1
|
Zhuang GD, Deng SM, Chen MD, Deng CF, Gu WT, Wang SM, Tang D. Huang-Lian-Jie-Du Decoction alleviates diabetic encephalopathy by regulating inflammation and pyroptosis via suppression of AGEs/RAGE/NF-κB pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118787. [PMID: 39244173 DOI: 10.1016/j.jep.2024.118787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive dysfunction associated with diabetes, known as diabetic encephalopathy (DE), is a grave neurodegenerative condition triggered by diabetes, and persistent inflammation plays a vital role in its development. The renowned traditional Chinese medicine Huang-Lian-Jie-Du Decoction (HLJDD) is clinically proven to manage diabetes mellitus and Alzheimer's disease and is famous for its heat-clearing and detoxifying effects. However, the underlying mechanisms through which HLJDD affects DE remain to be elucidated. AIM OF THE STUDY To explore the beneficial effects of HLJDD on improving cognitive dysfunction in DE mice. STUDY DESIGN AND METHODS A diabetic mouse was established through a high-fat diet and subsequent administration of streptozotocin over five consecutive days. After the animals were confirmed to have diabetes, they were treated with HLJDD. After oral administration of HLJDD or metformin for 14 weeks, behavioral tests were used to assess their cognitive capacity. Biochemical analyses were then performed to detect levels of glucose metabolism, followed by histological analyses to assess pathological damage. Furthermore, AGEs/RAGE/NF-κB axis related proteins were detected by Western blot or immunofluorescence techniques. An advanced UPLC-Q-Orbitrap HRMS/MS analytical technique utilizing a chemical derivatization strategy was employed for comprehensive metabolic profiling of carbonyl compounds in the plasma of DE mice. RESULTS Pharmacological assessment revealed that HLJDD effectively mitigated cognitive dysfunction, normalized glucose metabolic imbalances, and repaired neuronal damage in DE mice. It reduced neuroinflammation by attenuating carbonyl stress, deactivating astrocytes and microglia, and preserving dopaminergic neurons. Additionally, metabolomics analysis revealed 18 carbonyl compounds with marked disparities between DE and control mice, with 12 metabolites approaching normal levels post-HLJDD intervention. Further investigations showed that HLJDD regulated inflammation and pyroptosis through suppressing AGEs/RAGE/NF-κB pathways. CONCLUSION Our study indicated that HLJDD could ameliorate carbonyl stress via the regulation of carbonyl compound metabolism profiling, and inhibiting the AGEs/RAGE/NF-κB pathway, thereby alleviating inflammation and pyroptosis to exert beneficial effects on DE.
Collapse
Affiliation(s)
- Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao.
| | - Si-Min Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meng-Di Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chao-Fan Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Li J, Nan W, Huang X, Meng H, Wang S, Zheng Y, Li Y, Li H, Zhang Z, Du L, Yin X, Wu H. Eicosapentaenoic acid induces macrophage Mox polarization to prevent diabetic cardiomyopathy. EMBO Rep 2024; 25:5507-5536. [PMID: 39482491 PMCID: PMC11624267 DOI: 10.1038/s44319-024-00271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 11/03/2024] Open
Abstract
Diabetic cardiomyopathy (DC) leads to heart failure, with few effective approaches for its intervention. Eicosapentaenoic acid (EPA) is an essential nutrient that benefits the cardiovascular system, but its effect on DC remains unknown. Here, we report that EPA protects against DC in streptozotocin and high-fat diet-induced diabetic mice, with an emphasis on the reduction of cardiac M1-polarized macrophages. In vitro, EPA abrogates cardiomyocyte injury induced by M1-polarized macrophages, switching macrophage phenotype from M1 to Mox, but not M2, polarization. Moreover, macrophage Mox polarization combats M1-polarized macrophage-induced cardiomyocyte injury. Further, heme oxygenase 1 (HO-1) was identified to maintain the Mox phenotype, mediating EPA suppression of macrophage M1 polarization and the consequential cardiomyocyte injury. Mechanistic studies reveal that G-protein-coupled receptor 120 mediates the upregulation of HO-1 by EPA. Notably, EPA promotes Mox polarization in monocyte-derived macrophages from diabetic patients. The current study provides EPA and macrophage Mox polarization as novel strategies for DC intervention.
Collapse
Affiliation(s)
- Jie Li
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Wenshan Nan
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Endocrinology and Metabolism, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
| | - Xiaoli Huang
- Department of Nutrition, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Huali Meng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Shue Wang
- Experimental Center of Public Health and Preventive Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
| | - Ying Li
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Xiao Yin
- Department of Endocrinology and Metabolism, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong, 250013, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China.
- Shandong Provincial Engineering and Technology Research Center for Food Safety Monitoring and Evaluation, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Nan W, Yin J, Hao W, Meng H, Wu J, Yin X, Wu H. Cardamonin protects against diabetic cardiomyopathy by activating macrophage NRF2 signaling through molecular interaction with KEAP1. Food Funct 2024; 15:11083-11095. [PMID: 39431579 DOI: 10.1039/d4fo03543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Diabetic cardiomyopathy (DCM) contributes to a large proportion of heart failure incidents in the diabetic population, but effective therapeutic approaches are rare. Cardamonin (CAD), a flavonoid found in Alpinia, possesses anti-inflammatory and anti-oxidative activities. Here we report a profound protective effect of CAD on DCM in a mouse model of type 2 diabetes induced by streptozotocin and a high-fat diet, in which gavage with CAD improved hyperglycemia and glucose intolerance and mitigated diabetic cardiac injuries including cardiac dysfunction, hypertrophy, apoptotic cell death and infiltration of inflammatory cells, especially M1 polarized macrophages. To verify whether CAD could protect against cardiomyocyte injury through inhibiting macrophage M1 polarization, M1 polarized macrophages were treated with CAD, followed by washing out and co-culturing with cardiomyocytes, showing that CAD remarkably inhibited macrophage M1 polarization and the following cardiomyocyte injury, along with activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant signaling pathway. Molecular docking and surface plasmon resonance assays found Kelch-like ECH-associated protein 1 (KEAP1) as the molecular target of CAD. Both CAD and the Kelch domain inhibitor Ki696 promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2). This work may provide CAD as a novel NRF2 activator in future interventions for DCM.
Collapse
Affiliation(s)
- Wenshan Nan
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Huali Meng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, China
| | - Xiao Yin
- Department of Endocrinology and Metabolic Diseases, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Shandong Provincial Engineering and Technology Research Center for Food Safety Monitoring and Evaluation, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Song K, Liang D, Xiao D, Kang A, Ren Y. Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review). Mol Med Rep 2024; 30:199. [PMID: 39239741 PMCID: PMC11411234 DOI: 10.3892/mmr.2024.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), a significant complication of diabetes mellitus, is marked by myocardial structural and functional alterations due to chronic hyperglycemia. Despite its clinical significance, optimal treatment strategies are still elusive. Bariatric surgery via sleeve gastrectomy and Roux-en-Y gastric bypass have shown promise in treating morbid obesity and associated metabolic disorders including improvements in diabetes mellitus and DCM. The present study reviews the molecular mechanisms by which bariatric surgery improves DCM, offering insights into potential therapeutic targets. Future research should further investigate the mechanistic links between bariatric surgery and DCM, to evaluate the benefits and limitations of these surgical interventions for DCM treatment. The present study aims to provide a foundation for more effective DCM therapies, contributing to the advancement of patient care.
Collapse
Affiliation(s)
- Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dingqi Xiao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
5
|
Tian A, Zheng Y, Li H, Zhang Z, Du L, Huang X, Sun L, Wu H. Eicosapentaenoic acid activates the P62/KEAP1/NRF2 pathway for the prevention of diabetes-associated cognitive dysfunction. Food Funct 2024; 15:5251-5271. [PMID: 38680120 DOI: 10.1039/d4fo00774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Diabetes-associated cognitive dysfunction (DCD) is a severe complication of diabetes mellitus (DM), threatening the life quality of the diabetic population. However, there is still a lack of effective approaches for its intervention. Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that was not previously investigated for its effect on DCD. In this study, EPA was found to improve DCD in a mouse model of type 2 DM (T2DM) induced by streptozotocin and a high-fat diet, exhibiting profound protective effects on cognitive dysfunction, neuronal loss, and cerebral oxidative stress and inflammation. While EPA did not attenuate advanced glycation end product-induced neuron injury, we hypothesized that EPA might protect neurons by regulating microglia polarization, the effect of which was confirmed by the co-culture of neurons and lipopolysaccharide-stimulated microglia. RNA sequencing identified nuclear factor-erythroid-2-related factor 2 (NRF2) antioxidant signaling as a major target of EPA in microglia. Mechanistically, EPA increased sequestosome-1 (SQSTM1 or P62) levels that might structurally inhibit Kelch-like ECH associated protein 1 (KEAP1), leading to nuclear translocation of NRF2. P62 and NRF2 predominantly mediated EPA's effect since the knockdown of P62 or NRF2 abolished EPA's protective effect on microglial oxidative stress and inflammation and sequential neuron injuries. Moreover, the regulation of P62/KEPA1/NRF2 axes by EPA was confirmed in the hippocampi of diabetic mice. The present work presents EPA as an effective nutritional approach and microglial P62/KEAP1/NRF2 as molecular targets for the intervention of DCD.
Collapse
Affiliation(s)
- Ao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Yan Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Xiaoli Huang
- Department of Nutrition, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Rd., Jinan, Shandong 250012, China.
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Rd., Jinan, Shandong 250012, China.
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| |
Collapse
|
6
|
Gao Y, Ding Z, Liu Y, Xu YJ. Advances in encapsulation systems of Antarctic krill oil: From extraction to encapsulation, and future direction. Compr Rev Food Sci Food Saf 2024; 23:e13332. [PMID: 38578167 DOI: 10.1111/1541-4337.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.
Collapse
Affiliation(s)
- Yuhang Gao
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Yang YH, Chen C, Zheng Y, Wu ZJ, Zhou MQ, Liu XY, Miyashita K, Duan DL, Du L. Fucoxanthin Alleviates Dextran Sulfate Sodium-Induced Colitis and Gut Microbiota Dysbiosis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4142-4154. [PMID: 38355398 DOI: 10.1021/acs.jafc.3c08811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The purpose of this study was to evaluate the preventive role and underlying mechanisms of fucoxanthin (Fx) on dextran sulfate sodium (DSS)-induced colitis in mice. The present data demonstrated that oral administration of Fx (50 and 200 mg/kg body weight/day) for 36 days significantly alleviated the severity of colitis in DSS-treated mice, as evidenced by attenuating body weight loss, bloody stool, diarrhea, shortened colon length, colonic epithelium distortion, a thin mucus layer, goblet cell depletion, damaged crypts, and extensive infiltration of inflammatory cells in the colonic mucosa. Additionally, Fx notably relieved DSS-induced intestinal epithelial barrier dysfunction via maintaining the tight junction function and preventing excessive apoptosis of colonic epithelial cells. Moreover, Fx effectively diminished colonic inflammation and oxidative stress in DSS-treated mice, and its mechanisms might be due to blunting the activation of NF-κB and NLRP3 inflammasome signaling pathways. Furthermore, Fx also modulates DSS-induced gut microbiota dysbiosis via recovering the richness and diversity of gut microbiota and reshaping the structure of gut microbiota, such as increasing the Firmicutes and Bacteroidota (F/B) ratio and elevating the relative abundance of some potential beneficial bacteria, including Lactobacillaceae and Lachnospiraceae. Overall, Fx might be developed as a promising functional ingredient to prevent colitis and maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Yu-Hong Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan, Shandong 250353, China
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., No. 259 Pinghai East Road, Rongcheng City, Shandong 264300, China
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Zi-Jian Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Meng-Qing Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Xiao-Yong Liu
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., No. 259 Pinghai East Road, Rongcheng City, Shandong 264300, China
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - De-Lin Duan
- Key Lab of Breeding Biotechnology & Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No. 168 Wenhai Middle Road, Qingdao, Shandong 266237, China
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|
8
|
Vijayapoopathi S, Ramamoorthy R, Meganathan J, Kalaiyazhagan A, Bhuvarahamurthy S, Venugopal B. Nutraceutical combination ameliorates imiquimod-induced psoriasis in mice. Chem Biol Drug Des 2023; 102:1578-1587. [PMID: 37705136 DOI: 10.1111/cbdd.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease that affects both localized and systemic regions of the body. This condition is characterized by the hyperproliferation of keratinocytes, resulting in skin thickening, scaling, and erythema. The severity of psoriasis depends on the extent of skin involvement, the location of the infection, and the symptoms that the person exhibits. While no cure exists, conventional therapies such as topical and systemic drugs are generally used to manage the exacerbation of symptoms. However, chronic use and overdose can lead to other severe adverse effects. Therefore, scientists and researchers are exploring potential nutraceuticals that can be considered as an alternative source of management for psoriasis. Current research aims to use different combinations of natural compounds like cannabidiol, myo-inositol, eicosapentaenoic acid, and krill oil to study the effect of these compounds in the prevention and treatment of psoriasis in the imiquimod (IMQ)-induced psoriatic mice model. The Psoriasis Area Severity Index (PASI) scoring system is used to analyze skin thickness, scales, and erythema. The results indicate that the krill oil combined with the cannabidiol and myo-inositol shows better results than other nutraceutical combinations. In the future, the natural products of krill oil can be combined with cannabidiol and myo-inositol to create an improved alternative to existing steroidal and nonsteroidal anti-inflammatory drugs for psoriasis treatment.
Collapse
Affiliation(s)
- Singaravel Vijayapoopathi
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Rajalakshmi Ramamoorthy
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
- Department of Obstetrics, Gynecology and Reproductive Studies, University of Miami, Coral Gables, Florida, USA
| | - Jayaprakash Meganathan
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Ananthi Kalaiyazhagan
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | | | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
9
|
Xiao H, Xie Y, Xi K, Xie J, Liu M, Zhang Y, Cheng Z, Wang W, Guo B, Wu S. Targeting Mitochondrial Sirtuins in Age-Related Neurodegenerative Diseases and Fibrosis. Aging Dis 2023; 14:1583-1605. [PMID: 37196115 PMCID: PMC10529758 DOI: 10.14336/ad.2023.0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is a natural and complex biological process that is associated with widespread functional declines in numerous physiological processes, terminally affecting multiple organs and tissues. Fibrosis and neurodegenerative diseases (NDs) often occur with aging, imposing large burdens on public health worldwide, and there are currently no effective treatment strategies for these diseases. Mitochondrial sirtuins (SIRT3-5), which are members of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases, are capable of regulating mitochondrial function by modifying mitochondrial proteins that participate in the regulation of cell survival under various physiological and pathological conditions. A growing body of evidence has revealed that SIRT3-5 exert protective effects against fibrosis in multiple organs and tissues, including the heart, liver, and kidney. SIRT3-5 are also involved in multiple age-related NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Furthermore, SIRT3-5 have been noted as promising targets for antifibrotic therapies and the treatment of NDs. This review systematically highlights recent advances in knowledge regarding the role of SIRT3-5 in fibrosis and NDs and discusses SIRT3-5 as therapeutic targets for NDs and fibrosis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Jinyi Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Mingyue Liu
- Medical School, Yan’an University, Yan’an, China
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| |
Collapse
|
10
|
Cai L. Impact of Nutrition or FDA-Approved Medicine Repurposing on Metabolic Syndrome and Diabetic Complications. Nutrients 2023; 15:2515. [PMID: 37299478 PMCID: PMC10255908 DOI: 10.3390/nu15112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Both obesity and diabetes are global health threats due to their high risk of developing different complications [...].
Collapse
Affiliation(s)
- Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville School of Medicine, and Wendy Novak Diabetes Institute, Norton HealthCare, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Fan P, Meng H, Hao W, Zheng Y, Li H, Zhang Z, Du L, Guo X, Wang D, Wang Y, Wu H. Cardamonin targets KEAP1/NRF2 signaling for protection against atherosclerosis. Food Funct 2023; 14:4905-4920. [PMID: 37157847 DOI: 10.1039/d3fo00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Atherosclerosis (AS)-induced cardiovascular disease is a leading cause of death worldwide. To date, there is still a lack of effective approaches for AS intervention. Cardamonin (CAD) is a bioactive food component, but its effect on AS is unknown. In this work, CAD was investigated for its effect on AS using low-density lipoprotein receptor knockout mice and tumor necrosis factor-alpha (TNF-α)-stimulated endothelial cells (ECs). After a 12-week intervention, CAD was found to significantly prevent AS formation in the aortic root and aortic tree, reduce the necrotic core area, and inhibit aortic inflammation and oxidative stress. Moreover, CAD quenched TNF-α-provoked inflammation and oxidative stress in ECs. RNA-sequencing identified nuclear factor erythroid-2 related factor 2 (NFE2L2, NRF2)/heme oxidase 1 (HO1) signaling to be drastically activated by CAD. CAD is a known activator of the aryl hydrocarbon receptor (AHR) which is a transcription factor of the NFE2L2 gene. Surprisingly, AHR was not required for CAD's action on the activation of NRF2/HO1 signaling since AHR gene silencing did not reverse this effect. Furthermore, a molecular docking assay showed a strong binding potential of CAD to the Kelch domain of the Kelch-like ECH-associated protein 1 (KEAP1) which sequesters NRF2 in the cytoplasm. Both CAD and the Kelch domain inhibitor Ki696 promoted NRF2 nuclear translocation, whereas the combination of CAD and Ki696 did not yield a greater effect compared with either CAD or Ki696, confirming the interaction of CAD with the Kelch domain. This work provides an experimental basis for CAD as a novel and effective bioactive food component in future AS interventions.
Collapse
Affiliation(s)
- Pengfei Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Wenhao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China.
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| |
Collapse
|
12
|
Wu S, Zhu J, Wu G, Hu Z, Ying P, Bao Z, Ding Z, Tan X. 6-Gingerol Alleviates Ferroptosis and Inflammation of Diabetic Cardiomyopathy via the Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3027514. [PMID: 36624878 PMCID: PMC9825225 DOI: 10.1155/2022/3027514] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) can induce cardiomyocyte injury and lead to diabetic cardiomyopathy (DCM) which presently has no specific treatments and consequently increase risk of mortality. OBJECTIVE To characterize the therapeutic effect of 6-gingerol (6-G) on DCM and identify its potential mechanism. METHODS In vivo streptozotocin- (STZ-) induced DM model was established by using a high-fat diet and STZ, followed by low-dose (25 mg/kg) and high-dose (75 mg/kg) 6-G intervention. For an in vitro DCM model, H9c2 rat cardiomyoblast cells were stimulated with high glucose (glucose = 33 mM) and palmitic acid (100 μM) and then treated with 6-G (100 μM). Histological and echocardiographic analyses were used to assess the effect of 6-G on cardiac structure and function in DCM. Western blotting, ELISA, and real-time qPCR were used to assess the expression of ferroptosis, inflammation, and the Nrf2/HO-1 pathway-related proteins and RNAs. Protein expression of collagen I and collagen III was assessed by immunohistochemistry, and kits were used to assay SOD, MDA, and iron levels. RESULTS The results showed that 6-G decreased cardiac injury in both mouse and cell models of DCM. The cardiomyocyte hypertrophy and interstitial fibrosis were attenuated by 6-G treatment in vivo and resulted in an improved heart function. 6-G inhibited the expression of ferroptosis-related protein FACL4 and the content of iron and enhanced the expression of anti-ferroptosis-related protein GPX4. In addition, 6-G also diminished the secretion of inflammatory cytokines, including IL-1β, IL-6, and TNF-α. 6-G treatment activated the Nrf2/HO-1 pathway, enhanced antioxidative stress capacity proved by increased activity of SOD, and decreased MDA production. Compared with in vivo, 6-G treatment of H9c2 cells treated with high glucose and palmitic acid could produce a similar effect. CONCLUSION These findings suggest that 6-G could protect against DCM by the mechanism of ferroptosis inhibition and inflammation reduction via enhancing the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Shenglin Wu
- Institute of Clinical Electrocardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Jinxiu Zhu
- Institute of Clinical Electrocardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, China
- Longgang Maternity and Child Institute of Shantou University Medica College, Shenzhen 518100, Guangdong, China
| | - Guihai Wu
- Institute of Clinical Electrocardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Zuoqi Hu
- Institute of Clinical Electrocardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Pengxiang Ying
- Institute of Clinical Electrocardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Zhijun Bao
- Institute of Clinical Electrocardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Zipeng Ding
- Institute of Clinical Electrocardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Xuerui Tan
- Institute of Clinical Electrocardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
13
|
PPARγ Gene as a Possible Link between Acquired and Congenital Lipodystrophy and its Modulation by Dietary Fatty Acids. Nutrients 2022; 14:nu14224742. [PMID: 36432429 PMCID: PMC9693235 DOI: 10.3390/nu14224742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Lipodystrophy syndromes are rare diseases that could be of genetic or acquired origin. The main complication of lipodystrophy is the dysfunction of adipose tissue, which leads to an ectopic accumulation of triglycerides in tissues such as the liver, pancreas and skeletal muscle. This abnormal fat distribution is associated with hypertriglyceridemia, insulin resistance, liver steatosis, cardiomyopathies and chronic inflammation. Although the origin of acquired lipodystrophies remains unclear, patients show alterations in genes related to genetic lipodystrophy, suggesting that this disease could be improved or aggravated by orchestrating gene activity, for example by diet. Nowadays, the main reason for adipose tissue dysfunction is an imbalance in metabolism, caused in other pathologies associated with adipose tissue dysfunction by high-fat diets. However, not all dietary fats have the same health implications. Therefore, this article aims to summarize the main genes involved in the pathophysiology of lipodystrophy, identify connections between them and provide a systematic review of studies published between January 2017 and January 2022 of the dietary fats that can modulate the development of lipodystrophy through transcriptional regulation or the regulation of protein expression in adipocytes.
Collapse
|
14
|
Local Application of Krill Oil Accelerates the Healing of Artificially Created Wounds in Diabetic Mice. Nutrients 2022; 14:nu14194139. [PMID: 36235791 PMCID: PMC9571309 DOI: 10.3390/nu14194139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Diabetes mellitus (DM) impairs the wound healing process, seriously threatening the health of the diabetic population. To date, few effective approaches have been developed for the treatment of diabetic wounds. Krill oil (KO) contains bioactive components that have potent anti-inflammatory and anti-oxidative activities. As prolonged inflammation is a crucial contributor to DM-impaired wound healing, we speculated that the local application of KO would accelerate diabetic wound healing. Therefore, KO was applied to artificially created wounds of type 2 diabetic mice induced by streptozotocin and high-fat diet. The diabetic mice had a delayed wound healing process compared with the non-diabetic control mice, with excessive inflammation, impaired collagen deposition, and depressed neovascularization in the wound area. These effects were dramatically reversed by KO. In vitro, KO blocked the TNF-α-induced macrophage inflammation, fibroblast dysfunction, and endothelial angiogenic impairment. The present study in mice suggests that KO local application could be a viable approach in the management of diabetic wounds.
Collapse
|
15
|
Sun X, Yang Y, Sun X, Meng H, Hao W, Yin J, Ma F, Guo X, Du L, Sun L, Wu H. Krill Oil Turns Off TGF-β1 Profibrotic Signaling in the Prevention of Diabetic Nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9865-9876. [PMID: 35916281 DOI: 10.1021/acs.jafc.2c02850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), results in high mortality due to the lack of effective interventions. The current study investigated the preventive effect of krill oil (KO) on DN using a type 2 DM mouse model induced by streptozotocin and high-fat diet for 24 weeks. The diabetic mice developed albuminuria, mesangial matrix accumulation, glomerular hypertrophy, and fibrosis formation, with an increase in renal proinflammatory, oxidative and profibrotic gene expression. KO significantly prevented these effects but did not improve hyperglycemia and glucose intolerance. In high-glucose-treated mesangial cells (MCs), KO preferably modulated TGF-β1 signaling as revealed by RNA-sequencing. In TGF-β1-treated MCs, KO abolished SMAD2/3 phosphorylation and nuclear translocation and activated Smad7 gene expression. The action of KO on the SMADs was confirmed in the diabetic kidneys. Therefore, KO may prevent DN predominantly by suppressing the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Xuechun Sun
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Yu Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Xiaodan Sun
- Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Rd., Jinan, Shandong 250033, China
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, China
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
16
|
Preparation, Characterization, and Mechanism of Antifreeze Peptides from Defatted Antarctic Krill ( Euphausia superba) on Lactobacillus rhamnosus. Molecules 2022; 27:molecules27092771. [PMID: 35566118 PMCID: PMC9104330 DOI: 10.3390/molecules27092771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Defatted Antarctic krill powder is the main by-product in the manufacturing of krill oil. Exploring a high value-added approach for utilizing this protein-rich material has received much attention in research and industry. Given this, the preparation and primary characterization of antifreeze peptides from defatted Antarctic krill (AKAPs) were carried out in this study. The cryoprotective effect of AKAPs on Lactobacillus rhamnosus ATCC7469 was also investigated. The results showed that Protamex was the optimum protease for AKAP preparation from defatted Antarctic krill. AKAPs were found to be rich in short peptides, with the MW ranging from 600 to 2000 Da (69.2%). An amino acid composition analysis showed that AKAPs were rich in glutamic acid (18.71%), aspartic acid (12.19%), leucine (7.87%), and lysine (7.61%). After freezing, the relative survival rate of Lactobacillus rhamnosus in the 1.0 mg/mL AKAP-treated group (96.83%) was significantly higher than in the saline group (24.12%) (p < 0.05). AKAPs also retarded the loss of acidifying activity of L. rhamnosus after freezing. AKAPs showed even better cryoprotective activity than three commercial cryoprotectants (sucrose, skim milk, and glycerol). In addition, AKAPs significantly alleviated the decrease in β-galactosidase and lactic dehydrogenase activities of L. rhamnosus (p < 0.05). Furthermore, AKAPs effectively protected the integrity of L. rhamnosus cell membranes from freezing damage and alleviated the leakage of intracellular substances. These findings demonstrate that AKAPs can be a potential cryoprotectant for preserving L. rhamnosus, providing a new way to use defatted Antarctic krill.
Collapse
|
17
|
Du L, Zheng Y, Yang YH, Huang YJ, Hao YM, Chen C, Wang BZ, Guo X, Wu H, Su GH. Krill oil prevents lipopolysaccharide-evoked acute liver injury in mice through inhibition of oxidative stress and inflammation. Food Funct 2022; 13:3853-3864. [PMID: 35274650 DOI: 10.1039/d1fo04136c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute liver injury is a life-threatening syndrome that often results from the actions of viruses, drugs and toxins. Herein, the protective effect and potential mechanism of krill oil (KO), a novel natural product rich in long-chain n-3 polyunsaturated fatty acids bound to phospholipids and astaxanthin, on lipopolysaccharide (LPS)-evoked acute liver injury in mice were investigated. Male C57BL/6J mice were administered intragastrically with 400 mg kg-1 KO or fish oil (FO) once per day for 28 consecutive days prior to LPS exposure (10 mg kg-1, intraperitoneally injected). The results revealed that KO pretreatment significantly ameliorated LPS-evoked hepatic dysfunction indicated by reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and attenuated hepatic histopathological damage. KO pretreatment also mitigated LPS-induced hepatic oxidative stress, as evidenced by decreased malondialdehyde (MDA) contents, elevated glutathione (GSH) levels, and elevated catalase (CAT) and superoxide dismutase (SOD) activities. Additionally, LPS-evoked overproduction of pro-inflammatory mediators in serum and the liver was inhibited by KO pretreatment. Furthermore, KO pretreatment suppressed LPS-induced activation of the hepatic toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling pathway. Interestingly, the hepatoprotective effect of KO was superior to that of FO. Collectively, the current findings suggest that KO protects against LPS-evoked acute liver injury via inhibition of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| | - Yu-Hong Yang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, Shandong, 250353, China
| | - Yu-Jie Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yi-Ming Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Bao-Zhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Guo-Hai Su
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| |
Collapse
|
18
|
Du L, Hao YM, Yang YH, Zheng Y, Wu ZJ, Zhou MQ, Wang BZ, Wang YM, Wu H, Su GH. DHA-Enriched Phospholipids and EPA-Enriched Phospholipids Alleviate Lipopolysaccharide-Induced Intestinal Barrier Injury in Mice via a Sirtuin 1-Dependent Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2911-2922. [PMID: 35174699 DOI: 10.1021/acs.jafc.1c07761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Intestinal barrier dysfunction has emerged as a potential contributor to the development of several severe diseases. Herein, the effect and underlying mechanism of DHA-enriched phospholipids (DHA-PL) and EPA-enriched phospholipids (EPA-PL) on protecting against lipopolysaccharide (LPS)-induced intestinal barrier injury were elucidated. C57BL/6J male mice were fed an AIN-93G diet containing 1% DHA-PL or EPA-PL for 4 weeks and then were intraperitoneally injected with LPS (10 mg/kg) to cause intestinal barrier injury. The results manifested that DHA-PL and EPA-PL pretreatment balanced apoptosis and autophagy in intestinal epithelial cells and maintained intestinal tight junction integrity. Our findings also demonstrated that cotreatment with EX-527, a sirtuin 1 specific inhibitor, hindered the role of DHA-PL and EPA-PL against LPS-evoked intestinal barrier injury through reversing the inhibitory action of them on NF-κB and MAPKs activation as well as their potentiating actions on Nrf2 nuclear translocation. Overall, DHA-PL and EPA-PL alleviated LPS-mediated intestinal barrier injury via inactivation of the NF-κB and MAPKs pathways as well as activating the Nrf2 antioxidant pathway via up-regulating sirtuin 1.
Collapse
Affiliation(s)
- Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yi-Ming Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yu-Hong Yang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Jinan, Shandong 250353, China
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Zi-Jian Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Meng-Qing Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Bao-Zhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, China
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Guo-Hai Su
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|