1
|
Yao Y. Mediterranean diet: Fighting breast cancer naturally: A review. Medicine (Baltimore) 2024; 103:e38743. [PMID: 38941369 PMCID: PMC11466132 DOI: 10.1097/md.0000000000038743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024] Open
Abstract
The effects and mechanisms of the Mediterranean diet (MD) on the incidence, recurrence, and prevention of breast cancer (BC) have been extensively investigated since the 1990s. Recent years have witnessed significant advancements in understanding the relationship between the components of the MD and BC, particularly in terms of their role and adherence. This comprehensive review focuses on several key aspects: the influence of the adherence of MD in cohort studies conducted across different regions on BC, the effects and mechanisms of individual component or main components as well as the supplementation of vitamins, drugs, exercise, and other factors of MD on BC; the variations in the impact of the MD on premenopausal and postmenopausal women, as well as different types in BC cases; the possible mechanisms underlying the development, recurrence, and prevention of BC in relation to the MD; and the interaction effects of individual genetic polymorphisms with the MD. Based on current research findings, this review highlights the key issues and identifies future research directions in investigating the relationship between the MD and BC. Furthermore, it suggests that healthy women of various ages and BC patients should adhere to MD in order to prevent BC or improve the prognosis.
Collapse
Affiliation(s)
- Yuanning Yao
- Queen Mary School, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Li YY, Madduri SS, Rezeli ET, Santos C, Freeman III H, Peng J, McRitchie SL, Pathmasiri W, Hursting SD, Sumner SJ, Stewart DA. Macronutrient-differential dietary pattern impacts on body weight, hepatic inflammation, and metabolism. Front Nutr 2024; 11:1356038. [PMID: 38868554 PMCID: PMC11168494 DOI: 10.3389/fnut.2024.1356038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Obesity is a multi-factorial disease frequently associated with poor nutritional habits and linked to many detrimental health outcomes. Individuals with obesity are more likely to have increased levels of persistent inflammatory and metabolic dysregulation. The goal of this study was to compare four dietary patterns differentiated by macronutrient content in a postmenopausal model. Dietary patterns were high carbohydrate (HC), high fat (HF), high carbohydrate plus high fat (HCHF), and high protein (HP) with higher fiber. Methods Changes in body weight and glucose levels were measured in female, ovariectomized C57BL/6 mice after 15 weeks of feeding. One group of five mice fed the HCHF diet was crossed over to the HP diet on day 84, modeling a 21-day intervention. In a follow-up study comparing the HCHF versus HP dietary patterns, systemic changes in inflammation, using an 80-cytokine array and metabolism, by untargeted liquid chromatography-mass spectrometry (LCMS)-based metabolomics were evaluated. Results Only the HF and HCHF diets resulted in obesity, shown by significant differences in body weights compared to the HP diet. Body weight gains during the two-diet follow-up study were consistent with the four-diet study. On Day 105 of the 4-diet study, glucose levels were significantly lower for mice fed the HP diet than for those fed the HC and HF diets. Mice switched from the HCHF to the HP diet lost an average of 3.7 grams by the end of the 21-day intervention, but this corresponded with decreased food consumption. The HCHF pattern resulted in dramatic inflammatory dysregulation, as all 80 cytokines were elevated significantly in the livers of these mice after 15 weeks of HCHF diet exposure. Comparatively, only 32 markers changed significantly on the HP diet (24 up, 8 down). Metabolic perturbations in several endogenous biological pathways were also observed based on macronutrient differences and revealed dysfunction in several nutritionally relevant biosynthetic pathways. Conclusion Overall, the HCHF diet promoted detrimental impacts and changes linked to several diseases, including arthritis or breast neoplasms. Identification of dietary pattern-specific impacts in this model provides a means to monitor the effects of disease risk and test interventions to prevent poor health outcomes through nutritional modification.
Collapse
Affiliation(s)
- Yuan-yuan Li
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Supradeep S. Madduri
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erika T. Rezeli
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charlene Santos
- Animal Studies Core Lab, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Herman Freeman III
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Jing Peng
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan L. McRitchie
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wimal Pathmasiri
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan J. Sumner
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Delisha A. Stewart
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Zhou X, Su M, Lu J, Li D, Niu X, Wang Y. CD36: The Bridge between Lipids and Tumors. Molecules 2024; 29:531. [PMID: 38276607 PMCID: PMC10819246 DOI: 10.3390/molecules29020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
It has been found that the development of some cancers can be attributed to obesity, which is associated with the excessive intake of lipids. Cancer cells undergo metabolic reprogramming, shifting from utilizing glucose to fatty acids (FAs) for energy. CD36, a lipid transporter, is highly expressed in certain kinds of cancer cells. High expressions of CD36 in tumor cells triggers FA uptake and lipid accumulation, promoting rapid tumor growth and initiating metastasis. Meanwhile, immune cells in the tumor microenvironment overexpress CD36 and undergo metabolic reprogramming. CD36-mediated FA uptake leads to lipid accumulation and has immunosuppressive effects. This paper reviews the types of FAs associated with cancer, high expressions of CD36 that promote cancer development and progression, effects of CD36 on different immune cells in the tumor microenvironment, and the current status of CD36 as a therapeutic target for the treatment of tumors with high CD36 expression.
Collapse
Affiliation(s)
| | - Manman Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130012, China; (X.Z.); (J.L.); (D.L.); (X.N.)
| | | | | | | | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130012, China; (X.Z.); (J.L.); (D.L.); (X.N.)
| |
Collapse
|
4
|
Avtanski D, Reddy V, Stojchevski R, Hadzi-Petrushev N, Mladenov M. The Microbiome in the Obesity-Breast Cancer Axis: Diagnostic and Therapeutic Potential. Pathogens 2023; 12:1402. [PMID: 38133287 PMCID: PMC10747404 DOI: 10.3390/pathogens12121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
A growing body of evidence has demonstrated a relationship between the microbiome, adiposity, and cancer development. The microbiome is emerging as an important factor in metabolic disease and cancer pathogenesis. This review aimed to highlight the role of the microbiome in obesity and its association with cancer, with a particular focus on breast cancer. This review discusses how microbiota dysbiosis may contribute to obesity and obesity-related diseases, which are linked to breast cancer. It also explores the potential of the gut microbiome to influence systemic immunity, leading to carcinogenesis via the modulation of immune function. This review underscores the potential use of the microbiome profile as a diagnostic tool and treatment target, with strategies including probiotics, fecal microbiota transplantation, and dietary interventions. However, this emphasizes the need for more research to fully understand the complex relationship between the microbiome, metabolic disorders, and breast cancer. Future studies should focus on elucidating the mechanisms underlying the impact of the microbiome on breast cancer and exploring the potential of the microbiota profile as a biomarker and treatment target.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Varun Reddy
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11545, USA;
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| |
Collapse
|
5
|
Nguyen MR, Ma E, Wyatt D, Knight KL, Osipo C. The effect of an exopolysaccharide probiotic molecule from Bacillus subtilis on breast cancer cells. Front Oncol 2023; 13:1292635. [PMID: 38074643 PMCID: PMC10702531 DOI: 10.3389/fonc.2023.1292635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Many well-known risk factors for breast cancer are associated with dysbiosis (an aberrant microbiome). However, how bacterial products modulate cancer are poorly understood. In this study, we investigated the effect of an exopolysaccharide (EPS) produced by the commensal bacterium Bacillus subtilis on breast cancer phenotypes. Although B. subtilis is commonly included in probiotic preparations and its EPS protects against inflammatory diseases, it was virtually unknown whether B. subtilis-derived EPS affects cancer. Methods This work investigated effects of EPS on phenotypes of breast cancer cells as a cancer model. The phenotypes included proliferation, mammosphere formation, cell migration, and tumor growth in two immune compromised mouse models. RNA sequencing was performed on RNA from four breast cancer cells treated with PBS or EPS. IKKβ or STAT1 signaling was assessed using pharmacologic or RNAi-mediated knock down approaches. Results Short-term treatment with EPS inhibited proliferation of certain breast cancer cells (T47D, MDA-MB-468, HCC1428, MDA-MB-453) while having little effect on others (MCF-7, MDA-MB-231, BT549, ZR-75-30). EPS induced G1/G0 cell cycle arrest of T47D cells while increasing apoptosis of MDA-MB-468 cells. EPS also enhanced aggressive phenotypes in T47D cells including cell migration and cancer stem cell survival. Long-term treatment with EPS (months) led to resistance in vitro and promoted tumor growth in immunocompromised mice. RNA-sequence analysis showed that EPS increased expression of pro-inflammatory pathways including STAT1 and NF-κB. IKKβ and/or STAT1 signaling was necessary for EPS to modulate phenotypes of EPS sensitive breast cancer cells. Discussion These results demonstrate a multifaceted role for an EPS molecule secreted by the probiotic bacterium B. subtilis on breast cancer cell phenotypes. These results warrant future studies in immune competent mice and different cancer models to fully understand potential benefits and/or side effects of long-term use of probiotics.
Collapse
Affiliation(s)
- Mai R. Nguyen
- M.D./Ph.D. Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Emily Ma
- M.D./Ph.D. Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Cell Biology Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Debra Wyatt
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Clodia Osipo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
6
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|
7
|
Desalegn Z, Smith A, Yohannes M, Cao X, Anberber E, Bekuretsion Y, Assefa M, Bauer M, Vetter M, Kantelhardt EJ, Abebe T, Starlard-Davenport A. Human Breast Tissue Microbiota Reveals Unique Microbial Signatures that Correlate with Prognostic Features in Adult Ethiopian Women with Breast Cancer. Cancers (Basel) 2023; 15:4893. [PMID: 37835588 PMCID: PMC10571711 DOI: 10.3390/cancers15194893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer mortality among women in Ethiopia. Overall, women of African ancestry have the highest death toll due to BC compared to other racial/ethnic groups. The cause of the disparity in mortality is unclear. Recently, studies conducted in the United States and other high-income countries highlighted the role of microbial dysbiosis in BC initiation, tumor growth, and treatment outcome. However, the extent to which inter-individual differences in the makeup of microbiota are associated with clinical and histopathological outcomes in Ethiopian women has not been studied. The goal of our study was to profile the microbiome in breast tumor and normal adjacent to tumor (NAT) tissues of the same donor and to identify associations between microbial composition and abundance and clinicopathological factors in Ethiopian women with BC. We identified 14 microbiota genera in breast tumor tissues that were distinct from NAT tissues, of which Sphingobium, Anaerococcus, Corynebacterium, Delftia, and Enhydrobacter were most significantly decreased in breast tumors compared to NAT tissues. Several microbial genera significantly differed by clinicopathological factors in Ethiopian women with BC. Specifically, the genus Burkholderia more strongly correlated with aggressive triple negative (TNBC) and basal-like breast tumors. The genera Alkanindiges, Anoxybacillus, Leifsonia, and Exiguobacterium most strongly correlated with HER2-E tumors. Luminal A and luminal B tumors also correlated with Anoxybacillus but not as strongly as HER2-E tumors. A relatively higher abundance of the genus Citrobacter most significantly correlated with advanced-stage breast tumors compared to early-stage tumors. This is the first study to report an association between breast microbial dysbiosis and clinicopathological factors in Ethiopian women.
Collapse
Affiliation(s)
- Zelalem Desalegn
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences Addis Ababa University, Addis Ababa 9086, Ethiopia; (Z.D.); (M.Y.); (T.A.)
- Global Health Working Group, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
| | - Alana Smith
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Meron Yohannes
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences Addis Ababa University, Addis Ababa 9086, Ethiopia; (Z.D.); (M.Y.); (T.A.)
- Global Health Working Group, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
- School of Medical Laboratory Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Xueyuan Cao
- Department of Health Promotion and Disease Prevention, College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Endale Anberber
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Yonas Bekuretsion
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Mathewos Assefa
- Department of Oncology, School of Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
| | - Martina Vetter
- Department of Gynecology, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
| | - Eva Johanna Kantelhardt
- Global Health Working Group, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
- Department of Gynecology, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences Addis Ababa University, Addis Ababa 9086, Ethiopia; (Z.D.); (M.Y.); (T.A.)
- Global Health Working Group, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
8
|
Zheng J, Lee J, Byun J, Yu D, Ha JH. Partial replacement of high-fat diet with n-3 PUFAs enhanced beef tallow attenuates dyslipidemia and endoplasmic reticulum stress in tunicamycin-injected rats. Front Nutr 2023; 10:1155436. [PMID: 37006935 PMCID: PMC10060633 DOI: 10.3389/fnut.2023.1155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Metabolic syndrome (MetS) is considered as a complex, intertwined multiple risk factors that directly increase the risk of various metabolic diseases, especially cardiovascular atherosclerotic diseases and diabetes mellitus type 2. While lifestyle changes, including dietary intervention are effective in mitigating or preventing MetS, there are no specific therapies against MetS. Typical western diets comprise of high saturated fatty acid, cholesterol, and simple sugar; consequently their consumption may increase the potential pathological developmental risk of MetS. Partial replacement of dietary fatty acids with polyunsaturated fatty acids (PUFAs) is widely recommended measure to manage MetS-related disorders. Methods In the present study, we used rat model to investigate the role of n-3 PUFA enriched beef tallows (BT) on MetS and tunicamycin (TM)-induced endoplasmic reticulum (ER) stress, by partially replacing dietary fat (lard) with equal amounts of two different BTs; regular BT or n-3 PUFA-enriched BT. The experimental rats were randomly assigned to three different dietary groups (n = 16 per group): (1) high-fat and high-cholesterol diet (HFCD); (2) HFCD partially replaced with regular BT (HFCD + BT1); (3) HFCD partially replaced with n-3 enhanced BT (w/w) (HFCD + BT2). After 10 weeks of dietary intervention, each experimental rodent was intraperitoneally injected with either phosphate-buffered saline or 1 mg/kg body weight of TM. Results HFCD + BT2 showed improved dyslipidemia before TM injection, and increased serum high-density lipoprotein cholesterol (HDL-C) levels after TM injection. BT replacement groups had significantly reduced hepatic triglyceride (TG) levels, and decreased total cholesterol (TC) and TG levels in epididymal adipose tissue (EAT). Furthermore, BT replacement remarkably attenuated TM-induced unfolded protein responses (UPRs) in liver, showing reduced ER stress, with BT2 being more effective in the EAT. Discussion Therefore, our findings suggest that partially replacing dietary fats with n-3 PUFA to lower the ratio of n-6/n-3 PUFAs is beneficial in preventing pathological features of MetS by alleviating HFCD- and/or TM-induced dyslipidemia and ER stress.
Collapse
Affiliation(s)
- Jiaxiang Zheng
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jaemin Byun
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Daeung Yu
- Department of Food and Nutrition, Changwon National University, Changwon, Republic of Korea
- Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University, Changwon, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
9
|
FAN Y, ZHAO H, ZHANG Y, Yani Z, DU J, LING C. Effectiveness of Jiedu granule on gut microbiota in patients with advanced hepatocellular carcinoma: a randomized controlled trial. J TRADIT CHIN MED 2022; 42:988-996. [PMID: 36378058 PMCID: PMC9924752 DOI: 10.19852/j.cnki.jtcm.20220902.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To observe whether Jiedu granule (, JDG) modulates the composition of the gut microbiota during advanced hepatocellular carcinoma (HCC). METHODS A randomized controlled trial was conducted. Sixty-two advanced HCC participants were randomly allocated to receive JDG or placebo. The median overall survival (OS) times of patients and the variation of relative abundance of bacteria over time were used as main outcome measures. RESULTS Patients who received JDG demonstrated significantly longer median OS times compared with the placebo group. Pyrosequencing of the V3 regions of 16S rRNA genes revealed a dose dependent deviation of gut microbiota in response to JDG treatment. Redundancy analysis identified and Peptostre-ptococcaceae which related to the onset of liver cancer disappeared after 1-month and 2-month JDG treatment, while in control group, no significant changes of these two bacteria were found. The variation tendency of relative abundance of (essential in immunoblocking therapy of tumor) in JDG group was not obvious while in control group, it was decreased significantly with time. The relative abundance of (correlated with the occurrence of liver cancer) was increased in JDG group and was decreased in control group over time. CONCLUSION Changes in the gut microbiota may be associated with the efficiency of JDG on survival period of advanced HCC patients. Trial registration:Chinese Clinical TRIAL Registry ChiCTR-OOC-16008002.
Collapse
Affiliation(s)
- Yifu FAN
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Hetong ZHAO
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Yani ZHANG
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Zifei Yani
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Juan DU
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| | - Changquan LING
- School of Traditional Chinese Medicine, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Zhang J, Xie Q, Huo X, Liu Z, Da M, Yuan M, Zhao Y, Shen G. Impact of intestinal dysbiosis on breast cancer metastasis and progression. Front Oncol 2022; 12:1037831. [PMID: 36419880 PMCID: PMC9678367 DOI: 10.3389/fonc.2022.1037831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Breast cancer has a high mortality rate among malignant tumors, with metastases identified as the main cause of the high mortality. Dysbiosis of the gut microbiota has become a key factor in the development, treatment, and prognosis of breast cancer. The many microorganisms that make up the gut flora have a symbiotic relationship with their host and, through the regulation of host immune responses and metabolic pathways, are involved in important physiologic activities in the human body, posing a significant risk to health. In this review, we build on the interactions between breast tissue (including tumor tissue, tissue adjacent to the tumor, and samples from healthy women) and the microbiota, then explore factors associated with metastatic breast cancer and dysbiosis of the gut flora from multiple perspectives, including enterotoxigenic Bacteroides fragilis, antibiotic use, changes in gut microbial metabolites, changes in the balance of the probiotic environment and diet. These factors highlight the existence of a complex relationship between host-breast cancer progression-gut flora. Suggesting that gut flora dysbiosis may be a host-intrinsic factor affecting breast cancer metastasis and progression not only informs our understanding of the role of microbiota dysbiosis in breast cancer development and metastasis, but also the importance of balancing gut flora dysbiosis and clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoshuang Shen
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
11
|
Wu H, Ganguly S, Tollefsbol TO. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022; 10:microorganisms10091727. [PMID: 36144329 PMCID: PMC9503838 DOI: 10.3390/microorganisms10091727] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women in the United States. There has been an increasing incidence and decreasing mortality rate of BC cases over the past several decades. Many risk factors are associated with BC, such as diet, aging, personal and family history, obesity, and some environmental factors. Recent studies have shown that healthy individuals and BC patients have different microbiota composition, indicating that microbiome is a new risk factor for BC. Gut and breast microbiota alterations are associated with BC prognosis. This review will evaluate altered microbiota populations in gut, breast tissue, and milk of BC patients, as well as mechanisms of interactions between microbiota modulation and BC. Probiotics and prebiotics are commercially available dietary supplements to alleviate side-effects of cancer therapies. They also shape the population of human gut microbiome. This review evaluates novel means of modulating microbiota by nutritional treatment with probiotics and prebiotics as emerging and promising strategies for prevention and treatment of BC. The mechanistic role of probiotic and prebiotics partially depend on alterations in estrogen metabolism, systematic immune regulation, and epigenetics regulation.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
12
|
Gholamalizadeh M, Afsharfar M, Fathi S, Tajadod S, Mohseni GK, Shekari S, Vahid F, Doaei S, Shafaei Kachaei H, Majidi N, Kalantari N. Relationship between breast cancer and dietary inflammatory index; a case–control study. Clin Nutr ESPEN 2022; 51:353-358. [DOI: 10.1016/j.clnesp.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
|
13
|
Zhou X, Kandalai S, Hossain F, Zheng Q. Tumor microbiome metabolism: A game changer in cancer development and therapy. Front Oncol 2022; 12:933407. [PMID: 35936744 PMCID: PMC9351545 DOI: 10.3389/fonc.2022.933407] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating recent evidence indicates that the human microbiome plays essential roles in pathophysiological states, including cancer. The tumor microbiome, an emerging concept that has not yet been clearly defined, has been proven to influence both cancer development and therapy through complex mechanisms. Small molecule metabolites produced by the tumor microbiome through unique biosynthetic pathways can easily diffuse into tissues and penetrate cell membranes through transporters or free diffusion, thus remodeling the signaling pathways of cancer and immune cells by interacting with biomacromolecules. Targeting tumor microbiome metabolism could offer a novel perspective for not only understanding cancer progression but also developing new strategies for the treatment of multiple cancer types. Here, we summarize recent advances regarding the role the tumor microbiome plays as a game changer in cancer biology. Specifically, the metabolites produced by the tumor microbiome and their potential effects on the cancer development therapy are discussed to understand the importance of the microbial metabolism in the tumor microenvironment. Finally, new anticancer therapeutic strategies that target tumor microbiome metabolism are reviewed and proposed to provide new insights in clinical applications.
Collapse
Affiliation(s)
- Xiaozhuang Zhou
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Farzana Hossain
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Ma Z, Qu M, Wang X. Analysis of Gut Microbiota in Patients with Breast Cancer and Benign Breast Lesions. Pol J Microbiol 2022; 71:217-226. [PMID: 35675827 PMCID: PMC9252143 DOI: 10.33073/pjm-2022-019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/21/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer (BC) and benign breast lesions (BBLs) are common diseases in women worldwide. The gut microbiota plays a vital role in regulating breast diseases' formation, progression, and therapy response. Hence, we explored the structure and function of gut microflora in patients with BC and BBLs. A cohort of 66 subjects was enrolled in the study. Twenty-six subjects had BC, 20 subjects had BBLs, and 20 matched healthy controls. High throughput 16S ribosomal RNA (16S rRNA) gene sequencing technology was used to determine the microbial community structure. Compared with healthy individuals, BC patients had significantly lower alpha diversity indices (Sobs index, p = 0.019; Chao1 index, p = 0.033). Sobs and Chao1 indices were also lower in patients with BBLs than healthy individuals, without statistical significance (p = 0.279, p = 0.314, respectively). Both unweighted and weighted UniFrac analysis showed that beta diversity differed significantly among the three groups (p = 3.376e-14, p < 0.001, respectively). Compared with healthy individuals, the levels of Porphyromonas and Peptoniphilus were higher in BC patients (p = 0.004, p = 0.007, respectively), whereas Escherichia and Lactobacillus were more enriched in the benign breast lesion group (p < 0.001, p = 0.011, respectively). Our study indicates that patients with BC and BBLs may undergo significant changes in intestinal microbiota. These findings can help elucidate the role of intestinal flora in BC and BBLs patients.
Collapse
Affiliation(s)
- Zhijun Ma
- Department of Surgical Oncology, The Affiliated Hospital of Qinghai University, Xining, China
| | - Manli Qu
- Graduate School of Qinghai University, Xining, China
| | - Xiaowu Wang
- Department of Surgical Oncology, The Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
15
|
Stasiewicz B, Wadolowska L, Biernacki M, Slowinska MA, Stachowska E. Dietary Fat Intake: Associations with Dietary Patterns and Postmenopausal Breast Cancer-A Case-Control Study. Cancers (Basel) 2022; 14:1724. [PMID: 35406496 PMCID: PMC8997044 DOI: 10.3390/cancers14071724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to assess the associations of dietary fat intake with BC occurrence and dietary patterns. This case-control study involved 420 women aged 40−79 years from northeastern Poland, including 190 newly diagnosed BC cases. Dietary data were collected using a food frequency questionnaire (62-item FFQ-6®). The Quick Food Scan of the National Cancer Institute and the Percentage Energy from Fat Screener scoring procedures were used to estimate the percentage energy from dietary fat (Pfat). The odds of BC occurrence was three times higher in the Pfat > 32%. The Pfat > 32% was positively associated with the ‘Non-Healthy’ DP and inversely associated with the Polish-aMED® score, ‘Prudent’ DP, and ‘Margarine and Sweetened Dairy’ DP. This case-control study suggests that a higher dietary fat intake (>32%) may contribute to an increased occurrence of peri- and postmenopausal breast cancer in women. Given the obtained results, an unhealthy dietary pattern characterized by the consumption of highly processed, high in sugar foods and animal fat foods should be avoided to reduce fat intake. Instead, the frequent consumption of low-processed plant foods, fish, and moderate consumption of low-fat dairy should be recommended since this pro-healthy diet is inversely associated with dietary fat intake.
Collapse
Affiliation(s)
- Beata Stasiewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland; (L.W.); (M.A.S.)
| | - Lidia Wadolowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland; (L.W.); (M.A.S.)
| | - Maciej Biernacki
- Department of Surgery, University of Warmia and Mazury in Olsztyn, 11-041 Olsztyn, Poland;
| | - Malgorzata Anna Slowinska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland; (L.W.); (M.A.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland
| |
Collapse
|
16
|
Tian H, Wang S, Deng Y, Xing Y, Zhao L, Zhang X, Zhang P, Liu N, Su B. Fatty Acid Profiles and Their Association With Autoimmunity, Insulin Sensitivity and β Cell Function in Latent Autoimmune Diabetes in Adults. Front Endocrinol (Lausanne) 2022; 13:916981. [PMID: 35846301 PMCID: PMC9276921 DOI: 10.3389/fendo.2022.916981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The pathogenesis of the progressive loss of beta cell function latent autoimmune diabetes in adults (LADA) remains still elusive. We aim to study the fatty acid (FA) profile in LADA. SUBJECTS AND METHODS Data from 116 patients with diabetes and GADA and 249 diabetes controls without GADA selected by Propensity Score Matching were collected. FA was analyzed with liquid chromatography-tandem mass spectrometry analysis. RESULTS Principal factor analysis found component 1 explains 82.6% of total variance contained fatty acids from a mixed of lard oil, seafood, and vegetable diet, followed by diet predominantly from vegetable oil, a diet of high fat diet, and a diet of seafood diet. The FA heatmap looked clearly different among the three groups with more similar type 1 (t1dm) and LADA fatty acid profile. n-3 α-linolenic acid (ALA), n-3 long chain polyunsaturated fatty acid (n-3 LC-PUFA), such as Eicosapentaenoic Acid and Docosapentaenoic Acid, n-3/n-6 ratio and triene/tetraene ratio were higher in patients with type 2 diabetes (t2dm) compared with LADA and t1dm. Saturated FAs were lower in t2dm than t1dm and LADA. Arachidic acid and n-6 LC-PUFAs were lower in t2dm than in t1dm and LADA. The characteristics of FAs in LADA were in between of classical t1dm and t2dm. Patients were classified into 6 clusters by FA clusters. Only cluster 2, 3, 5 contained enough patients to be analyzed. Cluster 5 showed an insulin deficient phenotype containing more than 60% of patients with t1dm and LADA and only 12.8% of t2dm. Cluster 2 and 3 were similar. β cell function and glycemic control was better in cluster 3 homing 25% of t2dm. Cluster 2 held 28% of t1dm and LADA, in this cluster more than 60% of patients was t2dm. n-3 linolenic acid, n-3 LC-PUFAs, some n-6 LC-PUFAs, n-3/n-6 ratio and triene/tetraene ratio were negatively associated with GADA positivity while n-6 Arachidonic Acid was associated positively with GADA. Similar findings were found for insulin sensitivity and beta cell function. CONCLUSION PUFA are associated with insulin sensitivity and beta cell function, and like other clinical features, FA profile distributed differently, but could not be used as makers to differentiate LADA from t1dm and t2dm. ETHICS AND DISSEMINATION This study has been approved by the Ethical Review Committee of Second Hospital of Dalian Medical University (approval number: 2021-005). CLINICAL TRIAL REGISTRATION none.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nan Liu
- *Correspondence: Benli Su, ; Nan Liu,
| | - Benli Su
- *Correspondence: Benli Su, ; Nan Liu,
| |
Collapse
|
17
|
Eating and nutrition links to cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev 2021; 40:1223-1249. [PMID: 34967927 PMCID: PMC8825384 DOI: 10.1007/s10555-021-10013-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer, the most frequent cancer in women, is characterized by pathological changes to the microbiome of breast tissue, the tumor, the gut, and the urinary tract. Changes to the microbiome are determined by the stage, grade, origin (NST/lobular), and receptor status of the tumor. This year is the 50th anniversary of when Hill and colleagues first showed that changes to the gut microbiome can support breast cancer growth, namely that the oncobiome can reactivate excreted estrogens. The currently available human and murine data suggest that oncobiosis is not a cause of breast cancer, but can support its growth. Furthermore, preexisting dysbiosis and the predisposition to cancer are transplantable. The breast's and breast cancer's inherent microbiome and the gut microbiome promote breast cancer growth by reactivating estrogens, rearranging cancer cell metabolism, bringing about a more inflammatory microenvironment, and reducing the number of tumor-infiltrating lymphocytes. Furthermore, the gut microbiome can produce cytostatic metabolites, the production of which decreases or blunts breast cancer. The role of oncobiosis in the urinary tract is largely uncharted. Oncobiosis in breast cancer supports invasion, metastasis, and recurrence by supporting cellular movement, epithelial-to-mesenchymal transition, cancer stem cell function, and diapedesis. Finally, the oncobiome can modify the pharmacokinetics of chemotherapeutic drugs. The microbiome provides novel leverage on breast cancer that should be exploited for better management of the disease.
Collapse
Affiliation(s)
- Tünde Kovács
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Heba Yousef
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Viktória Csontos
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
19
|
Rao Malla R, Marni R, Kumari S, Chakraborty A, Lalitha P. Microbiome Assisted Tumor Microenvironment: Emerging Target of Breast Cancer. Clin Breast Cancer 2021; 22:200-211. [PMID: 34625387 DOI: 10.1016/j.clbc.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
The microbiome assisted tumor microenvironment (TME) supports the tumors by modulating multiple mechanisms. Recent studies reported that microbiome dysbiosis is the main culprit of immune suppressive phenotypes of TME. Further, it has been documented that immune suppressive stimulate metastatic phenotype in TME via modulating signaling pathways, cell differentiation, and innate immune response. This review aims at providing comprehensive developments in microbiome and breast TME interface. The combination of microbiome and breast cancer, breast TME and microbiome or microbial dysbiosis, microbiome and risk of breast cancer, microbiome and phytochemicals or anticancer drugs were as used keywords to retrieve literature from PubMed, Google scholar, Scopus, Web of Science from 2015 onwards. Based on the literature, we presented the impact of TME assisted microbiome dysbiosis and estrobolome in breast cancer risk, drug resistance, and antitumor immunity. We have discussed the influence of antibiotics on the breast microbiome. we also presented the possible dietary phytochemicals that target microbiome dysbiosis to restore the tumor suppression immune environment in breast TME. We presented the microbiome as a possible marker for breast cancer diagnosis. This study will help in the identification of microbiome as a novel target and diagnostic markers and phytochemicals and microbiome metabolites for breast cancer treatment.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.
| | - Rakshmitha Marni
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | | | - Pappu Lalitha
- Department of Microbiology and FST, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
20
|
Ruo SW, Alkayyali T, Win M, Tara A, Joseph C, Kannan A, Srivastava K, Ochuba O, Sandhu JK, Went TR, Sultan W, Kantamaneni K, Poudel S. Role of Gut Microbiota Dysbiosis in Breast Cancer and Novel Approaches in Prevention, Diagnosis, and Treatment. Cureus 2021; 13:e17472. [PMID: 34513524 PMCID: PMC8405251 DOI: 10.7759/cureus.17472] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most common cause of cancer-related deaths in women. Breast cancer is still a major cause of morbidity and mortality among women despite all the available diagnostic and treatment modalities. The gut microbiota has drawn keen interest as an additional environmental risk factor in breast cancer, especially in sporadic cases. This article explores factors that disrupt the normal gut microbial composition and the role of gut microbial dysbiosis in the development of breast cancer. We finalized 40 relevant articles after searching Pubmed and Google Scholar using regular keywords and the Medical Subject Headings (MeSH) strategy. Gut microbiota dysbiosis has been shown to play a role in the development of breast cancer via estrogen-dependent mechanisms and non-estrogen-dependent mechanisms involving the production of microbial-derived metabolites, immune regulation, and effects on DNA. The gut microbiota influence estrogen metabolism hence estrogen levels. The metabolites that have demonstrated anticancer properties include lithocholic acid, butyrate, and cadaverine. New approaches targeting the gut microbiota have come up and may yield new advances in the prevention, diagnosis, and treatment of breast cancer. They include the use of prebiotics, probiotics, and hormone supplements to restore normobiosis in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Sheila W Ruo
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tasnim Alkayyali
- Internal Medicine, Marmara University, Istanbul, TUR
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Myat Win
- General Surgery, Nottingham University Hospitals NHS Trust, Nottingham, GBR
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anjli Tara
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Surgery, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | - Christine Joseph
- Urology and Obstetrics & Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amudhan Kannan
- General Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kosha Srivastava
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Olive Ochuba
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jasmine K Sandhu
- Obstetrics & Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Terry R Went
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Waleed Sultan
- Medicine, Beni Suef University Faculty of Medicine, Beni Suef, EGY
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Surgery, Halifax Health Medical Center, Daytona Beach, USA
| | - Ketan Kantamaneni
- Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Surgery, Dr.Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Gannavaram, IND
| | - Sujan Poudel
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| |
Collapse
|
21
|
Dilnaz F, Zafar F, Afroze T, Zakia UB, Chowdhury T, Swarna SS, Fathma S, Tasmin R, Sakibuzzaman M, Fariza TT, Eshan SH. Mediterranean Diet and Physical Activity: Two Imperative Components in Breast Cancer Prevention. Cureus 2021; 13:e17306. [PMID: 34567862 PMCID: PMC8451519 DOI: 10.7759/cureus.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/05/2022] Open
Abstract
Despite tremendous advances in medicine over the past few decades and significantly improved understanding of the symptomology and contributors to breast cancer (BC) incidence, BC rates continue to rise worldwide, with BC being a leading cause of cancer-related death among women. To reduce BC incidence, it is necessary to focus on promoting prevention strategies through a population-based approach of lowering exposure to modifiable risk factors in addition to the application of newer drug interventions (chemoprevention) for prevention in high-risk populations. Currently, available data suggest that lifestyle modifications through a healthy diet and increased physical activity (PA) play a crucial role in BC prevention; specifically, there is growing evidence to indicate that the Mediterranean diet (MeD) lowers cancer risk. This review summarizes the potential role of the MeD and PA in reducing BC risk, with an additional focus on microbial modulation in BC prevention, based on the current evidence obtained from PubMed. After reviewing the immunomodulatory and anticarcinogenic effects of both the MeD and PA, we conclude that further evaluation and proper implementation of both interventions can significantly reduce the risk of BC and associated mortality in the general population.
Collapse
Affiliation(s)
- Fahmida Dilnaz
- Internal Medicine, Jalalabad Ragib-Rabeya Medical College & Hospital, Sylhet, BGD
| | - Farzina Zafar
- Pediatric Emergency Medicine, Children's Healthcare of Atlanta, Decatur, USA
- Pediatric Emergency Medicine, Emory University School of Medicine, Decatur, USA
| | - Tanzina Afroze
- Division of Cardiology, University of Washington, Seattle, USA
| | - Ummul B Zakia
- Internal Medicine, Sir Salimullah Medical College, Dhaka, BGD
| | - Tutul Chowdhury
- Internal Medicine, One Brooklyn Health System, Brooklyn, USA
| | - Sanzida S Swarna
- Addiction Medicine, US Department of Veterans Affairs, Palo Alto, USA
| | - Sawsan Fathma
- Anesthesiology, Mayo Clinic, Rochester, USA
- Internal Medicine, Bangladesh Medical College and Hospital, Dhaka, BGD
| | - Ruhina Tasmin
- Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Md Sakibuzzaman
- Internal Medicine, University of Mississippi Medical Center, Jackson, USA
- Experimental Pathology (Cancer Biology), Mayo Clinic, Rochester, USA
- Internal Medicine, Sir Salimullah Medical College, Dhaka, BGD
- Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | | |
Collapse
|
22
|
Al-Shaer AE, Buddenbaum N, Shaikh SR. Polyunsaturated fatty acids, specialized pro-resolving mediators, and targeting inflammation resolution in the age of precision nutrition. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158936. [PMID: 33794384 PMCID: PMC8496879 DOI: 10.1016/j.bbalip.2021.158936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
Chronic inflammation contributes toward the pathogenesis of numerous diseases including, but not limited to, obesity, autoimmunity, cardiovascular diseases, and cancers. The discovery of specialized pro-resolving mediators (SPMs), which are critical for resolving inflammation, has commenced investigation into targeting pathways of inflammation resolution to improve physiological outcomes. SPMs are predominately synthesized from the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Therefore, one viable strategy to promote inflammation resolution would be to increase dietary intake of EPA/DHA, which are deficient in select populations. However, there are inconsistencies between the use of EPA/DHA as dietary or pharmacological supplements and improved inflammatory status. Herein, we review the literature on the relationship between the high n-6/n-3 PUFA ratio, downstream SPM biosynthesis, and inflammatory endpoints. We highlight key studies that have investigated how dietary intake of EPA/DHA increase tissue SPMs and their effects on inflammation. We also discuss the biochemical pathways by which EPA/DHA drive SPM biosynthesis and underscore mechanistic gaps in knowledge about these pathways which include a neglect for host genetics/ethnic differences in SPM metabolism, sexual dimorphism in SPM levels, and potential competition from select dietary n-6 PUFAs for enzymes of SPM synthesis. Altogether, establishing how dietary PUFAs control SPM biosynthesis in a genetic- and sex-dependent manner will drive new precision nutrition studies with EPA/DHA to prevent chronic inflammation in select populations.
Collapse
Affiliation(s)
- Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, 170 Rosenau Hall, CB# 7400, 135 Dauer Drive, Chapel Hill, NC, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, 170 Rosenau Hall, CB# 7400, 135 Dauer Drive, Chapel Hill, NC, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, 170 Rosenau Hall, CB# 7400, 135 Dauer Drive, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Newman TM, Shively CA, Register TC, Appt SE, Yadav H, Colwell RR, Fanelli B, Dadlani M, Graubics K, Nguyen UT, Ramamoorthy S, Uberseder B, Clear KYJ, Wilson AS, Reeves KD, Chappell MC, Tooze JA, Cook KL. Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. MICROBIOME 2021; 9:100. [PMID: 33952353 PMCID: PMC8101030 DOI: 10.1186/s40168-021-01069-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND The objective of this study was to increase understanding of the complex interactions between diet, obesity, and the gut microbiome of adult female non-human primates (NHPs). Subjects consumed either a Western (n=15) or Mediterranean (n=14) diet designed to represent human dietary patterns for 31 months. Body composition was determined using CT, fecal samples were collected, and shotgun metagenomic sequencing was performed. Gut microbiome results were grouped by diet and adiposity. RESULTS Diet was the main contributor to gut microbiome bacterial diversity. Adiposity within each diet was associated with subtle shifts in the proportional abundance of several taxa. Mediterranean diet-fed NHPs with lower body fat had a greater proportion of Lactobacillus animalis than their higher body fat counterparts. Higher body fat Western diet-fed NHPs had more Ruminococcus champaneliensis and less Bacteroides uniformis than their low body fat counterparts. Western diet-fed NHPs had significantly higher levels of Prevotella copri than Mediterranean diet NHPs. Western diet-fed subjects were stratified by P. copri abundance (P. copriHIGH versus P. copriLOW), which was not associated with adiposity. Overall, Western diet-fed animals in the P. copriHIGH group showed greater proportional abundance of B. ovatus, B. faecis, P. stercorea, P. brevis, and Faecalibacterium prausnitzii than those in the Western P. copriLOW group. Western diet P. copriLOW subjects had a greater proportion of Eubacterium siraeum. E. siraeum negatively correlated with P. copri proportional abundance regardless of dietary consumption. In the Western diet group, Shannon diversity was significantly higher in P. copriLOW when compared to P. copriHIGH subjects. Furthermore, gut E. siraeum abundance positively correlated with HDL plasma cholesterol indicating that those in the P. copriLOW population may represent a more metabolically healthy population. Untargeted metabolomics on urine and plasma from Western diet-fed P. copriHIGH and P. copriLOW subjects suggest early kidney dysfunction in Western diet-fed P. copriHIGH subjects. CONCLUSIONS In summary, the data indicate diet to be the major influencer of gut bacterial diversity. However, diet and adiposity must be considered together when analyzing changes in abundance of specific bacterial taxa. Interestingly, P. copri appears to mediate metabolic dysfunction in Western diet-fed NHPs. Video abstract.
Collapse
Affiliation(s)
- Tiffany M Newman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carol A Shively
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas C Register
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Susan E Appt
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, USF Center for Microbiome Research University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | | | | | | | | | | | | | - Beth Uberseder
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kenysha Y J Clear
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kimberly D Reeves
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mark C Chappell
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Janet A Tooze
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Wake Forest School of Medicine, 575 N. Patterson Ave, Suite 340, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
24
|
Sharma M, Arora I, Stoll ML, Li Y, Morrow CD, Barnes S, Berryhill TF, Li S, Tollefsbol TO. Nutritional combinatorial impact on the gut microbiota and plasma short-chain fatty acids levels in the prevention of mammary cancer in Her2/neu estrogen receptor-negative transgenic mice. PLoS One 2020; 15:e0234893. [PMID: 33382695 PMCID: PMC7774855 DOI: 10.1371/journal.pone.0234893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women. Various nutritional compounds possess anti-carcinogenic properties which may be mediated through their effects on the gut microbiota and its production of short-chain fatty acids (SCFAs) for the prevention of breast cancer. We evaluated the impact of broccoli sprouts (BSp), green tea polyphenols (GTPs) and their combination on the gut microbiota and SCFAs metabolism from the microbiota in Her2/neu transgenic mice that spontaneously develop estrogen receptor-negative [ER(-)] mammary tumors. The mice were grouped based on the dietary treatment: control, BSp, GTPs or their combination from beginning in early life (BE) or life-long from conception (LC). We found that the combination group showed the strongest inhibiting effect on tumor growth volume and a significant increase in tumor latency. BSp treatment was integrally more efficacious than the GTPs group when compared to the control group. There was similar clustering of microbiota of BSp-fed mice with combination-fed mice, and GTPs-fed mice with control-fed mice at pre-tumor in the BE group and at pre-tumor and post-tumor in the LC group. The mice on all dietary treatment groups incurred a significant increase of Adlercreutzia, Lactobacillus genus and Lachnospiraceae, S24-7 family in the both BE and LC groups. We found no change in SCFAs levels in the plasma of BSp-fed, GTPs-fed and combination-fed mice of the BE group. Marked changes were observed in the mice of the LC group consisting of significant increases in propionate and isobutyrate in GTPs-fed and combination-fed mice. These studies indicate that nutrients such as BSp and GTPs differentially affect the gut microbial composition in both the BE and LC groups and the key metabolites (SCFAs) levels in the LC group. The findings also suggest that temporal factors related to different time windows of consumption during the life-span can have a promising influence on the gut microbial composition, SCFAs profiles and ER(-) breast cancer prevention.
Collapse
MESH Headings
- Actinobacteria/drug effects
- Actinobacteria/isolation & purification
- Actinobacteria/physiology
- Animals
- Brassica/chemistry
- Clostridiales/drug effects
- Clostridiales/isolation & purification
- Clostridiales/physiology
- Diet/methods
- Fatty Acids, Volatile/blood
- Female
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/physiology
- Gene Expression
- Lactobacillus/drug effects
- Lactobacillus/isolation & purification
- Lactobacillus/physiology
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/blood
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Knockout
- Polyphenols/chemistry
- Polyphenols/pharmacology
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/deficiency
- Receptors, Estrogen/genetics
- Seedlings/chemistry
- Tea/chemistry
Collapse
Affiliation(s)
- Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Matthew L Stoll
- Division of Pediatric Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuanyuan Li
- Department of Obstetrics, Gynecology & Women's Heath, University of Missouri, Columbia, Missouri, United States of America
- Department of Surgery, University of Missouri, Columbia, Missouri, United States of America
| | - Casey D Morrow
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephen Barnes
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Taylor F Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
25
|
Sári Z, Mikó E, Kovács T, Boratkó A, Ujlaki G, Jankó L, Kiss B, Uray K, Bai P. Indoxylsulfate, a Metabolite of the Microbiome, Has Cytostatic Effects in Breast Cancer via Activation of AHR and PXR Receptors and Induction of Oxidative Stress. Cancers (Basel) 2020; 12:E2915. [PMID: 33050543 PMCID: PMC7599465 DOI: 10.3390/cancers12102915] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Changes to bacterial metabolite-elicited signaling, in oncobiosis associated with breast cancer, plays a role in facilitating the progression of the disease. We show that indoxyl-sulfate (IS), a tryptophan metabolite, has cytostatic properties in models of breast cancer. IS supplementation, in concentrations corresponding to the human serum reference range, suppressed tumor infiltration to the surrounding tissues and metastasis formation in a murine model of breast cancer. In cellular models, IS suppressed NRF2 and induced iNOS, leading to induction of oxidative and nitrosative stress, and, consequently, reduction of cell proliferation; enhanced oxidative and nitrosative stress are crucial in the subsequent cytostasis. IS also suppressed epithelial-to-mesenchymal transition vital for suppressing cellular movement and diapedesis. Furthermore, IS rendered cells hypometabolic, leading to a reduction in aldehyde-dehydrogenase positive cells. Pharmacological inhibition of the pregnane-X receptor using CH223191 and the aryl-hydrocarbon receptor using ketoconazole diminished the IS-elicited effects, suggesting that these receptors were the major receptors of IS in these models. Finally, we showed that increased expression of the human enzymes that form IS (Cyp2E1, Sult1A1, and Sult1A2) is associated with better survival in breast cancer, an effect that is lost in triple negative cases. Taken together, IS, similar to indolepropionic acid (another tryptophan metabolite), has cytostatic properties and higher expression of the metabolic machinery responsible for the formation of IS supports survival in breast cancer.
Collapse
Affiliation(s)
- Zsanett Sári
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Laura Jankó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Borbála Kiss
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
26
|
Sári Z, Mikó E, Kovács T, Jankó L, Csonka T, Lente G, Sebő É, Tóth J, Tóth D, Árkosy P, Boratkó A, Ujlaki G, Török M, Kovács I, Szabó J, Kiss B, Méhes G, Goedert JJ, Bai P. Indolepropionic Acid, a Metabolite of the Microbiome, Has Cytostatic Properties in Breast Cancer by Activating AHR and PXR Receptors and Inducing Oxidative Stress. Cancers (Basel) 2020; 12:E2411. [PMID: 32854297 PMCID: PMC7565149 DOI: 10.3390/cancers12092411] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Oncobiotic transformation of the gut microbiome may contribute to the risk of breast cancer. Recent studies have provided evidence that the microbiome secretes cytostatic metabolites that inhibit the proliferation, movement, and metastasis formation of cancer cells. In this study, we show that indolepropionic acid (IPA), a bacterial tryptophan metabolite, has cytostatic properties. IPA selectively targeted breast cancer cells, but it had no effects on non-transformed, primary fibroblasts. In cell-based and animal experiments, we showed that IPA supplementation reduced the proportions of cancer stem cells and the proliferation, movement, and metastasis formation of cancer cells. These were achieved through inhibiting epithelial-to-mesenchymal transition, inducing oxidative and nitrosative stress, and boosting antitumor immune response. Increased oxidative/nitrosative stress was due to the IPA-mediated downregulation of nuclear factor erythroid 2-related factor 2 (NRF2), upregulation of inducible nitric oxide synthase (iNOS), and enhanced mitochondrial reactive species production. Increased oxidative/nitrosative stress led to cytostasis and reductions in cancer cell stem-ness. IPA exerted its effects through aryl hydrocarbon receptor (AHR) and pregnane X receptor (PXR) receptors. A higher expression of PXR and AHR supported better survival in human breast cancer patients, highlighting the importance of IPA-elicited pathways in cytostasis in breast cancer. Furthermore, AHR activation and PXR expression related inversely to cancer cell proliferation level and to the stage and grade of the tumor. The fecal microbiome's capacity for IPA biosynthesis was suppressed in women newly diagnosed with breast cancer, especially with stage 0. Bacterial indole biosynthesis showed correlation with lymphocyte infiltration to tumors in humans. Taken together, we found that IPA is a cytostatic bacterial metabolite, the production of which is suppressed in human breast cancer. Bacterial metabolites, among them, IPA, have a pivotal role in regulating the progression but not the initiation of the disease.
Collapse
Affiliation(s)
- Zsanett Sári
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Laura Jankó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Tamás Csonka
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (G.M.)
| | - Gréta Lente
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Éva Sebő
- Kenézy Breast Center at Kenézy Gyula County Hospital, 4032 Debrecen, Hungary;
| | - Judit Tóth
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.T.); (P.Á.); (B.K.)
| | - Dezső Tóth
- Department of Surgery, Borsod-Abaúj-Zemplén County Hospital and University Teaching Hospital, 3526 Miskolc, Hungary;
| | - Péter Árkosy
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.T.); (P.Á.); (B.K.)
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Miklós Török
- Department of Pathology at Kenézy Gyula County Hospital, 4032 Debrecen, Hungary; (M.T.); (I.K.)
| | - Ilona Kovács
- Department of Pathology at Kenézy Gyula County Hospital, 4032 Debrecen, Hungary; (M.T.); (I.K.)
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Borbála Kiss
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.T.); (P.Á.); (B.K.)
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (G.M.)
| | - James J. Goedert
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20982, USA;
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
27
|
Ravnik Z, Muthiah I, Dhanaraj P. Computational studies on bacterial secondary metabolites against breast cancer. J Biomol Struct Dyn 2020; 39:7056-7064. [PMID: 32779523 DOI: 10.1080/07391102.2020.1805361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microbes exist in the human body provide more benefits by modulating metabolic processes, immunity, and signal transduction. However, microbial dysbiosis with harmful bacterial species can cause chronic inflammation and cancers. Hence human probiotics were recently paid more attention to immune responses, therapy, and diagnosis. Breast cancer is the second leading cancer worldwide and causes more death in women. The role of breast microbiome secondary metabolites in breast cancer is poorly studied. Research shows that breast has a specific microbiome inhabited with particular bacterial species. More significantly probiotics produced from breast microbiomes may act as a potential biomarker for breast cancer diagnosis. Hence this computational research aimed at the effect of chosen metabolites on breast cancer cell receptor G-protein-coupled bile acid receptor, Gpbar1 (TGR5). The current research suggested that cadaverine, succinate, p-cresol, and its derivatives could be used as a molecular marker in the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Zina Ravnik
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Indiraleka Muthiah
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | - Premnath Dhanaraj
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| |
Collapse
|
28
|
Jia L, Lu H, Wu J, Wang X, Wang W, Du M, Wang P, Du S, Su Y, Zhang N. Association between diet quality and obesity indicators among the working-age adults in Inner Mongolia, Northern China: a cross-sectional study. BMC Public Health 2020; 20:1165. [PMID: 32711506 PMCID: PMC7382798 DOI: 10.1186/s12889-020-09281-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background Obesity is a major risk factor for the global burden of disease in countries that are economically developed or not. This study aimed to investigate the association between diet quality and obesity indicators applying DASH and aMed. Methods This cross-sectional study on adult nutrition and chronic disease in Inner Mongolia (n = 1320). Dietary data were collected using 24-h diet recall for 3 consecutive days and weighing method. DASH and aMed were used to assess the dietary quality. WC, BMI and WC-BMI were used as obesity indicators. Logistic regression models were used to examine the associations between diet quality and obesity indicators. Results Higher diet quality, assessed by DASH, was only associated with WC. The odds ratio (OR) for abdominal obesity in the highest tertile of DASH scores compared with the lowest was 0.71 (95% confidence interval (CI) 0.53, 0.96; Ptrend = 0.03). Furthermore, aMed was inversely associated with obesity indicators. OR for abdominal obesity in the highest tertile of aMed score compared with the lowest were 0.63 (95% CI 0.47, 0.87; Ptrend = 0.005) and 0.57 (95% CI 0.41, 0.77; Ptrend = 0.02) for overweight and obesity, respectively, and 0.60 (95% CI 0.44, 0.81; Ptrend = 0.02) for high obesity risk. Conclusions Our findings suggest that dietary quality assessed using aMed is more closely associated with obesity than assessment using DASH in working-age adults in Inner Mongolia. The Mediterranean diet can be recommended as a healthy diet to control weight.
Collapse
Affiliation(s)
- Lu Jia
- Department of Health Statistics, School of Public Health, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Haiwen Lu
- Department of Medical Imaging, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Jing Wu
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xuemei Wang
- Department of Health Statistics, School of Public Health, Inner Mongolia Medical University, Hohhot, 010110, China.
| | - Wenrui Wang
- Department of Chronic Disease Control and Prevention, Inner Mongolia Center for Disease Control and Prevention, Hohhot, 010031, China
| | - Maolin Du
- Department of Health Statistics, School of Public Health, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Peiyu Wang
- Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing, 100191, China
| | - Sha Du
- Department of Health Statistics, School of Public Health, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yuenan Su
- Department of Health Statistics, School of Public Health, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Nan Zhang
- Department of Hygienic Toxicology, School of Public Health, Inner Mongolia Medical University, Hohhot, 010110, China
| |
Collapse
|
29
|
Silva AR, Moraes BPT, Gonçalves-de-Albuquerque CF. Mediterranean Diet: Lipids, Inflammation, and Malaria Infection. Int J Mol Sci 2020; 21:ijms21124489. [PMID: 32599864 PMCID: PMC7350014 DOI: 10.3390/ijms21124489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
The Mediterranean diet (MedDiet) consists of consumption of vegetables and healthy oils and have beneficial effects on metabolic and inflammatory diseases. Our goal here is to discuss the role of fatty acid content in MedDiet, mostly omega-3, omega-6, and omega-9 on malaria. Malaria affects millions of people around the globe. The parasite Plasmodium causes the disease. The metabolic and inflammatory alterations in the severe forms have damaging consequences to the host. The lipid content in the MedDiet holds anti-inflammatory and pro-resolutive features in the host and have detrimental effects on the Plasmodium. The lipids from the diet impact the balance of pro- and anti-inflammation, thus, lipids intake from the diet is critical to parasite elimination and host tissue damage caused by an immune response. Herein, we go into the cellular and molecular mechanisms and targets of the MedDiet fatty acids in the host and the parasite, reviewing potential benefits of the MedDiet, on inflammation, malaria infection progression, and clinical outcome.
Collapse
Affiliation(s)
- Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| | - Bianca P. T. Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, UNIRIO, Rio de Janeiro 20210-010, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| |
Collapse
|
30
|
Safety Evaluations of Single Dose of the Olive Secoiridoid S-(-)-Oleocanthal in Swiss Albino Mice. Nutrients 2020; 12:nu12020314. [PMID: 31991771 PMCID: PMC7071127 DOI: 10.3390/nu12020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Epidemiological and clinical studies compellingly showed the ability of Mediterranean diet rich in extra-virgin olive oil (EVOO) to reduce multiple diseases such as cancer, cardiovascular diseases, and aging cognitive functions decline. The S-(-)-Oleocanthal (OC) is a minor phenolic secoiridoid exclusively found in extra-virgin olive oil (EVOO). OC recently gained notable research attention due to its excellent in vitro and in vivo biological effects against multiple cancers, inflammations, and Alzheimer's disease. However, OC safety has not been comprehensively studied yet. This study reports for the first time the detailed safety of oral single OC dose in Swiss albino mice, applying the OECD 420 procedure. Male and female Swiss albino mice (n = 10) were orally treated with a single OC dose of either 10, 250, or 500 mg/kg bodyweight or equivalent volumes of distilled water. Mice fed a regular diet, and carefully observed for 14 days. Further, mice were then sacrificed, blood samples, and organs were collected and subjected to hematological, biochemical, and histological examinations. OC 10 mg/kg oral dose appears to be without adverse effects. Further, 250 mg/kg OC, p.o., is suggested as a possible upper dose for preclinical studies in the future.
Collapse
|
31
|
Jiang Y, Chen X, Fu S. Advances in the Correlation between Intestinal Microbiota and Breast Cancer Development. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/jct.2020.1112066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|