1
|
Jóźwiak B, Domin R, Krzywicka M, Laudańska-Krzemińska I. Effect of exercise alone and in combination with time-restricted eating on cardiometabolic health in menopausal women. J Transl Med 2024; 22:957. [PMID: 39434160 PMCID: PMC11494798 DOI: 10.1186/s12967-024-05738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024] Open
Abstract
There is a need to investigate the effect of lifestyle modifications on cardiometabolic health-related issues that occur during menopause. The aim of this study was to compare the effect of resistance and endurance circuit training program alone (exercise group, n = 34) with the effect of time-restricted eating (16:8) combined with a training program (combination group, n = 28) on cardiometabolic health in 62 menopausal women (aged 51.3 ± 4.69 years). Testing was conducted before and after a 12-week period and included an assessment of body composition, glycemic control, lipid panel, blood pressure, and anthropometric measurements. Decreases in body mass index and systolic blood pressure were significantly greater in the combination group than in the exercise group (F(1,60) = 4.482, p = 0.038, η2 = 0.07; F(1,57) = 5.215, p = 0.026, η2 = 0.08, respectively, indicating moderate effects). There were significant decreases in fat mass (p = 0.001, r = 0.654), glucose level (p = 0.017, r = 0.459), insulin level (p = 0.013, r = 0.467), homeostatic model assessment for insulin resistance (p = 0.009, r = 0.499), waist circumference (p = 0.002, r = 0.596), and waist-to-height ratio (p = 0.003, r = 0.588) (indicating moderate effect) in the combination group, while there were no significant changes in the exercise group. There were no changes in lipid panel indicators in either group. This is the first study to investigate the effect of time-restricted eating combined with exercise in menopausal women. The results of the study provide evidence that the combination of time-restricted eating and exercise leads to a greater body mass index reduction than exercise alone in menopausal women.Trial registration: ClinicalTrials.gov, NCT06138015 registered 18 November 2023-Retrospectively registered, https://clinicaltrials.gov/study/NCT06138015 .
Collapse
Affiliation(s)
- Beata Jóźwiak
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, 61-871, Poznan, Poland.
| | - Remigiusz Domin
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355, Poznan, Poland
| | - Monika Krzywicka
- Department of Cardiological and Rheumatological Rehabilitation, Poznan University of Physical Education, 61-871, Poznan, Poland
| | - Ida Laudańska-Krzemińska
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, 61-871, Poznan, Poland
| |
Collapse
|
2
|
Ho Y, Hou X, Sun F, Wong SHS, Zhang X. Synergistic Effects of Time-Restricted Feeding and Resistance Training on Body Composition and Metabolic Health: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3066. [PMID: 39339666 PMCID: PMC11434652 DOI: 10.3390/nu16183066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis examined the synergistic impact of time-restricted feeding (TRF) combined with resistance training (RT) (TRF + RT) on body composition and metabolic health in adults, contrasting it with habitual eating patterns (CON) and RT (CON + RT). METHODS Adhering to PRISMA guidelines, five databases were searched up to 28 April 2024. Randomized controlled trials or crossover trials assessing the effects of TRF + RT for at least 4 weeks in adults were selected. Data were pooled as standardized mean differences (SMDs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs). The risk of bias was evaluated using the revised Cochrane risk-of-bias tool. RESULTS Seven studies with 164 participants were included in the final analysis. TRF + RT significantly reduced body mass (WMD -2.90, 95% CI: -5.30 to -0.51), fat mass (WMD -1.52, 95% CI: -2.30 to -0.75), insulin (SMD -0.72, 95% CI: -1.24 to -0.21), total cholesterol (WMD -9.44, 95% CI: -13.62 to -5.27), low-density lipoprotein cholesterol (LDL-C) (WMD -9.94, 95% CI: -13.47 to -6.41), and energy intake (WMD -174.88, 95% CI: -283.79 to -65.97) compared to CON + RT. No significant changes were observed in muscle mass, strength, or other metabolic markers. CONCLUSIONS TRF + RT, in contrast to CON + RT, significantly improved body composition, insulin, and cholesterol levels without affecting muscle mass or strength.
Collapse
Affiliation(s)
- Yiling Ho
- Department of Physical Education, Peking University, Beijing 100871, China;
| | - Xiao Hou
- School of Sport Science, Beijing Sport University, Beijing 100871, China;
| | - Fenghua Sun
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China;
| | - Stephen H. S. Wong
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, Hong Kong, China;
| | - Xiaoyuan Zhang
- Department of Physical Education, Peking University, Beijing 100871, China;
| |
Collapse
|
3
|
Marko DM, Conn MO, Schertzer JD. Intermittent fasting influences immunity and metabolism. Trends Endocrinol Metab 2024; 35:821-833. [PMID: 38719726 DOI: 10.1016/j.tem.2024.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 09/12/2024]
Abstract
Intermittent fasting (IF) modifies cell- and tissue-specific immunometabolic responses that dictate metabolic flexibility and inflammation during obesity and type 2 diabetes (T2D). Fasting forces periods of metabolic flexibility and necessitates increased use of different substrates. IF can lower metabolic inflammation and improve glucose metabolism without lowering obesity and can influence time-dependent, compartmentalized changes in immunity. Liver, adipose tissue, skeletal muscle, and immune cells communicate to relay metabolic and immune signals during fasting. Here we review the connections between metabolic and immune cells to explain the divergent effects of IF compared with classic caloric restriction (CR) strategies. We also explore how the immunometabolism of metabolic diseases dictates certain IF outcomes, where the gut microbiota triggers changes in immunity and metabolism during fasting.
Collapse
Affiliation(s)
- Daniel M Marko
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Meghan O Conn
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Dai Z, Wan K, Miyashita M, Ho RST, Zheng C, Poon ETC, Wong SHS. The Effect of Time-Restricted Eating Combined with Exercise on Body Composition and Metabolic Health: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100262. [PMID: 38897385 PMCID: PMC11301358 DOI: 10.1016/j.advnut.2024.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Time-restricted eating (TRE) is increasingly popular, but its benefits in combination with exercise still need to be determined. OBJECTIVES This systematic review and meta-analysis aimed to evaluate the efficacy of TRE combined with exercise compared with control diet with exercise in improving the body composition and metabolic health of adults. METHODS Five electronic databases were searched for relevant studies. Randomized controlled trials (RCTs) examining the effect of TRE combined with exercise on body composition and metabolic health in adults were included. All results in the meta-analysis are reported as mean difference (MD) with 95% confidence interval (CI). Study quality was assessed using the revised Cochrane Risk of Bias Tool and Grading of Recommendations Assessment, Development, and Evaluation assessment. RESULTS In total, 19 RCTs comprising 568 participants were included in this systematic review and meta-analysis. TRE combined with exercise likely reduced the participants' body mass (MD: -1.86 kg; 95% CI: -2.75, -0.97 kg) and fat mass (MD: -1.52 kg; 95% CI: -2.07, -0.97 kg) when compared with the control diet with exercise. In terms of metabolic health, the TRE combined with exercise group likely reduced triglycerides (MD: -13.38 mg/dL, 95% CI: -21.22, -5.54 mg/dL) and may result in a reduction in low-density lipoprotein (MD: -8.52 mg/dL; 95% CI: -11.72, -5.33 mg/dL) and a large reduction in leptin (MD: -0.67 ng/mL; 95% CI: -1.02, -0.33 ng/mL). However, TRE plus exercise exhibited no additional benefit on the glucose profile, including fasting glucose and insulin, and other lipid profiles, including total cholesterol and high-density lipoprotein concentrations, compared with the control group. CONCLUSIONS Combining TRE with exercise may be more effective in reducing body weight and fat mass and improving lipid profile than control diet with exercise. Implementing this approach may benefit individuals aiming to achieve weight loss and enhance their metabolic well-being. This study was registered in PROSPERO as CRD42022353834.
Collapse
Affiliation(s)
- Zihan Dai
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Kewen Wan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China; Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong, China
| | - Masashi Miyashita
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China; Faculty of Sport Sciences, Waseda University, Saitama, Japan; School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Robin Sze-Tak Ho
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Chen Zheng
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China
| | - Eric Tsz-Chun Poon
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Drummond MD, Soares PS, Savoi LA, Silva RA. Fasting reduces satiety and increases hunger but does not affect the performance in resistance training. Biol Sport 2024; 41:57-65. [PMID: 38524818 PMCID: PMC10955748 DOI: 10.5114/biolsport.2024.131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 10/04/2023] [Indexed: 03/26/2024] Open
Abstract
Intermittent fasting (IF) has been suggested to reduce body fat percentage and improve non-communicable chronic diseases. However, little is known about resistance training (RT) and the subjective perception of hunger under fasted conditions. This study aimed to examine the effects of overnight fasting (12 h or 16 h fasting) on the maximum voluntary isometric contraction (MVIC) and countermovement jump (CMJ) performance in resistance-trained young male adults. In RT sessions, the maximum number of repetitions (MNR) and the total volume load (TVL) were evaluated in the back squat and leg press 45°. The volunteers performed all tests and the RT session in 3 different conditions: fed state, 12 and 16 hours of IF. The subjective perception of hunger was applied through an adapted visual analogue scale (adVAS). The results showed that strength and power variables did not change significantly: MVIC (p = 0.960), CMJ (p = 0.986), MNR back squat (p = 0.856), MNR leg press 45° (p = 0.998), TVL (p = 0.954). However, hunger was significantly greater after the 16-hour fasting (p = 0.001) compared to 12 hours of fasting and the fed state. Also, the desire to eat was greater after 16 hours (p = 0.001) compared to 12 hours of fasting and the fed state. This study indicates that IF for 12 or 16 hours does not significantly impair strength and power, but the longer the fasting duration, the greater are the hunger and desire to eat.
Collapse
Affiliation(s)
- Marcos D.M. Drummond
- Laboratory of Nutrition and Sport Training, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula S.G. Soares
- Laboratory of Nutrition and Sport Training, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas A. Savoi
- Laboratory of Nutrition and Sport Training, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ronaldo A.D. Silva
- Laboratory of Nutrition and Sport Training, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Trabelsi K, Ammar A, Boukhris O, Boujelbane MA, Clark C, Romdhani M, Washif JA, Aziz AR, Bragazzi NL, Glenn JM, Chamari K, Chtourou H, Jahrami H. Ramadan intermittent fasting and its association with health-related indices and exercise test performance in athletes and physically active individuals: an overview of systematic reviews. Br J Sports Med 2024; 58:136-143. [PMID: 37923379 DOI: 10.1136/bjsports-2023-106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To systematically review, summarise and appraise findings of published systematic reviews, with/without meta-analyses, examining associations between Ramadan fasting observance (RO), health-related indices and exercise test performances in athletes and physically active individuals. DESIGN Overview of systematic reviews with assessment of reviews' methodological quality. DATA SOURCES PubMed, Web of Science, Scopus, Cochrane Database of Systematic Reviews, SPORTDiscus, ProQuest, PsycINFO and SciELO. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Systematic reviews with/without meta-analyses examining associations of RO with health-related indices and exercise performances in athletes and physically active individuals. RESULTS Fourteen systematic reviews (seven with meta-analyses) of observational studies, with low-to-critically-low methodological quality, were included. Two reviews found associations between RO and decreased sleep duration in athletes and physically active individuals. One review suggested athletes may experience more pronounced reductions in sleep duration than physically active individuals. One review found associations between RO and impaired sleep quality in athletes and physically active individuals. RO was associated with decreased energy, carbohydrate and water intake in adult-aged athletes, but not adolescents. One review suggests RO was associated with athletes' increased feelings of fatigue and decreased vigour. No association was found between RO and athletes' lean mass or haematological indices. RO was unfavourably associated with changes in athletes' performance during high-intensity exercise testing. CONCLUSION Continuance of training during RO could be associated with athletes' mood state disturbances, decreased sleep duration and performance decline during high-intensity exercise testing, while preserving lean mass. However, careful interpretation is necessary due to the low-to-critically-low methodological quality of the included reviews.
Collapse
Affiliation(s)
- Khaled Trabelsi
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Achraf Ammar
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), Paris Nanterre University, Nanterre, France
| | - Omar Boukhris
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- SIESTA Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Mohamed Ali Boujelbane
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Cain Clark
- Birmingham City University, Birmingham, UK
| | - Mohamed Romdhani
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), Paris Nanterre University, Nanterre, France
- Physical Activity, Sport and Health, UR18JS01, National Observatory of Sports, Tunis, Tunisia
| | | | - Abdul Rashid Aziz
- Sport Science & Sport Medicine, Singapore Sport Institute, Singapore
| | | | - Jordan M Glenn
- Department of Health, Human Performance and Recreation, University of Arkansas Fayetteville, Fayetteville, Arkansas, USA
| | - Karim Chamari
- ISSEP Ksar-Saïd, Manouba University, Manouba, Tunisia
| | - Hamdi Chtourou
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Physical Activity, Sport and Health, UR18JS01, National Observatory of Sports, Tunis, Tunisia
| | - Haitham Jahrami
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Government Hospitals, Manama, Bahrain
| |
Collapse
|
7
|
Zhang S, Lv Y, Qian J, Wei W, Zhu Y, Liu Y, Li L, Zhao C, Gao X, Yang Y, Dong J, Gu Y, Chen Y, Sun Q, Jiao X, Lu J, Yan Z, Wang L, Yuan N, Fang Y, Wang J. Adaptive metabolic response to short-term intensive fasting. Clin Nutr 2024; 43:453-467. [PMID: 38181523 DOI: 10.1016/j.clnu.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/19/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND & AIMS Short-term intensive fasting (STIF), known as beego in Chinese phonetic articulation, has been practiced for more than two thousand years. However, the potential risk of STIF and the body's response to the risk have not been adequately evaluated. This study aims to address this issue, focusing on the STIF-triggered metabolic response of the liver and kidney. METHODS The STIF procedure in the clinical trial includes a 7-day water-only intensive fasting phase and a 7-day gradual refeeding phase followed by a regular diet. The intensive fasting in humans was assisted with psychological induction. To gain insights not available in the clinical trial, we designed a STIF program for mice that resulted in similar phenotypes seen in humans. Plasma metabolic profiling and examination of gene expression as well as liver and kidney function were performed by omics, molecular, biochemical and flow cytometric analyses. A human cell line model was also used for mechanistic study. RESULTS Clinically significant metabolites of fat and protein were found to accumulate during the fasting phase, but they were relieved after gradual refeeding. Metabolomics profiling revealed a universal pattern in the consumption of metabolic intermediates, in which pyruvate and succinate are the two key metabolites during STIF. In the STIF mouse model, the accumulation of metabolites was mostly counteracted by the upregulation of catabolic enzymes in the liver, which was validated in a human cell model. Kidney filtration function was partially affected by STIF but could be recovered by refeeding. STIF also reduced oxidative and inflammatory levels in the liver and kidney. Moreover, STIF improved lipid metabolism in mice with fatty liver without causing accumulation of metabolites after STIF. CONCLUSIONS The accumulation of metabolites induced by STIF can be relieved by spontaneous upregulation of catabolic enzymes, suggesting an adaptive and protective metabolic response to STIF stress in the mammalian body.
Collapse
Affiliation(s)
- Suping Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
| | - Yaqi Lv
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiawei Qian
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China
| | - Yanfei Zhu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yuqing Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yanjun Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Jin Dong
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yue Gu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yuwei Chen
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Qiyuan Sun
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Xuehua Jiao
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Jie Lu
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Zhanjun Yan
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Li Wang
- Department of Community Nursing, School of Nursing, Soochow University, Suzhou 215006, China
| | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China.
| | - Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China.
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China; Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China.
| |
Collapse
|
8
|
Lin X, Wu G, Huang J. The impacts of Ramadan fasting for patients with non-alcoholic fatty liver disease (NAFLD): a systematic review. Front Nutr 2024; 10:1315408. [PMID: 38303901 PMCID: PMC10833229 DOI: 10.3389/fnut.2023.1315408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Background Numerous studies have explored the impacts of Ramadan fasting on Non-alcoholic fatty liver disease (NAFLD). Therefore, the objective of this systematic review was to analyze and summarize all clinical studies regarding the impacts of Ramadan fasting for patients with NAFLD. Methods We performed a comprehensive search of the Embase, Cochrane, and PubMed databases from inception to September 1, 2023. All clinical studies concerning the impacts of Ramadan fasting on patients with NAFLD were included. Results In total, six studies with 397 NAFLD patients comprising five prospective studies and one retrospective study were included in the systematic review. All six studies were assessed as high-quality. Ramadan fasting may offer potential benefits for patients with NAFLD, including improvements in body weight, body composition, cardiometabolic risk factors, glucose profiles, liver parameters, and inflammation markers. Conclusion Ramadan fasting might be an effective dietary intervention for NAFLD. However, the number of studies examining the impacts of Ramadan fasting for patients with NAFLD is relatively limited. Therefore, more high-quality research is needed to further our understanding of the benefits of Ramadan fasting for NAFLD. Systematic review registration https://inplasy.com, identifier 202390102.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | | | - Jinyu Huang
- Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Small S, Iglesies-Grau J, Gariepy C, Wilkinson M, Taub P, Kirkham A. Time-Restricted Eating: A Novel Dietary Strategy for Cardiac Rehabilitation. Can J Cardiol 2023; 39:S384-S394. [PMID: 37734709 DOI: 10.1016/j.cjca.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/23/2023] Open
Abstract
Cardiac rehabilitation (CR) is a multimodal program considered to be the standard of care for secondary prevention of cardiovascular disease (CVD). The primary goals of CR are managing CVD risk factors and improving quality of life. Exercise is the cornerstone, but nutrition education delivered by registered dietitians (RDs) is a core component of CR. Yet patient constraints to adherence to dietary change and limited availability of RDs represent major barriers to the success of completion of nutrition intervention during CR. Therefore, nutritional strategies that reduce CVD risk factors, barriers to adherence, and have capacity for broad dissemination are warranted within CR programs. In this review, we propose time-restricted eating (TRE) as a nutrition strategy to improve the outcomes of CR by drawing on parallels to CVD in other populations and describe the available preliminary data on the efficacy of TRE for CVD. TRE is a dietary strategy that involves alternating periods of fasting and consumption of calories each day. We outline the feasibility, safety, and beneficial cardiometabolic impact of TRE from TRE research in other populations. We also discuss the potential for synergistic benefits of exercise when combined with TRE. Although there is currently limited research on TRE within CR programs, we highlight CR as a unique clinical setting where TRE could play a role in secondary prevention of CVD. Overall, we outline the potential of TRE as a promising nutrition strategy to enhance the benefits of CR.
Collapse
Affiliation(s)
- Stephanie Small
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; Cardiovascular Prevention and Rehabilitation Program, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Josep Iglesies-Grau
- Centre EPIC and Research Centre, Montréal Heart Institute, Montréal, Québec, Canada; Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Chantal Gariepy
- Centre EPIC and Research Centre, Montréal Heart Institute, Montréal, Québec, Canada
| | - Michael Wilkinson
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, University of California San Diego, La Jolla, California, USA
| | - Pam Taub
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, University of California San Diego, La Jolla, California, USA
| | - Amy Kirkham
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; Cardiovascular Prevention and Rehabilitation Program, Toronto Rehabilitation Institute, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Triki R, Zouhal H, Chtourou H, Salhi I, Jebabli N, Saeidi A, Laher I, Hackney AC, Granacher U, Ben Abderrahman A. Timing of Resistance Training During Ramadan Fasting and Its Effects on Muscle Strength and Hypertrophy. Int J Sports Physiol Perform 2023; 18:579-589. [PMID: 37068775 DOI: 10.1123/ijspp.2022-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE During Ramadan month, Muslims often continue training to maintain their muscle performance. However, trainers should stress the importance of the time of day chosen for practicing resistance training (RT) during Ramadan fasting to avoid health and performance alteration. Thus, this study aimed to investigate the effects of the timing of RT during Ramadan intermittent fasting (RIF) on muscle strength and hypertrophy in healthy male adults. METHODS Forty men were randomly allocated to 2 matched groups: 20 practicing whole-body RT in the late afternoon in a fasted state and 20 training in the late evening in a fed state (FED). Both groups performed 4 days per week of whole-body RT (∼75%-85% 1-repetition maximum, 12 repetitions/3-4 sets) during RIF. Anthropometric measurements and 1-repetition-maximum test for the squats, deadlift, and bench press were measured. A cross-sectional area of the quadriceps and biceps brachii was examined using ultrasound scans. All measurements were taken at 4 time points: 24 hours before the start of Ramadan, on the 15th day of Ramadan, on the 29th day of Ramadan, and 21 days after Ramadan. RESULTS Post hoc tests indicated significant preimprovement to postimprovement in FED at the 29th day of Ramadan for the 1-repetition-maximum test for the squats (P = .02; effect size = 0.21) and deadlift (P = .03; effect size = 0.24) when compared to 24 hours before the start of Ramadan. No significant changes were observed in the fasted-state group or for cross-sectional area for both groups. CONCLUSIONS Practicing RT during RIF appears not to have adverse effects on muscle hypertrophy and strength no matter whether it is practiced in FED or fasted state. However, RT had greater effects on muscle strength when applied in FED. Our findings suggest that training sessions should be scheduled after breaking the fast during Ramadan.
Collapse
Affiliation(s)
- Raoua Triki
- Higher Institute of Sport and Physical Education of Ksar-Said, University of Manouba, Kef,Tunisia
| | - Hassane Zouhal
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR APS, University of Rennes 2-ENS Cachan, Rennes,France
- Institut International des Sciences du Sport (2I2S), Irodouer,France
| | - Hamdi Chtourou
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax,Tunisia
- Research Unit, Physical Activity, Sport, and Health (UR18JS01), National Observatory of Sport, Tunis,Tunisia
| | - Iyed Salhi
- Higher Institute of Sport and Physical Education of Ksar-Said, University of Manouba, Kef,Tunisia
| | - Nidhal Jebabli
- Higher Institute of Sport and Physical Education of Ksar-Said, University of Manouba, Kef,Tunisia
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Kurdistan,Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC,Canada
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, Chapel Hill, NC,USA
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg im Breisgau,Germany
| | | |
Collapse
|
11
|
Maaloul R, Marzougui H, Ben Dhia I, Ghroubi S, Tagougui S, Kallel C, Driss T, Elleuch MH, Ayadi F, Turki M, Hammouda O. Effectiveness of Ramadan diurnal intermittent fasting and concurrent training in the management of obesity: is the combination worth the weight? Nutr Metab Cardiovasc Dis 2023; 33:659-666. [PMID: 36710112 DOI: 10.1016/j.numecd.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS We investigated, in men with obesity, the efficacy of the combination of two strategies (Ramadan diurnal intermittent fasting 'RDIF' strategy vs RDIF plus concurrent training program 'RDIF-CT' strategy) known for their positive impact on body composition and then we explored the possible impact on metabolic and inflammatory biomarkers. METHODS AND RESULTS Twenty obese men, age: 31.8 ± 7.05 years, BMI: 33.1 ± 4.2 kg m-2, performing regularly RDIF, were randomized into two groups: RDIF-CT (n = 10) and RDIF without training (RDIF-NCT) (n = 10). The RDIF-CT group participated in High intensity interval training (HIIT) program combined with resistance exercises for 4 weeks. Body composition, blood glucose, lipid profile, liver biomarkers and inflammation were assessed before and after 4-week RDIF. Both groups showed a significant decrease in weight, fat mass (FM), fat percentage (Fat%) and waist circumference (WC) and an improvement in blood glucose, lipid profile and inflammation. Fat free mass decreased significantly in RDIF-NCT (p < 0.05) while remaining unchanged in RDIF-CT. However, RDIF-CT induced greater improvements in body composition (i.e., weight, FM, Fat% and WC (p < 0.05, p < 0.01, p < 0.01 and p < 0.05; respectively)) as well as greater decrease in lipid biomarkers (i.e., TC, TG and LDL (p < 0.01 for all)), inflammation (i.e., CRP (p < 0.05)), and liver damage (i.e., ASAT, ALAT and Gamma-GT (p < 0.01, p < 0.05 and p < 0.001; respectively)) compared to RDIF-NCT group pre-post intervention. CONCLUSIONS Our results suggest that a combination of RDIF and CT induces greater changes in body composition, lipid profile, inflammation and liver biomarkers compared to RDIF strategy alone. CLINICAL TRIAL REGISTER PACTR202203475387226.
Collapse
Affiliation(s)
- Rami Maaloul
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia; Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Tunisia
| | - Houssem Marzougui
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia; Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Tunisia
| | - Imen Ben Dhia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia; Research Laboratory of Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, University of Sfax, Tunisia
| | - Sameh Ghroubi
- Research Laboratory of Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, University of Sfax, Tunisia
| | - Sémah Tagougui
- Montreal Clinical Research Institute, Montreal, Canada; Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | | | - Tarak Driss
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS, UPL, Paris Nanterre, Nanterre, France
| | - Mohamed Habib Elleuch
- Research Laboratory of Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, University of Sfax, Tunisia
| | - Fatma Ayadi
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Tunisia
| | - Mouna Turki
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Tunisia
| | - Omar Hammouda
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Tunisia; Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS, UPL, Paris Nanterre, Nanterre, France.
| |
Collapse
|
12
|
Does Timing Matter? A Narrative Review of Intermittent Fasting Variants and Their Effects on Bodyweight and Body Composition. Nutrients 2022; 14:nu14235022. [PMID: 36501050 PMCID: PMC9736182 DOI: 10.3390/nu14235022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The practice of fasting recently has been purported to have clinical benefits, particularly as an intervention against obesity and its related pathologies. Although a number of different temporal dietary restriction strategies have been employed in practice, they are generally classified under the umbrella term "intermittent fasting" (IF). IF can be stratified into two main categories: (1) intra-weekly fasting (alternate-day fasting/ADF, twice-weekly fasting/TWF) and (2) intra-daily fasting (early time-restricted eating/eTRE and delayed time-restricted eating/dTRE). A growing body of evidence indicates that IF is a viable alternative to daily caloric restriction (DCR), showing effectiveness as a weight loss intervention. This paper narratively reviews the literature on the effects of various commonly used IF strategies on body weight and body composition when compared to traditional DCR approaches, and draws conclusions for their practical application. A specific focus is provided as to the use of IF in combination with regimented exercise programs and the associated effects on fat mass and lean mass.
Collapse
|
13
|
Xu R, Cao YX, Chen YT, Jia YQ. Differential effects of intermittent energy restriction vs. continuous energy restriction combined high-intensity interval training on overweight/obese adults: A randomized controlled trial. Front Nutr 2022; 9:979618. [PMID: 36424927 PMCID: PMC9678932 DOI: 10.3389/fnut.2022.979618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Intermittent energy restriction (IER) and continuous energy restriction (CER) are increasingly popular dietary approaches used for weight loss and overall health. These energy restriction protocols combined with exercise on weight loss and other health outcomes could achieve additional effects in a short-term intervention. OBJECTIVES To evaluate the effects of a 4-week IER or CER program on weight, blood lipids, and CRF in overweight/obese adults when combined with high-intensity interval training (HIIT). METHODS Forty-eight overweight/obese adults [age: 21.3 ± 2.24 years, body mass index (BMI): 25.86 ± 2.64 kg⋅m-2] were randomly assigned to iER, cER, and normal diet (ND) groups (n = 16 per group), each consisting of a 4-week intervention. All of the groups completed HIIT intervention (3 min at 80% of V̇O2max followed by 3 min at 50% of V̇O2max ), 30 min/training sessions, five sessions per week. iER subjects consumed 30% of energy needs on 2 non-consecutive days/week, and 100% of energy needs on another 5 days; cER subjects consumed 70% of energy needs; and ND subjects consumed 100% of energy needs. Body composition, waist circumference (WC) and hip circumference (HC), triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c), high-density lipoprotein-cholesterol (HDL-c), and cardiorespiratory fitness (CRF) were measured before and after the intervention. RESULTS Of the total 57 participants who underwent randomization, 48 (84.2%) completed the 4-week intervention. After intervention body composition and body circumference decreased in three groups, but no significant differences between groups. The iER tends to be superior to cER in the reduction of body composition and body circumference. The mean body weight loss was 4.57 kg (95% confidence interval [CI], 4.1-5.0, p < 0.001) in iER and 2.46 kg (95% CI, 4.1-5.0, p < 0.001) in iER. The analyses of BMI, BF%, WC, and HC were consistent with the primary outcome results. In addition, TG, TC, HDL-c, and CRF improved after intervention but without significant changes (p > 0.05). CONCLUSION Both IER and CER could be effective in weight loss and increased CRF when combined with HIIT. However, iER showed greater benefits for body weight, BF%, WC, and HC compared with cER.
Collapse
Affiliation(s)
- Rui Xu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- Laboratory of Kinesiology, Nanjing Sport Institute, Nanjing, China
| | - You-Xiang Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu-Ting Chen
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yu-Qi Jia
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| |
Collapse
|
14
|
Dynamic Resistance Exercise Alters Blood ApoA-I Levels, Inflammatory Markers, and Metabolic Syndrome Markers in Elderly Women. Healthcare (Basel) 2022; 10:healthcare10101982. [PMID: 36292427 PMCID: PMC9601716 DOI: 10.3390/healthcare10101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022] Open
Abstract
Combined endurance and dynamic-resistance exercise has important anti-inflammatory effects, altering vascular endothelial function, and helping to prevent and treat aging-related metabolic syndrome (MS). We studied changes in 40 elderly women aged ≥ 65 years (control group (no MS), n = 20, mean age: 68.23 ± 2.56 years; MS group, n = 19, mean age: 71.42 ± 5.87 years; one left). The exercise program comprised dynamic-resistance training using elastic bands, three times weekly, for six months. We analyzed body composition, blood pressure, physical fitness, and MS-related blood variables including ApoA-I, antioxidant factors, and inflammatory markers. After the program, the MS group showed significant reductions in waist-hip ratio, waist circumference, diastolic blood pressure, blood insulin, and HOMA-IR, and a significant increase in HSP70 (p < 0.05). Both groups showed significant increases in ApoA-I levels, ApoA-I/HDL-C ratio, SOD2, IL-4, and IL-5 levels (p < 0.05). Active-resistance training-induced changes in ApoA-I were significantly positively correlated with changes in HDL-C and HSP70, and significantly negatively correlated with changes in triglycerides, C-reactive protein, and TNF-α (p < 0.05). Active-resistance training qualitatively altered HDL, mostly by altering ApoA-I levels, relieving vascular inflammation, and improving antioxidant function. This provides evidence that dynamic-resistance exercise can improve physical fitness and MS risk factors in elderly women.
Collapse
|
15
|
Ye YF, Zhang MX, Lin Z, Tang L. Is Intermittent Fasting Better Than Continuous Energy Restriction for Adults with Overweight and Obesity? Diabetes Metab Syndr Obes 2022; 15:2813-2826. [PMID: 36134390 PMCID: PMC9484493 DOI: 10.2147/dmso.s376409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
As a popular weight management intervention, intermittent fasting (IF) has been widely applied to the treatment of overweight and obesity in adults. This review describes the different forms and implementation protocols of IF and their effects on body weight, body composition, cardiometabolic risk factors and other diseases. The existing evidence suggests that IF is as effective as continuous energy restriction and may be a feasible and effective approach to weight loss.
Collapse
Affiliation(s)
- Ya-Fei Ye
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
- Health Management Centre, Taizhou Hospital, Zhejiang University, Linhai, 317000, People’s Republic of China
| | - Mei-Xian Zhang
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, People’s Republic of China
| | - Zhi Lin
- Operating Rooms, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, People’s Republic of China
| | - Leiwen Tang
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
| |
Collapse
|
16
|
Jamshed H, Steger FL, Bryan DR, Richman JS, Warriner AH, Hanick CJ, Martin CK, Salvy SJ, Peterson CM. Effectiveness of Early Time-Restricted Eating for Weight Loss, Fat Loss, and Cardiometabolic Health in Adults With Obesity: A Randomized Clinical Trial. JAMA Intern Med 2022; 182:953-962. [PMID: 35939311 PMCID: PMC9361187 DOI: 10.1001/jamainternmed.2022.3050] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Importance It is unclear how effective intermittent fasting is for losing weight and body fat, and the effects may depend on the timing of the eating window. This randomized trial compared time-restricted eating (TRE) with eating over a period of 12 or more hours while matching weight-loss counseling across groups. Objective To determine whether practicing TRE by eating early in the day (eTRE) is more effective for weight loss, fat loss, and cardiometabolic health than eating over a period of 12 or more hours. Design, Setting, and Participants The study was a 14-week, parallel-arm, randomized clinical trial conducted between August 2018 and April 2020. Participants were adults aged 25 to 75 years with obesity and who received weight-loss treatment through the Weight Loss Medicine Clinic at the University of Alabama at Birmingham Hospital. Interventions All participants received weight-loss treatment (energy restriction [ER]) and were randomized to eTRE plus ER (8-hour eating window from 7:00 to 15:00) or control eating (CON) plus ER (≥12-hour window). Main Outcomes and Measures The co-primary outcomes were weight loss and fat loss. Secondary outcomes included blood pressure, heart rate, glucose levels, insulin levels, and plasma lipid levels. Results Ninety participants were enrolled (mean [SD] body mass index, 39.6 [6.7]; age, 43 [11] years; 72 [80%] female). The eTRE+ER group adhered 6.0 (0.8) days per week. The eTRE+ER intervention was more effective for losing weight (-2.3 kg; 95% CI, -3.7 to -0.9 kg; P = .002) but did not affect body fat (-1.4 kg; 95% CI, -2.9 to 0.2 kg; P = .09) or the ratio of fat loss to weight loss (-4.2%; 95% CI, -14.9 to 6.5%; P = .43). The effects of eTRE+ER were equivalent to reducing calorie intake by an additional 214 kcal/d. The eTRE+ER intervention also improved diastolic blood pressure (-4 mm Hg; 95% CI, -8 to 0 mm Hg; P = .04) and mood disturbances, including fatigue-inertia, vigor-activity, and depression-dejection. All other cardiometabolic risk factors, food intake, physical activity, and sleep outcomes were similar between groups. In a secondary analysis of 59 completers, eTRE+ER was also more effective for losing body fat and trunk fat than CON+ER. Conclusions and Relevance In this randomized clinical trial, eTRE was more effective for losing weight and improving diastolic blood pressure and mood than eating over a window of 12 or more hours at 14 weeks. Trial Registration ClinicalTrials.gov Identifier: NCT03459703.
Collapse
Affiliation(s)
- Humaira Jamshed
- Department of Nutrition Sciences, University of Alabama at Birmingham
- Department of Integrated Sciences and Mathematics, Habib University, Karachi, Sindh, Pakistan
| | - Felicia L. Steger
- Department of Nutrition Sciences, University of Alabama at Birmingham
- Department of Endocrinology, Genetics and Metabolism, University of Kansas Medical Center, Kansas City
| | - David R. Bryan
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | | | | | - Cody J. Hanick
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | - Corby K. Martin
- Ingestive Behavior Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | | | | |
Collapse
|
17
|
Keenan S, Cooke MB, Chen WS, Wu S, Belski R. The Effects of Intermittent Fasting and Continuous Energy Restriction with Exercise on Cardiometabolic Biomarkers, Dietary Compliance, and Perceived Hunger and Mood: Secondary Outcomes of a Randomised, Controlled Trial. Nutrients 2022; 14:3071. [PMID: 35893925 PMCID: PMC9370806 DOI: 10.3390/nu14153071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Excess weight in the form of adiposity plays a key role in the pathogenesis of cardiometabolic diseases. Lifestyle modifications that incorporate continuous energy restriction (CER) are effective at inducing weight loss and reductions in adiposity; however, prescribing daily CER results in poor long-term adherence. Over the past decade, intermittent fasting (IF) has emerged as a promising alternative to CER that may promote increased compliance and/or improvements in cardiometabolic health parameters independent of weight loss. (2) Methods: This paper presents a secondary analysis of data from a 12-week intervention investigating the effects of a twice-weekly fast (5:2 IF; IFT group) and CER (CERT group) when combined with resistance exercise in 34 healthy participants (17 males and 17 females, mean BMI: 27.0 kg/m2, mean age: 23.9 years). Specifically, changes in cardiometabolic blood markers and ratings of hunger, mood, energy and compliance within and between groups were analysed. Dietary prescriptions were hypoenergetic and matched for energy and protein intake. (3) Results: Both dietary groups experienced reductions in total cholesterol (TC; mean reduction, 7.8%; p < 0.001), low-density lipoprotein cholesterol (LDL-C; mean reduction, 11.1%; p < 0.001) and high-density lipoprotein cholesterol (mean reduction 2.6%, p = 0.049) over the 12 weeks. Reductions in TC and LDL-C were greater in the IFT group after adjustment for baseline levels and change in weight. No significant changes in markers of glucose regulation were observed. Both groups maintained high levels of dietary compliance (~80%) and reported low levels of hunger over the course of the intervention period. (4) Conclusions: Secondary data analysis revealed that when combined with resistance training, both dietary patterns improved blood lipids, with greater reductions observed in the IFT group. High levels of compliance and low reported levels of hunger throughout the intervention period suggest both diets are well tolerated in the short-to-medium term.
Collapse
Affiliation(s)
- Stephen Keenan
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
| | - Matthew B. Cooke
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
| | - Won Sun Chen
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
| | - Sam Wu
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
| | - Regina Belski
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.B.C.); (W.S.C.); (S.W.); (R.B.)
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
18
|
Cooke MB, Deasy W, Ritenis EJ, Wilson RA, Stathis CG. Effects of Intermittent Energy Restriction Alone and in Combination with Sprint Interval Training on Body Composition and Cardiometabolic Biomarkers in Individuals with Overweight and Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137969. [PMID: 35805627 PMCID: PMC9265557 DOI: 10.3390/ijerph19137969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023]
Abstract
The popularity of intermittent fasting (IF) and high intensity (sprint) interval training (SIT) has increased in recent years amongst the general public due to their purported health benefits and feasibility of incorporation into daily life. The number of scientific studies investigating these strategies has also increased, however, very few have examined the combined effects, especially on body composition and cardiometabolic biomarkers, which is the primary aim of this investigation. A total of thirty-four male and female participants (age: 35.4 ± 8.4 y, body mass index (BMI): 31.3 ± 3.5 kg/m2, aerobic capacity (VO2peak) 27.7 ± 7.0 mL·kg−1·min−1) were randomized into one of three 16-week interventions: (1) 5:2 IF (2 non-consecutive days of fasting per week, 5 days on ad libitum eating), (2) supervised SIT (3 bouts per week of 20s cycling at 150% VO2peak followed by 40 s of active rest, total 10 min duration), and (3) a combination of both interventions. Body composition, haemodynamic and VO2peak were measured at 0, 8 and 16 weeks. Blood samples were also taken and analysed for lipid profiles and markers of glucose regulation. Both IF and IF/SIT significantly decreased body weight, fat mass and visceral fat compared to SIT only (p < 0.05), with no significant differences between diet and diet + exercise combined. The effects of diet and/or exercise on cardiometabolic biomarkers were mixed. Only exercise alone or with IF significantly increased cardiorespiratory fitness. The results suggest that energy restriction was the main driver of body composition enhancement, with little effect from the low volume SIT. Conversely, to achieve benefits in cardiorespiratory fitness, exercise is required.
Collapse
Affiliation(s)
- Matthew B. Cooke
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3000, Australia; (W.D.); (R.A.W.)
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC 3021, Australia
- Correspondence: (M.B.C.); (C.G.S.); Tel.: +61-(3)-9214-5560 (M.B.C.); +61-(3)-9919-4293 (C.G.S.)
| | - William Deasy
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3000, Australia; (W.D.); (R.A.W.)
- College of Clinical Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Elya J. Ritenis
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Robin A. Wilson
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3000, Australia; (W.D.); (R.A.W.)
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC 3021, Australia
| | - Christos G. Stathis
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3000, Australia; (W.D.); (R.A.W.)
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia
- Correspondence: (M.B.C.); (C.G.S.); Tel.: +61-(3)-9214-5560 (M.B.C.); +61-(3)-9919-4293 (C.G.S.)
| |
Collapse
|
19
|
Meessen ECE, Andresen H, van Barneveld T, van Riel A, Johansen EI, Kolnes AJ, Kemper EM, Olde Damink SWM, Schaap FG, Romijn JA, Jensen J, Soeters MR. Differential Effects of One Meal per Day in the Evening on Metabolic Health and Physical Performance in Lean Individuals. Front Physiol 2022; 12:771944. [PMID: 35087416 PMCID: PMC8787212 DOI: 10.3389/fphys.2021.771944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Generally, food intake occurs in a three-meal per 24 h fashion with in-between meal snacking. As such, most humans spend more than ∼ 12-16 h per day in the postprandial state. It may be reasoned from an evolutionary point of view, that the human body is physiologically habituated to less frequent meals. Metabolic flexibility (i.e., reciprocal changes in carbohydrate and fatty acid oxidation) is a characteristic of metabolic health and is reduced by semi-continuous feeding. The effects of time-restricted feeding (TRF) on metabolic parameters and physical performance in humans are equivocal. Methods: To investigate the effect of TRF on metabolism and physical performance in free-living healthy lean individuals, we compared the effects of eucaloric feeding provided by a single meal (22/2) vs. three meals per day in a randomized crossover study. We included 13 participants of which 11 (5 males/6 females) completed the study: age 31.0 ± 1.7 years, BMI 24.0 ± 0.6 kg/m2 and fat mass (%) 24.0 ± 0.6 (mean ± SEM). Participants consumed all the calories needed for a stable weight in either three meals (breakfast, lunch and dinner) or one meal per day between 17:00 and 19:00 for 11 days per study period. Results: Eucaloric meal reduction to a single meal per day lowered total body mass (3 meals/day -0.5 ± 0.3 vs. 1 meal/day -1.4 ± 0.3 kg, p = 0.03), fat mass (3 meals/day -0.1 ± 0.2 vs. 1 meal/day -0.7 ± 0.2, p = 0.049) and increased exercise fatty acid oxidation (p < 0.001) without impairment of aerobic capacity or strength (p > 0.05). Furthermore, we found lower plasma glucose concentrations during the second half of the day during the one meal per day intervention (p < 0.05). Conclusion: A single meal per day in the evening lowers body weight and adapts metabolic flexibility during exercise via increased fat oxidation whereas physical performance was not affected.
Collapse
Affiliation(s)
- Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Håvard Andresen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Thomas van Barneveld
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anne van Riel
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Egil I Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Anders J Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - E Marleen Kemper
- Hospital Pharmacy, Amsterdam University Medical Centers-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam University Medical Centers-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Intermittent fasting and continuous energy restriction result in similar changes in body composition and muscle strength when combined with a 12 week resistance training program. Eur J Nutr 2022; 61:2183-2199. [PMID: 35084574 PMCID: PMC9106626 DOI: 10.1007/s00394-022-02804-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
Purpose The objective of this study was to compare the effects of 12 weeks of resistance training combined with either 5:2 intermittent fasting or continuous energy restriction on body composition, muscle size and quality, and upper and lower body strength.
Methods Untrained individuals undertook 12 weeks of resistance training plus either continuous energy restriction [20% daily energy restriction (CERT)] or 5:2 intermittent fasting [~ 70% energy restriction 2 days/week, euenergetic consumption 5 days/week (IFT)], with both groups prescribed a mean of ≥ 1.4 g of protein per kilogram of body weight per day. Participants completed 2 supervised resistance and 1 unsupervised aerobic/resistance training combination session per week. Changes in lean body mass (LBM), thigh muscle size and quality, strength and dietary intake were assessed.
Results Thirty-four participants completed the study (CERT = 17, IFT = 17). LBM was significantly increased (+ 3.7%, p < 0.001) and body weight (− 4.6%, p < 0.001) and fat (− 24.1%, p < 0.001) were significantly reduced with no significant difference between groups, though results differed by sex. Both groups showed improvements in thigh muscle size and quality, and reduced intramuscular and subcutaneous fat assessed by ultrasonography and peripheral quantitative computed tomography (pQCT), respectively. The CERT group demonstrated a significant increase in muscle surface area assessed by pQCT compared to the IFT group. Similar gains in upper and lower body strength and muscular endurance were observed between groups.
Conclusion When combined with resistance training and moderate protein intake, continuous energy restriction and 5:2 intermittent fasting resulted in similar improvements in body composition, muscle quality, and strength. ACTRN: ACTRN12620000920998, September 2020, retrospectively registered.
Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02804-3.
Collapse
|
21
|
Hofer SJ, Carmona‐Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med 2022; 14:e14418. [PMID: 34779138 PMCID: PMC8749464 DOI: 10.15252/emmm.202114418] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Age-associated diseases are rising to pandemic proportions, exposing the need for efficient and low-cost methods to tackle these maladies at symptomatic, behavioral, metabolic, and physiological levels. While nutrition and health are closely intertwined, our limited understanding of how diet precisely influences disease often precludes the medical use of specific dietary interventions. Caloric restriction (CR) has approached clinical application as a powerful, yet simple, dietary modulation that extends both life- and healthspan in model organisms and ameliorates various diseases. However, due to psychological and social-behavioral limitations, CR may be challenging to implement into real life. Thus, CR-mimicking interventions have been developed, including intermittent fasting, time-restricted eating, and macronutrient modulation. Nonetheless, possible side effects of CR and alternatives thereof must be carefully considered. We summarize key concepts and differences in these dietary interventions in humans, discuss their molecular effects, and shed light on advantages and disadvantages.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| | | | - Melanie I Mueller
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
22
|
Fasting and Exercise in Oncology: Potential Synergism of Combined Interventions. Nutrients 2021; 13:nu13103421. [PMID: 34684421 PMCID: PMC8537603 DOI: 10.3390/nu13103421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Nutrition and exercise interventions are strongly recommended for most cancer patients; however, much debate exists about the best prescription. Combining fasting with exercise is relatively untouched within the oncology setting. Separately, fasting has demonstrated reductions in chemotherapy-related side effects and improved treatment tolerability and effectiveness. Emerging evidence suggests fasting may have a protective effect on healthy cells allowing chemotherapy to exclusively target cancer cells. Exercise is commonly recommended and attenuates treatment- and cancer-related adverse changes to body composition, quality of life, and physical function. Given their independent benefits, in combination, fasting and exercise may induce synergistic effects and further improve cancer-related outcomes. In this narrative review, we provide a critical appraisal of the current evidence of fasting and exercise as independent interventions in the cancer population and discuss the potential benefits and mechanisms of combined fasting and exercise on cardiometabolic, body composition, patient-reported outcomes, and cancer-related outcomes. Our findings suggest that within the non-cancer population combined fasting and exercise is a viable strategy to improve health-related outcomes, however, its safety and efficacy in the oncology setting remain unknown. Therefore, we also provide a discussion on potential safety issues and considerations for future research in the growing cancer population.
Collapse
|
23
|
Williamson E, Moore DR. A Muscle-Centric Perspective on Intermittent Fasting: A Suboptimal Dietary Strategy for Supporting Muscle Protein Remodeling and Muscle Mass? Front Nutr 2021; 8:640621. [PMID: 34179054 PMCID: PMC8219935 DOI: 10.3389/fnut.2021.640621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Muscle protein is constantly “turning over” through the breakdown of old/damaged proteins and the resynthesis of new functional proteins, the algebraic difference determining net muscle gain, maintenance, or loss. This turnover, which is sensitive to the nutritional environment, ultimately determines the mass, quality, and health of skeletal muscle over time. Intermittent fasting has become a topic of interest in the health community as an avenue to improve health and body composition primarily via caloric deficiency as well as enhanced lipolysis and fat oxidation secondary to attenuated daily insulin response. However, this approach belies the established anti-catabolic effect of insulin on skeletal muscle. More importantly, muscle protein synthesis, which is the primary regulated turnover variable in healthy humans, is stimulated by the consumption of dietary amino acids, a process that is saturated at a moderate protein intake. While limited research has explored the effect of intermittent fasting on muscle-related outcomes, we propose that infrequent meal feeding and periods of prolonged fasting characteristic of models of intermittent fasting may be counter-productive to optimizing muscle protein turnover and net muscle protein balance. The present commentary will discuss the regulation of muscle protein turnover across fasted and fed cycles and contrast it with studies exploring how dietary manipulation alters the partitioning of fat and lean body mass. It is our position that intermittent fasting likely represents a suboptimal dietary approach to remodel skeletal muscle, which could impact the ability to maintain or enhance muscle mass and quality, especially during periods of reduced energy availability.
Collapse
Affiliation(s)
- Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Effects of intermittent fasting combined with resistance training on body composition: a systematic review and meta-analysis. Physiol Behav 2021; 237:113453. [PMID: 33984329 DOI: 10.1016/j.physbeh.2021.113453] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
This systematic review and meta-analysis evaluated the influence of intermittent fasting (IF) in combination with resistance training (RT) on body composition outcomes. Studies examining IF vs. non-IF diets in individuals performing RT, published up to February 2021, were identified through PubMed, the Cochrane Library, Web of Science, Embase, and SCOPUS databases. Eight studies, including 221 participants were analyzed using a random-effects model to calculate weighted mean differences (WMDs) with 95% confidence intervals (CIs). Results indicated that IF had a significant effect on body mass (WMD = -2.08 kg; 95% CI: -3.04, -1.13), fat mass (WMD = -1.36 kg; 95% CI: -1.94, -0.78), body mass index (WMD = -0.52 kg/m2; 95% CI: -0.85, -0.19), and body fat percentage (WMD = -1.49%; 95% CI: -2.24, -0.74) relative to non-IF diets, without a significant effect for fat-free mass (WMD = -0.27 kg; 95% CI: -0.82, 0.28). The present systematic review and meta-analysis demonstrates potentially beneficial effects of IF in combination with RT for reducing body mass and body fat relative to non-IF control diets, with similar preservation of fat-free mass.
Collapse
|