1
|
Muts J, Lukowski JIA, Twisk JWR, Schoonderwoerd A, van Goudoever JB, van Keulen BJ, Van Den Akker CHP. Macronutrient concentrations in human milk beyond the first half year of lactation: a cohort study. Arch Dis Child Fetal Neonatal Ed 2024:fetalneonatal-2024-327319. [PMID: 39532521 DOI: 10.1136/archdischild-2024-327319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Human milk composition is dynamic. While extensive research has focused on its macronutrient concentrations during the first 6 months of lactation, limited research exists for extended lactation periods. This study aims to examine the nutritional composition of human milk during these longer lactation phases. DESIGN A retrospective longitudinal cohort study performed within the National Dutch Human Milk Bank. PARTICIPANTS We selected donors who had provided milk donations at least once after the 6-month postpartum mark. MAIN OUTCOME MEASURES The Miris Human Milk Analyser was used to analyse macronutrient concentrations in the milk samples. Linear mixed models were used for longitudinal analysis of these concentrations, factoring in time variables established for six sequential lactation periods. RESULTS We analysed 820 milk samples from 86 women, collected between 5 weeks and 28 months postpartum. Initially, milk protein concentrations dropped over the first 8 months of lactation (diff = -0.19 g/dL, p<0.001) and stabilised between 8 and 18 months before increasing again by 0.21 (95% CI 0.06-0.21) g/dL. Carbohydrate concentrations remained steady throughout the study period. Fat concentrations were stable for the first 8 months but saw an increase afterwards. Post 18 months, the fat content saw a rise of 1.90 (95% CI 1.59-2.21) g/dL. The caloric density mirrored the pattern of the fat concentrations. CONCLUSION The nutritional content of human milk does not decrease after 6 months of lactation. Therefore, human milk banks may accept donations from mothers up to 2 years post-birth.
Collapse
Affiliation(s)
- Jacqueline Muts
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Juliette I A Lukowski
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Johannes B van Goudoever
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
- Dutch Human Milk Bank, Amsterdam UMC, Amsterdam, The Netherlands
| | - Britt J van Keulen
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Chris H P Van Den Akker
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
- Dutch Human Milk Bank, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pediatrics-Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Bianco I, Ferrara C, Romano F, Loperfido F, Sottotetti F, El Masri D, Vincenti A, Cena H, De Giuseppe R. The Influence of Maternal Lifestyle Factors on Human Breast Milk Microbial Composition: A Narrative Review. Biomedicines 2024; 12:2423. [PMID: 39594990 PMCID: PMC11592219 DOI: 10.3390/biomedicines12112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Human breast milk (HBM) is considered the gold standard for infant nutrition due to its optimal nutrient profile and complex composition of cellular and non-cellular components. Breastfeeding positively influences the newborn's gut microbiota and health, reducing the risk of conditions like gastrointestinal infections and chronic diseases (e.g., allergies, asthma, diabetes, and obesity). Research has revealed that HBM contains beneficial microbes that aid gut microbiota maturation through mechanisms like antimicrobial production and pathogen exclusion. The HBM microbiota composition can be affected by several factors, including gestational age, delivery mode, medical treatments, lactation stage, as well as maternal lifestyle habits (e.g., diet, physical activity, sleep quality, smoking, alcohol consumption, stress level). Particularly, lifestyle factors can play a significant role in shaping the HBM microbiota by directly modulating the microbial composition or influencing the maternal gut microbiota and influencing the HBM microbes through the enteromammary pathway. This narrative review of current findings summarized how maternal lifestyle influences HBM microbiota. While the influence of maternal diet on HBM microbiota is well-documented, indicating that dietary patterns, especially those rich in plant-based proteins and complex carbohydrates, can positively influence HBM microbiota, the impact of other lifestyle factors is poorly investigated. Maintaining a healthy lifestyle during pregnancy and breastfeeding is crucial for the health of both mother and baby. Understanding how maternal lifestyle factors influence microbial colonization of HBM, along with their interactions and impact, is key to developing new strategies that support the beneficial maturation of the infant's gut microbiota.
Collapse
Affiliation(s)
- Irene Bianco
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Chiara Ferrara
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Francesca Romano
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Francesca Sottotetti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Dana El Masri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Alessandra Vincenti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
- Clinical Nutrition Unit, General Medicine, Istituti Clinici Scientifici (ICS) Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 27100 Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| |
Collapse
|
3
|
Papakonstantinou E, Dragoumani K, Mataragka A, Bacopoulou F, Yapijakis C, Balatsos NA, Pissaridi K, Ladikos D, Eftymiadou A, Katsaros G, Gikas E, Hatzis P, Samiotaki M, Aivaliotis M, Megalooikonomou V, Giannakakis A, Iliopoulos C, Bongcam-Rudloff E, Kossida S, Eliopoulos E, Chrousos GP, Vlachakis D. Fingerprinting Breast Milk; insights into Milk Exosomics. EMBNET.JOURNAL 2024; 29:e1048. [PMID: 38845752 PMCID: PMC11155295 DOI: 10.14806/ej.29.0.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Breast milk, often referred to as "liquid gold," is a complex biofluid that provides essential nutrients, immune factors, and developmental cues for newborns. Recent advancements in the field of exosome research have shed light on the critical role of exosomes in breast milk. Exosomes are nanosized vesicles that carry bioactive molecules, including proteins, lipids, nucleic acids, and miRNAs. These tiny messengers play a vital role in intercellular communication and are now being recognized as key players in infant health and development. This paper explores the emerging field of milk exosomics, emphasizing the potential of exosome fingerprinting to uncover valuable insights into the composition and function of breast milk. By deciphering the exosomal cargo, we can gain a deeper understanding of how breast milk influences neonatal health and may even pave the way for personalized nutrition strategies.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Antonia Mataragka
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christos Yapijakis
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Nikolaos Aa Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, Greece
| | | | | | - Aspasia Eftymiadou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization "DEMETER", Lykovrisi, Greece
| | - George Katsaros
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization "DEMETER", Lykovrisi, Greece
| | - Evangelos Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michalis Aivaliotis
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Megalooikonomou
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras, Greece
| | - Antonis Giannakakis
- Laboratory of Gene Expression, Molecular Diagnostics and Modern Therapeutics, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Costas Iliopoulos
- School of Informatics, Faculty of Natural & Mathematical Sciences, King's College London, London, U.K
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sofia Kossida
- IMGT, the international ImMunoGenetics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- School of Informatics, Faculty of Natural & Mathematical Sciences, King's College London, London, U.K
| |
Collapse
|
4
|
Baumgartel K, Stevens M, Vijayakumar N, Saint Fleur A, Prescott S, Groer M. The Human Milk Metabolome: A Scoping Literature Review. J Hum Lact 2023; 39:255-277. [PMID: 36924445 DOI: 10.1177/08903344231156449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Human milk is a complex source of nutrition and other bioactives that protects infants from disease, holding a lifetime of beneficial effects. The field of metabolomics provides a robust platform through which we can better understand human milk at a level rarely examined. RESEARCH AIM To Identify, describe, synthesize, and critically analyze the literature within the past 5 years related to the human milk metabolome. METHODS We conducted a scoping literature review and quality analysis of the recent science reflecting untargeted metabolomic approaches to examining human milk. We searched six databases using the terms "breast milk," "metabolome," "metabolite," and "human milk," Out of more than 1,069 abstracts, we screened and identified 22 articles that met our inclusion criteria. RESULTS We extracted data related to the study author, geographic location, research design, analyses, platform used, and results. We also extracted data related to human milk research activities, including collection protocol, infant/maternal considerations, and time. Selected studies focused on a variety of phenotypes, including maternal and infant disease. Investigators used varying approaches to evaluate the metabolome, and differing milk collection protocols were observed. CONCLUSION The human milk metabolome is informed by many factors-which may contribute to infant health outcomes-that have resulted in disparate milk metabolomic profiles. Standardized milk collection and storage procedures should be implemented to minimize degradation. Investigators may use our findings to develop research questions that test a targeted metabolomic approach.
Collapse
Affiliation(s)
| | - Monica Stevens
- College of Medicine, University of South Florida, Tampa, FL, USA
| | - Nisha Vijayakumar
- School of Public Health, University of South Florida, Tampa, FL, USA
| | | | | | - Maureen Groer
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
5
|
Taylor R, Keane D, Borrego P, Arcaro K. Effect of Maternal Diet on Maternal Milk and Breastfed Infant Gut Microbiomes: A Scoping Review. Nutrients 2023; 15:nu15061420. [PMID: 36986148 PMCID: PMC10051234 DOI: 10.3390/nu15061420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
While it is widely recognized that nutrition during pregnancy and lactation can affect the microbiome of breast milk as well as the formation of the infant gut microbiome, we are only just beginning to understand the extent to which maternal diet impacts these microbiomes. Given the importance of the microbiome for infant health, we conducted a comprehensive review of the published literature to explore the current scope of knowledge regarding associations between maternal diet and the breast milk and infant gut microbiomes. Papers included in this review assessed either diet during lactation or pregnancy, and the milk and/or infant gut microbiome. Sources included cohort studies, randomized clinical trials, one case-control study, and one crossover study. From an initial review of 808 abstracts, we identified 19 reports for a full analysis. Only two studies assessed the effects of maternal diet on both milk and infant microbiomes. Although the reviewed literature supports the importance of a varied, nutrient-dense maternal diet in the formation of the infant’s gut microbiome, several studies found factors other than maternal diet to have a greater impact on the infant microbiome.
Collapse
Affiliation(s)
- Rachel Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Deirdre Keane
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Paulina Borrego
- Science & Engineering Library, University of Massachusetts, Lederle Grad Research Ctr Low-Rise, 740 N Pleasant St Rm A273, Amherst, MA 01003, USA
| | - Kathleen Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
- Correspondence: ; Tel.: +1-413-577-1823
| |
Collapse
|
6
|
Cameron SJS, Edwards A, Lambert RJ, Stroud M, Mur LAJ. Participants in the Trans-Antarctic Winter Traverse Expedition Showed Increased Bacterial Load and Diversity in Saliva but Maintained Individual Differences within Stool Microbiota and Across Metabolite Fingerprints. Int J Mol Sci 2023; 24:ijms24054850. [PMID: 36902282 PMCID: PMC10002533 DOI: 10.3390/ijms24054850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the impact of long-term physiological and environmental stress on the human microbiota and metabolome may be important for the success of space flight. This work is logistically difficult and has a limited number of available participants. Terrestrial analogies present important opportunities to understand changes in the microbiota and metabolome and how this may impact participant health and fitness. Here, we present work from one such analogy: the Transarctic Winter Traverse expedition, which we believe is the first assessment of the microbiota and metabolome from different bodily locations during prolonged environmental and physiological stress. Bacterial load and diversity were significantly higher during the expedition when compared with baseline levels (p < 0.001) in saliva but not stool, and only a single operational taxonomic unit assigned to the Ruminococcaceae family shows significantly altered levels in stool (p < 0.001). Metabolite fingerprints show the maintenance of individual differences across saliva, stool, and plasma samples when analysed using flow infusion electrospray mass spectrometry and Fourier transform infrared spectroscopy. Significant activity-associated changes in terms of both bacterial diversity and load are seen in saliva but not in stool, and participant differences in metabolite fingerprints persist across all three sample types.
Collapse
Affiliation(s)
- Simon J. S. Cameron
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Chlorine Gardens, Belfast BT9 5DL, UK
- Correspondence: (S.J.S.C.); (L.A.J.M.)
| | - Arwyn Edwards
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK
| | - Robert J. Lambert
- Department of Orthopaedics, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Mike Stroud
- NIHR BRC Nutrition, University of Southampton Medical School, Southampton SO16 6YD, UK
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK
- Correspondence: (S.J.S.C.); (L.A.J.M.)
| |
Collapse
|
7
|
Karampatsas K, Faal A, Jaiteh M, Garcia-Perez I, Aller S, Shaw AG, Kopytek A, Witney AA, Le Doare K. Gastrointestinal, vaginal, nasopharyngeal, and breast milk microbiota profiles and breast milk metabolomic changes in Gambian infants over the first two months of lactation: A prospective cohort study. Medicine (Baltimore) 2022; 101:e31419. [PMID: 36401392 PMCID: PMC9678627 DOI: 10.1097/md.0000000000031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microbiota composition in breast milk affects intestinal and respiratory microbiota colonization and the mucosal immune system's development in infants. The metabolomic content of breast milk is thought to interact with the microbiota and may influence developing infant immunity. One hundred seven Gambian mothers and their healthy, vaginally delivered, exclusively breastfed infants were included in our study. We analyzed 32 breast milk samples, 51 maternal rectovaginal swabs and 30 infants' rectal swabs at birth. We also analyzed 9 breast milk samples and 18 infants' nasopharyngeal swabs 60 days post-delivery. We used 16S rRNA gene sequencing to determine the microbiota composition. Metabolomic profiling analysis was performed on colostrum and mature breast milk samples using a multiplatform approach combining 1-H Nuclear Magnetic Resonance Spectroscopy and Gas Chromatography-Mass Spectrometry. Bacterial communities were distinct in composition and diversity across different sample types. Breast milk composition changed over the first 60 days of lactation. α-1,4- and α-1,3-fucosylated human milk oligosaccharides, and other 33 key metabolites in breast milk (monosaccharides, sugar alcohols and fatty acids) increased between birth and day 60 of life. This study's results indicate that infant gut and respiratory microbiota are unique bacterial communities, distinct from maternal gut and breast milk, respectively. Breast milk microbiota composition and metabolomic profile change throughout lactation. These changes may contribute to the infant's immunological, metabolic, and neurological development and could consist the basis for future interventions to correct disrupted early life microbial colonization.
Collapse
Affiliation(s)
- Konstantinos Karampatsas
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
- * Correspondence: Konstantinos Karampatsas, Institute for Infection and Immunity, St George’s, University of London, Jenner Wing, Level 2, SW17 0RE London, UK (e-mail: )
| | - Amadou Faal
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mustapha Jaiteh
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Isabel Garcia-Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Sean Aller
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
| | - Alexander G. Shaw
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Aleksandra Kopytek
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Adam A. Witney
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Medical Research Council Uganda, Virus Research Institute, Uganda
| |
Collapse
|
8
|
Shenker NS, Perdones-Montero A, Burke A, Stickland S, McDonald JAK, Cameron SJS. Human Milk from Tandem Feeding Dyads Does Not Differ in Metabolite and Metataxonomic Features When Compared to Single Nursling Dyads under Six Months of Age. Metabolites 2022; 12:metabo12111069. [PMID: 36355152 PMCID: PMC9696481 DOI: 10.3390/metabo12111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Given the long-term advantages of exclusive breastfeeding to infants and their mothers, there is both an individual and public health benefit to its promotion and support. Data on the composition of human milk over the course of a full period of lactation for a single nursling is sparse, but data on human milk composition during tandem feeding (feeding children of different ages from different pregnancies) is almost entirely absent. This leaves an important knowledge gap that potentially endangers the ability of parents to make a fully informed choice on infant feeding. We compared the metataxonomic and metabolite fingerprints of human milk samples from 15 tandem feeding dyads to that collected from ten exclusively breastfeeding single nursling dyads where the nursling is under six months of age. Uniquely, our cohort also included three tandem feeding nursling dyads where each child showed a preferential side for feeding-allowing a direct comparison between human milk compositions for different aged nurslings. Across our analysis of volume, total fat, estimation of total microbial load, metabolite fingerprinting, and metataxonomics, we showed no statistically significant differences between tandem feeding and single nursling dyads. This included comparisons of preferential side nurslings of different ages. Together, our findings support the practice of tandem feeding of nurslings, even when feeding an infant under six months.
Collapse
Affiliation(s)
- Natalie S. Shenker
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Alvaro Perdones-Montero
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Adam Burke
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Sarah Stickland
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Julie A. K. McDonald
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Simon J. S. Cameron
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
- Correspondence: ; Tel.: +44-(0)28-9097-6421
| |
Collapse
|
9
|
Abstract
The neonatal body provides a range of potential habitats, such as the gut, for microbes. These sites eventually harbor microbial communities (microbiotas). A "complete" (adult) gut microbiota is not acquired by the neonate immediately after birth. Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal fecal microbiota is an important source of bacterial species that colonize the gut of infants, at least in the short-term. However, development of the microbiota is influenced by the use of human milk (breast feeding), infant formula, preterm delivery of infants, caesarean delivery, antibiotic administration, family details and other environmental factors. Following the introduction of weaning (complementary) foods, the gut microbiota develops in complexity due to the availability of a diversity of plant glycans in fruits and vegetables. These glycans provide growth substrates for the bacterial families (such as members of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the gut microbiota of the adult. Although current data are often fragmentary and observational, it can be concluded that the nutrition that a child receives in early life is likely to impinge not only on the development of the microbiota at that time but also on the subsequent lifelong, functional relationships between the microbiota and the human host. The purpose of this review, therefore, is to discuss the importance of promoting the assemblage of functionally robust gut microbiotas at appropriate times in early life.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Cortés-Macías E, Selma-Royo M, Martínez-Costa C, Collado MC. Breastfeeding Practices Influence the Breast Milk Microbiota Depending on Pre-Gestational Maternal BMI and Weight Gain over Pregnancy. Nutrients 2021; 13:1518. [PMID: 33946343 PMCID: PMC8146841 DOI: 10.3390/nu13051518] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023] Open
Abstract
Breastfeeding is critical for adequate neonatal microbial and immune system development affecting neonate health outcomes in the short and long term. There is a great interest in ascertaining which are the maternal factors contributing to the milk microbiota and the potential relevance for the developing infant. Thus, our study aimed to characterize the effect of mixed and exclusive breastfeeding practices on the milk microbiota and to determine the impact of pre-pregnancy body mass index (BMI) and weight gain over pregnancy on its composition. Breast milk samples from 136 healthy women were collected within the first month post-partum and milk microbiota profiling was analyzed by 16S rRNA gene sequencing. Information on breastfeeding habits and maternal-infant clinical data were recorded. Breastfeeding practices (exclusive vs. mixed), maternal pre-gestational BMI, and weight gain over pregnancy contributed to the milk microbiota variation. Pre-gestational normal-weight women with exclusive breastfeeding habits harbored a significantly higher abundance of Bifidobacterium genus, and also, higher alpha-diversity compared to the rest of the women. Our results confirm the importance of controlling weight during pregnancy and breastfeeding practices in terms of milk microbiota. Further studies to clarify the potential impact of these maternal factors on milk and infant development and health will be necessary.
Collapse
Affiliation(s)
- Erika Cortés-Macías
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; (E.C.-M.); (M.S.-R.)
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; (E.C.-M.); (M.S.-R.)
| | - Cecilia Martínez-Costa
- Department of Pediatrics, INCLIVA Research Institute, School of Medicine, University of Valencia, 46003 Valencia, Spain;
- Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, INCLIVA, 46010 Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; (E.C.-M.); (M.S.-R.)
| |
Collapse
|