1
|
Zhang M, Feng S, Song J, Ruan X, Xue W. Formononetin derivatives containing benzyl piperidine: A brand new, highly efficient inhibitor targeting Xanthomonas spp. J Adv Res 2024:S2090-1232(24)00384-9. [PMID: 39233004 DOI: 10.1016/j.jare.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Plant bacterial diseases take an incalculable toll on global food security. The indiscriminate use of chemical synthetic pesticide not only facilitates pathogen resistance of pathogenic bacteria, but also poses a major threat to human health and environmental protection. Therefore, it is of great economic value and scientific significance to develop a new antibacterial drug with environmental friendliness and unique mechanism of action. OBJECTIVES To design and synthesize formononetin derivatives based on natural products, evaluate their in vitro and in vivo antibacterial activities and elucidate the mechanisms involved. METHODS The synthesis was carried out by classical active group splicing method. The antibacterial activities were evaluated using turbidimetry and pot experiments. The antibacterial mechanism was further investigated using scanning electron microscopy (SEM), virulence factors, defense enzymes activities, proteomics and metabolomics. RESULTS 40 formononetin derivatives containing benzyl piperidine were designed and synthesized. The antibacterial results demonstrated that H32 exhibited the most potent inhibitory effect against Xanthomonas oryzae pv. Oryzae (Xoo) with the EC50 of 0.07 μg/mL, while H6 displayed the highest inhibitory activity against Xanthomonas axonopodis pv. Citri (Xac) with the EC50 of 0.24 μg/mL. Furthermore, the control efficacy of H32 against rice bacterial leaf blight (BLB) and H6 against citrus canker (CC) was validated through pot experiments. SEM, virulence factors and host enzyme activities assay indicated that H32 could not only reduce the virulence of Xoo, but also activate the activities of defense enzymes and improve the disease resistance of host plants. The proteomics and metabolomics analysis demonstrated that H32 could inhibit the synthesis of branched-chain amino acids, make Xoo cells in a starvation state, inhibit its proliferation, weaken its virulence and reduce its colonization and infection of host cells. CONCLUSION Formononetin derivatives containing benzyl piperidine could be used as potentially effective inhibitors against Xanthomonas spp.
Collapse
Affiliation(s)
- Miaohe Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, PR China
| | - Shuang Feng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, PR China
| | - Junrong Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Xianghui Ruan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Stevanović J, Glavinić U, Ristanić M, Erjavec V, Denk B, Dolašević S, Stanimirović Z. Bee-Inspired Healing: Apitherapy in Veterinary Medicine for Maintenance and Improvement Animal Health and Well-Being. Pharmaceuticals (Basel) 2024; 17:1050. [PMID: 39204155 PMCID: PMC11357515 DOI: 10.3390/ph17081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
This review aims to present current knowledge on the effects of honey bee products on animals based on in vivo studies, focusing on their application in clinical veterinary practice. Honey's best-proven effectiveness is in treating wounds, including those infected with antibiotic-resistant microorganisms, as evidenced in horses, cats, dogs, mice, and rats. Propolis manifested a healing effect in numerous inflammatory and painful conditions in mice, rats, dogs, and pigs and also helped in oncological cases in mice and rats. Bee venom is best known for its effectiveness in treating neuropathy and arthritis, as shown in dogs, mice, and rats. Besides, bee venom improved reproductive performance, immune response, and general health in rabbits, chickens, and pigs. Pollen was effective in stimulating growth and improving intestinal microflora in chickens. Royal jelly might be used in the management of animal reproduction due to its efficiency in improving fertility, as shown in rats, rabbits, and mice. Drone larvae are primarily valued for their androgenic effects and stimulation of reproductive function, as evidenced in sheep, chickens, pigs, and rats. Further research is warranted to determine the dose and method of application of honey bee products in animals.
Collapse
Affiliation(s)
- Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Vladimira Erjavec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Barış Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03204, Turkey;
| | | | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| |
Collapse
|
3
|
Santiago MB, Tanimoto MH, Ambrosio MALV, Veneziani RCS, Bastos JK, Sabino-Silva R, Martins CHG. The Antibacterial Potential of Brazilian Red Propolis against the Formation and Eradication of Biofilm of Helicobacter pylori. Antibiotics (Basel) 2024; 13:719. [PMID: 39200019 PMCID: PMC11350797 DOI: 10.3390/antibiotics13080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Helicobacter pylori is associated with gastrointestinal diseases, and its treatment is challenging due to antibiotic-resistant strains, necessitating alternative therapies. Brazilian red propolis (BRP), known for its diverse bioactive compounds with pharmaceutical properties, was investigated for its anti-H. pylori activity, focusing on biofilm formation inhibition and eradication. BRP was tested against H. pylori (ATCC 43526) using several assays: time-kill, nucleotide leakage, biofilm formation inhibition (determining the minimum inhibitory concentration of biofilm of 50%-MICB50, and cell viability), and biofilm eradication (determining the minimum eradication concentration of biofilm of 99.9%-MBEC). Standardization of H. pylori biofilm formation was also conducted. In the time-kill assay, BRP at 50 µg/mL eliminated all H. pylori cells after 24 h. The nucleotide leakage assay showed no significant differences between control groups and BRP-treated groups at 25 µg/mL and 50 µg/mL. H. pylori formed biofilms in vitro at 109 CFU/mL after 72 h. The MICB50 of BRP was 15.6 µg/mL, and at 500, 1000, and 2000 µg/mL, BRP eradicated all bacterial cells. The MBEC was 2000 µg/mL. These findings suggest that BRP has promising anti-H. pylori activity, effectively inhibiting and eradicating biofilms. Further studies are necessary to elucidate BRP's mechanisms of action against H. pylori.
Collapse
Affiliation(s)
- Mariana B. Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-320, Brazil;
| | - Matheus H. Tanimoto
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (M.H.T.); (J.K.B.)
| | - Maria Anita L. V. Ambrosio
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404-600, Brazil; (M.A.L.V.A.); (R.C.S.V.)
| | - Rodrigo Cassio S. Veneziani
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404-600, Brazil; (M.A.L.V.A.); (R.C.S.V.)
| | - Jairo K. Bastos
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (M.H.T.); (J.K.B.)
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38408-100, Brazil;
| | - Carlos Henrique G. Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-320, Brazil;
| |
Collapse
|
4
|
Ding M, Bao Y, Liang H, Zhang X, Li B, Yang R, Zeng N. Potential mechanisms of formononetin against inflammation and oxidative stress: a review. Front Pharmacol 2024; 15:1368765. [PMID: 38799172 PMCID: PMC11116718 DOI: 10.3389/fphar.2024.1368765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Formononetin (FMNT) is a secondary metabolite of flavonoids abundant in legumes and graminaceous plants such as Astragalus mongholicus Bunge [Fabaceae; Astragali radix] and Avena sativa L. [Poaceae]. Astragalus is traditionally used in Asia countries such as China, Korea and Mongolia to treat inflammatory diseases, immune disorders and cancers. In recent years, inflammation and oxidative stress have been found to be associated with many diseases. A large number of pharmacological studies have shown that FMNT, an important bioactive metabolite of Astragalus, has a profoundly anti-inflammatory and antioxidant potential. This review focuses on providing comprehensive and up-to-date findings on the efficacy of the molecular targets and mechanisms involve of FMNT and its derivatives against inflammation and oxidative stress in both in vitro and in vivo. Relevant literature on FMNT against inflammation and oxidative stress between 2013 and 2023 were analyzed. FMNT has antioxidant and anti-inflammatory potential and shows mild or no toxicity in various diseases. Moreover, in the medical field, FMNT has shown potential in the prevention and treatment of cancers, neurological diseases, fibrotic diseases, allergic diseases, metabolic diseases, cardiovascular diseases, gastrointestinal diseases and autoimmune diseases. Thus, it is expected to be utilized in more products in the medical, food and cosmetic industries in the future.
Collapse
Affiliation(s)
- Meiling Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwen Bao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongwei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Cao X, Li Q, Li X, Liu Q, Liu K, Deng T, Weng X, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Enhancing Anticancer Efficacy of Formononetin Microspheres via Microfluidic Fabrication. AAPS PharmSciTech 2023; 24:241. [PMID: 38017231 DOI: 10.1208/s12249-023-02691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Formononetin is a flavonoid compound with anti-tumor and anti-inflammatory properties. However, its low solubility limits its clinical use. We employed microfluidic technology to prepare formononetin-loaded PLGA-PEGDA microspheres (Degradable polymer PLGA, Crosslinking agent PEGDA), which can encapsulate and release drugs in a controlled manner. We optimized and characterized the microspheres, and evaluated their antitumor effects. The microspheres had uniform size, high drug loading efficiency, high encapsulation efficiency, and stable release for 35 days. They also inhibited the proliferation, migration, and apoptosis. The antitumor mechanism involved the induction of reactive oxygen species and modulation of Bcl-2 family proteins. These findings suggested that formononetin-loaded PLGA-PEGDA microspheres, created using microfluidic technology, could be a novel drug delivery system that can overcome the limitations of formononetin and enhance its antitumor activity.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qingwen Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xiaoli Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qintong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Abdel-Gawad DRI, Ibrahim MA, Moawad UK, Kamel S, El-Banna HA, El-Banna AH, Hassan WH, El-Ela FIA. Effectiveness of natural biomaterials in the protection and healing of experimentally induced gastric mucosa Ulcer in rats. Mol Biol Rep 2023; 50:9085-9098. [PMID: 37741810 PMCID: PMC10635934 DOI: 10.1007/s11033-023-08776-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND A gastric ulcer is a painful lesion of the gastric mucosa that can be debilitating or even fatal. The effectiveness of several plant extracts in the therapy of this illness has been demonstrated in traditional pharmacopoeias. AIM this study was aimed to see if propolis, ginseng in normal or nano form, and amygdalin might help in preventing the ulcerative effects of absolute ethanol. METHODS Gastroprotective properties of pretreatments before ethanol gavage in rats were compared to omeprazole. The ulcer and stomach parameters (ulcerated regions) were measured (mm2), ulcer inhibition percentage, the stomachs were assessed macroscopically with gastric biopsy histological examinations. RESULTS Amygdalin, normal and nano ginseng, nano propolis followed by propolis all showed great efficacy in protecting the cyto-architecture and function of the gastric mucosa. The number of ulcerated sites was greatly reduced, and the percentage of stomach protection was increased. Histopathological examination had confirmed great protective effects of the nanoformulations followed by amygdalin. The protection and healing rate was completed to about 100% in all tested materials while ulcer areas were still partially unhealed in normal propolis and omeprazole. Quantitative assay of the m-RNA levels Enothelin 1(ET-1), leukotriene4 (LT-4), and caspase 3(Cas-3) genes and Histamine were done and revealed significant up-regulations in ethanol group and the maximum protective effect was reported with ginseng nano, moreover the histamine content was significantly decreased with nano- formulated extracts. CONCLUSION Amygdalin and the nanoformulated ginseng and propolis had exhibited a marked protective effect against the ulcerative toxic effects of ethanol.
Collapse
Affiliation(s)
- Doaa R I Abdel-Gawad
- Lecturer of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Usama K Moawad
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | | | - Ahmed H El-Banna
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Walid Hamdy Hassan
- Mycology and Immunology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| |
Collapse
|
7
|
ZHOU H, LI H, WANG H. Potential protective effects of the water-soluble Chinese propolis on experimental ulcerative colitis. J TRADIT CHIN MED 2023; 43:925-933. [PMID: 37679980 PMCID: PMC10465833 DOI: 10.19852/j.cnki.jtcm.20230727.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/24/2022] [Indexed: 09/09/2023]
Abstract
OBJECTIVE To investigate the outcome of Chinese water-soluble propolis (WSP) on the inflammatory response and oxidative stress (OS) of colonic mucosa in rats with ulcerative colitis. METHODS Dextran sulfate sodium (DSS) was employed to establish the ucerative colitis (UC) rat model. Forty-eight male rats were arbitrarily separated into six groups, namely control, UC, low-dose water-soluble propolis (L-WSP), medium-dose water-soluble propolis (M-WSP), high-dose water-soluble propolis (H-WSP), and sulfasalazine (Sulfa). In this study, we adopted a method of pre-administration and reconstruction of the model that assessed the water-soluble propolis mediated protection against DSS-induced UC rats. Moreover, we examined the body weight (BW), disease activity index (DAI), bloody stool, colon length, and intestinal mucosal injury index of rats. In addition, using enzyme linked immunosorbent assays, we assessed indicators, such as, colonic myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-9 (IL-9), tumor necrosis factor-ɑ (TNF-ɑ), superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GSH-Px) levels. RESULTS The pro-inflammatory cytokine expression, as well as OS, was increased in the model rats. However, upon WSP intervention, both pro-inflammatory cytokine levels and OS reduced dramatically, and the therapeutic effect was dose-dependent. CONCLUSION WSP downregulates OS by enhancing the function of endogenous antioxidant enzymes like SOD and GSH-Px, that inhibit neutrophil activity, as well as diminish pro-inflammatory cytokines like TNF-ɑ, IL-6, and IL-9, along with mechanisms that attenuate intestinal inflammation in UC rat model.
Collapse
Affiliation(s)
- Hua ZHOU
- 1 Department of Physiology, Anhui Medical College, Hefei 230601, China
| | - Hui LI
- 2 Department of Physiology, Wannan Medical College, Wuhu 241002, China
| | - Haihua WANG
- 2 Department of Physiology, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
8
|
Extraction of Antioxidant Compounds from Brazilian Green Propolis Using Ultrasound-Assisted Associated with Low- and High-Pressure Extraction Methods. Molecules 2023; 28:molecules28052338. [PMID: 36903583 PMCID: PMC10005562 DOI: 10.3390/molecules28052338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The demand for bee products has been growing, especially regarding their application in complementary medicine. Apis mellifera bees using Baccharis dracunculifolia D.C. (Asteraceae) as substrate produce green propolis. Among the examples of bioactivity of this matrix are antioxidant, antimicrobial, and antiviral actions. This work aimed to verify the impact of the experimental conditions applied in low- and high-pressure extractions of green propolis, using sonication (60 kHz) as pretreatment to determine the antioxidant profile in the extracts. Total flavonoid content (18.82 ± 1.15-50.47 ± 0.77 mgQE·g-1), total phenolic compounds (194.12 ± 3.40-439.05 ± 0.90 mgGAE·g-1) and antioxidant capacity by DPPH (33.86 ± 1.99-201.29 ± 0.31 µg·mL-1) of the twelve green propolis extracts were determined. By means of HPLC-DAD, it was possible to quantify nine of the fifteen compounds analyzed. The results highlighted formononetin (4.76 ± 0.16-14.80 ± 0.02 mg·g-1) and p-coumaric acid (<LQ-14.33 ± 0.01 mg·g-1) as majority compounds in the extracts. Based on the principal component analysis, it was possible to conclude that higher temperatures favored the release of antioxidant compounds; in contrast, they decreased the flavonoid content. Thus, the obtained results showed that samples pretreated with 50 °C associated with ultrasound displayed a better performance, which may support the elucidation of the use of these conditions.
Collapse
|
9
|
Novalia Rahmawati Sianipar R, Suryanegara L, Fatriasari W, Tangke Arung E, Wijaya Kusuma I, Setiati Achmadi S, Izyan Wan Azelee N, Ain Abdul Hamid Z. The Role of Selected Flavonoids from Bajakah Tampala (Spatholobus littoralis Hassk.) Stem on Cosmetic Properties: A Review. Saudi Pharm J 2023; 31:382-400. [PMID: 37026052 PMCID: PMC10071331 DOI: 10.1016/j.jsps.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Cosmetics made from natural ingredients are increasingly popular because they contain bioactive compounds which can provide many health benefits, more environmentally friendly and sustainable. The health benefits obtained from natural-based ingredients include anti-aging, photoprotective, antioxidant, and anti-inflammatory. This article reviewed the potential of selected flavonoids from bajakah tampala (Spatholobus littoralis Hassk.) as the native plant in Indonesia. We present in silico, in vitro, in vivo, and clinical research data on the use of selected flavonoids that have been reported in other extracts.
Collapse
|
10
|
Boeing T, Monteiro Magalhães de Oliveira B, Aldana-Mejía JA, Vidal Ccana-Ccapatinta G, Venzon L, Judah Cury B, Santos França TC, de Souza P, Roman Junior WA, Mota da Silva L, Kenupp Bastos J. Brazilian Red Propolis Accelerates Gastric Healing and Reduces Gastric Submucosal Layer Inflammation in Ultrasound-Monitored Rats. Chem Biodivers 2023; 20:e202200992. [PMID: 36445831 DOI: 10.1002/cbdv.202200992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Propolis has been used for the treatment of gastric disturbances in folk medicine, nevertheless, the gastric healing effects of Brazilian red propolis have not been unveiled. This study aimed to assess the gastric healing effect of the hydroalcoholic extract of red propolis (HERP) in the acetic acid-induced ulcer model. Rats under acetic acid-induced-ulcer were treated with HERP (100 mg/kg, p.o.) twice a day for seven days. Histological changes, oxidative stress, and inflammatory parameters were analyzed in the gastric tissue. Moreover, the gastric wall thickness was measured by ultrasound. The in vitro cytotoxicity of HERP and cellular migration of fibroblasts were evaluated. The treatment with HERP promoted gastric healing, reducing gastric wall thickness, macroscopic lesion area, and histopathological damages compared to the vehicle. Moreover, HERP reduced oxidative stress and inflammation in the gastric tissue but did not change mucin or collagen levels. HERP did not show signs of toxicity either in vivo or in vitro. HERP displayed a healing effect in vivo by reducing oxidative stress and inflammation. These data contribute to validating the popular use of this product in the treatment of gastric disorders and advance scientific knowledge in the search for new drugs for the management of gastric ulcers.
Collapse
Affiliation(s)
- Thaise Boeing
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | | | - Jennyfer Andrea Aldana-Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gari Vidal Ccana-Ccapatinta
- School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Larissa Venzon
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Benhur Judah Cury
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Tauani Caroline Santos França
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Priscila de Souza
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Walter Antônio Roman Junior
- Postgraduate Program in Health Sciences, Universidade Comunitária da região de Chapecó (UNOCHAPECÓ), Chapecó, Santa Catarina, Brazil
| | - Luísa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Stanciauskaite M, Marksa M, Rimkiene L, Ramanauskiene K. Evaluation of Chemical Composition, Sun Protection Factor and Antioxidant Activity of Lithuanian Propolis and Its Plant Precursors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3558. [PMID: 36559670 PMCID: PMC9781500 DOI: 10.3390/plants11243558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The growing interest in polyphenols of natural origin and their plant sources encourages the study of their chemical composition and biological activity. Propolis is widely used as a source of phenolic compounds. The aim of this study is to evaluate and compare the chemical composition, antioxidant activity and sun protection factor (SPF) of the ethanolic extracts of the poplar buds, birch buds and pine buds of propolis plant precursors collected in Lithuania. The IC50 concentration of the extracts was evaluated using DPPH and ABTS methods. Extracts of poplar buds, birch buds and propolis showed a lower IC50 concentration by ABTS and DPPH methods compared with pine buds extracts. Poplar buds and propolis extracts showed the highest SPF value, while birch and pine buds extracts showed a lower SPF value. High-performance liquid chromatography (HPLC) analysis results showed that phenolic acids, such as p-coumaric acid and cinnamic acid, and flavonoids, such as pinobanksin and pinocembrin, were identified in all the tested extracts. Salicin has been identified only in poplar buds extracts. The results of antioxidant activity showed that propolis poplar and birch buds are a promising source of biologically active polyphenols.
Collapse
Affiliation(s)
- Monika Stanciauskaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Laura Rimkiene
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
12
|
Zulhendri F, Lesmana R, Tandean S, Christoper A, Chandrasekaran K, Irsyam I, Suwantika AA, Abdulah R, Wathoni N. Recent Update on the Anti-Inflammatory Activities of Propolis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238473. [PMID: 36500579 PMCID: PMC9740431 DOI: 10.3390/molecules27238473] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/09/2022]
Abstract
In recent years, research has demonstrated the efficacy propolis as a potential raw material for pharmaceuticals and nutraceuticals. There is limited report detailing the mechanisms of action of propolis and its bioactive compounds in relation to their anti-inflammatory properties. Thus, the aim of the present review is to examine the latest experimental evidence (2017-2022) regarding the anti-inflammatory properties of propolis. A systematic scoping review methodology was implemented. After applying the exclusion criteria, a total of 166 research publications were identified and retrieved from Scopus, Web of Science, and Pubmed. Several key themes related to the anti-inflammatory properties of propolis were subsequently identified, namely in relation to cancers, oral health, metabolic syndrome, organ toxicity and inflammation, immune system, wound healing, and pathogenic infections. Based on the latest experimental evidence, propolis is demonstrated to possess various mechanisms of action in modulating inflammation towards the regulatory balance and anti-inflammatory environment. In general, we summarize that propolis acts as an anti-inflammatory substance by inhibiting and downregulating TLR4, MyD88, IRAK4, TRIF, NLRP inflammasomes, NF-κB, and their associated pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ, and TNF-α. Propolis also reduces the migration of immune cells such as macrophages and neutrophils, possibly by downregulating the chemokines CXCL9 and CXCL10.
Collapse
Affiliation(s)
- Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Kebun Efi, Kabanjahe 22171, Indonesia
| | - Ronny Lesmana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence: (R.L.); (S.T.)
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia
- Correspondence: (R.L.); (S.T.)
| | - Andreas Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
| | | | - Ilham Irsyam
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia
| | - Auliya A. Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rizky Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia
| |
Collapse
|
13
|
Daza-Leon C, Gomez AP, Álvarez-Mira D, Carvajal-Diaz L, Ramirez-Nieto G, Sanchez A, Vargas JI, Betancourt L. Characterization and evaluation of Colombian propolis on the intestinal integrity of broilers. Poult Sci 2022; 101:102159. [PMID: 36279608 PMCID: PMC9597123 DOI: 10.1016/j.psj.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Nutritional additives such as propolis seek to improve intestinal health as an alternative to the global ban on in-feed antibiotics used as growth promoters (AGP). The objective of this study was to evaluate the effect of propolis supplementation in diet of broilers. Four hundred and fifty straight-run Ross 308 AP broilers were fed with a basal diet (BD) throughout the whole experimental period. Birds were randomly distributed into 5 groups at d 14: negative control without antibiotics nor propolis (AGP-), positive control 500 ppm of Zinc Bacitracin as growth promoter (AGP+), and 3 groups supplemented with 150, 300, and 450 ppm of propolis. Every group included 6 replicates of 15 birds each. Propolis concentration was increased from d 22 to 42, in experimental groups to 300, 600, and 900 ppm of propolis, and 10% of raw soybean was included as a challenge in all groups during the same period. Analysis of productive parameters, intestinal morphometry, and relative quantification of genes associated with epithelial integrity by qPCR were performed at 21 and 42 d. The groups with the greatest weights were those that consumed diets including 150 (21 d) and 900 ppm (42 d) of propolis compared with all treatments. The lowest score of ISI was found at 300 (21 d) and 600 ppm (42 d). A lower degree of injury in digestive system was seen with the inclusion of 300 ppm (21 d) and 900 ppm (42 d). Up-regulation of zonula occludens-1 (ZO-1) was observed in jejunum of broilers supplemented with 150 and 300 ppm at 21 d. Up-regulation of ZO-1 and TGF-β was also evidenced in ileum at all propolis inclusion levels at 42-day-old compared to AGP+ and AGP-. The beneficial effects were evidenced at inclusion levels of 150 ppm in the starter and 900 ppm in the finisher. According to the results, the Colombian propolis inclusion can improve productive performance, physiological parameters, and gene expression associated with intestinal integrity.
Collapse
Affiliation(s)
- Camila Daza-Leon
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Arlen P Gomez
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia.
| | - Diana Álvarez-Mira
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Loren Carvajal-Diaz
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia; Compañía Campo Colombia SAS, Bogotá, DC, Colombia
| | - Gloria Ramirez-Nieto
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | | | | | - Liliana Betancourt
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|
14
|
Santiago MB, Leandro LF, Rosa RB, Silva MV, Teixeira SC, Servato JPS, Ambrósio SR, Veneziani RCS, Aldana-Mejía JA, Bastos JK, Martins CHG. Brazilian Red Propolis Presents Promising Anti- H. pylori Activity in In Vitro and In Vivo Assays with the Ability to Modulate the Immune Response. Molecules 2022; 27:7310. [PMID: 36364137 PMCID: PMC9658018 DOI: 10.3390/molecules27217310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/01/2023] Open
Abstract
Helicobacter pylori is a Gram-negative, microaerophilic, curved-rod, flagellated bacterium commonly found in the stomach mucosa and associated with different gastrointestinal diseases. With high levels of prevalence worldwide, it has developed resistance to the antibiotics used in its therapy. Brazilian red propolis has been studied due to its biological properties, and in the literature, it has shown promising antibacterial activities. The aim of this study was to evaluate anti-H. pylori from the crude hydroalcoholic extract of Brazilian red propolis (CHEBRP). For this, in vitro determination of the minimum inhibitory and bactericidal concentration (MIC/MBC) and synergistic activity and in vivo, microbiological, and histopathological analyses using Wistar rats were carried out using CHEBRP against H. pylori strains (ATCC 46523 and clinical isolate). CHEBRP presented MIC/MBC of 50 and 100 μg/mL against H. pylori strains (ATCC 43526 and clinical isolate, respectively) and tetracycline MIC/MBC of 0.74 µg/mL. The association of CHEBRP with tetracycline had an indifferent effect. In the stomach mucosa of rats, all treatments performed significantly decreased the number of H. pylori, and a concentration of 300 mg/kg was able to modulate the inflammatory response in the tissue. Therefore, CHEBRP showed promising anti-H. pylori in in vitro and in vivo assays.
Collapse
Affiliation(s)
- Mariana B. Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil
| | - Luis Fernando Leandro
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil
| | - Rafael B. Rosa
- Complex of Animal Facilities, Federal University of Uberlândia, Uberlândia 38405315, MG, Brazil
| | - Murilo V. Silva
- Complex of Animal Facilities, Federal University of Uberlândia, Uberlândia 38405315, MG, Brazil
| | - Samuel C. Teixeira
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil
| | | | - Sérgio Ricardo Ambrósio
- Nucleus of Research in Sciences and Technolog, University of Franca, Franca 14404600, SP, Brazil
| | | | - Jennyfer A. Aldana-Mejía
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040900, SP, Brazil
| | - Jairo K. Bastos
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040900, SP, Brazil
| | - Carlos Henrique G. Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil
| |
Collapse
|
15
|
Hu J, He T, Liu J, Jia S, Li B, Xu W, Liao M, Guo L. Pharmacological and molecular analysis of the effects of Huangqi Jianzhong decoction on proliferation and apoptosis in GES-1 cells infected with H. pylori. Front Pharmacol 2022; 13:1009705. [PMID: 36249768 PMCID: PMC9556892 DOI: 10.3389/fphar.2022.1009705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Infection with Helicobacter pylori (H. pylori) can cause chronic gastritis and other digestive tract diseases, and represents a public health concern. Current anti-H. pylori treatment can result in antibiotic resistance and other adverse reactions. Huangqi Jianzhong decoction (HQJZD) is a prescription form of traditional Chinese medicine for chronic gastritis that increases probiotics and inhibits H. pylori. In this study, its anti-bacterial activity against H. pylori receives a preliminary evaluation, and a pharmacology analysis is performed to predict its underlying mechanisms. Methods: Human GES-1 cells are divided into a blank control group, a model group, a HQJZD low-dose (2.08 mg·mL−1), a high-dose group (4.16 mg·mL−1), and a positive control group (amoxicillin, 5 μg·mL−1). After culture, the CCK-8 method is used to detect cell viability; flow cytometry is used to detect cell apoptosis rate; and RT-qPCR is used to detect the expression of mRNA virulence factors, including HpPrtC, OPiA, IceA1, and BabA2. Network pharmacology analysis and molecular docking were performed to explore the mechanisms of HQJZD in treating H. pylori gastritis, based on its anti-H. pylori infection effect. Results: We noted lower cell survival rates in the model group, but higher apoptosis rates and mRNA expressions of HpPrtC, OPiA, IceA1, and BabA2 than in the control group (p < 0.05). Compared to the model group, the cell survival rate of each dosage group of Huangqi Jianzhong decoction and the positive control group increased significantly, while the apoptosis rate and the mRNA expressions of HpPrtC, OPiA, IceA1, and BabA2 were decreased significantly. The effect in each HQJZD group was dose-dependent (p < 0.05). Network pharmacological analysis involving 159 signaling pathways was used to screen 6 key active components of HQJZD and 102 potential target proteins for the treatment of H. pylori-related gastritis. The molecular docking results revealed that the 6 active compounds had a strong binding ability with the target proteins of ALB, IL-6, AKT1, IL-1B, and JUN. Conclusion: HQJZD effectively increases the proliferation rate of human GES-1 cells after infection, while reducing the level of apoptosis. The mechanism may be related to multiple components, multiple targets and pathways, which provides a scientific basis for further elucidating the mechanism of action, the pharmacodynamic material basis, and the clinical application of HQJZD against H. pylori infection.
Collapse
Affiliation(s)
- Jingnan Hu
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Tao He
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Jianfang Liu
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Sujie Jia
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Bolin Li
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Weichao Xu
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Man Liao
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Lifang Guo
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Lifang Guo,
| |
Collapse
|
16
|
Fan M, Li Z, Hu M, Zhao H, Wang T, Jia Y, Yang R, Wang S, Song J, Liu Y, Jin W. Formononetin attenuates Aβ 25-35-induced adhesion molecules in HBMECs via Nrf2 activation. Brain Res Bull 2022; 183:162-171. [PMID: 35304289 DOI: 10.1016/j.brainresbull.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 01/14/2023]
Abstract
Brain vascular inflammation plays a crucial role in the pathogenesis of Alzheimer's disease (AD). As a central pathogenic factor in AD, the extracellular buildup of amyloid-β (Aβ) induces brain microvascular endothelial cells activation, impairs endothelial structure and function. Formononetin (FMN) has been reported to protect against Alzheimer's disease (AD) and attenuates vascular inflammation in atherosclerosis. However, its involvement in regulating vascular inflammation of AD has not been investigated. In the study, we found that FMN significantly attenuates Aβ25-35-induced expression of adhesion molecules, including intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the human brain microvascular endothelial cells (HBMECs), suggesting that FMN inhibits Aβ25-35-induced brain endothelial cells inflammatory response. Moreover, we observed that FMN attenuates Aβ25-35-induced translocation of NFκB (p65) into the nucleus of HBMECs, and found that FMN treatment induces Nrf2 expression and attenuates Nrf2-Keap1 association in a dose-dependent manner in HBMECs. Furthermore, we demonstrated that Nrf2 silencing significantly attenuates FMN-reduced NFκB (p65) activation and nuclear translocation. Lastly, our results showed that FMN treatment attenuates Aβ25-35-induced adhesion of THP-1 cell to endothelial cell monolayer. Collectively, these findings suggest that FMN attenuates Aβ25-35-induced activation in human brain microvascular endothelial cells, which at least in part was mediated through Nrf2 pathways.
Collapse
Affiliation(s)
- Mingyue Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Zhe Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Ming Hu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Haifeng Zhao
- Department of Anesthesiology, Shijiazhuang Obstetrics and Gynecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, P.R. China
| | - Tianjun Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Yanqiu Jia
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Rui Yang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Shuo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Jiaxi Song
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Yang Liu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China.
| |
Collapse
|
17
|
What Should Be the Ideal Solvent Percentage and Solvent-Propolis ratio in the Preparation of Ethanolic Propolis Extract? FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02244-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
El-Seedi HR, Eid N, Abd El-Wahed AA, Rateb ME, Afifi HS, Algethami AF, Zhao C, Al Naggar Y, Alsharif SM, Tahir HE, Xu B, Wang K, Khalifa SAM. Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties. Front Nutr 2022; 8:761267. [PMID: 35047540 PMCID: PMC8762236 DOI: 10.3389/fnut.2021.761267] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a defense process triggered when the body faces assaults from pathogens, toxic substances, microbial infections, or when tissue is damaged. Immune and inflammatory disorders are common pathogenic pathways that lead to the progress of various chronic diseases, such as cancer and diabetes. The overproduction of cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, is an essential parameter in the clinical diagnosis of auto-inflammatory diseases. In this review, the effects of bee products have on inflammatory and autoimmune diseases are discussed with respect to the current literature. The databases of Google Scholar, PubMed, Science Direct, Sci-Finder and clinical trials were screened using different combinations of the following terms: “immunomodulatory”, “anti-inflammatory”, “bee products”, “honey”, “propolis”, “royal jelly”, “bee venom”, “bee pollen”, “bee bread”, “preclinical trials”, “clinical trials”, and “safety”. Honey bee products, including propolis, royal jelly, honey, bee venom, and bee pollen, or their bioactive chemical constituents like polyphenols, demonstrate interesting therapeutic potential in the regulation of inflammatory mediator production as per the increase of TNF-α, IL-1β, IL-6, Il-2, and Il-7, and the decrease of reactive oxygen species (ROS) production. Additionally, improvement in the immune response via activation of B and T lymphocyte cells, both in in vitro, in vivo and in clinical studies was reported. Thus, the biological properties of bee products as anti-inflammatory, immune protective, antioxidant, anti-apoptotic, and antimicrobial agents have prompted further clinical investigation.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang, China.,Department of Chemistry, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Nehal Eid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Aida A Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Hanan S Afifi
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | | | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahya Al Naggar
- General Zoology Group, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sultan M Alsharif
- Biology Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | | | - Baojun Xu
- Programme of Food Science and Technology, BNU-HKBU United International College, Zhuhai, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
19
|
Sharaf M, Arif M, Hamouda HI, Khan S, Abdalla M, Shabana S, Rozan HE, Khan TU, Chi Z, Liu C. Preparation, urease inhibition mechanisms, and anti- Helicobacter pylori activities of hesperetin-7-rhamnoglucoside. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100103. [PMID: 35024644 PMCID: PMC8732090 DOI: 10.1016/j.crmicr.2021.100103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This work investigated the effects of the bioflavonoid hesperetin-7-rhamnoglucoside isolated from Citrus uranium fruit peel on Helicobacter pylori (H. pylori). Separation and purity, crystalline state, and urease inhibition assays were carried out. Then, molecular docking and molecular dynamics (MD) simulations were conducted with urease as the target protein. Hesp was isolated from citrus peel with a purity of 95.14 µg mg-1 of dry raw material. X-ray diffraction analysis, hydrogen-1 nuclear magnetic resonance, Fourier transform infrared spectroscopy, and differential scanning calorimetry revealed that pure Hesp had the same crystallinity rating as the Hesp standard. The kinetic inhibition study demonstrated that Hesp inhibited H. pylori urease in a competitive and concentration-dependent manner with jack bean urease. In addition, bioimaging studies with laser scanning confocal microscopy and scanning electron microscopy illustrated that Hesp interacted with bacterial cells and induced membrane disruption by creating holes in the outer membranes of the bacterial cells, resulting in the leakage of amino acids. Importantly, molecular docking and 20 ns MD simulations revealed that Hesp inhibited the target protein through slow-binding inhibition and hydrogen bond interactions with active site residues, namely, Gly11 (O⋯H distance = 2.2 Å), Gly13 (O⋯H distance = 2.4 Å), Ser12 (O⋯H distance = 3.3 Å), Lys14 (O⋯H distance = 3.3 Å), and Arg179 (O⋯H distance = 2.7 Å). This work presents novel anti- H. pylori agents from natural sources.
Collapse
Affiliation(s)
- Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hamed I. Hamouda
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, PR China
| | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hussein. E. Rozan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Tehsin Ullah Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Zhe Chi
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
20
|
Turkez H, Arslan ME, Yilmaz A, Doru F, Caglar O, Arslan E, Tatar A, Hacımuftuoglu A, Abd El-Aty AM, Mardinoglu A. In vitro transcriptome response to propolis in differentiated SH-SY5Y neurons. J Food Biochem 2021; 45:e13990. [PMID: 34730243 DOI: 10.1111/jfbc.13990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022]
Abstract
Propolis is the extract of a resinous compound that protects plants from both cold and microorganism attack and has gained a strong and sticky property because it is transformed after being collected by honey bees. Up to date, many studies have shown that propolis exhibited various beneficial biological activities, such as antifungal, antibacterial, antiviral, antioxidant, antimutagenic, and antitumor effects. Recent reports propounded the in vitro and in vivo neuroprotective effect of propolis; however, the exact molecular genetic mechanisms are still unclear. Therefore, we aimed to investigate the toxicogenomic and beneficial properties, including cytotoxic, antioxidant, apoptotic/necrotic as well as genotoxic effects of propolis (1.56-200 µg/ml) on differentiated SH-SY5Y neuronal cells. Additionally, microarray analysis was conducted on cell cultures following propolis application to explore gene differentiation. Differentially expressed genes were further analyzed using string software to characterize protein-protein interactions between gene pathways. Our results revealed that propolis applications could not have a prominent effect on cell viability even at concentrations up to 200 µg/ml. The highest propolis concentration induced apoptotic rather than necrotic cell death. The alterations in gene expression profiles, including CYP26A1, DHRS2, DHRS3, DYNC1I1, IGF2, ITGA4, SVIL, TGFβ1, and TGM2 could participate in the neuroprotective effects of propolis. In conclusion, propolis supplementation exerted remarkable advantageous; thus, it may offer great potential as a natural component in the prevention and treatment of neurodegenerative disorders. Whole-genome gene expression pattern following propolis application was investigated for the first time in neuronal cell culture to fill a gap in the literature about propolis toxicogenomics. PRACTICAL APPLICATIONS: Propolis is a very rich product in terms of benefits. In addition to its antibacterial, antiviral, antifungal, and anti-inflammatory content, it is known to have preventive and therapeutic properties for many different ailments. On the other hand, molecular mechanisms of propolis on gene expression differentiations haven't been investigated until now. Moreover, gene expression pattern is vital for all living organisms to maintain homeostasis. Thus, we conduct an experiment series for analyzing gene expression differentiation effects on neuronal cells to understand beneficial properties of propolis. Hence, it could be possible to comment on the use of propolis as a nutritional factor and beneficial diet.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ahmet Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Funda Doru
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ozge Caglar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Elif Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - A M Abd El-Aty
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.,Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, UK
| |
Collapse
|
21
|
Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life (Basel) 2021; 11:life11090970. [PMID: 34575119 PMCID: PMC8464958 DOI: 10.3390/life11090970] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Biodiversity strengthens the productivity of any ecosystem (agricultural land, forest, lake, etc.). The loss of biodiversity contributes to food and energy insecurity; increases vulnerability to natural disasters, such as floods or tropical storms; and decreases the quality of both life and health. Wild and managed bees play a key role in maintaining the biodiversity and in the recovery and restoration of degraded habitats. The novelty character of this perspective is to give an updated representation of bee products’ biodiversity, sustainability, and health relationship. The role of bees as bioindicators, their importance in the conservation of biodiversity, their ecosystem services, and the variety of the bee products are described herein. An overview of the main components of bee products, their biological potentials, and health is highlighted and detailed as follows: (i) nutritional value of bee products, (ii) bioactive profile of bee products and the related beneficial properties; (iii) focus on honey and health through a literature quantitative analysis, and (iv) bee products explored through databases. Moreover, as an example of the interconnection between health, biodiversity, and sustainability, a case study, namely the “Cellulose Park”, realized in Rome (Italy), is presented here. This case study highlights how bee activities can be used to assess and track changes in the quality of agricultural ecosystems—hive products could be valid indicators of the quality and health of the surrounding environment, as well as the changes induced by the biotic and abiotic factors that impact the sustainability of agricultural production and biodiversity conservation in peri-urban areas.
Collapse
|
22
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Domínguez-Verano P, Balderas-Cordero D, Gorgua-Jiménez G, Canales-Álvarez O, Canales-Martínez MM, Rodríguez-Monroy MA. Propolis and Its Gastroprotective Effects on NSAID-Induced Gastric Ulcer Disease: A Systematic Review. Nutrients 2021; 13:nu13093169. [PMID: 34579045 PMCID: PMC8466107 DOI: 10.3390/nu13093169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer disease induced by the consumption of NSAIDs is a major public health problem. The therapy used for its treatment causes adverse effects in the patient. Propolis is a natural product that has been used for the treatments of different diseases around the world. Nevertheless, there is little information about the activity of propolis in gastric ulcers caused by treatment with NSAIDs. Therefore, this review evaluates and compares the gastroprotective potential of propolis and its function against NSAID-induced gastric ulcers, for which a systematic search was carried out in the PubMed and ScienceDirect databases. The main criteria were articles that report the gastroprotective activity of propolis against the damage produced by NSAIDs in the gastric mucosa. Gastroprotection was related to the antioxidant, antisecretory, and cytoprotective effects, as well as the phenolic compounds present in the chemical composition of propolis. However, most of the studies used different doses of NSAIDs and propolis and evaluated different parameters. Propolis has proven to be a good alternative for the treatment of gastric ulcer disease. However, future studies should be carried out to identify the compounds responsible for these effects and to determine their potential use in people.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
| | - Pilar Domínguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Gustavo Gorgua-Jiménez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Octavio Canales-Álvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - María Margarita Canales-Martínez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico;
| | - Marco Aurelio Rodríguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Correspondence: ; Tel.: +52-5545-205-185
| |
Collapse
|
23
|
González A, Casado J, Lanas Á. Fighting the Antibiotic Crisis: Flavonoids as Promising Antibacterial Drugs Against Helicobacter pylori Infection. Front Cell Infect Microbiol 2021; 11:709749. [PMID: 34354964 PMCID: PMC8329489 DOI: 10.3389/fcimb.2021.709749] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over half of the world’s population is estimated to be infected with Helicobacter pylori. Chronic infection with this microbial class I carcinogen is considered the most important risk factor for developing gastric cancer. The increasing antimicrobial resistance to first-line antibiotics mainly causes the failure of current eradication therapies, inducing refractory infections. The alarming increase in multidrug resistance in H. pylori isolates worldwide is already beginning to limit the efficacy of existing treatments. Consequently, the World Health Organization (WHO) has included H. pylori in its list of “priority pathogens” for which new antibiotics are urgently needed. Novel strategies must be followed to fight this antibiotic crisis, including properly exploiting the proven therapeutic potential of medicinal plants and plant-derived phytochemicals. In this mini-review, we overview the impressive properties of naturally occurring flavonoids as effective antimicrobial agents against H. pylori, which support the use of these plant-derived bioactive compounds as promising drug candidates for inclusion in novel and personalized combinatory therapies against H. pylori infection.
Collapse
Affiliation(s)
- Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain.,Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
24
|
Diets, Foods and Food Components' Effect on Dyslipidemia. Nutrients 2021; 13:nu13030741. [PMID: 33652643 PMCID: PMC7996961 DOI: 10.3390/nu13030741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Hypercholesterolemia is a well-known independent risk factor for cardiovascular disease and a recognized target of pharmacological therapeutic agents in both primary and secondary prevention [...].
Collapse
|
25
|
Phytochemical and Biological Characterization of Tephrosia nubica Boiss. Growing in Saudi Arabia. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
26
|
Moise AR, Bobiş O. Baccharis dracunculifolia and Dalbergia ecastophyllum, Main Plant Sources for Bioactive Properties in Green and Red Brazilian Propolis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1619. [PMID: 33233429 PMCID: PMC7700410 DOI: 10.3390/plants9111619] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Nowadays, propolis is used as a highly valuable product in alternative medicine for improving health or treating a large spectrum of pathologies, an ingredient in pharmaceutical products, and also as a food additive. Different vegetal materials are collected by honeybees and mixed with wax and other own substances in order to obtain the final product, called propolis. It is known as the bee product with the widest chemical composition due to the raw material collected by the bees. Different types are known worldwide: green Brazilian propolis (having Baccharis dracunculifolia as the major plant source), red Brazilian propolis (from Dalbergia ecastophyllum), European propolis (Populus nigra L.), Russian propolis (Betula verrucosa Ehrh), Cuban and Venezuelan red propolis (Clusia spp.), etc. An impressive number of scientific papers already demonstrate the pharmacological potential of different types of propolis, the most important activities being the antimicrobial, anti-inflammatory, antitumor, immunomodulatory, and antioxidant activities. However, the bioactive compounds responsible for each activity have not been fully elucidated. This review aims to collect important data about the chemical composition and bioactive properties of the vegetal sources and to compare with the chemical composition of respective propolis types, in order to determine the connection between the floral source and the propolis properties.
Collapse
Affiliation(s)
- Adela Ramona Moise
- Department of Apiculture and Sericulture, Faculty of Animal Breeding and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Otilia Bobiş
- Life Science Institute “King Michael I of Romania”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|