1
|
Kaur D, Qadri OS. Anthocyanin and phenolic landscape of Syzygium cumini extracts via green extraction. Food Chem 2025; 472:142916. [PMID: 39824078 DOI: 10.1016/j.foodchem.2025.142916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
This study determined the anthocyanin and phenolic profile of Syzygium cumini bioactive compounds, including anthocyanins and other flavonoids, alongside diverse phenolic compounds. The study optimized a green extraction technique (ultrasound-assisted enzymatic extraction (UAEE)) to obtain anthocyanin-rich extract from the fruit pulp of S. cumini using the pectinase enzyme. UHPLC-LC/MS, FTIR, and SEM were used to profile the secondary metabolites, functional groups, and surface morphology. Two major anthocyanins, cyanidin and malvidin, and twenty-three non-anthocyanins, including gallic acid, naringenin, myricetin, and kaempferol, were identified in the enzymatic extract of S. cumini. A central-composite design was used to optimize the extraction, analyzing the effects of enzyme concentration (0.01-0.03 %), pH (1-3), and ultrasonication time (5-15 min) on total anthocyanin content (438.75 ± 29.81 mg C3G/100 g db), determining the optimal points (0.01 %, 2 pH and 10 mins). The optimized extract was further investigated for total phenolic content and antioxidant activities. The study utilized an economical approach to effectively extract maximum anthocyanins from S. cumini fruit for their potential applications as a biocolorant in food products, simultaneously establishing promising health potential through available literature.
Collapse
Affiliation(s)
- Darshanjot Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Ovais Shafiq Qadri
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| |
Collapse
|
2
|
Ghiasi Hafezi S, Kolahi Ahari R, Saberi-Karimian M, Eslami Giski Z, Mansoori A, Ferns GA, Ebrahimi M, Heidari-Bakavoli A, Moohebati M, Yousefian S, Farrokhzadeh F, Esmaily H, Ghayour-Mobarhan M. Association of high-sensitivity C-reactive protein and hematologic-inflammatory indices with risk of cardiovascular diseases: a population-based study with partial least squares structural equation modeling approach. Mol Cell Biochem 2025; 480:1909-1918. [PMID: 39305373 DOI: 10.1007/s11010-024-05122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 02/21/2025]
Abstract
Partial least squares structural equation modeling is a simple approach that may be used to determine the factors associated with diseases. In the current study, we aimed to explore the most associated high-sensitivity C-reactive protein (hs-CRP) as well as hematologic-inflammatory indices for the risk of cardiovascular disease (CVD). A total of 7362 healthy (non-CVD) participants aged 35-65 years old from baseline investigation were evaluated in the Phase 2 follow-up. Of these, 1022 individuals were found to have CVDs in the second phase (10-year follow-up) of the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) cohort study. We used partial least squares structural equation modeling to develop a prediction model for association of CVD risk factors and hs-CRP as well as hematologic-inflammatory indices in the study population. According to the study, age had the most significant impact on the presence of CVD. Increasing in age by one unit raises the risk of CVD by 0.166. Also, serum hs-CRP was found to have the second-highest impact on CVD; increasing in age by one unit raises the risk of CVD by 0.042. The study also discovered a strong and significant correlation between red cell distribution width (RDW) and CVD. Moreover, the study found that several factors such as hemoglobin (HGB), neutrophil (NEUT), neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), and platelet-to-lymphocyte ratio (PLR) have indirect effects on CVD that are mediated by hs-CRP while controlling for age, sex and social-economic factors. Generally, the results showed that age, hs-CRP, and RDW were the most important risk factors on CVD.
Collapse
Affiliation(s)
- Somayeh Ghiasi Hafezi
- Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
- Departments of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rana Kolahi Ahari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Eslami Giski
- Department of Mathematics, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Amin Mansoori
- Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Mahmoud Ebrahimi
- Vascular and Endovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Heidari-Bakavoli
- Vascular and Endovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Vascular and Endovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Yousefian
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Farrokhzadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Departments of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashad, Iran.
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashad, Iran.
| |
Collapse
|
3
|
Fu Y, Wang C, Gao Z, Liao Y, Peng M, Fu F, Li G, Su D, Guo J, Shan Y. Microbes: Drivers of Chenpi manufacturing, biotransformation, and physiological effects. Food Chem 2025; 464:141631. [PMID: 39454433 DOI: 10.1016/j.foodchem.2024.141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Chenpi holds a rich history of both edible and medicinal applications worldwide, garnering increased attention from researchers in recent years due to its diverse physiological effects. While current research predominantly exploresed its chemical composition and physiological effects, there remains a notable gap in knowledge concerning its manufacturing, characteristic chemical substances, and the underlying mechanisms driving its physiological effects. In this review, the impacts of microbes on the manufacturing, biotransformation, and physiological effects of Chenpi were summarized, as well as the present status of product development. Furthermore, this review engaged in an in-depth discussion highlighting the challenges and shortcomings in recent research, while proposing potential directions and prospects. Additionally, the claim that "The longer the aging, the better the quality" of Chenpi was scientifically evaluated for the first time, providing a solid theoretical foundation for advancing the Chenpi industry.
Collapse
Affiliation(s)
- Yanjiao Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chao Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yanfang Liao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
4
|
Gangwar T, Poonia N, Subudhi RN, Arora V. Therapeutic potential and underlying mechanisms of phytoconstituents: emphasizing on resveratol, curcumin, quercetin, berberine, and hesperidin in ulcerative colitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03811-x. [PMID: 39878817 DOI: 10.1007/s00210-025-03811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits. Various natural compounds, including resveratrol, curcumin, quercetin, berberine, and hesperidin demonstrate immunomodulatory and oxido-inflammatory properties inside the gut epithelium, showing potential in managing ulcerative colitis. These compounds attenuate inflammatory mediators, NF-κB, and TLR4 signaling leading to a reduction in the production of inflammation-related cytokines, including TNF-α and IL-6. They also augment the activity of internal defense compounds, including superoxide radical dismutase enzyme and heme oxygenase-1, thereby alleviating oxidative damage. In addition, natural compounds have a profound effect on the endogenous microbiota and thus, support mucosal healing and intercellular barrier integrity. Both experimental and clinical analyses provide evidence that these bioactive compounds may help reduce clinical manifestations, induce and sustain remission, and improve the well-being of individuals suffering from ulcerative colitis. This review seeks to discuss various aspects of natural compounds in the management of ulcerative colitis, including mechanisms, therapeutic prospects, and hurdles, and hence the basis for future research and practice.
Collapse
Affiliation(s)
- Tanuj Gangwar
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Rudra Narayan Subudhi
- Institute of Pharmaceutical Sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Vimal Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
5
|
Beaver LM, Jamieson PE, Wong CP, Hosseinikia M, Stevens JF, Ho E. Promotion of Healthy Aging Through the Nexus of Gut Microbiota and Dietary Phytochemicals. Adv Nutr 2025; 16:100376. [PMID: 39832641 DOI: 10.1016/j.advnut.2025.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Aging is associated with the decline of tissue and cellular functions, which can promote the development of age-related diseases like cancer, cardiovascular disease, neurodegeneration, and disorders of the musculoskeletal and immune systems. Healthspan is the length of time an individual is in good health and free from chronic diseases and disabilities associated with aging. Two modifiable factors that can influence healthspan, promote healthy aging, and prevent the development of age-related diseases, are diet and microbiota in the gastrointestinal tract (gut microbiota). This review will discuss how dietary phytochemicals and gut microbiota can work in concert to promote a healthy gut and healthy aging. First, an overview is provided of how the gut microbiota influences healthy aging through its impact on gut barrier integrity, immune function, mitochondria function, and oxidative stress. Next, the mechanisms by which phytochemicals effect gut health, inflammation, and nurture a diverse and healthy microbial composition are discussed. Lastly, we discuss how the gut microbiota can directly influence health by producing bioactive metabolites from phytochemicals in food like urolithin A, equol, hesperetin, and sulforaphane. These and other phytochemical-derived microbial metabolites that may promote healthspan are discussed. Importantly, an individual's capacity to produce health-promoting microbial metabolites from cruciferous vegetables, berries, nuts, citrus, and soy products will be dependent on the specific bacteria present in the individual's gut.
Collapse
Affiliation(s)
- Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Paige E Jamieson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Carmen P Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Mahak Hosseinikia
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
6
|
Zhou P, Xu HJ, Wang L. Cardiovascular protective effects of natural flavonoids on intestinal barrier injury. Mol Cell Biochem 2025:10.1007/s11010-025-05213-2. [PMID: 39820766 DOI: 10.1007/s11010-025-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression). Furthermore, the mechanisms driving intestinal barrier injury development are briefly explored, as well as natural flavonoids having CVD-protective actions on the intestinal barrier. In addition, natural flavonoids with myocardial protective effects were docked with ZO-1 targets to find natural products with higher activity. These natural flavonoids can improve intestinal mechanical barrier function through anti-oxidant or anti-inflammatory mechanism, and then prevent the occurrence and development of CVDs.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hui-Juan Xu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
7
|
Rao MJ, Wang H, Lei H, Zhang H, Duan X, Bao L, Yang C, Han D, Zhang Y, Yang S, Duan M. LC-MS/MS-based metabolomic study provides insights into altitude-dependent variations in flavonoid profiles of strawberries. FRONTIERS IN PLANT SCIENCE 2025; 15:1527212. [PMID: 39840353 PMCID: PMC11746042 DOI: 10.3389/fpls.2024.1527212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Environmental conditions significantly influence the metabolic composition and quality attributes of fruits. This study investigated the impact of altitude-associated environmental variation on flavonoid profiles and fruit quality parameters by comparing the "Red Face" strawberry variety grown in two distinct locations: high-altitude-associated environmental conditions in Zhaotong and low-altitude conditions in Dandong. Using LC-MS/MS analysis, we identified 163 bioactive flavonoids, comprising 85 flavonols, 37 flavanones, 33 flavones, and 8 flavanonols. The high-altitude environment of Zhaotong significantly enhanced specific flavonoid compounds, with notable increases in neohesperidin (20.4-fold), tamarixetin-3-O-glucoside-7-O-rhamnoside (17.7-fold), isovitexin (9.1-fold), and hesperidin (8.5-fold) compared to Dandong-grown fruits. Conversely, Dandong-grown fruits showed higher levels of chrysoeriol-7-O-glucoside (53.9-fold), 6-hydroxykaempferol-6,7-O-diglucoside (36.3-fold), and eucalyptin (9.7-fold). The tricetin 3'-glucuronide (24.49% vs 15.31%) and quercetin-4'-O-glucuronide (24.15% vs 15.59%), are the major flavonoids identified in Zhaotong strawberries than Dandong-grown fruits. Furthermore, strawberries cultivated in Zhaotong demonstrated superior antioxidant activities and capacity, increased quality parameters, including higher sugar content (15.30°Brix vs 10.96°Brix), increased ascorbic acid (15.73 mg/g vs 8.53 mg/g), and optimal firmness (20.51 N vs 23.16 N) than Dandong strawberries. These findings suggest that high-altitude cultivation conditions positively influence strawberry fruit characteristics, enhancing both bioactive compound profiles and overall fruit quality. This research provides valuable insights for optimizing strawberry cultivation conditions to maximize nutritional and commercial value.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Huaizheng Wang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Huaming Lei
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Hongcha Zhang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Xiande Duan
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Liuyuan Bao
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Chengcui Yang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Duo Han
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Yongzhi Zhang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Shunqiang Yang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Mingzheng Duan
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| |
Collapse
|
8
|
Yin Y, Xu J, Ilyas I, Xu S. Bioactive Flavonoids in Protecting Against Endothelial Dysfunction and Atherosclerosis. Handb Exp Pharmacol 2025; 287:1-31. [PMID: 38755351 DOI: 10.1007/164_2024_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanjun Yin
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
9
|
Singh H, Kamal YT, Pandohee J, Mishra AK, Biswas A, Mohanto S, Kumar A, Nag S, Mishra A, Singh M, Gupta H, Chopra H. Dietary phytochemicals alleviate the premature skin aging: A comprehensive review. Exp Gerontol 2025; 199:112660. [PMID: 39694450 DOI: 10.1016/j.exger.2024.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Skin aging, often called as premature skin aging, is the hastened deterioration of the skin resulting from multiple factors, including UV radiation, environmental contaminants, inadequate nutrition, stress, etc. Dietary phytochemicals, present in fruits, vegetables, and other plant-derived meals, have gained interest due to their efficiency to eradicate free radicals and lowering the release of inflammatory mediators which accounts for premature skin aging. Several dietary phytochemicals, i.e., carotenoids, polyphenols, flavonoids, terpenes, alkaloids, phytosterols, etc., exhibited potential anti-oxidant, anti-inflammatory, suppression of UV damage, and promote collagen synthesis. In addition, dietary phytochemicals include sulfur, present in various foods safeguard the skin against oxidative stress and inflammation. Thus, this article delves into the comprehension of various dietary phytochemicals investigated to alleviate the premature skin aging. The article further highlights specific phytochemicals and their sources, bioavailability, mechanisms, etc., in the context of safeguarding the skin against oxidative stress and inflammation. The present manuscript is a systematic comprehension of the available literature on dietary phytochemicals and skin aging in various database, i.e., PubMed, ScienceDirect, Google Scholar using the keywords, i.e., "dietary phytochemicals", "nutraceuticals", "skin aging" etc., via Boolean operator, i.e., "AND". The dietary guidelines presented in the manuscript is a unique summarization for a broad reader to understand the inclusion of various functional foods, nutrients, supplements, etc., to prevent premature skin aging. Thus, the utilization of dietary phytochemicals has shown a promising avenue in preventing skin aging, however, the future perspectives and challenges of such phytochemicals should be comprehended via clinical investigations.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Y T Kamal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 611441, Saudi Arabia
| | - Jessica Pandohee
- Sydney Mass Spectrometry, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal 700118, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mhaveer Singh
- Pharmacy Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Himanshu Gupta
- Department of Chemistry, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
10
|
Ma R, You H, Liu H, Bao J, Zhang M. Hesperidin:a citrus plant component, plays a role in the central nervous system. Heliyon 2024; 10:e38937. [PMID: 39553629 PMCID: PMC11564962 DOI: 10.1016/j.heliyon.2024.e38937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 11/19/2024] Open
Abstract
Hesperidin is a kind of flavonoids, which has the biological activities of antioxidation, anti-inflammation, antibacterial, anti-virus, anti-allergy, anti-cancer, heart protection and neuroprotection. More and more studies have begun to pay attention to the therapeutic prospect of hesperidin in central nervous system (CNS) diseases. This paper describes its current role in the treatment of central nervous system diseases, especially stroke, and discusses its bioavailability, so as to provide a theoretical basis for the clinical application of hesperidin.
Collapse
Affiliation(s)
- Rui Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hong You
- Sino-French Neurorehabilitation Department of Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hong Liu
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juan Bao
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Min Zhang
- Sino-French Neurorehabilitation Department of Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Ju L, Shao Q, Fang Z, Trevisi E, Chen M, Song Y, Gao W, Lei L, Li X, Liu G, Du X. Dietary supplementation with citrus peel extract in transition period improves rumen microbial composition and ameliorates energy metabolism and lactation performance of dairy cows. J Anim Sci Biotechnol 2024; 15:152. [PMID: 39516884 PMCID: PMC11549748 DOI: 10.1186/s40104-024-01110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND During the transition period, excessive negative energy balance (NEB) lead to metabolic disorders and reduced milk yield. Rumen microbes are responsible for resolving plant material and producing volatile fatty acids (VFA), which are the primary energy source for cows. In this study, we aimed to investigate the effect of citrus peel extract (CPE) supplementation on rumen microbiota composition, energy metabolism and milk performance of peripartum dairy cows. METHODS Dairy cows were fed either a basal diet (CON group) or the same basal diet supplemented with CPE via intragastric administration (4 g/d, CPE group) for 6 weeks (3 weeks before and 3 weeks after calving; n = 15 per group). Samples of serum, milk, rumen fluid, adipose tissue, and liver were collected to assess the effects of CPE on rumen microbiota composition, rumen fermentation parameters, milk performance, and energy metabolic status of dairy cows. RESULTS CPE supplementation led to an increase in milk yield, milk protein and lactose contents, and serum glucose levels, while reduced serum concentrations of non-esterified fatty acid, β-hydroxybutyric acid, insulin, aspartate aminotransferase, alanine aminotransferase, and haptoglobin during the first month of lactation. CPE supplementation also increased the content of ruminal VFA. Compared to the CON group, the abundance of Prevotellaceae, Methanobacteriaceae, Bacteroidales_RF16_group, and Selenomonadaceae was found increased, while the abundance of Oscillospiraceae, F082, Ruminococcaceae, Christensenellaceae, Muribaculaceae UCG-011, Saccharimonadaceae, Hungateiclostridiaceae, and Spirochaetaceae in the CPE group was found decreased. In adipose tissue, CPE supplementation decreased lipolysis, and inflammatory response, while increased insulin sensitivity. In the liver, CPE supplementation decreased lipid accumulation, increased insulin sensitivity, and upregulated expression of genes involved in gluconeogenesis. CONCLUSIONS Our findings suggest that CPE supplementation during the peripartum period altered rumen microbiota composition and increased ruminal VFA contents, which further improved NEB and lactation performance, alleviated lipolysis and inflammatory response in adipose tissue, reduced lipid accumulation and promoted gluconeogenesis in liver. Thus, CPE might contribute to improve energy metabolism and consequently lactation performance of dairy cows during the transition period.
Collapse
Affiliation(s)
- Lingxue Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Qi Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Meng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
12
|
Ali Redha A, Kodikara C, Cozzolino D. Does Encapsulation Improve the Bioavailability of Polyphenols in Humans? A Concise Review Based on In Vivo Human Studies. Nutrients 2024; 16:3625. [PMID: 39519458 PMCID: PMC11547751 DOI: 10.3390/nu16213625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Polyphenols offer an array of health benefits that can contribute to well-being. Nevertheless, their bioactivity can be compromised due to their low bioavailability. Encapsulation has been explored as a strategy to enhance the stability and bioavailability of polyphenols. During encapsulation, polyphenols are protected from degradation by a wall material that acts as a protective coating. This coating shields the polyphenols from the harsh physiological conditions of digestion, ensuring their delivery to the intestine. However, the majority of evidence, particularly regarding bioavailability after digestion, is derived from in vitro studies. While these studies provide valuable preliminary insights, they cannot definitively confirm the effects in vivo due to their inability to accurately replicate physiological conditions and the complex gut microbial ecosystem. Consequently, this review seeks to evaluate the current evidence from in vivo human studies to elucidate the efficacy of encapsulation in improving polyphenols' bioavailability. RESULTS AND CONCLUSIONS Current clinical evidence on the impact of encapsulation on polyphenol bioavailability is primarily focused on polyphenols derived from grape pomace, cocoa, and bilberries, as well as individual polyphenols such as fisetin, hesperidin, and curcumin. Encapsulation has been an effective technique in improving the bioavailability of individual polyphenols like hesperidin, fisetin, and curcumin. However, this approach has not yielded consistent results when applied to groups of polyphenols, such as bilberry anthocyanins or cocoa phenolic acids. Encapsulation by micellization has shown promising results in improving the bioavailability of curcumin in a nutraceutical context. Further studies are needed to explore the bioavailability of encapsulated polyphenols, especially in the functional food context.
Collapse
Affiliation(s)
- Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Chamali Kodikara
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Canadian Grain Commission, 303 Main St Suite 1000, Winnipeg, MB R3C 3G8, Canada
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
13
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
14
|
Liu T, Lei C, Huang Q, Song W, Li C, Sun N, Liu Z. Hesperidin and Fecal Microbiota Transplantation Modulate the Composition of the Gut Microbiota and Reduce Obesity in High Fat Diet Mice. Diabetes Metab Syndr Obes 2024; 17:3643-3656. [PMID: 39398388 PMCID: PMC11468570 DOI: 10.2147/dmso.s474034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Obesity, which is associated with gut microbiota dysbiosis, low-grade chronic inflammation and intestinal barrier dysfunction, can cause a variety of chronic metabolic diseases. Phytochemical flavonoids have a variety of biological activities, among which there may be safe and effective anti-obesity solutions. Methods We tested a plant-derived flavonoid hesperidin and fecal microbiota transplantation (FMT) to alleviate diet-induced obesity. High-fat diet (HFD)-fed mice were treated with hesperidin (100 and 200 mg/kg BW) and FMT. Results Results indicated that hesperidin had the effects of reducing obesity as indicated by reduction of body weight, fat accumulation and blood lipids, reducing inflammation as indicated by reduction of pro-inflammation factors including TNFα, IL-6, IL-1βand iNOS, and improving gut integrity as indicated by increasing colon length, reducing plasma gut permeability indicators iFABP and LBP, increased mRNA expression of mucus protein Muc2, tight junction p Claudin 2, Occludin and ZO-1 in the HFD-fed mice. The anti-obesity effects of hesperidin treatment have a dose-dependent manner. In addition, 16S rRNA-based gut microbiota analysis revealed that hesperidin selectively promoted the growth of Lactobacillus salivarius, Staphylococcus sciuri and Desulfovibrio C21_c20 while inhibiting Bifidobacterium pseudolongum, Mucispirillum schaedleri, Helicobacter ganmani and Helicobacter hepaticus in the HFD-fed mice. Horizontal feces transfer from the normal diet (ND)-fed mice to the HFD-fed mice conferred anti-obesity effects and transmitted some of the HFD-modulated microbes. Conclusion We concluded that hesperidin and FMT both affect the reduction of body weight and improve HFD-related disorders in the HFD-fed mice possibly through modulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, People’s Republic of China
| | - Chao Lei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, People’s Republic of China
| | - Qinhong Huang
- The First Clinical College, Guangzhou Medical University, Guangzhou, 511400, People’s Republic of China
| | - Weiqi Song
- Department of Public Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chen Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, People’s Republic of China
| | - Ning Sun
- Guangzhou 11th People’s Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, 510530, People’s Republic of China
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Zhihua Liu
- Department of Anorectal Surgery, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, People’s Republic of China
| |
Collapse
|
15
|
Syed RU, Banu H, Alshammrani A, Alshammari MD, G SK, Kadimpati KK, Khalifa AAS, Aboshouk NAM, Almarir AM, Hussain A, Alahmed FK. MicroRNA-21 (miR-21) in breast cancer: From apoptosis dysregulation to therapeutic opportunities. Pathol Res Pract 2024; 262:155572. [PMID: 39226804 DOI: 10.1016/j.prp.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer, a pervasive and complex disease, continues to pose significant challenges in the field of oncology. Its heterogeneous nature and diverse molecular profiles necessitate a nuanced understanding of the underlying mechanisms driving tumorigenesis and progression. MicroRNA-21 (miR-21) has emerged as a crucial player in breast cancer development and progression by modulating apoptosis, a programmed cell death mechanism that eliminates aberrant cells. MiR-21 overexpression is a hallmark of breast cancer, and it is associated with poor prognosis and resistance to conventional therapies. This miRNA exerts its oncogenic effects by targeting various pro-apoptotic genes, including Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN). By suppressing these genes, miR-21 promotes breast cancer cell survival, proliferation, invasion, and metastasis. The identification of miR-21 as a critical regulator of apoptosis in breast cancer has opened new avenues for therapeutic intervention. This review investigates the intricate mechanisms through which miR-21 influences apoptosis, offering insights into the molecular pathways and signaling cascades involved. The dysregulation of apoptosis is a hallmark of cancer, and understanding the role of miR-21 in this context holds immense therapeutic potential. Additionally, the review highlights the clinical significance of miR-21 as a diagnostic and prognostic biomarker in breast cancer, underscoring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Alia Alshammrani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Satheesh Kumar G
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Poland
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | - Arshad Hussain
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Farah Khaled Alahmed
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| |
Collapse
|
16
|
Kuşi M, Becer E, Vatansever HS. Basic approach on the protective effects of hesperidin and naringin in Alzheimer's disease. Nutr Neurosci 2024:1-13. [PMID: 39225173 DOI: 10.1080/1028415x.2024.2397136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. This situation imposes a great burden on individuals, both economically and socially. Today, an effective method for treating the disease and protective approach to tau accumulation has not been developed yet. Studies have been conducted on the effects of hesperidin and naringin flavonoids found in citrus fruits on many diseases. METHODS In this review, the pathophysiology of AD is defined, and the effects of hesperidin and naringin on these factors are summarized. RESULTS Studies have shown that both components may potentially affect AD due to their antioxidative and anti-inflammatory properties. Based on these effects of the components, it has been shown that they may have ameliorative effects on Aβ, α-synuclein aggregation, tau pathology, and cognitive functions in the pathophysiology of AD. DISCUSSION There are studies suggesting that hesperidin and naringin may be effective in the prevention/treatment of AD. When these studies are examined, it is seen that more studies should be conducted on the subject.
Collapse
Affiliation(s)
- Müjgan Kuşi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Research Center for Science, Technology and Engineering (BILTEM), Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
17
|
Shabani M, Jamali Z, Bayrami D, Salimi A. Hesperidin via maintenance of mitochondrial function and antioxidant activity protects lithium toxicity in rat heart isolated mitochondria. Drug Chem Toxicol 2024; 47:597-605. [PMID: 37369581 DOI: 10.1080/01480545.2023.2228521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Lithium is commonly used in the treatment of bipolar disorders (BD) and consumer electronics. It has been reported that lithium exposure is associated with mitochondrial dysfunction and oxidative stress in isolated cardiac mitochondria. Mitochondrial protection has a key role in myocardial tissue homeostasis, cardiomyocyte survival and inhibition of cardiotoxicity. Hesperidin as a flavanone and cardioprotective agent has shown high potential in antioxidant activity and restoration of mitochondrial dysfunction in different models. Therefore, we aimed to evaluate the ameliorative effects of hesperidin against lithium-induced mitochondrial toxicity in rat cardiac mitochondria. Isolated mitochondria were classified into six groups; control, lithium carbonate (125 µM), three groups of lithium + hesperidin-treated received lithium (125 µM) and hesperidin with various concentrations (10, 50, and 100 µM) and hesperidin (100 µM). Succinate dehydrogenases (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial glutathione (GSH) and lipid peroxidation (LPO) were measured. The mitochondria received lithium showed a significant reduction of SDH activity, MMP collapse, mitochondrial swelling, induction of ROS formation and lipid peroxidation. However, we observed that the administration of hesperidin (50 and 100 µM) resulted in the increase of SDH activity, improved MMP collapse, mitochondrial swelling, and reduced ROS formation and lipid peroxidation. Also, there were no obvious changes in cardiac mitochondria received of hesperidin. These findings suggest that hesperidin could reduce lithium-induced mitochondrial dysfunction through antioxidant activities in cardiac mitochondria, may be beneficial for prevention and treatment of lithium toxicities, either as a drug to treat BD or as an environmental pollutant.
Collapse
Affiliation(s)
- Mohammad Shabani
- Faculty of Pharmacy, Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Deniz Bayrami
- Faculty of Pharmacy, Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
18
|
Sharma V, Sharma A, Wadje BN, Bharate SB. Benzopyrone, a privileged scaffold in drug discovery: An overview of FDA-approved drugs and clinical candidates. Med Res Rev 2024; 44:2035-2077. [PMID: 38532246 DOI: 10.1002/med.22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Natural products have always served as an important source of drugs for treating various diseases. Among various privileged natural product scaffolds, the benzopyrone class of compounds has a substantial presence among biologically active compounds. One of the pioneering anticoagulant drugs, warfarin approved in 1954 bears a benzo-α-pyrone (coumarin) nucleus. The widely investigated psoriasis drugs, methoxsalen, and trioxsalen, also contain a benzo-α-pyrone nucleus. Benzo-γ-pyrone (chromone) containing drugs, cromoglic acid, and pranlukast were approved as treatments for asthma in 1982 and 2007, respectively. Numerous other small molecules with a benzopyrone core are under clinical investigation. The present review discusses the discovery, absorption, distribution, metabolism, excretion properties, and synthetic approaches for the Food and Drug Administration-approved and clinical-stage benzopyrone class of compounds. The role of the pyrone core in biological activity has also been discussed. The present review unravels the potential of benzopyrone core in medicinal chemistry and drug development.
Collapse
Affiliation(s)
- Venu Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Ankita Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Bhagyashri N Wadje
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| |
Collapse
|
19
|
Huang H, Liao D, He B, Zhou G, Cui Y. Effects of Citrus Flavanone Hesperidin Extracts or Purified Hesperidin Consumption on Risk Factors for Cardiovascular Disease: Evidence From an Updated Meta-analysis of Randomized Controlled Trials. Curr Dev Nutr 2024; 8:102055. [PMID: 39279783 PMCID: PMC11399677 DOI: 10.1016/j.cdnut.2023.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 09/18/2024] Open
Abstract
Background Cardiovascular disease (CVD) is a serious public health problem worldwide. The role of citrus flavanone hesperidin consumption on cardiovascular disease risk factors (CVDRFs) has been examined in many clinical trials, but conflicting results have been found. Objectives This study aimed to systematically evaluate the effects of hesperidin extracts or purified hesperidin on CVDRFs in humans with an updated meta-analysis of randomized controlled trials. Methods According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines, we systematically screened and searched electronic databases from their establishment to March 2023. Reference lists and previous reviews were also searched. Intervention trials assessing hesperidin consumption on CVD outcomes were included for pooling. To assess the quality of the included articles, the tool of Cochrane risk-of-bias tool was applied. We synthesized the effect sizes with 95% CIs and weighted mean difference (WMD). The I 2 index was used to evaluate the between-study heterogeneity. To explore the heterogeneity source, we used meta-regression and subgroup analysis. Publication bias and sensitivity analysis were also performed. We used the Grading of Recommendations Assessment, Development, and Evaluation approach to evaluate the evidence quality. Results We included 12 trials with 589 participants. We found evident effects of hesperidin on low-density lipoprotein cholesterol (WMD: -0.22 mmol/L; 95% CI: -0.33, -0.11 mmol/L), total cholesterol (WMD: -0.20 mmol/L; 95% CI: -0.31, -0.08 mmol/L), fasting blood glucose (WMD: -0.15 mg/dL; 95% CI: -0.29, -0.02 mg/dL), quantitative insulin-sensitivity check index (WMD 0.06, 95% CI 0.01 to 0.10), intercellular adhesion molecule 1 (WMD: -13.60 ng/mL; 95% CI: -23.72, -3.48 ng/mL), vascular cell adhesion molecule 1 (WMD: -15.60 ng/mL; 95% CI: -30.13, -1.06 ng/mL), and C-reactive protein (WMD: -0.56 mg/L; 95% CI: -1.11, -0.01 mg/L), whereas no effects were found for other CVDRFs. Conclusions Our current findings demonstrate that hesperidin might be advantageous in improving numerous CVDRFs in humans, such as blood lipid concentrations, blood glucose control, and management of inflammatory indicators.
Collapse
Affiliation(s)
- Haohai Huang
- Clinical Translational Medical Center, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Department of Clinical Pharmacy, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Dan Liao
- Department of Gynaecology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Bin He
- Clinical Translational Medical Center, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- Department of Rehabilitation Medicine, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
20
|
Xu K, Ren X, Wang J, Zhang Q, Fu X, Zhang PC. Clinical development and informatics analysis of natural and semi-synthetic flavonoid drugs: A critical review. J Adv Res 2024; 63:269-284. [PMID: 37949300 PMCID: PMC11380023 DOI: 10.1016/j.jare.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Flavonoids are one of the most important metabolites with vast structural diversity and a plethora of potential pharmacological applications, which have drawn considerable attention in the laboratory. Nevertheless, it remains uncertain how many candidates were progressed to clinical application. AIM OF REVIEW We carried out a critical review of natural and semi-synthetic flavonoid drugs and candidates undergoing different clinical phases worldwide by applying an adequate search method and conducted a brief cheminformatic and bioinformatic analysis. It was expected that the obtained results might narrow the screening scope and reduce the cost of drug research and development. KEY SCIENTIFIC CONCEPTS OF REVIEW To our knowledge, this is the most systematic summarization of flavonoid-based drugs and clinical candidates to date. It was found that a total of 19 flavonoid-based drugs have been approved for the market, and of these, natural flavonoids accounted for 52.6%. Besides, a total of 36 flavonoid-based clinical candidates are undergoing or suspended in different phases, and of these, natural flavonoids account for 44.4%. Thus, natural flavonoids remain the best option for finding novel agents/active templates, and when investigated in conjunction with synthetic chemicals and biologicals, they offer the potential to discover novel structures that can lead to effective agents against a variety of human diseases. Additionally, flavonoid-based marketed drugs have been successful in cardiovascular treatment, and the related drugs account for more than 30% of marketed drugs. However, the use of flavonoids as antineoplastic and immunomodulating agents is not likely for approximately 50% of the candidates suspended in the clinical stage. Interestingly, the marketed drugs covered a broader range of chemical spaces based on size, polarity, and three-dimensional structure compared to the clinical candidates. In addition, flavonoid glycosides with poor oral bioavailability account for 36.8% of the marketed drugs, and thus, they could be thoroughly investigated.
Collapse
Affiliation(s)
- Kuo Xu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China
| | - Xia Ren
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China
| | - Jintao Wang
- Chongqing Kangzhou Big Data (Group) Co., Ltd., Chongqing 401336, China
| | - Qin Zhang
- Chongqing Kangzhou Big Data (Group) Co., Ltd., Chongqing 401336, China
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China.
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
21
|
Olasehinde TA, Ekundayo TC, Ijabadeniyi OA, Olaniran AO. The Impact of Hesperidin on Cognitive Deficit and Neurobehavioural Disorders: A Systematic Review and Meta-Analysis of Preclinical Individual Studies. Curr Behav Neurosci Rep 2024; 11:246-259. [DOI: 10.1007/s40473-024-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 01/03/2025]
Abstract
AbstractPurpose of Review Experimental evidence suggests that flavonoids prevent neurodegeneration and improves cognitive function. In this study, we systematically reviewed the effect of hesperidin on cognitive deficits and neurobehavioural outcomes in in vivo studies.Recent Findings: A systematic search of PubMed, EBSCOhost, Web of Science, Scopus and ProQuest was conducted. Meta-analysis was performed on the effect of hesperidin on cognitive and neurobehavioural parameters (Morris Water Maze, Y-Maze, elevated plus maze, rotarod test, locomotion activity, passive avoidance test, open field test and forced swimming test). The mixed effect model was used to compute the standard mean difference (SMD). A total of 1069 documents were retrieved. However, 46 studies were included in the systematic review and meta-analysis. Our findings revealed that hesperidin did not significantly affect cognitive performance in normal rats compared with placebo. Moreover, hesperidin improved memory and learning, sensorimotor function and locomotion activity in cognitive impaired rats. Hesperidin did not show any significant effect on anxiety-related outcomes in the diseased model.Summary: Hesperidin improved cognitive function and neurocognitive effects could be associated with its neuroprotective effects against neuroinflammation, oxidative stress-induced neuronal damage, inhibition of cholinergic deficit and mitochondrial dysfunction. These results correlate with available scientific evidence on the effect of hesperidin on cognitive dysfunction and neurobehavioural deficits in cognitive-impaired rats.
Collapse
|
22
|
Sánchez-Martínez L, González-Barrio R, García-Alonso J, Mena P, Periago MJ. Assessing the Impact of (Poly)phenol-Rich Foods on Cardiometabolic Risk in Postmenopausal Women: A Dietary Trial. Antioxidants (Basel) 2024; 13:973. [PMID: 39199219 PMCID: PMC11351953 DOI: 10.3390/antiox13080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Menopause is a critical stage in a woman's life in which cardiometabolic alterations appear, such as insulin resistance or a predisposition to visceral fat deposits, leading to an increased risk of cardiometabolic diseases (R-CMBs). New strategies to reduce the R-CMBs in postmenopausal women using natural compounds without adverse effects are desirable. In this sense, plant-based diets rich in fruits and vegetables could play a fundamental role due to the high content of bioactive compounds found in these diets, such as (poly)phenols, known for their antioxidant, anti-inflammatory and vasodilator properties. The aim of this research was to carry out a dietary trial to evaluate the effect of the daily intake of different (poly)phenol-rich foods (PP-rich foods) for 2 months on the modulation of the main cardiometabolic risk biomarkers of postmenopausal women. The results showed a slight improvement in blood pressure (BP), lipid profile and oxidative stress, endothelial function and inflammatory biomarkers. These findings suggest that daily consumption of PP-rich foods alleviated the R-CMBs of postmenopausal women by reducing the oxidative stress and, thus, the risk of cardiovascular events; however, the magnitude of the cardioprotective effect of (poly)phenols depends on inter-individual variability.
Collapse
Affiliation(s)
- Lorena Sánchez-Martínez
- Department of Food Technology, Food Science and Nutrition, University of Murcia, CEIR Campus Mare Nostrum, Campus de Espinardo, 30100 Murcia, Spain; (L.S.-M.); (J.G.-A.)
- Biomedical Reserach Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, El Palmar, 30120 Murcia, Spain
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, University of Murcia, CEIR Campus Mare Nostrum, Campus de Espinardo, 30100 Murcia, Spain; (L.S.-M.); (J.G.-A.)
- Biomedical Reserach Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, El Palmar, 30120 Murcia, Spain
| | - Javier García-Alonso
- Department of Food Technology, Food Science and Nutrition, University of Murcia, CEIR Campus Mare Nostrum, Campus de Espinardo, 30100 Murcia, Spain; (L.S.-M.); (J.G.-A.)
- Biomedical Reserach Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, El Palmar, 30120 Murcia, Spain
| | - Pedro Mena
- Department of Food and Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy;
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - María-Jesús Periago
- Department of Food Technology, Food Science and Nutrition, University of Murcia, CEIR Campus Mare Nostrum, Campus de Espinardo, 30100 Murcia, Spain; (L.S.-M.); (J.G.-A.)
| |
Collapse
|
23
|
Vazquez-Flores AA, Muñoz-Bernal ÓA, Alvarez-Parrilla E, Rodriguez-Tadeo A, Martínez-Ruiz NDR, de la Rosa LA. Identification of Amino Acids and Polyphenolic Metabolites in Human Plasma by UHPLC-ESI-QTOF-MS/MS, after the Chronic Intake of a Functional Meal in an Elderly Population. Foods 2024; 13:2471. [PMID: 39200398 PMCID: PMC11354128 DOI: 10.3390/foods13162471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Novel foods especially formulated and targeted for the elderly population should provide sufficient nutrients and bioactive ingredients to counteract the natural age-related deterioration of various organs and tissues. Dietary protein and phenolic compounds achieve this goal; however, older adults have alterations in their gastrointestinal system that may impact their bioavailability and few studies have been aimed at this population. Since phenolic compounds are the subject of multiple biotransformations by host and microbiome enzymes during the digestion process, identification of their bioavailable forms in human plasma or tissues represents a considerable analytical challenge. In this study, UHPLC-ESI-QTOF/MS-MS, chemometrics, and multivariate statistical methods were used to identify the amino acids and phenolic compounds that were increased in the plasma of elderly adults after a 30-day intervention in which they had consumed an especially formulated muffin and beverage containing Brosimum alicastrum Sw. seed flour. A large interindividual variation was observed regarding the amino acids and phenolic metabolites identified in the plasma samples, before and after the intervention. Three phenolic metabolites were significantly increased in the population after the intervention: protocatechuic acid, 5-(methoxy-4'-hydroxyphenyl) valerolactone, and phloretic acid. These metabolites, as well as others that were not significantly increased (although they did increase in several individuals), are probably the product of the microbiota metabolism of the major phenolic compounds present in the B. alicastrum Sw. seed flour and other food ingredients. A significant decrease in 4-ethyl-phenol, a biomarker of stress, was observed in the samples. Results showed that the incorporation of foods rich in phenolic compounds into the regular diet of older adults contributes to the increase in bioactive compounds in plasma, that could substantially benefit their mental, cardiovascular, and digestive health.
Collapse
Affiliation(s)
- Alma A. Vazquez-Flores
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Benjamín Franklin No. 4650, Zona PRONAF, Ciudad Juárez 32315, Chihuahua, Mexico; (A.A.V.-F.); (Ó.A.M.-B.); (N.d.R.M.-R.)
| | - Óscar A. Muñoz-Bernal
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Benjamín Franklin No. 4650, Zona PRONAF, Ciudad Juárez 32315, Chihuahua, Mexico; (A.A.V.-F.); (Ó.A.M.-B.); (N.d.R.M.-R.)
| | - Emilio Alvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Benjamín Franklin No. 4650, Zona PRONAF, Ciudad Juárez 32315, Chihuahua, Mexico; (A.A.V.-F.); (Ó.A.M.-B.); (N.d.R.M.-R.)
| | - Alejandra Rodriguez-Tadeo
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Benjamín Franklin No. 4650, Zona PRONAF, Ciudad Juárez 32315, Chihuahua, Mexico;
| | - Nina del Rocío Martínez-Ruiz
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Benjamín Franklin No. 4650, Zona PRONAF, Ciudad Juárez 32315, Chihuahua, Mexico; (A.A.V.-F.); (Ó.A.M.-B.); (N.d.R.M.-R.)
| | - Laura A. de la Rosa
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Benjamín Franklin No. 4650, Zona PRONAF, Ciudad Juárez 32315, Chihuahua, Mexico; (A.A.V.-F.); (Ó.A.M.-B.); (N.d.R.M.-R.)
| |
Collapse
|
24
|
Yaghoubi N, Gholamzad A, Naji T, Gholamzad M. In vitro evaluation of PLGA loaded hesperidin on colorectal cancer cell lines: an insight into nano delivery system. BMC Biotechnol 2024; 24:52. [PMID: 39095760 PMCID: PMC11297711 DOI: 10.1186/s12896-024-00882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Colorectal cancer is a common disease worldwide with non-specific symptoms such as blood in the stool, bowel movements, weight loss and fatigue. Chemotherapy drugs can cause side effects such as nausea, vomiting and a weakened immune system. The use of antioxidants such as hesperidin could reduce the side effects, but its low bioavailability is a major problem. In this research, we aimed to explore the drug delivery and efficiency of this antioxidant on the HCT116 colorectal cancer cell line by loading hesperidin into PLGA nanoparticles. MATERIALS AND METHODS Hesperidin loaded PLGA nanoparticles were produced by single emulsion evaporation method. The physicochemical properties of the synthesized hesperidin-loaded nanoparticles were determined using SEM, AFM, FT-IR, DLS and UV-Vis. Subsequently, the effect of the PLGA loaded hesperidin nanoparticles on the HCT116 cell line after 48 h was investigated by MTT assay at three different concentrations of the nanoparticles. RESULT The study showed that 90% of hesperidin were loaded in PLGA nanoparticles by UV-Vis spectrophotometry and FT-IR spectrum. The nanoparticles were found to be spherical and uniform with a hydrodynamic diameter of 76.2 nm in water. The release rate of the drug was about 93% after 144 h. The lowest percentage of cell viability of cancer cells was observed at a concentration of 10 µg/ml of PLGA nanoparticles loaded with hesperidin. CONCLUSION The results indicate that PLGA nanoparticles loaded with hesperidin effectively reduce the survival rate of HCT116 colorectal cancer cells. However, further studies are needed to determine the appropriate therapeutic dosage and to conduct animal and clinical studies.
Collapse
Affiliation(s)
- Narges Yaghoubi
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tahere Naji
- Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
25
|
Gao H, Chen F, Wang S. Hesperidin reduces systolic blood pressure in diabetic patients and has no effect on blood pressure in healthy individuals: A systematic review and meta-analysis. Phytother Res 2024; 38:3706-3719. [PMID: 38772688 DOI: 10.1002/ptr.8231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/23/2024]
Abstract
In recent years, there have been a number of studies where hesperidin was administered to modify arterial blood pressure, but the conclusions of each study are contradictory. In order to investigate the effect of hesperidin on blood pressure, we searched the CNKI, Wanfang Database, the VIP database, Sinomed database, Pubmed, Embase and The Cochrane Library databases, and searched the literature on hesperidin and blood pressure published in Chinese and English journals, mainly focusing on patients' systolic blood pressure and diastolic blood pressure. The search time frame was from the inception of the databases until December 2023. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess the overall quality and used Cohen's kappa coefficient (κ) to measure agreement. We did preliminary screening of the retrieved literature through Notexpress, 14 articles with a total of 656 patients were included. Cochrance data conversion tool was used for data conversion, and RevMan 5.3 was used for meta-analysis, and finally Stata was used to make the Egger's test for the included study. The results of total population blood pressure showed that hesperidin had no antihypertensive effect on the population, but the conclusions changed when the population was divided into groups. The results of different populations showed that hesperidin had no effect on systolic blood pressure (weighted mean difference [WMD] = -0.50, 95% CI: -3.25 ~ 2.26, Z = 0.35, p = 0.72) and diastolic blood pressure (WMD = -0.51, 95% CI: -2.53 ~ 1.51, Z = 0.50, p = 0.62) in healthy individuals. However, hesperidin reduced systolic blood pressure in patients with type 2 diabetes (WMD = -4.32, 95% CI: - 7.77 ~ - 0.87, Z = 2.45, p = 0.01), and had a tendency to reduce diastolic blood pressure in diabetic patients (WMD = -3.72, 95% CI: -7.63 ~ 0.18, Z = 1.87, p = 0.06). The results in patients with type 2 diabetes needed to be further supported by future research focusing on individuals with diabetes.
Collapse
Affiliation(s)
- Haifeng Gao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Fang Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
26
|
Liu Y, Luo J, Peng L, Zhang Q, Rong X, Luo Y, Li J. Flavonoids: Potential therapeutic agents for cardiovascular disease. Heliyon 2024; 10:e32563. [PMID: 38975137 PMCID: PMC11225753 DOI: 10.1016/j.heliyon.2024.e32563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Flavonoids are found in the roots, stems, leaves, and fruits of many plant taxa. They are related to plant growth and development, pigment formation, and protection against environmental stress. Flavonoids function as antioxidants and exert anti-inflammatory effects in the cardiovascular system by modulating classical inflammatory response pathways, such as the TLR4-NF-ĸB, PI3K-AKT, and Nrf2/HO-1 signalling pathways. There is increasing evidence for the therapeutic effects of flavonoids on hypertension, atherosclerosis, and other diseases. The potential clinical value of flavonoids for diseases of the cardiovascular system has been widely explored. For example, studies have evaluated the roles of flavonoids in the regulation of blood pressure via endothelium-dependent and non-endothelium-dependent pathways and in the regulation of myocardial systolic and diastolic functions by influencing calcium homeostasis and smooth muscle-related protein expression. Flavonoids also have hypoglycaemic, hypolipidemic, anti-platelet, autophagy, and antibacterial effects. In this paper, the role and mechanism of flavonoids in cardiovascular diseases were reviewed in order to provide reference for the clinical application of flavonoids in the future.
Collapse
Affiliation(s)
- Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, China
| |
Collapse
|
27
|
He J, Liu X, Zhang J, Wang R, Cao X, Liu G. Gut microbiome-derived hydrolases-an underrated target of natural product metabolism. Front Cell Infect Microbiol 2024; 14:1392249. [PMID: 38915922 PMCID: PMC11194327 DOI: 10.3389/fcimb.2024.1392249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, there has been increasing interest in studying gut microbiome-derived hydrolases in relation to oral drug metabolism, particularly focusing on natural product drugs. Despite the significance of natural product drugs in the field of oral medications, there is a lack of research on the regulatory interplay between gut microbiome-derived hydrolases and these drugs. This review delves into the interaction between intestinal microbiome-derived hydrolases and natural product drugs metabolism from three key perspectives. Firstly, it examines the impact of glycoside hydrolases, amide hydrolases, carboxylesterase, bile salt hydrolases, and epoxide hydrolase on the structure of natural products. Secondly, it explores how natural product drugs influence microbiome-derived hydrolases. Lastly, it analyzes the impact of interactions between hydrolases and natural products on disease development and the challenges in developing microbial-derived enzymes. The overarching goal of this review is to lay a solid theoretical foundation for the advancement of research and development in new natural product drugs and personalized treatment.
Collapse
Affiliation(s)
- Jiaxin He
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Xiaofeng Liu
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Junming Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinyuan Cao
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| | - Ge Liu
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| |
Collapse
|
28
|
Zhuang H, Zhang X, Wu S, Mao C, Dai Y, Yong P, Niu X. Study transport of hesperidin based on the DPPC lipid model and the BSA transport model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124172. [PMID: 38513316 DOI: 10.1016/j.saa.2024.124172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Hesperidin (HE), a significant flavonoid polyphenolic compound present in citrus plants, exhibits diverse pharmacological effects. Considering the crucial involvement of biological membranes and transporter proteins in the transportation and biological processes of HE, it becomes essential to comprehend the potential mechanisms through which HE interacts with membranes and transporter proteins. In order to simulate the process of active molecule transport, a cell membrane model consisting of 1,2-dipalmitoyl-n-glycero-3-phosphatidylcholine (DPPC) and a transporter protein model of bovine serum albumin (BSA) were employed for investigation. The present study aimed to investigate the mechanism of action of hesperidin (HE) in DPPC and BSA using fluorescence quenching, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The localization and interaction of HE within liposomes were also elucidated. Furthermore, the binding of BSA and HE was analyzed through UV/Vis absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and computational biology techniques. Computational biology analysis revealed that the binding between HE and BSA primarily occurred via hydrogen bonding and hydrophobic interactions. This study aimed to investigate the role and mechanism of HE in the DPPC cell membrane model and the BSA transporter protein model, thereby offering novel insights into the action of HE in DPPC and BSA.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
29
|
Coutinho CP, Fraga LN, Rozenbaum AC, Carnauba RA, Vanzele PAR, Sparvoli LG, Taddei CR, Lajolo FM, Hassimotto NMA. Chronic consumption of orange juice modifies urinary excretion of flavanone gut-derived metabolites through gut microbiota modulation. Food Res Int 2024; 186:114328. [PMID: 38729714 DOI: 10.1016/j.foodres.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal β-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.
Collapse
Affiliation(s)
- Camille Perella Coutinho
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Layanne Nascimento Fraga
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Adriana Campos Rozenbaum
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Renata Alves Carnauba
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Pedro Augusto Ramos Vanzele
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences. University of São Paulo, São Paulo 05508-000. Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences. University of São Paulo, São Paulo 05508-000. Brazil
| | - Carla R Taddei
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences. University of São Paulo, São Paulo 05508-000. Brazil; School of Arts, Science and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil.
| |
Collapse
|
30
|
Das A, Rajkhowa S, Sinha S, Zaki MEA. Unveiling potential repurposed drug candidates for Plasmodium falciparum through in silico evaluation: A synergy of structure-based approaches, structure prediction, and molecular dynamics simulations. Comput Biol Chem 2024; 110:108048. [PMID: 38471353 DOI: 10.1016/j.compbiolchem.2024.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The rise of drug resistance in Plasmodium falciparum, rendering current treatments ineffective, has hindered efforts to eliminate malaria. To address this issue, the study employed a combination of Systems Biology approach and a structure-based pharmacophore method to identify a target against P. falciparum. Through text mining, 448 genes were extracted, and it was discovered that plasmepsins, found in the Plasmodium genus, play a crucial role in the parasite's survival. The metabolic pathways of these proteins were determined using the PlasmoDB genomic database and recreated using CellDesigner 4.4.2. To identify a potent target, Plasmepsin V (PF13_0133) was selected and examined for protein-protein interactions (PPIs) using the STRING Database. Topological analysis and global-based methods identified PF13_0133 as having the highest centrality. Moreover, the static protein knockout PPIs demonstrated the essentiality of PF13_0133 in the modeled network. Due to the unavailability of the protein's crystal structure, it was modeled and subjected to a molecular dynamics simulation study. The structure-based pharmacophore modeling utilized the modeled PF13_0133 (PfPMV), generating 10 pharmacophore hypotheses with a library of active and inactive compounds against PfPMV. Through virtual screening, two potential candidates, hesperidin and rutin, were identified as potential drugs which may be repurposed as potential anti-malarial agents.
Collapse
Affiliation(s)
- Abhichandan Das
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India.
| | - Subrata Sinha
- Department of Computational Sciences, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Kowalczyk A. Hesperidin, a Potential Antiviral Agent against SARS-CoV-2: The Influence of Citrus Consumption on COVID-19 Incidence and Severity in China. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:892. [PMID: 38929512 PMCID: PMC11206107 DOI: 10.3390/medicina60060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
This review examines hesperidin, a citrus bioflavonoid, as a potential antiviral agent against SARS-CoV-2. The COVID-19 pandemic has demanded an urgent need to search for effective antiviral compounds, including those of natural origin, such as hesperidin. The review provides a comprehensive analysis of the chemical properties, bioavailability and antiviral mechanisms of hesperidin, particularly its potential efficacy against SARS-CoV-2. A review of databases, including PubMedPico, Scopus and Web of Science, was conducted using specific keywords and search criteria in accordance with PRISMA (Re-porting Items for Systematic Reviews and Meta-Analysis) guidelines between 2020 and 2024. Of the 207 articles, 37 were selected for the review. A key aspect is the correlation of in vitro, in silico and clinical studies on the antiviral effects of hesperidin with epidemiological data on citrus consumption in China during 2020-2024. The importance of integrating laboratory findings with actual consumption patterns to better understand the role of hesperidin in mitigating COVID-19 was highlighted, and an attempt was made to analyze epidemiological studies to examine the association between citrus juice consumption as a source of hesperidin and the incidence and severity of COVID-19 using China as an example. The review identifies consistencies and discrepancies between experimental and epidemiological data, highlighting the need to correlate the two fields to better understand the potential of hesperidin as an agent against SARS-CoV-2. Challenges and limitations in interpreting the results and future research perspectives in this area are discussed. The aim of this comprehensive review is to bridge the gap between experimental studies and epidemiological evidence and to contribute to the understanding of their correlation.
Collapse
Affiliation(s)
- Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wrocław, Poland
| |
Collapse
|
32
|
Zhang Y, Chen X, Wang X, Xu Y, Li J, Wu Y, Wang Z, Zhang S, Hu J, Qi Q. Hesperetin ameliorates spinal cord injury in rats through suppressing apoptosis, oxidative stress and inflammatory response. Eur J Pharmacol 2024; 971:176541. [PMID: 38556120 DOI: 10.1016/j.ejphar.2024.176541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Spinal cord injury (SCI), a fatal condition, is characterized by progressive tissue degradation and extreme functional deficits with limited treatment options. Hesperetin, a natural flavonoid with potent antioxidant, antiapoptotic and anti-inflammatory properties, has yet to be systematically investigated for its therapeutic effects on neurological damage in rat models of SCI. In this study, rats were given oral hesperetin once daily for 28 days, and their locomotion and histopathological changes were assessed. The findings demonstrated that hesperetin alleviates neurological damage caused by SCI. The observed behavioral improvement could be due to an increase in the survival rate of neurons and oligodendrocytes. This improvement further boosted the ability to repair tissue and form myelin after SCI, ultimately resulting in better neurological outcomes. Furthermore, the present study revealed that hesperetin possesses potent antioxidant capabilities in the context of SCI, reducing the levels of harmful oxygen free radicals and increasing the activity of antioxidant enzymes. Additionally, hesperetin markedly inhibited injury-induced apoptosis, as assessed by caspase-3 immunofluorescence staining and the expression level of caspase-3, indicating the ability of hesperetin to prevent cell death after SCI. Finally, after SCI, hesperetin treatment effectively reduced the expression of inflammatory factors, including IL-1β, TNFα, and NF-kB, demonstrating the anti-inflammatory effect of hesperetin. Together, our results suggest that hesperetin should be considered a valuable therapeutic aid following SCI, as its positive effects on the nervous system, including antioxidant, anti-inflammatory and antiapoptotic effects, may be crucial mechanisms through which hesperetin exerts neuroprotective effects against SCI.
Collapse
Affiliation(s)
- Yuxin Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaojie Chen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaoxuan Wang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, China; Clinical Laboratory, Bengbu Municipal Second People Hospital, Bengbu, China
| | - Yibo Xu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jiaxin Li
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Yimin Wu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Ziyao Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Suhui Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
33
|
Baudin J, Hernandez-Baixauli J, Quesada-Vázquez S, Mulero F, Puiggròs F, Arola L, Caimari A. Combined supplementation with hesperidin, phytosterols and curcumin decreases adiposity and improves metabolic health in ovariectomized rats. Food Funct 2024; 15:4905-4924. [PMID: 38598180 DOI: 10.1039/d3fo05122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17β-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| |
Collapse
|
34
|
Shylaja H, Viswanatha GL, Sunil V, Hussain SM, Farhana SA. Effect of hesperidin on blood pressure and lipid profile: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2024; 38:2560-2571. [PMID: 38462779 DOI: 10.1002/ptr.8174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
The cardioprotective activity of hesperidin has been well demonstrated in several clinical studies. Also, there is a meta-analysis published on this topic in 2019. However, considering the recently published clinical studies, there is a scope for performing a systematic review and meta-analysis of hesperidin to determine its beneficial effect in alleviating alterations in cardiovascular parameters. In this study, the literature search was performed using online databases such as PubMed and Google Scholar till April 2023 involving randomized controlled studies conducted on hesperidin against various cardiovascular disorders including metabolic disorders in healthy/diseased individuals compared to the placebo/control. Based on the inclusion and exclusion criteria, nine clinical studies involving 2414 subjects were included. The meta-analysis revealed that hesperidin has significantly reduced the low-density lipoprotein (LDL) (IV: -0.55 (-0.94 to -0.16) at 95% CI, p = 0.005, I2 = 70%), total cholesterol (TC) (IV: -61 (-0.82 to -0.41) at 95% CI, p < 0.00001, I2 = 69%), and triglycerides (TG) (IV: -0.21 (-0.40 to -0.02) at 95% CI, p = 0.03, I2 = 12%). However, there were no statistically significant changes in the systolic blood pressure (IV: -0.29 (-2.21 to 1.63) at 95% CI, p = 0.77, I2 = 60%), diastolic blood pressure (IV: 0.79 (-0.74 to 2.31) at 95% CI, p = 0.31, I2 = 49%), and high-density lipoprotein (IV: 0.04 (-0.25 to 0.34) at 95% CI, p = 0.78, I2 = 56%) in the hesperidin treatment compared to the placebo/control. In conclusion, the outcomes of this meta-analysis suggest that hesperidin administration could benefit patients with CVD by reducing LDL, TC, and TG. Further high-quality studies are needed to firmly establish the clinical efficacy of hesperidin for its benefits in treating cardiovascular conditions.
Collapse
Affiliation(s)
| | | | | | - Shalam M Hussain
- Department of Clinical Pharmacy, Al-Rayan College of Health Sciences and Nursing, Madinah, Saudi Arabia
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Al Qassim, Saudi Arabia
| |
Collapse
|
35
|
Yang Q, Qian L, He S, Zhang C. Hesperidin alleviates zinc-induced nephrotoxicity via the gut-kidney axis in swine. Front Cell Infect Microbiol 2024; 14:1390104. [PMID: 38741891 PMCID: PMC11089138 DOI: 10.3389/fcimb.2024.1390104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Zinc (Zn) is an essential trace element in animals, but excessive intake can lead to renal toxicity damage. Thus, the exploration of effective natural antagonists to reduce the toxicity caused by Zn has become a major scientific problem. Methods Here, we found that hesperidin could effectively alleviate the renal toxicity induced by Zn in pigs by using hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, fluorescence quantitative PCR, and microfloral DNA sequencing. Results The results showed that hesperidin could effectively attenuate the pathological injury in kidney, and reduce autophagy and apoptosis induced by Zn, which evidenced by the downregulation of LC3, ATG5, Bak1, Bax, Caspase-3 and upregulation of p62 and Bcl2. Additionally, hesperidin could reverse colon injury and the decrease of ZO-1 protein expression. Interestingly, hesperidin restored the intestinal flora structure disturbed by Zn, and significantly reduced the abundance of Tenericutes (phylum level) and Christensenella (genus level). Discussion Thus, altered intestinal flora and intestinal barrier function constitute the gut-kidney axis, which is involved in hesperidin alleviating Zn-induced nephrotoxicity. Our study provides theoretical basis and practical significance of hesperidin for the prevention and treatment of Zn-induced nephrotoxicity through gut-kidney axis.
Collapse
Affiliation(s)
| | | | | | - Chuanshi Zhang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| |
Collapse
|
36
|
Chen H, Xin W, Jiang J, Shan A, Ma J. Low-dose deoxynivalenol exposure inhibits hepatic mitophagy and hesperidin reverses this phenomenon by activating SIRT1. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133854. [PMID: 38401214 DOI: 10.1016/j.jhazmat.2024.133854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Deoxynivalenol (DON) is by far the most common mycotoxin contaminating cereal foods and feeds. Furthermore, cleaning up DON from contaminated cereal items is challenging. Low-dose DON consumption poses a danger to humans and agricultural animals. The benefits of hesperidin (HDN) include liver protection, anti-oxidative stress, nontoxicity, and a broad range of sources. The study used immunoblotting, immunofluorescence, and transmission electron microscopy to identify factors associated with mitophagy in vitro and in vivo. We demonstrated that low-dose DON exposure inhibited mitophagy in the liver tissue of mice. SIRT1 was a crucial regulator of mitophagy. Moreover, DON stimulated the dephosphorylation of SIRT1 and the acetylation-regulated FOXO3 protein, which resulted in the transcriptional inhibition of FOXO3-driven BNIP3 and compromised the stability of the PINK1 protein mediated by BNIP3. Moreover, HDN's effect was comparable to that of a SIRT1 agonist, which led to a significant decrease in the level of mitophagy inhibition caused by low-dose DON exposure. When combined, these findings suggested that HDN might be a useful treatment approach for liver damage brought on by low-dose DON exposure. Above all, this research will offer fresh perspectives on a viable approach that will encourage further research into risk reduction initiatives for low-dose DON exposure.
Collapse
Affiliation(s)
- Hao Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wang Xin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
37
|
Wang S, Li X, Zhang B, Li Y, Chen K, Qi H, Gao M, Rong J, Liu L, Wan Y, Dong X, Yan M, Ma L, Li P, Zhao T. Tangshen formula targets the gut microbiota to treat non-alcoholic fatty liver disease in HFD mice: A 16S rRNA and non-targeted metabolomics analyses. Biomed Pharmacother 2024; 173:116405. [PMID: 38484559 DOI: 10.1016/j.biopha.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Tangshen formula (TSF) has an ameliorative effect on hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD), but the role played by the gut microbiota in this process is unknown. METHOD We conducted three batches of experiments to explore the role played by the gut microbiota: TSF administration, antibiotic treatment, and fecal microbial transplantation. NAFLD mice were induced with a high-fat diet to investigate the ameliorative effects of TSF on NAFLD features and intestinal barrier function. 16S rRNA sequencing and serum untargeted metabolomics were performed to further investigate the modulatory effects of TSF on the gut microbiota and metabolic dysregulation in the body. RESULTS TSF ameliorated insulin resistance, hypercholesterolemia, lipid metabolism disorders, inflammation, and impairment of intestinal barrier function. 16S rRNA sequencing analysis revealed that TSF regulated the composition of the gut microbiota and increased the abundance of beneficial bacteria. Antibiotic treatment and fecal microbiota transplantation confirmed the importance of the gut microbiota in the treatment of NAFLD with TSF. Subsequently, untargeted metabolomics identified 172 differential metabolites due to the treatment of TSF. Functional predictions suggest that metabolisms of choline, glycerophospholipid, linoleic acid, alpha-linolenic acid, and arachidonic acid are the key metabolic pathways by which TSF ameliorates NAFLD and this may be influenced by the gut microbiota. CONCLUSION TSF treats the NAFLD phenotype by remodeling the gut microbiota and improving metabolic profile, suggesting that TSF is a functional gut microbial and metabolic modulator for the treatment of NAFLD.
Collapse
Affiliation(s)
- Shaopeng Wang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China; College of Pharmacy, Shandong Second Medical University, Weifang, PR China
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Yuxi Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Kexu Chen
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China; College of Pharmacy, Shandong Second Medical University, Weifang, PR China
| | - Huimin Qi
- College of Pharmacy, Shandong Second Medical University, Weifang, PR China
| | - Mengqi Gao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Jin Rong
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Lin Liu
- Zoucheng Market Supervision Administration, Jining, PR China
| | - Yuzhou Wan
- Research and Development Department, Nanjing Denovo Pharma Co., Ltd, Nanjing, PR China
| | - Xi Dong
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Meihua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Liang Ma
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China.
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China.
| |
Collapse
|
38
|
Abd-Eldayem AM, Makram SM, Messiha BAS, Abd-Elhafeez HH, Abdel-Reheim MA. Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax. Sci Rep 2024; 14:7434. [PMID: 38548778 PMCID: PMC10978894 DOI: 10.1038/s41598-024-57300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
Cyclosporine A (CsA) is employed for organ transplantation and autoimmune disorders. Nephrotoxicity is a serious side effect that hampers the therapeutic use of CsA. Hesperidin and sitagliptin were investigated for their antioxidant, anti-inflammatory, and tissue-protective properties. We aimed to investigate and compare the possible nephroprotective effects of hesperidin and sitagliptin. Male Wistar rats were utilized for induction of CsA nephrotoxicity (20 mg/kg/day, intraperitoneally for 7 days). Animals were treated with sitagliptin (10 mg/kg/day, orally for 14 days) or hesperidin (200 mg/kg/day, orally for 14 days). Blood urea, serum creatinine, albumin, cystatin-C (CYS-C), myeloperoxidase (MPO), and glucose were measured. The renal malondialdehyde (MDA), glutathione (GSH), catalase, and SOD were estimated. Renal TNF-α protein expression was evaluated. Histopathological examination and immunostaining study of Bax, Nrf-2, and NF-κB were performed. Sitagliptin or hesperidin attenuated CsA-mediated elevations of blood urea, serum creatinine, CYS-C, glucose, renal MDA, and MPO, and preserved the serum albumin, renal catalase, SOD, and GSH. They reduced the expressions of TNF-α, Bax, NF-κB, and pathological kidney damage. Nrf2 expression in the kidney was raised. Hesperidin or sitagliptin could protect the kidney against CsA through the mitigation of oxidative stress, apoptosis, and inflammation. Sitagliptin proved to be more beneficial than hesperidin.
Collapse
Affiliation(s)
- Ahmed M Abd-Eldayem
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
- Department of Pharmacology, Faculty of Medicine, Merit University, Sohâg, Egypt.
| | | | | | - Hanan H Abd-Elhafeez
- Department of Cell and Tissue, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
39
|
Frati F, Torello G, Di Cara G. Cytochrome p450 and innovative nutraceutical products. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2024. [DOI: 10.4081/jbr.2024.11721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dietary supplements are products that are ingested in addition to the regular diet to provide additional health-promoting nutrients. Dietary supplements are defined and regulated differently in the European Union (EU) and the United States (US). A fundamental aspect, besides the one related to the composition of the various products on the market, is linked to their quality, both from a nutritional and a pharmacological point of view. Concerning the knowledge of the metabolic aspects, the analysis of the interference, as an inductive or an inhibitory effect, of the p450 enzyme on individual preparations of supplements, is crucial. In this study, we present the results of the interference analysis of a new nutraceutical product based on 38% Bergamot Polyphenolic Fraction BPF® (Citrus bergamia Risso et Poit.), Pomegranate (Punica granatum) and Citrus fruits (Citrus aurantium var. dulcis, Citrus maxima Burm. Merr, Citrus paradisi Macfad) extract with cytochrome p450, showing that the product has limited activity on the cytochromes involved in most of human drug metabolism. This nutraceutical product is to be considered safe and potentially useful in the context of multiple treatments, not interfering with the traditional chronic therapies of patients. These findings open the door to modern "pharma-grade" nutraceuticals, expanding the safety and quality profiles of these new products.
Collapse
|
40
|
Cedillos R, Aleman RS, Page R, Olson DW, Boeneke C, Prinyawiwatkul W, Aryana K. Influence of Hesperidin on the Physico-Chemical, Microbiological and Sensory Characteristics of Frozen Yogurt. Foods 2024; 13:808. [PMID: 38472921 DOI: 10.3390/foods13050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Frozen yogurts contain yogurt culture bacteria, which might impart health benefits to their consumers. Global frozen yogurt market sales are expected to grow by 4.8% by 2028, which represents an important opportunity for the industry, consumers and researchers. Polyphenols are metabolites found in plants which have antioxidant and anti-inflammatory properties and might prevent chronic diseases such as cancer, diabetes and cardiovascular diseases. The objective of this study was to elucidate the effect of the polyphenol hesperidin on the physico-chemical, microbiological and sensory characteristics of frozen yogurts. Hesperidin was incorporated into frozen yogurt at three concentrations (125, 250 and 500 mg/90 g of product), while yogurt with no hesperidin was used as a control. The viscosity and overrun of the frozen yogurt were analyzed on day 0. The hardness, pH, color and Lactobacillus bulgaricus and Streptococcus thermophilus counts were determined after 0, 30 and 60 d. The melting rate was determined at 60 and 90 min after 0, 30 and 60 d. The bile and acid tolerances of both S. thermophilus and L. bulgaricus were measured after 7 and 60 d. A hedonic scale of nine points was used to measure sensory attributes. Data were analyzed at α = 0.05 with an ANOVA with Tukey's adjustment, and McNemar's test was used to analyze purchase intent. Hesperidin did not influence the pH, overrun or microbial characteristics. Polyphenol addition compared to the control decreased the melting rate but increased the hardness and bile tolerance of L. bulgaricus, as well as the L* and b* values. The sensory characteristics were not influenced by the lowest concentration of hesperidin, as it was not statistically different from the control. Moreover, consumers were interested in purchasing frozen yogurt with added hesperidin after learning about the health claim. This study can assist in the development of a healthier frozen yogurt in an increasingly competitive market.
Collapse
Affiliation(s)
- Roberto Cedillos
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ryan Page
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Douglas W Olson
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Charles Boeneke
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Kayanush Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
41
|
Algethami FK. GC/MS and LC-MS Analysis and in-vitro Antioxidant Activity of Essential Oil and Crude Methanol Extract from the Leaves of Acacia Gerrardii Benth. Growing in Saudi Arabia. Chem Biodivers 2024; 21:e202301847. [PMID: 38299486 DOI: 10.1002/cbdv.202301847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
In this study, I determined the essential oil (EO) chemical composition and crude methanol extract (ME) phytochemical profile of the leaves of Acacia gerrardii (ACGL), a plant growing in Saudi Arabia. Additionally, I assessed their in vitro antioxidant activity. The gas chromatography-mass spectrometry analysis of the EO revealed a high content of oxygenated monoterpenes (79.86 %), primarily dominated by pulegone (35.11 %), carvacrol (27.36 %), and neo-dihydrocarveol (4.67 %). The ME was analyzed by liquid chromatography-mass spectrometry to determine its qualitative chemical profile. Four organic acids, eleven phenolic compounds, sixteen flavonoids, nine terpenoids (eight triterpenoids and one diterpenoid), and one coumarin were found in the ME of ACGL. This extract was found to be dominated by 5,6,4-trihydroxy-7,3-dimethoxyflavone (39.30 %), acteoside (30.27 %), nevadensin (7.55 %), isoacteoside (3.08 %) and apiin (3.23 %), and hesperidin (2.73 %). The phenolic (TPC=127.70±1.47 mg gallic acid equivalents/g of extract) and flavonoid (TFC=85.48±0.12 mg quercetin equivalents/g of extract) contents of the ME were also assessed. The in vitro antioxidant activities of both the EO and ME were evaluated using DPPH, ABTS, and ferrous ion chelating effect assays. Compared to the positive control (vit. E and Vit. C), and both extracts exhibited excellent activity.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| |
Collapse
|
42
|
Belfiore E, Di Prima G, Angellotti G, Panzarella V, De Caro V. Plant-Derived Polyphenols to Prevent and Treat Oral Mucositis Induced by Chemo- and Radiotherapy in Head and Neck Cancers Management. Cancers (Basel) 2024; 16:260. [PMID: 38254751 PMCID: PMC10813700 DOI: 10.3390/cancers16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Oral Mucositis (OM) is the most common side effect due to chemotherapy and radiotherapy, which are the conventional treatment options for head and neck cancers. OM is a severe inflammatory condition characterized by multifactorial etiopathogenesis. It further negatively affects patients' quality of life by severe impairment of normal oral functions. Consequently, it is mandatory to identify new effective therapeutic approaches to both prevent and treat OM while also avoiding any recurrence. Polyphenols recently attracted the interest of the scientific community due to their low toxicity and wide range of biological activities making them ideal candidates for several applications in the odontostomatological field, particularly against OM. This review collects the in vivo studies and the clinical trials conducted over the past 13 years evaluating the preventive and curative effects of several polyphenolic compounds towards chemo- and radiotherapy-induced OM, both when administered alone or as a plant-extracted phytocomplex. The literature fully confirms the usefulness of these molecules, thus opening the possibility of their clinical application. However, polyphenol limitations (e.g., unfavourable physicochemical properties and susceptibility to degradation) have emerged. Consequently, the interest of the scientific community should be focused on developing innovative delivery systems able to stabilize polyphenols, thus facilitating topical administration and maximizing their efficacy.
Collapse
Affiliation(s)
- Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Giuseppe Angellotti
- Institute of Nanostructured Materials, National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| |
Collapse
|
43
|
Nie T, Wang X, Li A, Shan A, Ma J. The promotion of fatty acid β-oxidation by hesperidin via activating SIRT1/PGC1α to improve NAFLD induced by a high-fat diet. Food Funct 2024; 15:372-386. [PMID: 38099440 DOI: 10.1039/d3fo04348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Reducing fat deposits in hepatocytes is a direct treatment for nonalcoholic fatty liver disease (NAFLD) and the fatty acid metabolic processes mediated by fatty acid β-oxidation are important for the prevention of NAFLD. In this study, we established high-fat-diet models in vitro and in vivo to investigate the mechanism by which hesperidin (HDN) prevents NAFLD by modulating fatty acid β oxidation. Based on LC-MS screening of differential metabolites, many metabolites involved in phospholipid and lipid metabolism were found to be significantly altered and closely associated with fatty acid β-oxidation. The results from COIP experiments indicated that HDN increased the deacetylation of PGC1α by SIRT1. In addition, the results of CETSA and molecular docking experiments suggest that HDN targeting of SIRT1 plays an important role in their stable binding. Meanwhile, it was found that HDN reduced fatty acid uptake and synthesis and promoted the expression of SIRT1/PGC1α and fatty acid β-oxidation, and the latter process was inhibited after transfection to knockdown SIRT1. The results suggest that HDN improves NAFLD by promoting fatty acid β-oxidation through activating SIRT1/PGC1α. Thus, the findings indicate that HDN may be a potential drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Tong Nie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Aqun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, P.R. China
| |
Collapse
|
44
|
Akkulak M, Evin E, Durukan O, Celebioglu HU, Adali O. Modulation of Caco-2 Colon Cancer Cell Viability and CYP2W1 Gene Expression by Hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) Cell-free Supernatants. Anticancer Agents Med Chem 2024; 24:372-378. [PMID: 38058098 DOI: 10.2174/0118715206271514231124111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Ensuring colon homeostasis is of significant influence on colon cancer and delicate balance is maintained by a healthy human gut microbiota. Probiotics can modulate the diversity of the gut microbiome and prevent colon cancer. Metabolites/byproducts generated by microbial metabolism significantly impact the healthy colonic environment. Hesperidin is a polyphenolic plant compound well known for its anticancer properties. However, low bioavailability of hesperidin after digestion impedes its effectiveness. CYP2W1 is a newly discovered oncofetal gene with an unknown function. CYP2W1 gene expression peaks during embryonic development and is suddenly silenced immediately after birth. Only in the case of some types of cancer, particularly colorectal and hepatocellular carcinomas, this gene is reactivated and its expression is correlated with the severity of the disease. This study aimed to investigate the effects of hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) cell-free supernatants on CaCo2 colon cancer cell viability and CYP2W1 gene expression. METHODS Alamar Blue cell viability assay was used to investigate the cytotoxic effect of cell-free supernatant of LGG grown in the presence of hesperidin on CaCo2 cells. To observe the effect of cell-free supernatants of LGG on the expression of CYP2W1 gene, qRT-PCR was performed. RESULTS Five times diluted hesperidin treated cell-free supernatant (CFS) concentration considerably reduced CaCo2 colon cancer cell viability. Furthermore, CYP2W1 gene expression was similarly reduced following CFS treatments and nearly silenced under probiotic bacteria CFS treatment. CONCLUSION The CYP2W1 gene expression was strongly reduced by cell-free supernatants derived from LGG culture, with or without hesperidin. This suggests that the suppression may be due to bacterial byproducts rather than hesperidin. Therefore, the CYP2W1 gene in the case of deregulation of these metabolites may cause CYP2W1-related colon cancer cell proliferation.
Collapse
Affiliation(s)
- Merve Akkulak
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Emre Evin
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Ozlem Durukan
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Hasan Ufuk Celebioglu
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkey
| | - Orhan Adali
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
45
|
Ndhlala AR, Kavaz Yüksel A, Çelebi N, Doğan HÖ. A General Review of Methodologies Used in the Determination of Cholesterol (C 27H 46O) Levels in Foods. Foods 2023; 12:4424. [PMID: 38137228 PMCID: PMC10742886 DOI: 10.3390/foods12244424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol (C27H46O) is a lipid-derived substance found in lipoproteins and cell membranes. It is also one of the main sources for the production of bile acids, vitamin D, and steroid hormones. Today, foods are evaluated by consumers not only according to their taste and nutritional content but also according to their effects on consumer health. For example, many consumers choose foods according to their cholesterol level. The cholesterol in the food can directly affect the blood cholesterol level when consumed, which can lead to cardiovascular diseases. High levels of cholesterol can lead to diet-related human diseases such as cardiac arrest, paralysis, type II diabetes, and cerebral hemorrhage. In societies with high living standards, interest in and consumption of foods that lower or have low cholesterol levels have increased recently. Accordingly, efforts to increase the variety of foods with reduced cholesterol levels are on the rise. This has indirectly led to the accurate measurement of cholesterol levels in blood and food being of great importance. Classical chemical, enzymatic, colorimetric, polarographic, chromatographic, and spectrophotometric methods; enzymatic, nonenzymatic, and electrochemical sensors; and biosensors are used for the determination of cholesterol in foods. The purpose of this review is to reveal and explore current and future trends in cholesterol detection methods in foods. This review will summarize the most appropriate and standard methods for measuring cholesterol in biological components and foods.
Collapse
Affiliation(s)
- Ashwell R. Ndhlala
- Green Biotechnologies Research Centre, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Arzu Kavaz Yüksel
- Department of Food Technology, Technical Sciences Vocational School, Atatürk University, Erzurum 25030, Turkey
| | - Neslihan Çelebi
- Department of Chemical Technology, Vocational School of Technical Sciences, Ataturk University, Erzurum 25030, Turkey; (N.Ç.); (H.Ö.D.)
| | - Hülya Öztürk Doğan
- Department of Chemical Technology, Vocational School of Technical Sciences, Ataturk University, Erzurum 25030, Turkey; (N.Ç.); (H.Ö.D.)
| |
Collapse
|
46
|
Liao X, Han Y, Shen C, Liu J, Wang Y. Targeting the NLRP3 inflammasome for the treatment of hypertensive target organ damage: Role of natural products and formulations. Phytother Res 2023; 37:5622-5638. [PMID: 37690983 DOI: 10.1002/ptr.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIM Hypertension is a major global health problem that causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. The mechanisms of hypertensive TOD are not fully understood, and its treatment is challenging. This review provides an overview of the current knowledge on the role of Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in hypertensive TOD and the natural products and formulations that inhibit it. METHODS We searched PubMed, Web of Science, Google Scholar, and CNKI for relevant articles using the keywords "hypertension," "target organ damage," "NLRP3 inflammasome," "natural products," and "formulations." We reviewed the effects of the NLRP3 inflammasome on hypertensive TOD in different organs and discussed the natural products and formulations that modulate it. KEY RESULTS In hypertensive TOD, the NLRP3 inflammasome is activated by various stimuli such as oxidative stress and inflammation. Activation of NLRP3 inflammasome leads to the production of pro-inflammatory cytokines that exacerbate tissue damage and dysfunction. Natural products and formulations, including curcumin, resveratrol, triptolide, and allicin, have shown protective effects against hypertensive TOD by inhibiting the NLRP3 inflammasome. CONCLUSIONS AND IMPLICATIONS The NLRP3 inflammasome is a promising therapeutic target in hypertensive TOD. Natural products and formulations that inhibit the NLRP3 inflammasome may provide novel drug candidates or therapies for hypertensive TOD. Further studies are needed to elucidate the molecular mechanisms and optimize the dosages of these natural products and formulations and evaluate their clinical efficacy and safety.
Collapse
Affiliation(s)
- Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chuanpu Shen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University Hefei, Hefei, China
| | - Jianjun Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
47
|
Tai MR, Ji HW, Chen JP, Liu XF, Song BB, Zhong SY, Rifai A, Nisbet DR, Barrow CJ, Williams RJ, Li R. Biomimetic triumvirate nanogel complexes via peptide-polysaccharide-polyphenol self-assembly. Int J Biol Macromol 2023; 251:126232. [PMID: 37562478 DOI: 10.1016/j.ijbiomac.2023.126232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Self-assembled peptide and polysaccharide nanogels are excellent candidates for bioactive delivery vectors. However, there are still significant challenges in the application of nanogels as delivery tools for bioactive elements. This study aims to deliver, and control the release of a hydrophobic bioactive flavonoid hesperidin. Using the self-assembling peptide (SAP) Fmoc-FRGDF, extracellular matrix mimicking nanofibrils were fabricated, which were decorated and bolstered with immunomodulatory polysaccharide strands of fucoidan and infused with hesperidin. The mechanical properties, secondary structure, and microscopic morphologies of the composite hydrogels were characterized using rheometer, FTIR, XRD, and TEM, etc. The encapsulation efficiency (EE) and release behavior of hesperidin were determined. Coassembly of the SAP with fucoidan improved the mechanical properties (from 9.54 Pa of Fmoc-FRGDF hydrogel to 7735 Pa of coassembly hydrogel at 6 mg/mL fucoidan concentration), formed thicker nanofibril bundles at 4 and 6 mg/mL fucoidan concentration, improved the EE of hesperidin from 72.86 % of Fmoc-FRGDF hydrogel to over 90 % of coassembly hydrogels, and showed effectively controlled release of hesperidin in vitro. Intriguingly, the first order kinetic model predicted an enhanced hydrogel retention and release of hesperidin. This study revealed a new approach for bioengineered nanogels that could be used to stabilize and release hydrophobic payloads.
Collapse
Affiliation(s)
- Min-Rui Tai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Hong-Wu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Jian-Ping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Bing-Bing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Aaqil Rifai
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia; IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia; The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia; Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Australia; Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Richard J Williams
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia; IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia; The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| |
Collapse
|
48
|
Xiang J, Li Z, Wang C. Exploring the mechanism of action of Qian Lie Xing Fang during the treatment of benign prostatic hyperplasia via network pharmacology and molecular dynamics simulation analyses. Medicine (Baltimore) 2023; 102:e35540. [PMID: 37861557 PMCID: PMC10589538 DOI: 10.1097/md.0000000000035540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
This study aimed to explore the historical research progress on benign prostatic hyperplasia from the perspective of traditional Chinese medicine theory and the treatment of benign prostatic hyperplasia (BPH) with Qian Lie Xing Fang (QLXF) via the warming and tonifying of kidney yang, promotion of blood circulation, and clearing of meridians. First, network pharmacology analysis was used to screen and identify possible pathways for BPH treatment with QLXF. Subsequently, molecular docking analysis helped explore the mechanism of action by which the components of QLXF affected androgen receptor (AR) and type 5 phosphodiesterase inhibitor (PDE-5) levels. Targets for treatment with QLXF were identified from the online Mendelian inheritance in man and DisGeNET databases. BPH-related genes were identified using GeneCards and online Mendelian inheritance in man databases, and their intersection was used to construct a protein-protein interaction network analysis graph. Subsequently, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed. The semiflexible docking of the ingredients of QLXF acting on the 2 targets was performed via molecular docking and molecular dynamics simulation, to elucidate the mechanism of action by which the active ingredients affect AR and PDE-5 levels further. This enabled us to explore the pattern of interactions between small active ingredient molecules, the target protein, and the stability after binding at the microscopic level. Gene ontology enrichment analysis showed that QLXF affected several processes, such as DNA transcription factor binding, kinase binding, protein homodimerization activity, protein structure domain-specific binding, and protein-coupled amine receptor activity in BPH patients. KEGG results showed that chemical carcinogenic reactive oxidative species and the JAK-STAT, Pl3k-Akt, FoxO, NF-κB, and other pathways were significantly enriched. Conducting molecular docking studies to investigate the interaction of active components from QLXF with AR and PDE-5, it was found that MOL002260 may possess the potential to inhibit PDE-5 activity, while MOL010578 may exhibit the capability to inhibit AR activity. QLXF is closely associated with various biological processes and KEGG signaling pathways related to BPH. The active ingredients of QLXF were investigated for their interactions with AR and PDE-5, with a primary focus on the small molecules MOL002260 and MOL010578.
Collapse
Affiliation(s)
- Jingjing Xiang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zefei Li
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chaoyang Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
49
|
Peng X, Yi X, Deng N, Liu J, Tan Z, Cai Y. Zhishi Daozhi decoction alleviates constipation induced by a high-fat and high-protein diet via regulating intestinal mucosal microbiota and oxidative stress. Front Microbiol 2023; 14:1214577. [PMID: 37789856 PMCID: PMC10544343 DOI: 10.3389/fmicb.2023.1214577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
Background A growing body of evidence has demonstrated that a high-fat and high-protein diet (HFHPD) causes constipation. This study focuses on understanding how the use of Zhishi Daozhi decoction (ZDD) affects the intricate balance of intestinal microorganisms. The insights gained from this investigation hold the potential to offer practical clinical approaches to mitigate the constipation-related issues associated with HFHPD. Materials and methods Mice were randomly divided into five groups: the normal (MN) group, the natural recovery (MR) group, the low-dose ZDD (MLD) group, the medium-dose ZDD (MMD) group, and the high-dose ZDD (MHD) group. After the constipation model was established by HFHPD combined with loperamide hydrochloride (LOP), different doses of ZDD were used for intervention. Subsequently, the contents of cholecystokinin (CCK) and calcitonin gene-related peptide (CGRP) in serum, superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver were determined. The DNA of intestinal mucosa was extracted, and 16S rRNA amplicon sequencing was used to analyze the changes in intestinal mucosal microbiota. Results After ZDD treatment, CCK content in MR group decreased and CGRP content increased, but the changes were not significant. In addition, the SOD content in MR group was significantly lower than in MLD, MMD, and MHD groups, and the MDA content in MR group was significantly higher than in MN, MLD, and MHD groups. Constipation modeling and the intervention of ZDD changed the structure of the intestinal mucosal microbiota. In the constipation induced by HFHPD, the relative abundance of pathogenic bacteria such as Aerococcus, Staphylococcus, Corynebacterium, Desulfovibrio, Clostridium, and Prevotella increased. After the intervention of ZDD, the relative abundance of these pathogenic bacteria decreased, and the relative abundance of Candidatus Arthromitus and the abundance of Tropane, piperidine, and pyridine alkaloid biosynthesis pathways increased in MHD group. Conclusion Constipation induced by HFHPD can increase pathogenic bacteria in the intestinal mucosa, while ZDD can effectively relieve constipation, reduce the relative abundance of pathogenic bacteria, and alleviate oxidative stress injury. In addition, high-dose ZDD can increase the abundance of beneficial bacteria, which is more conducive to the treatment of constipation.
Collapse
Affiliation(s)
- Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Liu
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
50
|
Khorasanian AS, Fateh ST, Gholami F, Rasaei N, Gerami H, Khayyatzadeh SS, Shiraseb F, Asbaghi O. The effects of hesperidin supplementation on cardiovascular risk factors in adults: a systematic review and dose-response meta-analysis. Front Nutr 2023; 10:1177708. [PMID: 37502716 PMCID: PMC10369082 DOI: 10.3389/fnut.2023.1177708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
Hesperidin is a naturally occurring bioactive compound that may have an impact on cardiovascular disease risks, but the evidence is not conclusive. To investigate further, this study aimed to explore the effects of hesperidin supplementation on cardiovascular risk factors in adults. A comprehensive search was conducted up to August 2022 using relevant keywords in databases such as Scopus, PubMed, Embase, Cochrane Library, and ISI Web of Science for all randomized controlled trials (RCTs). The results showed that hesperidin supplementation had a significant effect on reducing serum triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL), tumor necrosis factor-alpha (TNF-α), and systolic blood pressure (SBP), whereas weight was increased. However, no significant effect was observed on high-density cholesterol (HDL), waist circumference (WC), fasting blood glucose (FBG), insulin, homeostatic model assessment for insulin resistance (HOMA-IR), C-reactive protein (CRP), interleukin-6 (IL-6), body mass index (BMI), and diastolic blood pressure (DBP). The study also found that an effective dosage of hesperidin supplementation was around 1,000 mg/d, and a more effective duration of supplementation was more than eight weeks to decrease insulin levels. Furthermore, the duration of intervention of more than six weeks was effective in decreasing FBG levels.
Collapse
Affiliation(s)
- Atie Sadat Khorasanian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hadis Gerami
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|