1
|
Liu Y, Jin X. Fatty acid desaturase 1/2 (FADS1 and FADS2), fatty acid desaturase indices, and their relationships with metabolic syndrome in female adults with first-episode schizophrenia after antipsychotic medications. Psychoneuroendocrinology 2024; 163:106985. [PMID: 38394918 DOI: 10.1016/j.psyneuen.2024.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Although antipsychotics constitute the best treatment for patients with schizophrenia, this treatment class carries a high risk of metabolic disarrangements thus developing metabolic syndrome (MetS). Altered fatty acid (FA) composition and desaturase indices have been associated with several metabolic diseases, including MetS. Herein, we determined fatty acid desaturase 1 (FADS1) and FADS2 gene expressions, serum delta-5 desaturase (D5D) and D6D indices in female adults with first-episode schizophrenia after olanzapine medication, as well as their relationship with the incidence of MetS. METHODS This study prospectively recruited 120 female patients with first-episode schizophrenia who completed 6-month olanzapine medication. Among these female patients, 31 patients developed MetS and 89 patients did not. RESULTS The mRNA expression levels of FADS1 and FADS2 in patients were analyzed according to the presence of MetS and evaluation times with results of two-way ANOVAs (FADS1: PMetS = 0.0006, Ptime = 0.004, Pinteraction = 0.010; FADS2: PMetS = 0.012, Ptime < 0.0001, Pinteraction = 0.001). The D5D and D6D indices in patients were analyzed according to the presence of MetS and evaluation times with results of two-way ANOVAs (D5D: PMetS = 0.002, Ptime = 0.009, Pinteraction = 0.014; D6D: PMetS = 0.011, Ptime = 0.006, Pinteraction = 0.0001). The SCD-16 and SCD-18 indices in patients were analyzed according to the presence of MetS and evaluation times (SCD-16: PMetS = 0.005, Ptime = 0.009, Pinteraction = 0.016; SCD-18: PMetS = 0.037, Ptime = 0.382, Pinteraction = 0.163). The following multiple comparisons test showed the MetS exhibited reduced FADS1 mRNA expression and D5D index, increased FADS2 mRNA expression and D6D index, concomitant with an enhanced SCD-16 index, compared to the non-MetS did not after 6-month olanzapine medication. CONCLUSION The study suggests changes of FADS1, FADS2 expressions, and fatty acid desaturase indices including D5D, D6D, and SCD-16 may be associated with the development of MetS in female adults with first-episode schizophrenia after olanzapine medication.
Collapse
Affiliation(s)
- Ying Liu
- Pharmacy Department, the Seventh People's Hospital of Wenzhou City, Wenzhou, Zhejiang 325000, China
| | - Xiaozhuang Jin
- Department of Psychiatry, the Seventh People's Hospital of Wenzhou City, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Cai Y, Luo Y, Dai N, Yang Y, He Y, Chen H, Zhao M, Fu X, Chen T, Xing Z. Functional metagenomic and metabolomics analysis of gut dysbiosis induced by hyperoxia. Front Microbiol 2023; 14:1197970. [PMID: 37840730 PMCID: PMC10569423 DOI: 10.3389/fmicb.2023.1197970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Inhaled oxygen is the first-line therapeutic approach for maintaining tissue oxygenation in critically ill patients, but usually exposes patients to damaging hyperoxia. Hyperoxia adversely increases the oxygen tension in the gut lumen which harbors the trillions of microorganisms playing an important role in host metabolism and immunity. Nevertheless, the effects of hyperoxia on gut microbiome and metabolome remain unclear, and metagenomic and metabolomics analysis were performed in this mouse study. Methods C57BL/6 mice were randomly divided into a control (CON) group exposed to room air with fractional inspired oxygen (FiO2) of 21% and a hyperoxia (OXY) group exposed to FiO2 of 80% for 7 days, respectively. Fecal pellets were collected on day 7 and subjected to metagenomic sequencing. Another experiment with the same design was performed to explore the impact of hyperoxia on gut and serum metabolome. Fecal pellets and blood were collected and high-performance liquid chromatography with mass spectrometric analysis was carried out. Results At the phylum level, hyperoxia increased the ratio of Firmicutes/Bacteroidetes (p = 0.049). At the species level, hyperoxia reduced the abundance of Muribaculaceae bacterium Isolate-037 (p = 0.007), Isolate-114 (p = 0.010), and Isolate-043 (p = 0.011) etc. Linear discriminant analysis effect size (LEfSe) revealed that Muribaculaceae and Muribaculaceae bacterium Isolate-037, both belonging to Bacteroidetes, were the marker microbes of the CON group, while Firmicutes was the marker microbes of the OXY group. Metagenomic analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-Active enZYmes (CAZy) revealed that hyperoxia provoked disturbances in carbohydrate and lipid metabolism. Fecal metabolomics analysis showed hyperoxia reduced 11-dehydro Thromboxane B2-d4 biosynthesis (p = 1.10 × 10-11). Hyperoxia blunted fecal linoleic acid metabolism (p = 0.008) and alpha-linolenic acid metabolism (p = 0.014). We showed that 1-docosanoyl-glycer-3-phosphate (p = 1.58 × 10-10) was the most significant differential serum metabolite inhibited by hyperoxia. In addition, hyperoxia suppressed serum hypoxia-inducible factor-1 (HIF-1, p = 0.007) and glucagon signaling pathways (p = 0.007). Conclusion Hyperoxia leads to gut dysbiosis by eliminating beneficial and oxygen strictly intolerant Muribaculaceae with genomic dysfunction of carbohydrate and lipid metabolism. In addition, hyperoxia suppresses unsaturated fatty acid metabolism in the gut and inhibits the HIF-1 and glucagon signaling pathways in the serum.
Collapse
Affiliation(s)
- Yulan Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Kweichow Moutai Hospital, Renhuai, China
| | - Yanhong Luo
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Ninan Dai
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ying He
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huajun Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Manlu Zhao
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhouxiong Xing
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Sekar P, Ventura EF, Dhanapal ACTA, Cheah ESG, Loganathan A, Quen PL, Appukutty M, Taslim NA, Hardinsyah H, Md Noh MF, Lovegrove JA, Givens I, Vimaleswaran KS. Gene-Diet Interactions on Metabolic Disease-Related Outcomes in Southeast Asian Populations: A Systematic Review. Nutrients 2023; 15:2948. [PMID: 37447274 PMCID: PMC10346616 DOI: 10.3390/nu15132948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes and obesity are chronic diseases that are a burden to low- and middle-income countries. We conducted this systematic review to understand gene-diet interactions affecting the Southeast Asian population's risk of obesity and diabetes. The literature search was performed on Google Scholar and MEDLINE (PubMed) search engines independently by four reviewers who evaluated the eligibility of articles based on inclusion criteria. Out of 19,031 articles, 20 articles examining gene-diet interactions on obesity and/or diabetes-related traits met the inclusion criteria. Three (Malaysia, Indonesia, and Singapore) out of eleven Association of Southeast Asian Nations (ASEAN) countries have conducted studies on gene-diet interactions on obesity and diabetes. From the 20 selected articles, the most common interactions were observed between macronutrients and genetic risk score (GRS) on metabolic disease-related traits in the Malay, Chinese, and Indian ethnicities. Overall, we identified 29 significant gene-diet interactions in the Southeast Asian population. The results of this systematic review demonstrate ethnic-specific gene-nutrient interactions on metabolic-disease-related traits in the Southeast Asian population. This is the first systematic review to explore gene-diet interactions on obesity and diabetes in the Southeast Asian population and further research using larger sample sizes is required for better understanding and framing nutrigenetic approaches for personalized nutrition.
Collapse
Affiliation(s)
- Padmini Sekar
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK; (P.S.); (E.F.V.); (J.A.L.)
| | - Eduard Flores Ventura
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK; (P.S.); (E.F.V.); (J.A.L.)
| | - Anto Cordelia T. A. Dhanapal
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia; (A.C.T.A.D.); (E.S.G.C.); (A.L.); (P.L.Q.)
| | - Eddy Seong Guan Cheah
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia; (A.C.T.A.D.); (E.S.G.C.); (A.L.); (P.L.Q.)
| | - Annaletchumy Loganathan
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia; (A.C.T.A.D.); (E.S.G.C.); (A.L.); (P.L.Q.)
| | - Phoon Lee Quen
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia; (A.C.T.A.D.); (E.S.G.C.); (A.L.); (P.L.Q.)
| | - Mahenderan Appukutty
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
- Nutrition Society of Malaysia, Jalan PJS 1/48 off Jalan Klang Lama, Petaling Jaya 46150, Malaysia
| | - Nurpudji Astuti Taslim
- Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia;
| | - Hardinsyah Hardinsyah
- Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor 16680, Indonesia;
| | - Mohd Fairulnizal Md Noh
- Institute for Medical Research, National Institutes of Health, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK; (P.S.); (E.F.V.); (J.A.L.)
| | - Ian Givens
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading RG6 6AH, UK;
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK; (P.S.); (E.F.V.); (J.A.L.)
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading RG6 6AH, UK;
| |
Collapse
|
4
|
Žák A, Jáchymová M, Burda M, Staňková B, Zeman M, Slabý A, Vecka M, Šeda O. FADS Polymorphisms Affect the Clinical and Biochemical Phenotypes of Metabolic Syndrome. Metabolites 2022; 12:metabo12060568. [PMID: 35736500 PMCID: PMC9228863 DOI: 10.3390/metabo12060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) play important roles in human health, from controlling inflammation to lipid and glucose homeostasis. In our previous study, which employed a cluster analysis of a plasma fatty acid (FA) pattern, we identified two clusters of metabolic syndrome (MetS) independent of clinical and biochemical parameters within the whole study group (controls together with metabolic syndrome (MetS) patients). FA desaturase (FADS) genes are the key regulators of LC-PUFA metabolism. The aim of this study was to analyze associations between FADS polymorphisms and clusters of MetS. The study group consisted of 188 controls and 166 patients with MetS. The first cluster contained 71 controls (CON1) and 109 MetS patients (MetS1). The second cluster consisted of 117 controls (CON2) and 57 MetS patients (MetS2). In comparison with MetS2, cluster MetS1 displayed a more adverse risk profile. Cluster CON1 had, in comparison with CON2, higher body weight and increased triacylglycerol levels (p < 0.05). We found that the FADS rs174537 (p < 0.001), rs174570 (p < 0.01), and rs174602 (p < 0.05) polymorphisms along with two inferred haplotypes had statistically significant genotype associations with the splitting of MetS into MetS1 and MetS2. Conversely, we observed no significant differences in the distribution of FADS polymorphisms between MetS and CON subjects, or between CON1 and CON2. These associations between FADS polymorphisms and two clusters of MetS (differing in waist circumference, HOMA-IR, lipolysis, and oxidative stress) implicate the important influence of genetic factors on the phenotypic manifestation of MetS.
Collapse
Affiliation(s)
- Aleš Žák
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Marie Jáchymová
- Institute of Clinical Chemistry and Laboratory Diagnostics, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic;
| | - Michal Burda
- Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 701 03 Ostrava, Czech Republic;
| | - Barbora Staňková
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Miroslav Zeman
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Adolf Slabý
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Marek Vecka
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
- Institute of Clinical Chemistry and Laboratory Diagnostics, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic;
- Correspondence:
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 00 Prague, Czech Republic;
| |
Collapse
|
5
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
6
|
Pérez-Beltrán YE, Rivera-Iñiguez I, Gonzalez-Becerra K, Pérez-Naitoh N, Tovar J, Sáyago-Ayerdi SG, Mendivil EJ. Personalized Dietary Recommendations Based on Lipid-Related Genetic Variants: A Systematic Review. Front Nutr 2022; 9:830283. [PMID: 35387194 PMCID: PMC8979208 DOI: 10.3389/fnut.2022.830283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 01/03/2023] Open
Abstract
Background Obesity and dyslipidemias are risk factors for developing cardiovascular diseases, the leading causes of morbidity and mortality worldwide. The pathogenesis of these diseases involves environmental factors, such as nutrition, but other aspects like genetic polymorphisms confer susceptibility to developing obesity and dyslipidemias. In this sense, nutrigenetics is being used to study the influence of genetic variations on the circulating lipid responses promoted by certain nutrients or foods to provide specific dietary strategies considering the genetic factors in personalized nutrition interventions. Objective To identify throughout a systematic review the potential nutrigenetic recommendations that demonstrate a strong interaction between gene-diet and circulating lipid variations. Methods This systematic review used the PRISMA-Protocol for manuscript research and preparation using PubMed and ScienceDirect databases. Human studies published in English from January 2010 to December 2020 were included. The main results were outcomes related to gene-diet interactions and plasmatic lipids variation. Results About 1,110 articles were identified, but only 38 were considered to fulfill the inclusion criteria established based on the reported data. The acquired information was organized based on gene-diet interaction with nutrients and components of the diet and dietary recommendation generated by each interaction: gene-diet interaction with dietary fats, carbohydrates or dietary fiber, gene-diet interaction with nutraceutical or dietary supplementation, and gene-diet interaction with proteins. Conclusion Findings included in this systematic review indicated that a certain percentage of dietary macronutrients, the consumption of specific amounts of polyunsaturated or monounsaturated fatty acids, as well as the ingestion of nutraceuticals or dietary supplements could be considered as potential strategies for the development of a wide range of nutrigenetic interventions since they have a direct impact on the blood levels of lipids. In this way, specific recommendations were identified as potential tools in developing precision diets and highlighted the importance of personalized nutrition. These recommendations may serve as a possible strategy to implement as dietary tools for the preventive treatment and control alterations in lipid metabolism. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021248816, identifier [CRD42021248816].
Collapse
Affiliation(s)
- Yolanda E. Pérez-Beltrán
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Instituto Nacional de México, Tepic, Mexico
| | - Ingrid Rivera-Iñiguez
- Departamento de Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Karina Gonzalez-Becerra
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Instituto de Investigación en Genética Molecular, Universidad de Guadalajara, Guadalajara, Mexico
| | - Naomi Pérez-Naitoh
- Grupo de Investigación en Nutrición y Ciencias de los Alimentos, Departamento de Psicología, Educación y Salud, ITESO, Universidad Jesuita de Guadalajara, Tlaquepaque, Mexico
- Departamento de Salud, Universidad Iberoamericana (IBERO), Mexico City, Mexico
| | - Juscelino Tovar
- Department of Food Technology, Engineering, and Nutrition, Lund University, Lund, Sweden
| | - Sonia G. Sáyago-Ayerdi
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Instituto Nacional de México, Tepic, Mexico
| | - Edgar J. Mendivil
- Grupo de Investigación en Nutrición y Ciencias de los Alimentos, Departamento de Psicología, Educación y Salud, ITESO, Universidad Jesuita de Guadalajara, Tlaquepaque, Mexico
- *Correspondence: Edgar J. Mendivil
| |
Collapse
|
7
|
Keathley J, Garneau V, Marcil V, Mutch DM, Robitaille J, Rudkowska I, Sofian GM, Desroches S, Vohl MC. Nutrigenetics, omega-3 and plasma lipids/lipoproteins/apolipoproteins with evidence evaluation using the GRADE approach: a systematic review. BMJ Open 2022; 12:e054417. [PMID: 35193914 PMCID: PMC8867311 DOI: 10.1136/bmjopen-2021-054417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Despite the uptake of nutrigenetic testing through direct-to-consumer services and healthcare professionals, systematic reviews determining scientific validity are limited in this field. The objective of this review was to: retrieve, synthesise and assess the quality of evidence (confidence) for nutrigenetic approaches related to the effect of genetic variation on plasma lipid, lipoprotein and apolipoprotein responsiveness to omega-3 fatty acid intake. DESIGN A systematic review was conducted using three search engines (Embase, Web of Science and Medline) for articles published up until 1 August 2020. We aimed to systematically search, identify (select) and provide a narrative synthesis of all studies that assessed nutrigenetic associations/interactions for genetic variants (comparators) influencing the plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans-both paediatric and adult populations (population). We further aimed to assess the overall quality of evidence for specific priority nutrigenetic associations/interactions based on the following inclusion criteria: nutrigenetic associations/interactions reported for the same genetic variants (comparators) influencing the same plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans-both paediatric and adult populations (population) in at least two independent studies, irrespective of the findings. Risk of bias was assessed in individual studies. Evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach with a modification to further consider biological plausibility. RESULTS Out of 1830 articles screened, 65 met the inclusion criteria for the narrative synthesis (n=23 observational, n=42 interventional); of these, 25 met the inclusion criteria for GRADE evidence evaluation. Overall, current evidence is insufficient for gene-diet associations related to omega-3 fatty acid intake on plasma apolipoproteins, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein (LDL)-cholesterol and LDL particle size. However, there is strong (GRADE rating: moderate quality) evidence to suggest that male APOE-E4 carriers (rs429358, rs7412) exhibit significant triglyceride reductions in response to omega-3-rich fish oil with a dose-response effect. Moreover, strong (GRADE rating: high quality) evidence suggests that a 31-SNP nutrigenetic risk score can predict plasma triglyceride responsiveness to omega-3-rich fish oil in adults with overweight/obesity from various ethnicities. CONCLUSIONS Most evidence in this area is weak, but two specific nutrigenetic interactions exhibited strong evidence, with generalisability limited to specific populations. PROSPERO REGISTRATION NUMBER CRD42020185087.
Collapse
Affiliation(s)
- Justine Keathley
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Véronique Garneau
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Valérie Marcil
- Department of Nutrition, University of Montréal, Montréal, Quebec, Canada
- Research Centre, Sainte-Justine University Health Centre, Montréal, Quebec, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julie Robitaille
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Iwona Rudkowska
- Department of Kinesiology, Université Laval, Quebec City, Quebec, Canada
- Endocrinology and Nephrology Unit, CHU de Québec - Université Laval Research Center, Quebec City, Quebec, Canada
| | | | - Sophie Desroches
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Marie-Claude Vohl
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Association and interaction between dietary patterns and gene polymorphisms in Liangshan residents with hyperuricemia. Sci Rep 2022; 12:1356. [PMID: 35079028 PMCID: PMC8789849 DOI: 10.1038/s41598-021-04568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Hyperuricemia (HUA) is associated with dietary and genetic factors. However, studies on dietary patterns and their interaction effect with genes on the risk of HUA are limited. We aimed to explore the association between dietary patterns and HUA, and dietary patterns—gene interactions on the risk of HUA. A population-based cross-sectional study was conducted in adults aged 18 and older in Liangshan Yi Autonomous Prefecture of China. Dietary consumption was collected using a standard Food Frequency Questionnaire. Vein blood samples were collected after overnight fasting, and DNA was extracted from peripheral blood leukocytes. Dietary patterns were derived using principal component and factor analysis. Of the 2646 participants, the prevalence of HUA was 26.8%. Three dietary patterns were classified. Of them, a dietary pattern with higher meat consumption (defined as meat-based) had the strongest association with HUA than a dietary pattern with plant-based or local special diet-based. A higher frequency of T allele at ABCG2 rs2231142 and SLC2A9 rs11722228 loci was observed in participants with HUA than those without HUA. An additive interaction of meat-based dietary pattern with rs2231142 locus was significantly associated with an increased risk of HUA. The relative excess risks of interaction, attributable proportion of interaction, and synergy index (S) were 0.482 (95% CI: 0.012–0.976), 0.203 (95% CI: 0.033–0.374), and 1.544 (95% CI: 1.012–2.355), respectively. In conclusion, a dietary pattern with meat-based was significantly associated with an increased risk of HUA. There was an additive interaction between a meat-based dietary pattern and the ABCG2 rs2231142 locus. Individuals with rs2231142 T allele were at higher risk of HUA than those with rs2231142 GG allele.
Collapse
|
9
|
Vaittinen M, Lankinen MA, Käkelä P, Ågren J, Wheelock CE, Laakso M, Schwab U, Pihlajamäki J. The FADS1 genotypes modify the effect of linoleic acid-enriched diet on adipose tissue inflammation via pro-inflammatory eicosanoid metabolism. Eur J Nutr 2022; 61:3707-3718. [PMID: 35701670 PMCID: PMC9464166 DOI: 10.1007/s00394-022-02922-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/24/2022] [Indexed: 01/08/2023]
Abstract
PURPOSE Fatty acid desaturase (FADS) variants associate with fatty acid (FA) and adipose tissue (AT) metabolism and inflammation. Thus, the role of FADS1 variants in the regulation of dietary linoleic acid (LA)-induced effects on AT inflammation was investigated. METHODS Subjects homozygotes for the TT and CC genotypes of the FADS1-rs174550 (TT, n = 25 and CC, n = 28) or -rs174547 (TT, n = 42 and CC, n = 28), were either recruited from the METabolic Syndrome In Men cohort to participate in an intervention with LA-enriched diet (FADSDIET) or from the Kuopio Obesity Surgery (KOBS) study. GC and LC-MS for plasma FA proportions and eicosanoid concentrations and AT gene expression for AT inflammatory score (AT-InSc) was determined. RESULTS We observed a diet-genotype interaction between LA-enriched diet and AT-InSc in the FADSDIET. In the KOBS study, interleukin (IL)1 beta mRNA expression in AT was increased in subjects with the TT genotype and highest LA proportion. In the FADSDIET, n-6/LA proportions correlated positively with AT-InSc in those with the TT genotype but not with the CC genotype after LA-enriched diet. Specifically, LA- and AA-derived pro-inflammatory eicosanoids related to CYP450/sEH-pathways correlated positively with AT-InSc in those with the TT genotype, whereas in those with the CC genotype, the negative correlations between pro-inflammatory eicosanoids and AT-InSc related to COX/LOX-pathways. CONCLUSIONS LA-enriched diet increases inflammatory AT gene expression in subjects with the TT genotype, while CC genotype could play a protective role against LA-induced AT inflammation. Overall, the FADS1 variant could modify the dietary LA-induced effects on AT inflammation through the differential biosynthesis of AA-derived eicosanoids.
Collapse
Affiliation(s)
- Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.
| | - Maria A. Lankinen
- grid.9668.10000 0001 0726 2490Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland
| | - Pirjo Käkelä
- grid.9668.10000 0001 0726 2490Department of Surgery, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jyrki Ågren
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Craig E. Wheelock
- grid.4714.60000 0004 1937 0626Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Markku Laakso
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland ,grid.410705.70000 0004 0628 207XDepartment of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Ursula Schwab
- grid.9668.10000 0001 0726 2490Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XDepartment of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- grid.9668.10000 0001 0726 2490Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XDepartment of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
10
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA. Associations Of Delta Fatty Acid Desaturase Gene Polymorphisms With Lipid Metabolism Disorders. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Overweight, obesity, type 2 diabetes mellitus, metabolic syndrome, cardiovascular diseases, and non-alcoholic fatty liver disease are common chronic ailments associated with lipid metabolism disorders. One of the mechanisms of these disorders is related to the deficiency and/or change in the balance of essential fatty acids (FAs). At the same time, the provision of ω3 and ω6 polyunsaturated fatty acids (PUFAs) depends, besides sufficient dietary intake, on efficiency of their endogenous biosynthesis by desaturation and elongation processes regulated by FA elongases and FA desaturases. Desaturases are encoded by PUFA desaturase genes (FADSs): FADS1 and FADS2. Alteration of FA desaturase activity and single nucleotide polymorphisms (SNPs) in the FADS1 and FADS2 gene cluster are associated with lipid metabolism dysfunction and may affect the pathogenesis of lipid-related diseases. People of different ages, from different ethnic backgrounds and countries may exhibit varying degrees of response to dietary supplements of ω3 and ω6 PUFAs. The study of the relationship between lipid metabolism disorders and genetic factors controlling FA metabolism is an important research area since the health effects of alimentary ω3 and ω6 PUFAs can depend on genetic variants of the FADS genes. This review summarizes the literature data on the association of FADS gene polymorphisms with lipid metabolism disorders and their role in the development of chronic non-communicable pathologies associated with changes in lipid metabolism.
Collapse
Affiliation(s)
- Oksana Yu. Kytikova
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | | | - Yulia K. Denisenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Marina V. Antonyuk
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
11
|
Metelcová T, Vaňková M, Zamrazilová H, Hovhannisyan M, Staňková B, Tvrzická E, Hill M, Hainer V, Včelák J, Kunešová M. FADS1 gene polymorphism(s) and fatty acid composition of serum lipids in adolescents. Lipids 2021; 56:499-508. [PMID: 34189740 DOI: 10.1002/lipd.12317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022]
Abstract
Polyunsaturated fatty acids (PUFA) influence many physiological functions. Associations have been found between single nucleotide polymorphisms (SNP) in the FADS1 (Fatty acid desaturase 1) gene and the relative abundance of PUFA in serum lipids. This study examines the relationship between two SNPs in the FADS1 gene (rs174546, rs174537) and the fatty acid (FA) composition of serum lipids in adolescents (13-18 years). We used DNA samples (670 children; 336 girls and 334 boys) from the Childhood Obesity Prevalence and Treatment (COPAT) project. Genomic DNA was extracted from peripheral blood leukocytes in whole blood samples. For genotype analysis, TaqMan SNP Genotyping assays (Applied Biosystems) were used. Fatty acid composition of serum lipids was assessed using gas chromatography. The T-statistic and regression were used for statistical evaluations. Minor allele T carriers in both SNPs had significant lower level of palmitic acid (16:0, phospholipids) and arachidonic acid (20:4[n-6], phospholipids) in both sexes. In girls, we found a significant positive association between minor allele T carriers and eicosadienoic acid (20:2[n-6], cholesteryl esters) in both SNPs. Being a minor allele T carrier was significantly positively associated with dihomo-γ-linolenic acid (20:3[n-6], phospholipids) in boys in both SNPs. SNPs (including rs174546, rs174537) in the FADS gene cluster should have impacted desaturase activity, which may contribute to different efficiency of PUFA synthesis.
Collapse
Affiliation(s)
- Tereza Metelcová
- Institute of Endocrinology, Prague, The Czech Republic.,1st Medical Faculty, Charles University, Prague, The Czech Republic
| | | | | | | | - Barbora Staňková
- 4th Department of Internal Medicine, 1st Medical Faculty, Charles University, Prague, The Czech Republic
| | - Eva Tvrzická
- 4th Department of Internal Medicine, 1st Medical Faculty, Charles University, Prague, The Czech Republic
| | - Martin Hill
- Institute of Endocrinology, Prague, The Czech Republic
| | | | - Josef Včelák
- Institute of Endocrinology, Prague, The Czech Republic
| | - Marie Kunešová
- Institute of Endocrinology, Prague, The Czech Republic.,4th Department of Internal Medicine, 1st Medical Faculty, Charles University, Prague, The Czech Republic
| |
Collapse
|
12
|
Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021; 13:986. [PMID: 33803760 PMCID: PMC8003191 DOI: 10.3390/nu13030986] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for many human physiological processes, such as signaling pathways, gene expression, structure and function of membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal growth and differentiation through the modulation of the physical properties of neuronal membranes, signal transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection against neurodegenerative pathologies such as Alzheimer's disease and Parkinson's disease, which are associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and oxidative stress. The present review analyzes the neuroprotective role of DHA and AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in the developing/prevention of neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Alfonso Valenzuela
- Faculty of Medicine, School of Nutrition, Universidad de Los Andes, Santiago 8380000, Chile;
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| |
Collapse
|
13
|
Corpas M, Megy K, Mistry V, Metastasio A, Lehmann E. Whole Genome Interpretation for a Family of Five. Front Genet 2021; 12:535123. [PMID: 33763108 PMCID: PMC7982663 DOI: 10.3389/fgene.2021.535123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although best practices have emerged on how to analyse and interpret personal genomes, the utility of whole genome screening remains underdeveloped. A large amount of information can be gathered from various types of analyses via whole genome sequencing including pathogenicity screening, genetic risk scoring, fitness, nutrition, and pharmacogenomic analysis. We recognize different levels of confidence when assessing the validity of genetic markers and apply rigorous standards for evaluation of phenotype associations. We illustrate the application of this approach on a family of five. By applying analyses of whole genomes from different methodological perspectives, we are able to build a more comprehensive picture to assist decision making in preventative healthcare and well-being management. Our interpretation and reporting outputs provide input for a clinician to develop a healthcare plan for the individual, based on genetic and other healthcare data.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Institute of Continuing Education Madingley Hall Madingley, University of Cambridge, Cambridge, United Kingdom.,Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Madrid, Spain
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge & National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
| | | | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom
| |
Collapse
|
14
|
Fan Y, Arbab AAI, Zhang H, Yang Y, Lu X, Han Z, Yang Z. MicroRNA-193a-5p Regulates the Synthesis of Polyunsaturated Fatty Acids by Targeting Fatty Acid Desaturase 1 ( FADS1) in Bovine Mammary Epithelial Cells. Biomolecules 2021; 11:biom11020157. [PMID: 33504005 PMCID: PMC7911131 DOI: 10.3390/biom11020157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are seriously threatening to human life and health. Polyunsaturated fatty acids (PUFAs) are known for their role in preventing CVDs. It is beneficial to population health to promote the content of PUFAs in bovine milk. In recent years, limited research based on molecular mechanisms has focused on this field. The biological roles of numerous microRNAs (miRNAs) remain unknown. In this study, a promising and negatively correlated pair of the miRNA (miRNA-193a-5p) and a fatty acid desaturase 1 (FADS1) gene are identified and screened to explore whether they are potential factors of PUFAs’ synthesis in bovine milk. The targeted relationship between miRNA-193a-5p and FADS1 in bovine mammary epithelial cells (BMECs) is demonstrated by dual luciferase reporter assays. qRT-PCR and western blot assays indicate that both the expression of mRNA and the protein FADS1 show a negative correlation with miRNA-193a-5p expression in BMECs. Also, miR-193a-5p expression is positively correlated with the expression of genes associated with milk fatty acid metabolism, including ELOVL fatty acid elongase 6 (ELOVL6) and diacylglycerol O-acyltransferase 2 (DGAT2). The expression of fatty acid desaturase 2 (FADS2) is negatively correlated with miR-193a-5p expression in BMECs. The contents of triglycerides (TAG), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) have a significant positive correlation with the expression of FADS1 and a significant negative correlation with the expression of miR-193a-5p in BMECs. For the first time, this study confirms that miRNA-193a-5p regulates PUFAs metabolism in BMECs by targeting FADS1, indicating that miRNA-193a-5p and FADS1 are underlying factors that improve PUFAs content in bovine milk.
Collapse
Affiliation(s)
- Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Huimin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-8797-9269
| |
Collapse
|
15
|
Ching YK, Chin YS, Appukutty M, Gan WY, Chan YM. Comparisons of conventional and novel anthropometric obesity indices to predict metabolic syndrome among vegetarians in Malaysia. Sci Rep 2020; 10:20861. [PMID: 33257810 PMCID: PMC7705716 DOI: 10.1038/s41598-020-78035-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Our study aimed to compare the ability of anthropometric obesity indices to predict MetS and to determine the sex-specific optimal cut-off values for MetS among Malaysian vegetarians. Body weight, height, waist circumference (WC), blood pressure (BP), fasting venous blood sample were collected from 273 vegetarians in Selangor and Kuala Lumpur, Malaysia. The abilities of body mass index (BMI), body fat percentage (BF%), waist to height ratio (WHtR), lipid accumulation product (LAP), visceral adiposity index (VAI), a body shape index (ABSI), and body roundness index (BRI) to identify MetS were tested using receiver operating characteristic (ROC) curve analyses. MetS was defined according to the Joint Interim Statement 2009. The ROC curve analyses show that BMI, BF%, WHtR, LAP and VAI were able to discriminate MetS in both sexes. LAP was a better predictor to predict MetS, followed by WHtR for male and female vegetarians. The suggested WHtR’s optimal cut-offs and LAP’s optimal cut-offs for MetS for male and female vegetarians were 0.541, 0.532, 41.435 and 21.743, respectively. In conclusion, LAP was a better predictor to predict MetS than other anthropometric obesity indices. However, WHtR could be an alternative obesity index in large epidemiology survey due to its convenient and cost-effective characteristics.
Collapse
Affiliation(s)
- Yuan Kei Ching
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yit Siew Chin
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia. .,Research Centre of Excellence, Nutrition and Non-Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Mahenderan Appukutty
- Programme of Sports Science, Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Wan Ying Gan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yoke Mun Chan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Research Centre of Excellence, Nutrition and Non-Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Vesnina A, Prosekov A, Kozlova O, Atuchin V. Genes and Eating Preferences, Their Roles in Personalized Nutrition. Genes (Basel) 2020; 11:genes11040357. [PMID: 32230794 PMCID: PMC7230842 DOI: 10.3390/genes11040357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
At present, personalized diets, which take into account consumer genetic characteristics, are growing popular. Nutrigenetics studies the effect of gene variations on metabolism and nutrigenomics, which branches off further and investigates how nutrients and food compounds affect genes. This work deals with the mutations affecting the assimilation of metabolites, contributing to nutrigenetic studies. We searched for the genes responsible for eating preferences which allow for the tailoring of personalized diets. Presently, genetic nutrition is growing in demand, as it contributes to the prevention and/or rehabilitation of non-communicable diseases, both monogenic and polygenic. In this work, we showed single-nucleotide polymorphisms in genes-missense mutations that change the functions of coded proteins, resulting in a particular eating preferences or a disease. We studied the genes influencing food preferences-particularly those responsible for fats and carbohydrates absorption, food intolerance, metabolism of vitamins, taste sensations, oxidation of xenobiotics, eating preferences and food addiction. As a result, 34 genes were identified that affect eating preferences. Significant shortcomings were found in the methods/programs for developing personalized diets that are used today, and the weaknesses were revealed in the development of nutrigenetics (inconsistency of data on SNP genes, ignoring population genetics data, difficult information to understand consumer, etc.). Taking into account all the shortcomings, an approximate model was proposed in the review for selecting an appropriate personalized diet. In the future, it is planned to develop the proposed model for the compilation of individual diets.
Collapse
Affiliation(s)
- Anna Vesnina
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Correspondence: ; Tel.: +7-(383)-3308889
| |
Collapse
|