1
|
Graybeal AJ, Kreutzer A, Moss K, Shah M. Changes in the chronic and postprandial blood lipid profiles of trained competitive cyclists and triathletes following a ketogenic diet: a randomized crossover trial. BMC Sports Sci Med Rehabil 2024; 16:19. [PMID: 38229197 PMCID: PMC10790427 DOI: 10.1186/s13102-023-00801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The ketogenic diet (KD) is the most popular carbohydrate restriction strategy for endurance athletes. However, because the primary goal of employing the KD is to gain a competitive advantage in competition, endurance athletes may be less concerned with the influence of the KD on their cardiometabolic health; particularly their blood lipid profiles. Thus, the purpose of this study was to examine the chronic and postprandial blood lipid alterations following a two-week ad libitum KD compared to an ad libitum high-carbohydrate diet (HCD) and the athletes' habitual diet (HD) in a group of trained competitive cyclists and triathletes. METHODS Six trained competitive cyclists and triathletes (female: 4, male: 2; age: 37.2 ± 12.2) completed this randomized crossover trial, which required them to follow a two-week ad libitum KD and HCD in a randomized order after their HD. Fasting blood lipids were collected following their HD and after two-weeks of the KD and HCD conditions. Postprandial blood lipid responses to a test meal reflective of the assigned diet were collected at the end of each diet condition. RESULTS Fasting total cholesterol (TC) was significantly higher following the KD compared to the HD (p < 0.001) and HCD (p = 0.006). Postprandial incremental area under the curve for triglycerides (TRG), TRG:HDL ratio, and VLDL-C were significantly higher following the KD test meal compared to the HD (all p < 0.001) and HCD (all p = 0.001) test meals but LDL-C and LDL:HDL ratio were significantly lower following the KD compared to the HD and HCD test meals (all p < 0.001). CONCLUSIONS Trained competitive cyclists and triathletes demonstrate increased TC in response to a two-week KD compared to a HCD or HD. Endurance athletes contemplating a KD should consider the potential for these blood lipid alterations, and future research should focus on postprandial blood lipid responses to determine if these changes manifest in chronic blood lipid shifts. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04097171 (11 October 2019).
Collapse
Affiliation(s)
- Austin J Graybeal
- School of Kinesiology & Nutrition, College of Education and Human Sciences, University of Southern Mississippi, 39406, Hattiesburg, MS, USA.
| | - Andreas Kreutzer
- Department of Research Data Science & Analytics, Cook Children's Health Care System, 76104, Fort Worth, TX, USA
| | - Kamiah Moss
- Physical Medicine and Rehabilitation, Baylor Institute for Rehabilitation, 75246, Dallas, TX, USA
| | - Meena Shah
- Department of Kinesiology, Harris College of Nursing and Health Sciences, Texas Christian University, 76129, Fort Worth, TX, USA.
| |
Collapse
|
2
|
Cho W, Jung H, Hong S, Yang HI, Park DH, Suh SH, Lee DH, Choe YS, Kim JY, Lee W, Jeon JY. The effect of a short-term ketogenic diet on exercise efficiency during graded exercise in healthy adults. J Int Soc Sports Nutr 2023; 20:2264278. [PMID: 37791478 PMCID: PMC10552596 DOI: 10.1080/15502783.2023.2264278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
OBJECTIVE We examined the effects of short-term KD on exercise efficiency and hormonal response during and after the graded exercise testing. METHODS Fourteen untrained healthy adults (8 males, 6 females, age 26.4 ± 3.1 [SD] years; BMI 24.8 ± 4.6 kg/m2; peak VO2max 54.0 ± 5.8 ml/kg FFM/min) completed 3-days of a mixed diet (MD) followed by another 3-days of KD after 3-days of washout period. Upon completion of each diet arm, participants underwent graded exercise testing with low- (LIE; 40% of VO2max), moderate- (MIE; 55%), and high-intensity exercise (HIE; 70%). Exercise efficiency was calculated as work done (kcal/min)/energy expenditure (kcal/min). RESULTS Fat oxidation during the recovery period was higher in KD vs. MD. Despite identical workload during HIE, participants after having KD vs. MD showed higher energy expenditure and lower exercise efficiency (10.1 ± 0.7 vs. 12.5 ± 0.3%, p < .01). After KD, free fatty acid (FFA) concentrations were higher during MIE and recovery vs. resting, and beta-hydroxybutylate (BOHB) was lower at HIE vs. resting. Cortisol concentrations after KD was higher during recovery vs. resting, with no significant changes during graded exercise testing after MD. CONCLUSIONS Our data suggest that short-term KD is favorable to fat metabolism leading increased circulating FFA and BOHB during LIE to MIE. However, it is notable that KD may cause 1) exercise inefficiency manifested by increased energy expenditure and 2) elevated exercise stress during HIE and recovery. Trial registration: KCT0005172, International Clinical Trials Registry Platform.
Collapse
Affiliation(s)
- Wonhee Cho
- Syracuse University, Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse, NY, USA
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Hwaebong Jung
- Yonsei University, Department of Materials Science and Engineering, Seoul, South Korea
| | - Sunghyun Hong
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Hyuk In Yang
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Dong-Hyuk Park
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Sang-Hoon Suh
- Yonsei University, Department of Physical Education, Seoul, South Korea
| | - Dong Hoon Lee
- Yonsei University, Department of Sport Industries, Seoul, South Korea
- Harvard T.H. Chan School of Public Health, Department of Nutrition, Boston, MA, USA
- Nanyang Technological University, Lee Kong Chian School of Medicine, Nanyang, Singapore
| | | | - Joon Young Kim
- Syracuse University, Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse, NY, USA
| | - Wooyoung Lee
- Yonsei University, Department of Materials Science and Engineering, Seoul, South Korea
| | - Justin Y. Jeon
- Yonsei University, Department of Sport Industries, Seoul, South Korea
- Yonsei University College of Medicine, Cancer Prevention Center, Yonsei Cancer Center, Seoul, South Korea
- Yonsei University, Exercise Medicine Center for Diabetes and Cancer Patients, ICONS, Seoul, South Korea
| |
Collapse
|
3
|
Roberts J, Dugdale-Duwell D, Lillis J, Pinto JM, Willmott A, Yeshurun S, Mor M, Souren T. The efficacy of a home-use metabolic device (Lumen) in response to a short-term low and high carbohydrate diet in healthy volunteers. J Int Soc Sports Nutr 2023; 20:2185537. [PMID: 36862060 PMCID: PMC9987730 DOI: 10.1080/15502783.2023.2185537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Based on stoichiometric assumptions, and real-time assessment of expired carbon dioxide (%CO2) and flow rate, the Lumen device provides potential for consumers/athletes to monitor metabolic responses to dietary programs outside of laboratory conditions. However, there is a paucity of research exploring device efficacy. This study aimed to evaluate Lumen device response to: i) a high-carbohydrate meal under laboratory conditions, and ii) a short-term low- or high-carbohydrate diet in healthy volunteers. METHODS Following institutional ethical approval, 12 healthy volunteers (age: 36 ± 4 yrs; body mass: 72.1 ± 3.6 kg; height: 1.71 ± 0.02 m) performed Lumen breath and Douglas bag expired air measures under fasted laboratory conditions and at 30 and 60 min after a high-carbohydrate (2 g·kg-1) meal, along with capilliarized blood glucose assessment. Data were analyzed using a one-way ANOVA, with ordinary least squares regression used to assess the model between Lumen expired carbon dioxide percentage (L%CO2) and respiratory exchange ratio (RER). In a separate phase, 27 recreationally active adults (age: 42 ± 2 yrs; body mass: 71.9 ± 1.9 kg; height: 1.72 ± 0.02 m) completed a 7-day low- (~20% of energy intake [EI]; LOW) or high-carbohydrate diet (~60% of EI; HIGH) in a randomized, cross-over design under free-living conditions. L%CO2 and derived Lumen Index (LI) were recorded daily across morning (fasted and post-breakfast) and evening (pre/post meal, pre-bed) periods. Repeated measures ANOVA were employed for main analyses, with Bonferroni post-hoc assessment applied (P ≤ 0.05). RESULTS Following the carbohydrate test-meal, L%CO2 increased from 4.49 ± 0.05% to 4.80 ± 0.06% by 30 min, remaining elevated at 4.76 ± 0.06% by 60 min post-feeding (P < 0.001, ηp2 = 0.74). Similarly, RER increased by 18.1% from 0.77 ± 0.03 to 0.91 ± 0.02 by 30 min post-meal (P = 0.002). When considering peak data, regression analysis demonstrated a significant model effect between RER and L%CO2 (F = 5.62, P = 0.03, R2 = 0.20). Following main dietary interventions, no significant interactions (diet × day) were found. However, main diet effects were evident across all time-points assessed, highlighting significant differences for both L%CO2 and LI between LOW and HIGH conditions (P < 0.003). For L%CO2, this was particularly noted under fasted (4.35 ± 0.07 vs. 4.46 ± 0.06%, P = 0.001), pre-evening meal (4.35 ± 0.07 vs. 4.50 ± 0.06%, P < 0.001), and pre-bed time-points (4.51 ± 0.08 vs. 4.61 ± 0.06%, P = 0.005). CONCLUSION Our findings demonstrated that a portable, home-use metabolic device (Lumen) detected significantly increased expired %CO2 in response to a high-carbohydrate meal, and may be useful in tracking mean weekly changes to acute dietary carbohydrate modifications. Additional research is warranted to further determine the practical and clinical efficacy of the Lumen device in applied compared to laboratory settings.
Collapse
Affiliation(s)
- Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences (CCSES), School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Dirk Dugdale-Duwell
- Occupational and Environmental Physiology Group, Centre for Sport Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Joseph Lillis
- Cambridge Centre for Sport and Exercise Sciences (CCSES), School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Jorge Marques Pinto
- Cambridge Centre for Sport and Exercise Sciences (CCSES), School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Ash Willmott
- Cambridge Centre for Sport and Exercise Sciences (CCSES), School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | | | | | - Tjeu Souren
- Utrecht University Medical Center, Utrecht, The Netherlands
- School of Human Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Kaufman M, Nguyen C, Shetty M, Oppezzo M, Barrack M, Fredericson M. Popular Dietary Trends' Impact on Athletic Performance: A Critical Analysis Review. Nutrients 2023; 15:3511. [PMID: 37630702 PMCID: PMC10460072 DOI: 10.3390/nu15163511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Nutrition fuels optimal performance for athletes. With increased research developments, numerous diets available, and publicity from professional athletes, a review of dietary patterns impact on athletic performance is warranted. RESULTS The Mediterranean diet is a low inflammatory diet linked to improved power and muscle endurance and body composition. Ketogenic diets are restrictive of carbohydrates and proteins. Though both show no decrements in weight loss, ketogenic diets, which is a more restrictive form of low-carbohydrate diets, can be more difficult to follow. High-protein and protein-paced versions of low-carbohydrate diets have also shown to benefit athletic performance. Plant-based diets have many variations. Vegans are at risk of micronutrient deficiencies and decreased leucine content, and therefore, decreased muscle protein synthesis. However, the literature has not shown decreases in performance compared to omnivores. Intermittent fasting has many different versions, which may not suit those with comorbidities or specific needs as well as lead to decreases in sprint speed and worsening time to exhaustion. CONCLUSIONS This paper critically evaluates the research on diets in relation to athletic performance and details some of the potential risks that should be monitored. No one diet is universally recommend for athletes; however, this article provides the information for athletes to analyze, in conjunction with medical professional counsel, their own diet and consider sustainable changes that can help achieve performance and body habitus goals.
Collapse
Affiliation(s)
- Matthew Kaufman
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Chantal Nguyen
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Maya Shetty
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Marily Oppezzo
- Prevention Research Center, Stanford University, Redwood City, CA 94063, USA
| | - Michelle Barrack
- Department of Family and Consumer Sciences, California State University, Long Beach, CA 90840, USA
| | - Michael Fredericson
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| |
Collapse
|
5
|
Baart AM, Schaminee H, Mensink M, Terink R. Effect of a low carbohydrate, high fat diet versus a high carbohydrate diet on exercise efficiency and economy in recreational male athletes. J Sports Med Phys Fitness 2023; 63:282-291. [PMID: 36239287 DOI: 10.23736/s0022-4707.22.14066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Exercise efficiency and economy are key determinants of endurance exercise performance. In this cross-over intervention trial, we investigated the effect of adherence to a low carbohydrate, high fat (LCHF) diet versus a high carbohydrate (HC) diet on gross efficiency (GE) and (OC) during exercise, both after 2 days and after 14 days of adherence. METHODS Fourteen recreational male athletes followed a two-week LCHF diet (<10 energy % carbohydrate) and a two-week HC diet (>50 energy % carbohydrate), in random order, with a wash-out period of three weeks in between. After 2 and 14 days on each diet, the athletes performed a 90-minutes submaximal exercise session on a bicycle ergometer. Indirect calorimetry measurements were done after 60 minutes of exercise to calculate GE and OC. RESULTS GE was significantly lower on the LCHF diet compared to the HC diet, after 2 days (17.6±1.9 vs. 18.8±1.2%, P=0.011, for the LCHF and HC diet respectively), not after 14 days. OC was significantly higher on the LCHF diet compared to the HC diet, after 2 days (1191±138 vs. 1087±72 mL O<inf>2</inf>/kCal, P=0.003, for the LCHF and HC diet respectively), and showed a strong tendency to remain higher after 14 days, P=0.018. CONCLUSIONS Although LCHF diets are popular strategies to increase fat oxidation during exercise, adherence to a LCHF diet was associated with a lower exercise efficiency and economy compared to a HC diet.
Collapse
Affiliation(s)
- A Mireille Baart
- Division of Human Nutrition and Health, University of Wageningen, Wageningen, the Netherlands -
| | - Hennes Schaminee
- Division of Human Nutrition and Health, University of Wageningen, Wageningen, the Netherlands
| | - Marco Mensink
- Division of Human Nutrition and Health, University of Wageningen, Wageningen, the Netherlands
| | - Rieneke Terink
- Division of Human Nutrition and Health, University of Wageningen, Wageningen, the Netherlands
| |
Collapse
|
6
|
Whittaker J, Harris M. Low-carbohydrate diets and men's cortisol and testosterone: Systematic review and meta-analysis. Nutr Health 2022; 28:543-554. [PMID: 35254136 PMCID: PMC9716400 DOI: 10.1177/02601060221083079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Low-carbohydrate diets may have endocrine effects, although individual studies are conflicting. Therefore, a review was conducted on the effects of low- versus high-carbohydrate diets on men's testosterone and cortisol. Methods: The review was registered on PROSPERO (CRD42021255957). The inclusion criteria were: intervention study, healthy adult males, and low-carbohydrate diet: ≤35% carbohydrate. Eight databases were searched from conception to May 2021. Cochrane's risk of bias tool was used for quality assessment. Random-effects, meta-analyses using standardized mean differences and 95% confidence intervals, were performed with Review Manager. Subgroup analyses were conducted for diet duration, protein intake, and exercise duration. Results: Twenty-seven studies were included, with a total of 309 participants. Short-term (<3 weeks), low- versus high-carbohydrate diets moderately increased resting cortisol (0.41 [0.16, 0.66], p < 0.01). Whereas, long-term (≥3 weeks), low-carbohydrate diets had no consistent effect on resting cortisol. Low- versus high-carbohydrate diets resulted in much higher post-exercise cortisol, after long-duration exercise (≥20 min): 0 h (0.78 [0.47, 1.1], p < 0.01), 1 h (0.81 [0.31, 1.31], p < 0.01), and 2 h (0.82 [0.33, 1.3], p < 0.01). Moderate-protein (<35%), low-carbohydrate diets had no consistent effect on resting total testosterone, however high-protein (≥35%), low-carbohydrate diets greatly decreased resting (-1.08 [-1.67, -0.48], p < 0.01) and post-exercise total testosterone (-1.01 [-2, -0.01] p = 0.05). Conclusions: Resting and post-exercise cortisol increase during the first 3 weeks of a low-carbohydrate diet. Afterwards, resting cortisol appears to return to baseline, whilst post-exercise cortisol remains elevated. High-protein diets cause a large decrease in resting total testosterone (∼5.23 nmol/L).
Collapse
Affiliation(s)
- Joseph Whittaker
- The School of Allied Health and Community,
University
of Worcester, Worcester, UK
| | - Miranda Harris
- The School of Allied Health and Community,
University
of Worcester, Worcester, UK
| |
Collapse
|
7
|
Rothschild JA, Kilding AE, Stewart T, Plews DJ. Factors Influencing Substrate Oxidation During Submaximal Cycling: A Modelling Analysis. Sports Med 2022; 52:2775-2795. [PMID: 35829994 PMCID: PMC9585001 DOI: 10.1007/s40279-022-01727-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Multiple factors influence substrate oxidation during exercise including exercise duration and intensity, sex, and dietary intake before and during exercise. However, the relative influence and interaction between these factors is unclear. OBJECTIVES Our aim was to investigate factors influencing the respiratory exchange ratio (RER) during continuous exercise and formulate multivariable regression models to determine which factors best explain RER during exercise, as well as their relative influence. METHODS Data were extracted from 434 studies reporting RER during continuous cycling exercise. General linear mixed-effect models were used to determine relationships between RER and factors purported to influence RER (e.g., exercise duration and intensity, muscle glycogen, dietary intake, age, and sex), and to examine which factors influenced RER, with standardized coefficients used to assess their relative influence. RESULTS The RER decreases with exercise duration, dietary fat intake, age, VO2max, and percentage of type I muscle fibers, and increases with dietary carbohydrate intake, exercise intensity, male sex, and carbohydrate intake before and during exercise. The modelling could explain up to 59% of the variation in RER, and a model using exclusively easily modified factors (exercise duration and intensity, and dietary intake before and during exercise) could only explain 36% of the variation in RER. Variables with the largest effect on RER were sex, dietary intake, and exercise duration. Among the diet-related factors, daily fat and carbohydrate intake have a larger influence than carbohydrate ingestion during exercise. CONCLUSION Variability in RER during exercise cannot be fully accounted for by models incorporating a range of participant, diet, exercise, and physiological characteristics. To better understand what influences substrate oxidation during exercise further research is required on older subjects and females, and on other factors that could explain additional variability in RER.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
8
|
Wang Y, Zhou K, Wang V, Bao D, Zhou J. The Effects of Concurrent Training Combined with Low-Carbohydrate High-Fat Ketogenic Diet on Body Composition and Aerobic Performance: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11542. [PMID: 36141816 PMCID: PMC9517144 DOI: 10.3390/ijerph191811542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 05/22/2023]
Abstract
(1) Background: Recently, studies have emerged to explore the effects of concurrent training (CT) with a low-carb, high-fat ketogenic diet (LCHF) on body composition and aerobic performance and observed its benefits. However, a large variance in the study design and observations is presented, which needs to be comprehensively assessed. We here thus completed a systematic review and meta-analysis to characterize the effects of the intervention combining CT and LCHF on body composition and aerobic capacity in people with training experience as compared to that combining CT and other dietary strategies. (2) Methods: A search strategy based on the PICOS principle was used to find literature in the databases of PubMed, Web of Science, EBSCO, Sport-discuss, and Medline. The quality and risk of bias in the studies were independently assessed by two researchers. (3) Result: Eight studies consisting of 170 participants were included in this work. The pooled results showed no significant effects of CT with LCHF on lean mass (SMD = -0.08, 95% CI -0.44 to 0.3, p = 0.69), body fat percentage (SMD = -0.29, 95% CI -0.66 to 0.08, p = 0.13), body mass (SMD = -0.21, 95% CI -0.53 to 0.11, p = 0.2), VO2max (SMD = -0.01, 95% CI -0.4 to 0.37, p = 0.95), and time (or distance) to complete the aerobic tests (SMD = -0.02, 95% CI -0.41 to 0.37, p = 0.1). Subgroup analyses also showed that the training background of participants (i.e., recreationally trained participants or professionally trained participants) and intervention duration (e.g., > or ≤six weeks) did not significantly affect the results. (4) Conclusions: This systematic review and meta-analysis provide evidence that compared to other dietary strategies, using LCHF with CT cannot induce greater benefits for lean mass, body fat percentage, body mass, VO2max, and aerobic performance in trained participants.
Collapse
Affiliation(s)
- Yubo Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Kaixiang Zhou
- Sports Health College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Vienna Wang
- College of Engineering, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Junhong Zhou
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Cipryan L, Dostal T, Litschmannova M, Hofmann P, Maffetone PB, Laursen PB. Effects of a Very Low-Carbohydrate High-Fat Diet and High-Intensity Interval Training on Visceral Fat Deposition and Cardiorespiratory Fitness in Overfat Individuals: A Randomized Controlled Clinical Trial. Front Nutr 2021; 8:785694. [PMID: 34993222 PMCID: PMC8724307 DOI: 10.3389/fnut.2021.785694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose: This randomized controlled parallel-group study examined the effects of a very low-carbohydrate high-fat (VLCHF) diet and high-intensity interval training (HIIT) program over 12 weeks on visceral adipose tissue (VAT) and cardiorespiratory fitness (CRF) level in overfat individuals. Methods: Ninety-one participants were randomly allocated to the HIIT (N = 22), VLCHF (N = 25), VLCHF+HIIT (N = 25), or control (N = 19) groups for 12 weeks. Body composition and CRF were analyzed before the experimental period and after 4, 8, and 12 weeks. Dual-energy X-ray absorptiometry (DXA) and graded exercise test (GXT) to volitional exhaustion were used for the body composition and CRF assessments, respectively. Results: There were significant between-group differences in the VAT mass and body composition outcome changes. VAT mass decreased after 12 weeks only in the VLCHF and VLCHF+HIIT groups (p < 0.001, median [95% CI]: VLCHF: -142.0 [-187.0; -109.5] g; VLCHF+HIIT: -104.0 [-135.0; -71.0] g). Similarly, changes in body mass, total body fat, trunk fat mass, waist and hip circumferences were distinctly decreased in the VLCHF and VLCHF+HIIT groups, when compared to HIIT and Control groups. Total lean mass significantly decreased in the VLCHF and VLCHF+HIIT groups (-2.1 [-3.0; -1.6] kg and -2.5 [-3.6; -1.8] kg, respectively) after 12 weeks. While the HIIT program significantly increased total time to exhaustion in the GXT, peak oxygen uptake was unchanged. Conclusions: A VLCHF diet, either in isolation or in combination with HIIT, was shown to induce a significant reduction in VAT mass and body composition variables. HIIT alone did not cause such effects on body composition, but improved exercise capacity. Our findings indicate that the VLCHF diet and exercise training provoked different and isolated effects on body composition and CRF. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT03934476, identifier: NCT03934476.
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies & Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czechia
| | - Tomas Dostal
- Department of Human Movement Studies & Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czechia
| | - Martina Litschmannova
- Department of Applied Mathematics, VSB – Technical University of Ostrava, Ostrava, Czechia
| | - Peter Hofmann
- Institute of Human Movement Science, Sport & Health, Exercise Physiology, Training & Training Therapy Research Group, University of Graz, Graz, Austria
| | | | - Paul B. Laursen
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
10
|
Energy Metabolism and Diet. Nutrients 2021; 13:nu13061907. [PMID: 34206013 PMCID: PMC8230308 DOI: 10.3390/nu13061907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
|
11
|
Devrim-Lanpir A, Hill L, Knechtle B. Efficacy of Popular Diets Applied by Endurance Athletes on Sports Performance: Beneficial or Detrimental? A Narrative Review. Nutrients 2021; 13:nu13020491. [PMID: 33540813 PMCID: PMC7912997 DOI: 10.3390/nu13020491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Endurance athletes need a regular and well-detailed nutrition program in order to fill their energy stores before training/racing, to provide nutritional support that will allow them to endure the harsh conditions during training/race, and to provide effective recovery after training/racing. Since exercise-related gastrointestinal symptoms can significantly affect performance, they also need to develop strategies to address these issues. All these factors force endurance athletes to constantly seek a better nutritional strategy. Therefore, several new dietary approaches have gained interest among endurance athletes in recent decades. This review provides a current perspective to five popular diet approaches: (a) vegetarian diets, (b) high-fat diets, (c) intermittent fasting diets, (d) gluten-free diet, and (e) low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diets. We reviewed scientific studies published from 1983 to January 2021 investigating the impact of these popular diets on the endurance performance and health aspects of endurance athletes. We also discuss all the beneficial and harmful aspects of these diets, and offer key suggestions for endurance athletes to consider when following these diets.
Collapse
Affiliation(s)
- Aslı Devrim-Lanpir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, 34862 Istanbul, Turkey;
| | - Lee Hill
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Beat Knechtle
- Medbase St. Gallen, am Vadianplatz, 9001 St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-(0)-71-226-93-00
| |
Collapse
|