacity to perform mechanized functions, which requires autonomous shape-changing. AREAS COVERED We motivate the need for untethered shape-changing devices in the gastrointestinal tract for drug delivery, diagnosis, and targeted treatment. We survey existing structures and devices designed and utilized across length scales from the macro to the sub-millimeter. These devices range from triggerable pre-stressed thin film microgrippers and spring-loaded devices to shape-memory and differentially swelling structures. EXPERT OPINION Recent studies demonstrate that when fully enabled, tether-free and shape-changing devices, especially at sub-mm scales, could significantly advance the diagnosis and treatment of GI diseases ranging from cancer and inflammatory bowel disease (IBD) to irritable bowel syndrome (IBS) by improving treatment efficacy, reducing costs, and increasing medication compliance. We discuss the challenges and possibilities associated with ensuring safe, reliable, and autonomous operation of these smart devices.
Collapse
Affiliation(s)
- Wangqu Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Soo Jin Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ling Li
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zijian Zhong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ruili Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Si Young Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Florin M. Selaru
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Kim MJ, Lee S, Kim SN. Effects of acupuncture on gastrointestinal diseases and its underlying mechanism: a literature review of animal studies. Front Med (Lausanne) 2023; 10:1167356. [PMID: 37351066 PMCID: PMC10282137 DOI: 10.3389/fmed.2023.1167356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Acupuncture is a non-pharmacological traditional Chinese medical technique that has been used for various types of gastrointestinal (GI) diseases in Eastern medicine. However, the specific mechanisms underlying acupuncture treatment in the GI tract have not yet been elucidated. In this study, we searched the electronic databases PUBMED, EMBASE, and MEDLINE and identified 30 eligible studies that were summarized in this review. This review demonstrates that treatments, including both manual and electroacupuncture, have therapeutic mechanisms in diverse GI diseases. The underlying mechanisms are broadly divided into the following: changes in gene expression in the gastric mucosa or nuclei of the solitary tract, metabolic change induction, regulation of anti-inflammatory substances, vagal activity increase, change in functional connectivity between brain regions, and control of the number of neurons related to GI diseases. Although this study is limited in that it does not represent all types of GI diseases with different acupuncture methods, this study identified acupuncture as effective for GI diseases through various biological mechanisms. We hope that our study will reveal various mechanisms of acupuncture in GI diseases and play an important role in the therapy and treatment of GI diseases, thus advancing the field of study.
Collapse
|
8
|
Keel PK, Eckel LA, Hildebrandt BA, Haedt-Matt AA, Murry DJ, Appelbaum J, Jimerson DC. Disentangling the links between gastric emptying and binge eating v. purging in eating disorders using a case-control design. Psychol Med 2023; 53:1947-1954. [PMID: 37310328 PMCID: PMC10106287 DOI: 10.1017/s0033291721003640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prior work supports delayed gastric emptying in anorexia nervosa and bulimia nervosa (BN) but not binge-eating disorder, suggesting that neither low body weight nor binge eating fully accounts for slowed gastric motility. Specifying a link between delayed gastric emptying and self-induced vomiting could offer new insights into the pathophysiology of purging disorder (PD). METHODS Women (N = 95) recruited from the community meeting criteria for DSM-5 BN who purged (n = 26), BN with nonpurging compensatory behaviors (n = 18), PD (n = 25), or healthy control women (n = 26) completed assessments of gastric emptying, gut peptides, and subjective responses over the course of a standardized test meal under two conditions administered in a double-blind, crossover sequence: placebo and 10 mg of metoclopramide. RESULTS Delayed gastric emptying was associated with purging with no main or moderating effects of binge eating in the placebo condition. Medication eliminated group differences in gastric emptying but did not alter group differences in reported gastrointestinal distress. Exploratory analyses revealed that medication caused increased postprandial PYY release, which predicted elevated gastrointestinal distress. CONCLUSIONS Delayed gastric emptying demonstrates a specific association with purging behaviors. However, correcting disruptions in gastric emptying may exacerbate disruptions in gut peptide responses specifically linked to the presence of purging after normal amounts of food.
Collapse
Affiliation(s)
- Pamela K. Keel
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Lisa A. Eckel
- Department of Psychology and Neuroscience Program, Florida State University, Tallahassee, FL, USA
| | - Britny A. Hildebrandt
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Daryl J. Murry
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - David C. Jimerson
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Garella R, Cassioli E, Chellini F, Tani A, Rossi E, Idrizaj E, Guasti D, Comeglio P, Palmieri F, Parigi M, Vignozzi L, Baccari MC, Ricca V, Sassoli C, Castellini G, Squecco R. Defining the Molecular Mechanisms of the Relaxant Action of Adiponectin on Murine Gastric Fundus Smooth Muscle: Potential Translational Perspectives on Eating Disorder Management. Int J Mol Sci 2023; 24:ijms24021082. [PMID: 36674598 PMCID: PMC9867455 DOI: 10.3390/ijms24021082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Adiponectin (ADPN), a hormone produced by adipose tissue, facilitates gastric relaxation and can be a satiety signal in the network connecting peripheral organs and the central nervous system for feeding behavior control. Here, we performed preclinical research by morpho-functional analyses on murine gastric fundus smooth muscle to add insights into the molecular mechanisms underpinning ADPN action. Moreover, we conducted a clinical study to evaluate the potential use of ADPN as a biomarker for eating disorders (ED) based on the demonstrated gastric alterations and hormone level fluctuations that are often associated with ED. The clinical study recruited patients with ED and healthy controls who underwent blood draws for ADPN dosage and psychopathology evaluation tests. The findings of this basic research support the ADPN relaxant action, as indicated by the smooth muscle cell membrane pro-relaxant effects, with mild modifications of contractile apparatus and slight inhibitory effects on gap junctions. All of these actions engaged the ADPN/nitric oxide/guanylate cyclase pathway. The clinical data failed to unravel a correlation between ADPN levels and the considered ED, thus negating the potential use of ADPN as a valid biomarker for ED management for the moment. Nevertheless, this adipokine can modulate physiological eating behavior, and its effects deserve further investigation.
Collapse
Affiliation(s)
- Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Emanuele Cassioli
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Eleonora Rossi
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Paolo Comeglio
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Linda Vignozzi
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Valdo Ricca
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Giovanni Castellini
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
- Correspondence: ; Tel.: +39-055-2751632
| |
Collapse
|
10
|
Gómez-Martínez DG, Ramos F, Ramos M, Robles F. A bioinspired model for the generation of a motivational state from energy homeostasis. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Lv W, Xu D. Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods 2022; 11:2685. [PMID: 36076867 PMCID: PMC9455885 DOI: 10.3390/foods11172685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 12/19/2022] Open
Abstract
Docosahexaenoic acid (DHA), mainly found in microalgae and fish oil, is crucial for the growth and development of visual, neurological, and brain. In addition, DHA has been found to improve metabolic disorders associated with obesity and has anti-inflammatory, anti-obesity, and anti-adipogenesis effects. However, DHA applications in food are often limited due to its low water solubility, instability, and poor bioavailability. Therefore, delivery systems have been developed to enhance the remainder of DHA activity and increase DHA homeostasis and bioavailability. This review focused on the different DHA delivery systems and the in vitro and in vivo digestive characteristics. The research progress on cardiovascular diseases, diabetes, visual, neurological/brain, anti-obesity, anti-inflammatory, food applications, future trends, and the development potential of DHA delivery systems were also reviewed. DHA delivery systems could overcome the instability of DHA in gastrointestinal digestion, improve the bioavailability of DHA, and better play the role of its functionality.
Collapse
Affiliation(s)
- Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
Hajishafiee M, McVeay C, Lange K, Rehfeld JF, Horowitz M, Feinle-Bisset C. Effects of intraduodenal infusion of lauric acid and L-tryptophan, alone and combined, on glucoregulatory hormones, gastric emptying and glycaemia in healthy men. Metabolism 2022; 129:155140. [PMID: 35065080 DOI: 10.1016/j.metabol.2022.155140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM In healthy men, intraduodenal administration of the fatty acid, lauric acid ('C12') and the amino acid, L-tryptophan ('TRP'), at loads that individually do not affect energy intake, reduce energy intake substantially when combined. C12 and TRP may also stimulate cholecystokinin and glucagon-like peptide-1 (GLP-1), which both slow gastric emptying, a key determinant of postprandial blood glucose. Accordingly, combination of C12 and TRP has the potential to reduce post-meal glycaemia more than either nutrient alone. METHODS Twelve healthy, lean men (age (mean ± SD): 28 ± 7 years) received, on 4 separate occasions, 45-min intraduodenal infusions of C12 (0.3 kcal/min), TRP (0.1 kcal/min), C12 + TRP (0.4 kcal/min), or 0.9% saline (control), in a randomised, double-blind fashion. 30 min after commencement of the infusion a mixed-nutrient drink was consumed and gastric emptying measured (13C breath-test) for 3 h. Blood samples were obtained at baseline, in response to treatments alone, and for 2 h post-drink for measurements of plasma glucose, cholecystokinin, GLP-1, C-peptide, insulin and glucagon. 'Early' (first 30 min) and 'overall' glycaemic and hormone responses were evaluated. RESULTS C12 + TRP and C12 delayed the rise in, but did not affect the overall glycaemic response to the drink, compared with control and TRP (all P < 0.05). C12 + TRP slowed gastric emptying compared with control and TRP (both P < 0.005), and C12 non-significantly slowed gastric emptying compared with control (P = 0.090). C12 + TRP and C12 delayed the rise in C-peptide and insulin, and also stimulated CCK and glucagon, compared with control and TRP (all P < 0.05). Only C12 + TRP stimulated early and overall GLP-1 compared with control (P < 0.05). CONCLUSIONS In healthy men, C12 + TRP and C12, in the loads administered, had comparable effects to delay the rise in glucose following a nutrient drink, probably primarily by slowing of gastric emptying, as a result of CCK and GLP-1 stimulation, while TRP had no effect.
Collapse
Affiliation(s)
- M Hajishafiee
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - C McVeay
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - K Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - J F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - M Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - C Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
13
|
Zukeran MS, Valentini Neto J, Romanini CV, Mingardi SVB, Cipolli GC, Aprahamian I, Lima Ribeiro SM. The association between appetite loss, frailty, and psychosocial factors in community-dwelling older adults adults. Clin Nutr ESPEN 2022; 47:194-198. [DOI: 10.1016/j.clnesp.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
|
14
|
Martínez-Herrero S, Martínez A. Adrenomedullin: Not Just Another Gastrointestinal Peptide. Biomolecules 2022; 12:biom12020156. [PMID: 35204657 PMCID: PMC8961556 DOI: 10.3390/biom12020156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as GI hormones, regulating numerous physiological processes such as gastric emptying, gastric acid release, insulin secretion, bowel movements, or intestinal barrier function. Furthermore, it has been recently demonstrated that AM/PAMP have an impact on gut microbiome composition, inhibiting the growth of bacteria related with disease and increasing the number of beneficial bacteria such as Lactobacillus or Bifidobacterium. Due to their wide functions in the GI tract, AM and PAMP are involved in several digestive pathologies such as peptic ulcer, diabetes, colon cancer, or inflammatory bowel disease (IBD). AM is a key protective factor in IBD onset and development, as it regulates cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function and mucosal epithelial repair, and promotes a beneficial gut microbiome composition. AM and PAMP are relevant GI hormones that can be targeted to develop novel therapeutic agents for IBD, other GI disorders, or microbiome-related pathologies.
Collapse
|
15
|
Zhao Q, Yu CD, Wang R, Xu QJ, Dai Pra R, Zhang L, Chang RB. A multidimensional coding architecture of the vagal interoceptive system. Nature 2022; 603:878-884. [PMID: 35296859 PMCID: PMC8967724 DOI: 10.1038/s41586-022-04515-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
Collapse
Affiliation(s)
- Qiancheng Zhao
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Chuyue D. Yu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rui Wang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Qian J. Xu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rafael Dai Pra
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| | - Rui B. Chang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
16
|
Murray BS, Ettelaie R, Sarkar A, Mackie AR, Dickinson E. The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Rezaie P, Bitarafan V, Horowitz M, Feinle-Bisset C. Effects of Bitter Substances on GI Function, Energy Intake and Glycaemia-Do Preclinical Findings Translate to Outcomes in Humans? Nutrients 2021; 13:1317. [PMID: 33923589 PMCID: PMC8072924 DOI: 10.3390/nu13041317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bitter substances are contained in many plants, are often toxic and can be present in spoiled food. Thus, the capacity to detect bitter taste has classically been viewed to have evolved primarily to signal the presence of toxins and thereby avoid their consumption. The recognition, based on preclinical studies (i.e., studies in cell cultures or experimental animals), that bitter substances may have potent effects to stimulate the secretion of gastrointestinal (GI) hormones and modulate gut motility, via activation of bitter taste receptors located in the GI tract, reduce food intake and lower postprandial blood glucose, has sparked considerable interest in their potential use in the management or prevention of obesity and/or type 2 diabetes. However, it remains to be established whether findings from preclinical studies can be translated to health outcomes, including weight loss and improved long-term glycaemic control. This review examines information relating to the effects of bitter substances on the secretion of key gut hormones, gastric motility, food intake and blood glucose in preclinical studies, as well as the evidence from clinical studies, as to whether findings from animal studies translate to humans. Finally, the evidence that bitter substances have the capacity to reduce body weight and/or improve glycaemic control in obesity and/or type 2 diabetes, and potentially represent a novel strategy for the management, or prevention, of obesity and type 2 diabetes, is explored.
Collapse
Affiliation(s)
| | | | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia; (P.R.); (V.B.); (M.H.)
| |
Collapse
|
18
|
Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021; 12:903. [PMID: 33568676 PMCID: PMC7876101 DOI: 10.1038/s41467-021-21235-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes. The gastrointestinal tract participates in maintaining metabolic homeostasis in part through nutrient-sensing and subsequent gut-brain signalling. Here the authors review the role of small intestinal nutrient-sensing in regulation of energy intake and systemic glucose metabolism, and link high-fat diet, obesity and diabetes with perturbations in these pathways.
Collapse
Affiliation(s)
- Frank A Duca
- BIO5 Institute, University of Arizona, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Willem T Peppler
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, Canada. .,Department of Physiology, University of Toronto, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Bergner L, Himmerich H, Kirkby KC, Steinberg H. Descriptions of Disordered Eating in German Psychiatric Textbooks, 1803-2017. Front Psychiatry 2021; 11:504157. [PMID: 33519534 PMCID: PMC7840701 DOI: 10.3389/fpsyt.2020.504157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The most common eating disorders (EDs) according to DSM-5 are anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorder (BED). These disorders have received increasing attention in psychiatry due to rising prevalence and high morbidity and mortality. The diagnostic category "anorexia nervosa," introduced by Ernest-Charles Lasègue and William Gull in 1873, first appears a century later in a German textbook of psychiatry, authored by Gerd Huber in 1974. However, disordered eating behavior has been described and discussed in German psychiatric textbooks throughout the past 200 years. We reviewed content regarding eating disorder diagnoses but also descriptions of disordered eating behavior in general. As material, we carefully selected eighteen German-language textbooks of psychiatry across the period 1803-2017. Previously, in German psychiatry, disordered eating behaviors were seen as symptoms of depressive disorders, bipolar disorder or schizophrenia, or as manifestations of historical diagnoses no longer used by the majority of psychiatrists such as neurasthenia, hypochondria and hysteria. Interestingly, 19th and early 20th century psychiatrists like Kraepelin, Bumke, Hoff, Bleuler, and Jaspers reported symptom clusters such as food refusal and vomiting under these outdated diagnostic categories, whereas nowadays they are listed as core criteria for specific eating disorder subtypes. A wide range of medical conditions such as endocrinopathies, intestinal or brain lesions were also cited as causes of abnormal food intake and body weight. An additional consideration in the delayed adoption of eating disorder diagnoses in German psychiatry is that people with EDs are commonly treated in the specialty discipline of psychosomatic medicine, introduced in Germany after World War II, rather than in psychiatry. Viewed from today's perspective, the classification of disorders associated with disordered eating is continuously evolving. Major depressive disorder, schizophrenia and physical diseases have been enduringly associated with abnormal eating behavior and are listed as important differential diagnoses of EDs in DSM-5. Moreover, there are overlaps regarding the neurobiological basis and psychological and psychopharmacological therapies applied to all of these disorders.
Collapse
Affiliation(s)
- Lukas Bergner
- Archiv für Leipziger Psychiatriegeschichte, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Medizinische Fakultät der Universität Leipzig, Leipzig, Germany
| | - Hubertus Himmerich
- Department of Psychological Medicine, King's College London, London, United Kingdom
| | - Kenneth C. Kirkby
- Department of Psychiatry, University of Tasmania, Hobart, TAS, Australia
| | - Holger Steinberg
- Archiv für Leipziger Psychiatriegeschichte, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Medizinische Fakultät der Universität Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Hajishafiee M, Elovaris RA, Jones KL, Heilbronn LK, Horowitz M, Poppitt SD, Feinle-Bisset C. Effects of intragastric administration of L-tryptophan on the glycaemic response to a nutrient drink in men with type 2 diabetes - impacts on gastric emptying, glucoregulatory hormones and glucose absorption. Nutr Diabetes 2021; 11:3. [PMID: 33414406 PMCID: PMC7791097 DOI: 10.1038/s41387-020-00146-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The rate of gastric emptying and glucoregulatory hormones are key determinants of postprandial glycaemia. Intragastric administration of L-tryptophan slows gastric emptying and reduces the glycaemic response to a nutrient drink in lean individuals and those with obesity. We investigated whether tryptophan decreases postprandial glycaemia and slows gastric emptying in type 2 diabetes (T2D). METHODS Twelve men with T2D (age: 63 ± 2 years, HbA1c: 49.7 ± 2.5 mmol/mol, BMI: 30 ± 1 kg/m2) received, on three separate occasions, 3 g ('Trp-3') or 1.5 g ('Trp-1.5') tryptophan, or control (0.9% saline), intragastrically, in randomised, double-blind fashion, 30 min before a mixed-nutrient drink (500 kcal, 74 g carbohydrates), containing 3 g 3-O-methyl-D-glucose (3-OMG) to assess glucose absorption. Venous blood samples were obtained at baseline, after tryptophan, and for 2 h post-drink for measurements of plasma glucose, C-peptide, glucagon and 3-OMG. Gastric emptying of the drink was quantified using two-dimensional ultrasound. RESULTS Tryptophan alone stimulated C-peptide (P = 0.002) and glucagon (P = 0.04), but did not affect fasting glucose. In response to the drink, Trp-3 lowered plasma glucose from t = 15-30 min and from t = 30-45 min compared with control and Trp-1.5, respectively (both P < 0.05), with no differences in peak glucose between treatments. Gastric emptying tended to be slower after Trp-3, but not Trp-1.5, than control (P = 0.06). Plasma C-peptide, glucagon and 3-OMG increased on all days, with no major differences between treatments. CONCLUSIONS In people with T2D, intragastric administration of 3 g tryptophan modestly slows gastric emptying, associated with a delayed rise, but not an overall lowering of, postprandial glucose.
Collapse
Affiliation(s)
- Maryam Hajishafiee
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Rachel A Elovaris
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
21
|
Zhang S, Wu L, Zhang B, Zhu Y, Fan Y, Wang Q, Hu X, Tian Y. Impaired decision-making under risk in patients with functional dyspepsia. J Clin Exp Neuropsychol 2020; 42:771-780. [PMID: 32741250 DOI: 10.1080/13803395.2020.1802406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The cognitive processing in patients with functional dyspepsia (FD) has not been well established. Decision-making is an important component of cognitive function. Most brain regions involved in decision-making are abnormal in FD patients. This study aimed to investigate the decision-making under ambiguity and risk in FD patients. METHODS We recruited 40 FD patients meeting Rome III criteria and 40 healthy controls (HCs) matched for age, sex, marital status, and education level. The Hamilton Anxiety Scale (HAMA) and the 17-item Hamilton Depression Scale (HAMD-17) were used to evaluate their anxiety and depression emotions. The Iowa Gambling Task (IGT) and Game of Dice Task (GDT) were used to evaluate decision-making under ambiguity and risk, respectively. Helicobacter pylori status, disease duration, dyspeptic symptom score, and the Nepean Dyspepsia Life Quality Index (NDLQI) were obtained from all patients. RESULTS In IGT, FD patients had a lower total net score, chose more adverse choices, and showed a slower response to change their behavior than HCs. However, there was no significant difference in the net score of the first 2 blocks between the two groups. In GDT, FD patients had a lower total net score, higher risk score, and lower use of negative feedback than HCs. In addition, FD patients showed better GDT performance than those without early satiation. CONCLUSIONS FD patients showed impaired decision-making under risk. The deficiency might be related to dyspeptic symptoms of FD patients.
Collapse
Affiliation(s)
- Shenshen Zhang
- Digestive Department, The Second Affiliated Hospital of Anhui Medical University , Hefei, China
| | - Lihong Wu
- Digestive Department, The Second Affiliated Hospital of Anhui Medical University , Hefei, China
| | - Boyu Zhang
- Digestive Department, The Second Affiliated Hospital of Anhui Medical University , Hefei, China
| | - Yuanrong Zhu
- Digestive Department, The Second Affiliated Hospital of Anhui Medical University , Hefei, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health of Anhui Medical University , Hefei, China
| | - Qiao Wang
- Digestive Department, The Second Affiliated Hospital of Anhui Medical University , Hefei, China
| | - Xiangpeng Hu
- Digestive Department, The Second Affiliated Hospital of Anhui Medical University , Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University , Hefei, China
| |
Collapse
|
22
|
Hajishafiee M, Ullrich SS, Steinert RE, Poppitt SD, Luscombe-Marsh ND, Horowitz M, Feinle-Bisset C. Effects of intragastric tryptophan on acute changes in the plasma tryptophan/large neutral amino acids ratio and relationship with subsequent energy intake in lean and obese men. Food Funct 2020; 11:7095-7103. [PMID: 32729586 DOI: 10.1039/d0fo00773k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Circulating tryptophan/large neutral amino acids (tryptophan/LNAA) ratio, an indicator of brain serotonin levels, may be important in appetite regulation, together with gastrointestinal (gastric emptying, plasma cholecystokinin) mechanisms. We have compared effects of intragastric tryptophan ('Trp') on the plasma tryptophan/LNAA ratio in lean and obese men, and the associations of the tryptophan/LNAA ratio, gastric emptying and CCK concentrations with energy intake. Lean and obese male participants (n = 16 each) received 3 g Trp or volume-matched control intragastrically, 15 min before a mixed-nutrient drink (300 mL, 400 kcal) (t = 0 min) in randomised, double-blind fashion. Plasma amino acid (for calculation of the plasma tryptophan/LNAA ratio) and CCK concentrations were measured from t = -20-60 min. Gastric emptying was assessed from t = 0-60 min, and ad-libitum energy intake from a standardised buffet-style meal from t = 60-90 min. The increase in the plasma tryptophan/LNAA ratio was less in obese, than lean, participants (P < 0.05), and greater in lean participants who reduced their energy intake (by >0 kcal) after Trp compared with those who did not (by ≤0 kcal) (P < 0.05). Moreover, in participants who reduced their energy intake, the ratio was lower in obese, than in lean (P < 0.05). There was a trend for an inverse correlation between energy intake with the plasma tryptophan/LNAA ratio in lean (r = -0.4, P = 0.08), but not in obese, participants. There was no significant difference in gastric emptying or CCK between participants who reduced their energy intake and those who did not. In conclusion, the plasma tryptophan/LNAA ratio appears to be a determinant of the suppression of energy intake in response to tryptophan in normal-weight people, but not in those with obesity. The role of the plasma tryptophan/LNAA ratio to regulate energy intake, and potential changes in obesity, warrant evaluation in prospective studies.
Collapse
Affiliation(s)
- Maryam Hajishafiee
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Fitzgerald PCE, Manoliu B, Herbillon B, Steinert RE, Horowitz M, Feinle-Bisset C. Effects of L-Phenylalanine on Energy Intake and Glycaemia-Impacts on Appetite Perceptions, Gastrointestinal Hormones and Gastric Emptying in Healthy Males. Nutrients 2020; 12:nu12061788. [PMID: 32560181 PMCID: PMC7353198 DOI: 10.3390/nu12061788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
In humans, phenylalanine stimulates plasma cholecystokinin (CCK) and pyloric pressures, both of which are important in the regulation of energy intake and gastric emptying. Gastric emptying is a key determinant of postprandial blood glucose. We evaluated the effects of intragastric phenylalanine on appetite perceptions and subsequent energy intake, and the glycaemic response to, and gastric emptying of, a mixed-nutrient drink. The study consisted of two parts, each including 16 healthy, lean males (age: 23 ± 1 years). In each part, participants received on three separate occasions, in randomised, double-blind fashion, 5 g (Phe-5 g) or 10g ('Phe-10 g) L-phenylalanine, or control, intragastrically, 30 min before a standardised buffet-meal (part A), or a standardised mixed-nutrient drink (part B). In part A, plasma CCK and peptide-YY (PYY), and appetite perceptions, were measured at baseline, after phenylalanine alone, and following the buffet-meal, from which energy intake was assessed. In part B, plasma glucose, glucagon-like peptide-1 (GLP-1), insulin and glucagon were measured at baseline, after phenylalanine alone, and for 2 h following the drink. Gastric emptying of the drink was also measured by 13C-acetate breath-test. Phe-10 g, but not Phe-5 g, stimulated plasma CCK (p = 0.01) and suppressed energy intake (p = 0.012); energy intake was correlated with stimulation of CCK (r = -0.4, p = 0.027), and tended to be associated with stimulation of PYY (r = -0.31, p = 0.082). Both Phe-10 g and Phe-5 g stimulated insulin and glucagon (all p < 0.05), but not GLP-1. Phe-10 g, but not Phe-5 g, reduced overall plasma glucose (p = 0.043) and peak plasma glucose (p = 0.017) in response to the mixed-nutrient drink. Phenylalanine had no effect on gastric emptying of the drink. In conclusion, our observations indicate that the energy intake-suppressant effect of phenylalanine is related to the stimulation of CCK and PYY, while the glucoregulatory effect may be independent of stimulation of plasma GLP-1 or slowing of gastric emptying.
Collapse
Affiliation(s)
- Penelope C. E. Fitzgerald
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
| | - Benoit Manoliu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
| | - Benjamin Herbillon
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
| | - Robert E. Steinert
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
- Correspondence: ; Tel.: +61-8-8313-6053
| |
Collapse
|
24
|
Food texture affects glucose tolerance by altering pancreatic β-cell function in mice consuming high-fructose corn syrup. PLoS One 2020; 15:e0233797. [PMID: 32470042 PMCID: PMC7259500 DOI: 10.1371/journal.pone.0233797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of metabolic diseases, such as type 2 diabetes, has increased steadily worldwide. Diet, beverages, and food texture can all markedly influence these metabolic disorders. However, the combined effects of food texture and beverages on energy metabolism remains unclear. In the present study, we examined the effect of food texture on energy metabolism in mice administered high-fructose corn syrup (HFCS). Mice were fed a soft or hard diet along with 4.2% HFCS or tap water. Body weight and total caloric intake were not affected by food texture irrespective of HFCS consumption. However, caloric intake from HFCS (i.e., drinking volume) and diet were higher and lower, respectively, in the hard food group than in the soft food group. The hard food group’s preference for HFCS was absent in case of mice treated with the μ-opioid receptor antagonist naltrexone. Despite increased HFCS consumption, blood glucose levels were lower in the hard-diet group than in the soft-diet group. In HFCS-fed mice, insulin levels after glucose stimulation and insulin content in the pancreas were higher in the hard food group than the soft food group, whereas insulin tolerance did not differ between the groups. These food texture-induced differences in glucose tolerance were not observed in mice fed tap water. Thus, food texture appears to affect glucose tolerance by influencing pancreatic β-cell function in HFCS-fed mice. These data shed light on the combined effects of eating habits and food texture on human health.
Collapse
|
25
|
Livovsky DM, Pribic T, Azpiroz F. Food, Eating, and the Gastrointestinal Tract. Nutrients 2020; 12:nu12040986. [PMID: 32252402 PMCID: PMC7231022 DOI: 10.3390/nu12040986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Food ingestion induces a metered response of the digestive system. Initially, the upper digestive system reacts to process and extract meal substrates. Later, meal residues not absorbed in the small bowel, pass into the colon and activate the metabolism of resident microbiota. Food consumption also induces sensations that arise before ingestion (e.g., anticipatory reward), during ingestion (e.g., gustation), and most importantly, after the meal (i.e., the postprandial experience). The postprandial experience involves homeostatic sensations (satiety, fullness) with a hedonic dimension (digestive well-being, mood). The factors that determine the postprandial experience are poorly understood, despite their potential role in personalized diets and healthy eating habits. Current data suggest that the characteristics of the meal (amount, palatability, composition), the activity of the digestive system (suited processing), and the receptivity of the eater (influenced by multiple conditioning factors) may be important in this context.
Collapse
Affiliation(s)
- Dan M Livovsky
- Digestive Diseases Institute, Shaare Zedek Medical Center, Hebrew University of Jerusalem, 9103102 Jerusalem, Israel;
| | - Teorora Pribic
- Digestive System Research Unit, University Hospital Vall d’Hebron, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d’Hebron, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: ; Tel.: +34-93-274-6222; Fax: +34-93-489-4456
| |
Collapse
|
26
|
McVeay C, Steinert RE, Fitzgerald PCE, Ullrich SS, Horowitz M, Feinle-Bisset C. Effects of intraduodenal coadministration of lauric acid and leucine on gut motility, plasma cholecystokinin, and energy intake in healthy men. Am J Physiol Regul Integr Comp Physiol 2020; 318:R790-R798. [PMID: 32160019 DOI: 10.1152/ajpregu.00352.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The fatty acid, lauric acid (C12), and the amino acid, leucine (Leu) stimulate gut hormones, including CCK, associated with suppression of energy intake. In our recent study, intraduodenal infusion of a combination of C12 and l-tryptophan, at loads that individually did not affect energy intake, reduced energy intake substantially, associated with much greater stimulation of CCK. We have now investigated whether combined administration of C12 and Leu would enhance the intake-suppressant effects of each nutrient, when given at loads that each suppress energy intake individually. Sixteen healthy, lean males (age: 23 ± 2 yr) received, in randomized, double-blind fashion, 90-min intraduodenal infusions of control (saline), C12 (0.4 kcal/min), Leu (0.45 kcal/min), or C12+Leu (0.85 kcal/min). Antropyloroduodenal pressures were measured continuously and plasma CCK at 15-min intervals, and energy intake from a standardized buffet-meal, consumed immediately postinfusion, was quantified. All nutrient infusions stimulated plasma CCK compared with control (P < 0.05). Moreover, C12 and C12+Leu stimulated CCK compared with Leu (P < 0.05) (mean concentration, pmol/L; control: 2.3 ± 0.3, C12: 3.8 ± 0.3, Leu: 2.7 ± 0.3, and C12+Leu: 4.0 ± 0.4). C12+Leu, but not C12 or Leu, stimulated pyloric pressures (P < 0.05). C12+Leu and C12 reduced energy intake (P < 0.05), and there was a trend for Leu to reduce (P = 0.06) energy intake compared with control, with no differences between the three nutrient treatments (kcal; control: 1398 ± 84, C12: 1226 ± 80, Leu: 1260 ± 92, and C12+Leu: 1208 ± 83). In conclusion, combination of C12 and Leu, at the loads given, did not reduce energy intake beyond their individual effects, possibly because maximal effects had been evoked.
Collapse
Affiliation(s)
- Christina McVeay
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Robert E Steinert
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Sina S Ullrich
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|
27
|
Mackie A, Mulet-Cabero AI, Torcello-Gómez A. Simulating human digestion: developing our knowledge to create healthier and more sustainable foods. Food Funct 2020; 11:9397-9431. [DOI: 10.1039/d0fo01981j] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gold standard for nutrition studies is clinical trials but they are expensive and variable, and do not always provide the mechanistic information required, hence the increased use ofin vitroand increasinglyin silicosimulations of digestion.
Collapse
Affiliation(s)
- Alan Mackie
- The School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
| | | | | |
Collapse
|