1
|
Das BK, Ganguly S, Bayen S, Talukder AK, Ray A, Das Gupta S, Kumari K. Amino Acid Composition of Thirty Food Fishes of the Ganga Riverine Environment for Addressing Amino Acid Requirement through Fish Supplementation. Foods 2024; 13:2124. [PMID: 38998630 PMCID: PMC11241810 DOI: 10.3390/foods13132124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Amino acids are significant biomolecules that govern the major metabolic processes and act as precursors for macromolecules such as proteins that are crucial to life. Fish is an integral component of human nutrition and a dietary source of high-quality animal proteins and amino acids. In this context, the crude protein and amino acid compositions of food fish from different landing stations of the Ganga river have been determined. The Kjeldahl method was utilized to determine the crude protein content and the amino acids were analyzed using high-performance liquid chromatography (HPLC); data on 30 food fish were assessed. The study showed that among the fish studied, Eleotris fusca, Macrobrachium malcomsonii, and Mystus cavasius were rich in most of the amino acids important for human nutrition, such as glycine, glutamic acid, cysteine, threonine, phenylalanine, methionine, lysine, leucine, isoleucine, histidine, and valine. Further, it was observed that the daily consumption of these fish (approximately 50 g) can fulfil the daily requirement of these individual amino acids for an adult human with a body weight of 60 kg. Therefore, the amino acid composition analyzed in the present study could be utilized for recommendation by clinicians according to the requirement for specific amino acids, and fish can be prescribed as a natural supplement against the amino acid requirement.
Collapse
Affiliation(s)
- Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, India
| | | | | | | | | | | | | |
Collapse
|
2
|
Trautman ME, Green CL, MacArthur MR, Chaiyakul K, Alam YH, Yeh CY, Babygirija R, James I, Gilpin M, Zelenovskiy E, Green M, Marshall RN, Sonsalla MM, Flores V, Simcox JA, Ong IM, Malecki KC, Jang C, Lamming DW. Dietary isoleucine content defines the metabolic and molecular response to a Western diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596340. [PMID: 38895446 PMCID: PMC11185563 DOI: 10.1101/2024.05.30.596340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The amino acid composition of the diet has recently emerged as a critical regulator of metabolic health. Consumption of the branched-chain amino acid isoleucine is positively correlated with body mass index in humans, and reducing dietary levels of isoleucine rapidly improves the metabolic health of diet-induced obese male C57BL/6J mice. However, it is unknown how sex, strain, and dietary isoleucine intake may interact to impact the response to a Western Diet (WD). Here, we find that although the magnitude of the effect varies by sex and strain, reducing dietary levels of isoleucine protects C57BL/6J and DBA/2J mice of both sexes from the deleterious metabolic effects of a WD, while increasing dietary levels of isoleucine impairs aspects of metabolic health. Despite broadly positive responses across all sexes and strains to reduced isoleucine, the molecular response of each sex and strain is highly distinctive. Using a multi-omics approach, we identify a core sex- and strain- independent molecular response to dietary isoleucine, and identify mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype. Intriguingly, the metabolic effects of reduced isoleucine in mice are not associated with FGF21 - and we find that in humans plasma FGF21 levels are likewise not associated with dietary levels of isoleucine. Finally, we find that foods contain a range of isoleucine levels, and that consumption of dietary isoleucine is lower in humans with healthy eating habits. Our results demonstrate that the dietary level of isoleucine is critical in the metabolic and molecular response to a WD, and suggest that lowering dietary levels of isoleucine may be an innovative and translatable strategy to protect from the negative metabolic consequences of a WD.
Collapse
Affiliation(s)
- Michaela E. Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Michael R. MacArthur
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53705, USA
| | - Yasmine H. Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Gilpin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Esther Zelenovskiy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Madelyn Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Ryan N. Marshall
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Victoria Flores
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irene M. Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53705, USA
| | - Kristen C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
3
|
Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, Bleicher A, Novak G, Liu TT, Newman S, Ricke WA, Matkowskyj KA, Ong IM, Jang C, Simcox J, Lamming DW. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab 2023; 35:1976-1995.e6. [PMID: 37939658 PMCID: PMC10655617 DOI: 10.1016/j.cmet.2023.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yasmine H Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Anneliese Bleicher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Grace Novak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Teresa T Liu
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Sarah Newman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Kristina A Matkowskyj
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
4
|
Soleimani E, Rashnoo F, Farhangi MA, Hosseini B, Jafarzadeh F, Shakarami A, Sadabadi Y. Dietary branched-chain amino acids intake, glycemic markers, metabolic profile, and anthropometric features in a community-based sample of overweight and obese adults. BMC Endocr Disord 2023; 23:205. [PMID: 37749544 PMCID: PMC10518913 DOI: 10.1186/s12902-023-01459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Existing research provides conflicting evidence regarding the relationship between estimated branched-chain amino acid (BCAA) intake and metabolic, glycemic markers, and anthropometric characteristics. This research seeks to examine the association between estimated dietary BCAA consumption and glycemic, and metabolic markers, as well as anthropometric parameters in adults classified as overweight or obese. METHODS In this cross-sectional analysis, we gathered data from 465 overweight and obese individuals aged between 18 and 37 years. To evaluate dietary data, we employed the food frequency questionnaire, and the BCAA content in foods was determined via the United States Department of Agriculture website. We utilized ELISA kits to measure fasting blood glucose (FBS) and lipid profile markers, and additionally calculated low-density lipoprotein (LDL) and insulin sensitivity markers. We assessed sociodemographic status, physical activity (PA), and anthropometric attributes through a method recognized as both valid and reliable. For statistical analysis, we conducted analyses of covariance (ANCOVA), making adjustments for variables including sex, PA, age, energy, and body mass index (BMI). RESULTS Upon adjusting for confounders, those in the highest tertiles of BCAA intake exhibited an increase in weight, BMI, waist circumference (WC), waist-to-hip ratio (WHR), and fat-free mass (FFM). Conversely, they demonstrated reduced fat mass (FM) (%) and FM (kg) compared to their counterparts in the lowest tertiles (P < 0.05). Additionally, there was a noted association between greater estimated BCAA intake and reduced LDL levels. Nonetheless, our findings did not reveal a significant relationship between dietary BCAA and glycemic indices. CONCLUSIONS From our findings, an increased estimated intake of BCAA seems to correlate with diminished serum LDL concentrations. To gain a more comprehensive understanding of this association, it is imperative that further experimental and longitudinal studies be conducted.
Collapse
Affiliation(s)
- Ensiye Soleimani
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariborz Rashnoo
- Department of General and Minimally Invasive surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Babak Hosseini
- Department of Surgery, School of Medicine, Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faria Jafarzadeh
- Assistant Professor of Endocrinology & Metabolism, Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| | - Amir Shakarami
- Department of Cardiovascular Medicine, Assistant Professor of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
5
|
Moissl AP, Lorkowski S, Meinitzer A, Pilz S, Scharnagl H, Delgado GE, Kleber ME, Krämer BK, Pieske B, Grübler MR, Brussee H, von Lewinski D, Toplak H, Fahrleitner-Pammer A, März W, Tomaschitz A. Association of branched-chain amino acids with mortality-the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. iScience 2023; 26:106459. [PMID: 37020954 PMCID: PMC10067756 DOI: 10.1016/j.isci.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Branched-chain amino acids (BCAAs) are effectors of metabolic diseases, but their impact on mortality is largely unknown. We investigated the association of BCAA with risk factors and mortality in 2,236 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study using linear and Cox regression. Adiponectin, hemoglobin, C-peptide, hemoglobin A1c, and homoarginine showed the strongest association with BCAA concentration (all p < 0.001). During a median follow-up of 10.5 years, 715 participants died, including 450 cardiovascular-related deaths. BCAA concentrations were inversely associated with the risk of all-cause and cardiovascular mortality (HR [95% CI] per 1-SD increase in log-BCAA: 0.75 [0.69-0.82] and 0.72 [0.65-0.80], respectively) after adjustment for potential confounders. BCAAs are directly associated with metabolic risk but inversely with mortality in persons with intermediate-to-high cardiovascular risk. Further studies are warranted to evaluate the diagnostic and therapeutic utility of BCAA in the context of cardiovascular diseases.
Collapse
|
6
|
Zhao C, Gong Y, Zheng L, Zhao M. The Degree of Hydrolysis and Peptide Profile Affect the Anti-Fatigue Activities of Whey Protein Hydrolysates in Promoting Energy Metabolism in Exercise Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3010-3021. [PMID: 36748231 DOI: 10.1021/acs.jafc.2c08269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate the effects of characteristics of whey protein hydrolysates (WPHs) on energy metabolism in exercise mice. Results showed that high-degree of hydrolysis (DH) hydrolysates (22%, H-Alc and H-AXH) showed better anti-fatigue effects than low-DH hydrolysates (10%, L-Alc and L-AXH) in enhancing energy substances and reducing metabolic byproducts. It might be related to the higher content of components less than 3 kDa in H-Alc and H-AXH (92.35 and 81.05%, respectively) and higher intensities of small peptides containing two to nine residues. Moreover, Western blot results revealed that WPHs maintained the energy balance in exercise mice by regulating the AMP-activated protein kinase (AMPK) and mTOR signaling pathways. Notably, H-Alc had higher intensities of peptides containing two to five residues than H-AXH and these peptides were rich in essential amino acids, which might explain why H-Alc exhibited better effects in decreasing protein metabolites. Meanwhile, H-AXH contained more free amino acids, especially Leu, which might contribute to its ability to promote glucose consumption in muscle. Furthermore, 40 peptides with two to nine residues and high intensities (>5 × 105) were screened from H-Alc and H-AXH and predicted by bioinformatics tools. Among them, LLL, LLF, GTW, AGTW, and ALPM showed high bioavailability, cell permeability, and potential bioactivity.
Collapse
Affiliation(s)
- Chaoya Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yurong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Food Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
7
|
Lysophospholipids and branched chain amino acids are associated with aging: a metabolomics-based study of Chinese adults. Eur J Med Res 2023; 28:58. [PMID: 36732870 PMCID: PMC9893616 DOI: 10.1186/s40001-023-01021-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Aging is an inevitable process associated with impairments in multiple organ systems, which increases the risk of comorbidity and disability, and reduces the health-span. Metabolomics is a powerful tool in aging research, which can reflect the characteristics of aging at the level of terminal metabolism, and may contribute to the exploration of aging mechanisms and the formulation of anti-aging strategies. METHODS To identify possible biomarkers and pathways associated with aging using untargeted metabolomics methods, we performed liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics profiling on serum samples from 32 older adults and 32 sex-matched young controls. RESULTS Metabolite profiling could distinguish the two groups. Among the 349 metabolites identified, 80-including lysophospholipids whose levels gradually decline-are possible candidate aging biomarkers. Valine, leucine and isoleucine degradation and biosynthesis were important pathways in aging, with reduced levels of L-isoleucine (r = - 0.30, p = 0.017) and L-leucine (r = - 0.32, p = 0.010) observed in older adults. CONCLUSIONS We preliminarily revealed the metabolite changes associated with aging in Chinese adults. Decreases in mitochondrial membrane-related lysophospholipids and dysfunction of branched-chain amino acid metabolism were determined to be the characteristics and promising research targets for aging.
Collapse
|
8
|
Doestzada M, Zhernakova DV, C L van den Munckhof I, Wang D, Kurilshikov A, Chen L, Bloks VW, van Faassen M, Rutten JHW, Joosten LAB, Netea MG, Wijmenga C, Riksen NP, Zhernakova A, Kuipers F, Fu J. Systematic analysis of relationships between plasma branched-chain amino acid concentrations and cardiometabolic parameters: an association and Mendelian randomization study. BMC Med 2022; 20:485. [PMID: 36522747 PMCID: PMC9753387 DOI: 10.1186/s12916-022-02688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. METHODS To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. RESULTS A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. CONCLUSIONS Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Marwah Doestzada
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
| | - Inge C L van den Munckhof
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daoming Wang
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lianmin Chen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department for Genomics Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, European Institute of Healthy Ageing (ERIBA), Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. .,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Trautman ME, Richardson NE, Lamming DW. Protein restriction and branched-chain amino acid restriction promote geroprotective shifts in metabolism. Aging Cell 2022; 21:e13626. [PMID: 35526271 PMCID: PMC9197406 DOI: 10.1111/acel.13626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 01/20/2023] Open
Abstract
The proportion of humans suffering from age‐related diseases is increasing around the world, and creative solutions are needed to promote healthy longevity. Recent work has clearly shown that a calorie is not just a calorie—and that low protein diets are associated with reduced mortality in humans and promote metabolic health and extended lifespan in rodents. Many of the benefits of protein restriction on metabolism and aging are the result of decreased consumption of the three branched‐chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we discuss the emerging evidence that BCAAs are critical modulators of healthy metabolism and longevity in rodents and humans, as well as the physiological and molecular mechanisms that may drive the benefits of BCAA restriction. Our results illustrate that protein quality—the specific composition of dietary protein—may be a previously unappreciated driver of metabolic dysfunction and that reducing dietary BCAAs may be a promising new approach to delay and prevent diseases of aging.
Collapse
Affiliation(s)
- Michaela E. Trautman
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Interdepartmental Graduate Program in Nutritional Sciences University of Wisconsin‐Madison Madison Wisconsin USA
| | - Nicole E. Richardson
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| | - Dudley W. Lamming
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
10
|
Solon-Biet SM, Griffiths L, Fosh S, Le Couteur DG, Simpson SJ, Senior AM. Meta-analysis links dietary branched-chain amino acids to metabolic health in rodents. BMC Biol 2022; 20:19. [PMID: 35031039 PMCID: PMC8760763 DOI: 10.1186/s12915-021-01201-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background The role of dietary branched chain amino acids (BCAAs) and their effect on metabolic health is complex. How dietary BCAA levels and their interaction with background nutrition affect health is unclear. Here, we used meta-analysis and meta-regression, together with the nutritional modelling, to analyse the results of rodent studies that increased the level of dietary BCAAs and measured circulating levels, outcomes related to metabolic health, body mass and food intake. Results Across all studies, increasing dietary BCAAs resulted in increased levels of circulating BCAAs. These effects, however, were heavily moderated by background dietary levels whereby on high BCAA diets, further increases were not reflected in the blood. Impaired glucose tolerance was associated with elevated dietary BCAAs, with the greatest effect occurring with a simultaneous increase in total protein intake. Effects of dietary BCAAs on plasma glucose, insulin, or HOMA emerged only when dietary macronutrient background was considered. We found that elevated dietary BCAAs increases % body fat, with largest increases in adiposity occurring when BCAAs are increased on a high protein, low carbohydrate dietary background. Finally, we found that increased dietary BCAAs were associated with increased food intake when the background diet was low in BCAAs. Conclusion Our data highlights the interaction between BCAAs and background nutrition. We show that the effects of BCAAs on metabolic health cannot be studied in isolation but must be considered as part of complex mixture of dietary components. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01201-2.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia. .,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| | - Lucy Griffiths
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Sophie Fosh
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia.,Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Sydney, NSW, Australia.,ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia. .,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia. .,School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Bai GH, Tsai MC, Tsai HW, Chang CC, Hou WH. Effects of branched-chain amino acid-rich supplementation on EWGSOP2 criteria for sarcopenia in older adults: a systematic review and meta-analysis. Eur J Nutr 2021; 61:637-651. [PMID: 34705076 DOI: 10.1007/s00394-021-02710-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE According to criteria recommended by the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), we analyzed the effects of branched-chain amino acid (BCAA)-rich supplements on muscle strength, muscle mass, and physical performance in older people. METHODS We searched PubMed, Embase, Cochrane Library, and CINAHL from inception until March 2021. Randomized controlled trials that examined the effect of BCAA-rich supplements on older people were included. Random-effects meta-analyses and sensitivity analyses were performed. Subgroup analyses were stratified by participant and supplementation characteristics. Meta-regression analyses were performed to examine the effect of continuous variables. RESULTS Thirty-five studies were included in this meta-analysis. Quality assessment revealed that 14 of 35 RCTs had some potential bias. The overall standardized mean difference (SMD) in muscle strength, muscle mass, and physical performance between the supplement and control groups was 0.35 (95% CI = [0.15, 0.55], P = 0.0007), 0.25 (95% CI = [0.10, 0.40], P = 0.0008), and 0.29 (95% CI = [0.00, 0.57], P = 0.05), respectively. Subgroup analysis revealed that essential amino acid supplementation improved handgrip strength more significantly than whey protein supplementation in older people. Meta-regression analysis revealed a significant linear relationship between improvements in handgrip strength and body mass index. CONCLUSIONS BCAA-rich supplementation by older people may have beneficial effects on muscle mass and strength. However, the included studies had high heterogeneity, and the results must be interpreted with caution. PROSPERO REGISTRATION NUMBER CRD42020206674.
Collapse
Affiliation(s)
- Geng-Hao Bai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Center of Evidence-Based Medicine, Department of Education, Taipei Medical University Hospital, 252 Wu-Xing Street, Taipei, Taiwan, ROC
| | - Meng-Chen Tsai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Center of Evidence-Based Medicine, Department of Education, Taipei Medical University Hospital, 252 Wu-Xing Street, Taipei, Taiwan, ROC
| | - Han-Wei Tsai
- Center of Evidence-Based Medicine, Department of Education, Taipei Medical University Hospital, 252 Wu-Xing Street, Taipei, Taiwan, ROC
- Master Program in Long-Term Care and School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Wen-Hsuan Hou
- Center of Evidence-Based Medicine, Department of Education, Taipei Medical University Hospital, 252 Wu-Xing Street, Taipei, Taiwan, ROC.
- Master Program in Long-Term Care and School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei, Taiwan, ROC.
- Department of Geriatric Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
12
|
Iguacel I, Schmidt JA, Perez-Cornago A, Van Puyvelde H, Travis R, Stepien M, Scalbert A, Casagrande C, Weiderpass E, Riboli E, Schulze MB, Skeie G, Bodén S, Boeing H, Cross AJ, Harlid S, Jensen TE, Huerta JM, Katzke V, Kühn T, Lujan-Barroso L, Masala G, Rodriguez-Barranco M, Rostgaard-Hansen AL, van der Schouw YT, Vermeulen R, Tagliabue G, Tjønneland A, Trevisan M, Ferrari P, Gunter MJ, Huybrechts I. Associations between dietary amino acid intakes and blood concentration levels. Clin Nutr 2021; 40:3772-3779. [PMID: 34130023 DOI: 10.1016/j.clnu.2021.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/28/2020] [Accepted: 04/20/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Emerging evidence suggests a role of amino acids (AAs) in the development of various diseases including renal failure, liver cirrhosis, diabetes and cancer. However, mechanistic pathways and the effects of dietary AA intakes on circulating levels and disease outcomes are unclear. We aimed to compare protein and AA intakes, with their respective blood concentrations in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS Dietary protein and AA intakes were assessed via the EPIC dietary questionnaires (DQ) and 24-h dietary recalls (24-HDR). A subsample of 3768 EPIC participants who were free of cancer had blood AA concentrations measured. To investigate how circulating levels relate to their respective intakes, dietary AA intake was examined in quintiles and ANOVA tests were run. Pearson correlations were examined for continous associations between intakes and blood concentrations. RESULTS Dietary AA intakes (assessed with the DQ) and blood AA concentrations were not strongly correlated (-0.15 ≤ r ≤ 0.17) and the direction of the correlations depended on AA class: weak positive correlations were found for most essential AAs (isoleucine, leucine, lysine, methionine, threonine, tryptophan, and valine) and conditionally essential AAs (arginine and tyrosine), while negative associations were found for non-essential AAs. Similar results were found when using the 24-HDR. When conducting ANOVA tests for essential AAs, higher intake quintiles were linked to higher blood AA concentrations, except for histidine and phenylalanine. For non-essential AAs and glycine, an inverse relationship was observed. Conditionally-essential AAs showed mixed results. CONCLUSIONS Weak positive correlations and dose responses were found between most essential and conditionally essential AA intakes, and blood concentrations, but not for the non-essential AAs. These results suggest that intake of dietary AA might be related to physiological AA status, particularly for the essential AAs. However, these results should be further evaluated and confirmed in large-scale prospective studies.
Collapse
Affiliation(s)
- Isabel Iguacel
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France; Department of Physiatry and Nursing, Faculty of Health Sciences, University of Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Zaragoza, Spain
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Heleen Van Puyvelde
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France; Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Ruth Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Magdalena Stepien
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Corinne Casagrande
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Heiner Boeing
- Department of Epidemiology, German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Torill Enget Jensen
- Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - José M Huerta
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute -IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Agnetha Linn Rostgaard-Hansen
- Department of Public Health, Danish Cancer Society Research Center Diet, Genes and Environment, Strandboulevarden 49, DK-2100, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Anne Tjønneland
- Department of Public Health, Danish Cancer Society Research Center Diet, Genes and Environment, Strandboulevarden 49, DK-2100, University of Copenhagen, Copenhagen, Denmark
| | - Morena Trevisan
- Unit of Cancer Epidemiology- CeRMS, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Ferrari
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Marc J Gunter
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Inge Huybrechts
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France.
| |
Collapse
|
13
|
Babygirija R, Lamming DW. The regulation of healthspan and lifespan by dietary amino acids. TRANSLATIONAL MEDICINE OF AGING 2021; 5:17-30. [PMID: 34263088 PMCID: PMC8277109 DOI: 10.1016/j.tma.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a key macronutrient and source of essential macromolecules, dietary protein plays a significant role in health. For many years, protein-rich diets have been recommended as healthy due to the satiety-inducing and muscle-building effects of protein, as well as the ability of protein calories to displace allegedly unhealthy calories from fats and carbohydrates. However, clinical studies find that consumption of dietary protein is associated with an increased risk of multiple diseases, especially diabetes, while studies in rodents have demonstrated that protein restriction can promote metabolic health and even lifespan. Emerging evidence suggests that the effects of dietary protein on health and longevity are not mediated simply by protein quantity but are instead mediated by protein quality - the specific amino acid composition of the diet. Here, we discuss how dietary protein and specific amino acids including methionine, the branched chain amino acids (leucine, isoleucine, and valine), tryptophan and glycine regulate metabolic health, healthspan, and aging, with attention to the specific molecular mechanisms that may participate in these effects. Finally, we discuss the potential applicability of these findings to promoting healthy aging in humans.
Collapse
Affiliation(s)
- Reji Babygirija
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Wali JA, Solon-Biet SM, Freire T, Brandon AE. Macronutrient Determinants of Obesity, Insulin Resistance and Metabolic Health. BIOLOGY 2021; 10:336. [PMID: 33923531 PMCID: PMC8072595 DOI: 10.3390/biology10040336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023]
Abstract
Obesity caused by the overconsumption of calories has increased to epidemic proportions. Insulin resistance is often associated with an increased adiposity and is a precipitating factor in the development of cardiovascular disease, type 2 diabetes, and altered metabolic health. Of the various factors contributing to metabolic impairments, nutrition is the major modifiable factor that can be targeted to counter the rising prevalence of obesity and metabolic diseases. However, the macronutrient composition of a nutritionally balanced "healthy diet" are unclear, and so far, no tested dietary intervention has been successful in achieving long-term compliance and reductions in body weight and associated beneficial health outcomes. In the current review, we briefly describe the role of the three major macronutrients, carbohydrates, fats, and proteins, and their role in metabolic health, and provide mechanistic insights. We also discuss how an integrated multi-dimensional approach to nutritional science could help in reconciling apparently conflicting findings.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ. Branched chain amino acids, aging and age-related health. Ageing Res Rev 2020; 64:101198. [PMID: 33132154 DOI: 10.1016/j.arr.2020.101198] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
Branched chain amino acids (BCAA: leucine, valine, isoleucine) have key physiological roles in the regulation of protein synthesis, metabolism, food intake and aging. Many studies report apparently inconsistent conclusions about the relationships between blood levels of BCAAs or dietary manipulation of BCAAs with age-related changes in body composition, sarcopenia, obesity, insulin and glucose metabolism, and aging biology itself. These divergent results can be resolved by consideration of the role of BCAAs as signalling molecules and the bidirectional mechanistic relationship between BCAAs and some aging phenotypes. The effects of BCAAs are also influenced by the background nutritional composition such as macronutrient ratios and imbalance with other amino acids. Understanding the interaction between BCAAs and other components of the diet may provide new opportunities for influencing age-related outcomes through manipulation of dietary BCAAs together with titration of macronutrient ratios and other amino acids.
Collapse
|
16
|
Khambule L, Snyman T, Norris SA, Crowther NJ, George JA. Branched-chain and aromatic amino acids and cardiometabolic risk in Black African and Asian Indian populations. Metabolomics 2020; 16:108. [PMID: 33033875 DOI: 10.1007/s11306-020-01734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Studies have shown that systemic levels of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) are elevated in cardiometabolic diseases (CMDs) in populations resident in high income countries. However, little is known about the association of BCAAs and AAAs with metabolic syndrome and its components in Asian Indian (AI) and Black African (BA) populations. OBJECTIVE The aim of this study was to describe the association of BCAAs and AAAs with the metabolic syndrome, its individual components and insulin resistance in AI and BA populations. METHODS Serum samples collected from AI (n = 349) and BA (n = 369) subjects were used to measure levels of BCAAs and AAAs by ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Anthropometric, demographic and cardiometabolic variables were measured in all subjects. RESULTS The sum of BCAAs and AAAs was higher in AIs compared to BAs. The BCAAs and AAAs were positively associated with insulin resistance, metabolic syndrome and its individual components. This was particularly the case for AI subjects, in unadjusted regression models. However, these associations were non-significant after adjusting for co-variates, particularly visceral adipose tissue (VAT). Triglyceride levels were significantly associated with valine and leucine levels in BAs even after adjustment for co-variates. Lastly, we found that fasting circulatory BCAA and AAA levels are strongly correlated with VAT in both populations. CONCLUSION This study identified specific associations of serum valine and leucine levels with triglycerides in BAs. The association of amino acids with CMDs was observed in AIs, but was found to be the result of confounding by VAT. Further studies are required to determine whether BCAAs and AAAs are aetiological factors in CMDs and how VAT modulates their serum levels.
Collapse
Affiliation(s)
- Lungile Khambule
- Department of Chemical Pathology, National Health Laboratory Service and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Tracy Snyman
- Department of Chemical Pathology, National Health Laboratory Service and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shane A Norris
- Medical Research Council/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jaya A George
- Department of Chemical Pathology, National Health Laboratory Service and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Sayda MH, Phillips BE, Williams JP, Greenhaff PL, Wilkinson DJ, Smith K, Atherton PJ. Associations between Plasma Branched Chain Amino Acids and Health Biomarkers in Response to Resistance Exercise Training Across Age. Nutrients 2020; 12:nu12103029. [PMID: 33023275 PMCID: PMC7601782 DOI: 10.3390/nu12103029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023] Open
Abstract
Leucine, isoleucine and valine (i.e., the branched chain amino acids, BCAA) play a key role in the support and regulation of tissue protein regulation and also as energy substrates. However, positive relationships exist between elevated levels of BCAA and insulin resistance (IR). Thus, we sought to investigate the links between fasting plasma BCAA following a progressive resistance exercise training (RET) programme, an intervention known to improve metabolic health. Fasting plasma BCAA were quantified in adults (young: 18-28 y, n = 8; middle-aged: 45-55 y, n = 9; older: 65-75 y, n = 15; BMI: 23-28 kg/m2, both males and females (~50:50), in a cross-sectional, intervention study. Participants underwent 20-weeks whole-body RET. Measurements of body composition, muscle strength (1-RM) and metabolic health biomarkers (e.g., HOMA-IR) were made pre- and post-RET. BCAA concentrations were determined by gas-chromatography mass spectrometry (GC-MS). No associations were observed across age with BCAA; however, RET elicited (p < 0.05) increases in plasma BCAA (all age-groups), while HOMA-IR scores reduced (p < 0.05) following RET. After RET, positive correlations in lean body mass (p = 0.007) and strength gains (p = 0.001) with fasting BCAA levels were observed. Elevated BCAA are not a robust marker of ageing nor IR in those with a healthy BMI; rather, despite decreasing IR, RET was associated with increased BCAA.
Collapse
Affiliation(s)
- Mariwan H. Sayda
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham NG7 2RD, UK; (M.H.S.); (B.E.P.); (J.P.W.); (P.L.G.); (D.J.W.); (K.S.)
- The National Centre for Sport and Exercise Medicine—East Midlands, University of Nottingham, Nottingham NG7 2UH, UK
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham NG7 2RD, UK; (M.H.S.); (B.E.P.); (J.P.W.); (P.L.G.); (D.J.W.); (K.S.)
- The National Centre for Sport and Exercise Medicine—East Midlands, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - John P. Williams
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham NG7 2RD, UK; (M.H.S.); (B.E.P.); (J.P.W.); (P.L.G.); (D.J.W.); (K.S.)
| | - Paul L. Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham NG7 2RD, UK; (M.H.S.); (B.E.P.); (J.P.W.); (P.L.G.); (D.J.W.); (K.S.)
- The National Centre for Sport and Exercise Medicine—East Midlands, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Daniel J. Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham NG7 2RD, UK; (M.H.S.); (B.E.P.); (J.P.W.); (P.L.G.); (D.J.W.); (K.S.)
- The National Centre for Sport and Exercise Medicine—East Midlands, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham NG7 2RD, UK; (M.H.S.); (B.E.P.); (J.P.W.); (P.L.G.); (D.J.W.); (K.S.)
- The National Centre for Sport and Exercise Medicine—East Midlands, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham NG7 2RD, UK; (M.H.S.); (B.E.P.); (J.P.W.); (P.L.G.); (D.J.W.); (K.S.)
- The National Centre for Sport and Exercise Medicine—East Midlands, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence: ; Tel.: +01-332-724-725
| |
Collapse
|
18
|
Amino Acid Nutrition and Metabolism in Health and Disease. Nutrients 2019; 11:nu11112623. [PMID: 31683948 PMCID: PMC6893825 DOI: 10.3390/nu11112623] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Here an overview of the special issue "Amino acid nutrition and metabolism in health and disease" is given. In addition to several comprehensive and timely reviews, this issue had some original research contributions on fundamental research in animal models as well as human clinical trials exploring how the critical nutrients amino acids affect various traits.
Collapse
|