1
|
Du L, Zhou S, Huang Y, Meng Z. Investigation on the structure characteristics, stability evaluation, and oral tribology of natural oleanolic acid-based water-in-oil high internal phase and multiple Pickering emulsions as realistic fat analogues. Food Chem 2025; 465:142121. [PMID: 39581149 DOI: 10.1016/j.foodchem.2024.142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Herein, it proved that oleanolic acid (OA) could self-assemble into particles in oil, further exhibiting great potential in creating Pickering water-in-oil (W/O) high internal phase emulsions (HIPEs) with desirable fat-like attributes. W/O HIPE with a water content of 85 wt% could be stabilized by 3 wt% OA, their fat-like performance could be optimized by modulating the filling density of water droplets and interfacial coverage. The stabilization included particle-coated, particle and droplet co-coated, and droplet-coated interfaces depending on the OA amount. HIPEs with excellent tolerance to high-temperature and freeze-thaw treatment could be achieved. Moreover, dual-interface Pickering-stabilization water-in-oil-in-water (W/O/W) emulsions with a fat-like texture were fabricated via a one-step homogenization stabilized with OA particles and microgels. Importantly, OA-based W/O and W/O/W emulsion gels possessed smooth oral sensation and similar tribology behaviors to milk fat. This work is expected to provide a "clean-label" route to develop multiphase fat analogues involved in natural materials.
Collapse
Affiliation(s)
- Liyang Du
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shanshan Zhou
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yilei Huang
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Dogara AM, Bradosty SW, Al-Zahrani AA, Hamad SW, Almalki HD. Ethnobotany, bioactive compounds and pharmacology of Syzygium guineense (Willd.) DC: A review. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119149. [PMID: 39603399 DOI: 10.1016/j.jep.2024.119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants possess the ability to synthesize a diverse array of primary and secondary metabolites. Secondary metabolites are of great importance as a result of their status as natural substances that have the potential to provide therapeutic benefits for human health. Due to its many uses in traditional medicine, Syzygium guineense (Willd.) DC extracts have been the subject of numerous pharmacological studies. African traditional medicine uses it to treat a variety of ailments, including epilepsy, diarrhea, stomach pain, malaria, coughs, fractures, wounds, asthma, sore throats, intercostal pain, and as a tonic. No comprehensive reviews of S. guineense have been found, according to our literature search. Consider the great potential of S. guineense to serve as valuable sources of discovery of medicinal substances. AIM OF THE STUDY The study compiles ethnobotany, bioactive compounds, and pharmacology of Syzygium guineense. METHODS Research publications have been searched utilizing the following platforms: Elsevier, Springer, Google Scholar, Taylor & Francis, Pub med, and Scopus. Research the terms "Syzygium guineense," "chemical composition," "antioxidant," "antibacterial," "anti-diabetic," "anticancer" and any other relevant terms. RESULTS Traditionally, S. guineense parts has been used to cure thirty different diseases including malaria, cough and diabetes among others. Contains 205 different compounds between the class of flavonoids, alkaloids, tannins, terpenoids and many more. From the pharmacological point of view, it has been reported to possess strong antibacterial, antimalarial, antihypertensive, anti-tuberculosis, anthelmintic, anti-venom, antiulcer, analgesic, anti-inflammatory, and anti-diabetic properties. No observable toxic effect was recorded. CONCLUSIONS This review showcases the various biological activities together with its safety profile back up the traditional uses and point to the possible use of the S. guineense compound as a natural therapeutic tool. To confirm the results of preclinical studies, additional well-designed clinical trials are required to evaluate the safety and effectiveness of S. guineense in humans.
Collapse
Affiliation(s)
| | - Sarwan W Bradosty
- Department of Medical Laboratory Science, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ateeq Ahmed Al-Zahrani
- Chemistry Department, University College at Al-Qunfudhah, Umm Al-Qura University, Saudi Arabia
| | - Saber W Hamad
- Department of Field Crops and Medicinal Plants, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Hussain D Almalki
- Chemistry Department, University College at Al-Qunfudhah, Umm Al-Qura University, Saudi Arabia
| |
Collapse
|
3
|
Kumar V, Kumar A, Kumar Singh M, Dhyani P, Mishra H, Chandra Rai D. Bioactive metabolites identification of the foxnut and broken millet-based nutritional bar using HR-MS. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100214. [PMID: 39149574 PMCID: PMC11324833 DOI: 10.1016/j.fochms.2024.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
The by-products of the grain processing industry are a vital resource for the valorization methods in the food industry. In comparison to the whole grain, the broken kernels and seeds own similar nutrient and bioactive compounds having multifaceted health properties. This study aims to develop a nutritional bar by utilizing the by-products from barnyard millet and foxnut with added sweeteners. Furthermore, high-resolution mass spectrometry (HR-MS) metabolomics was carried out in positive and negative both ion modes to identify the major bioactive compounds formed in the matrix of the best-optimized valorized bar. The formulation of the bar having 15 % foxnut flour and the barnyard flour each, was elucidated highest rheological and sensory scores. A sum of 29 bioactive metabolites has been observed in the obtained metabolome. Major metabolites were palmitoyl serinol, glycitein, persin, bufagargarizin, apigenin, carvone, etc. covering a wide area in the mass spectrum. The therapeutic value of these compounds is heart health promotion, anti-inflammatory, anti-carcinogenic, anti-diabetic, anti-microbial, etc. This work highlights the bioactivity of the valorized nutritional bar employing robust and accurate tool of mass spectrometry. The developed snack is a functional food for the consumers.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Kumar Singh
- Department of Food Technology, School of Engineering and Technology, Mizoram University, Aizawl, Mizoram, India
| | - Priya Dhyani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Himanshu Mishra
- Department of Food Technology, School of Engineering and Technology, Mizoram University, Aizawl, Mizoram, India
| | - Dinesh Chandra Rai
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
Cheng S, Wang X, Deng Z, Liu T. Innovative approaches in the discovery of terpenoid natural products. Curr Opin Microbiol 2024; 83:102575. [PMID: 39708423 DOI: 10.1016/j.mib.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024]
Abstract
As a class of natural compounds ubiquitous in nature, diverse terpenoids exhibit a broad spectrum of applications in human endeavors. The efficient discovery of novel terpenoids and the establishment of a terpene library for broad utilization represent pressing challenges in terpenoid natural product research. Various microbial platforms offer abundant precursors for terpene biosynthesis from diverse sources. Leveraging artificial intelligence for enzyme function prediction and screening can facilitate the identification of terpenoid synthesis components with innovative mechanisms. Automated high-throughput bio-foundry workstations can expedite the construction of terpenoid libraries, providing substantial time and labor savings. The integration of multiple strategies promises to yield substantial advancements in the exploration of valuable terpenoids.
Collapse
Affiliation(s)
- Shu Cheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical-Research Institute, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiangang Liu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Wuhan Hesheng Technology Co., Ltd, Wuhan, China.
| |
Collapse
|
5
|
Bian Y, Dong J, Zhou Z, Zhou H, Xu Y, Zhang Q, Chen C, Pi J. The spatiotemporal and paradoxical roles of NRF2 in renal toxicity and kidney diseases. Redox Biol 2024; 79:103476. [PMID: 39724848 DOI: 10.1016/j.redox.2024.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Over 10% of the global population is at risk to kidney disorders. Nuclear factor erythroid-derived 2-related factor 2 (NRF2), a pivotal regulator of redox homeostasis, orchestrates antioxidant response that effectively counters oxidative stress and inflammatory response in a variety of acute pathophysiological conditions, including acute kidney injury (AKI) and early stage of renal toxicity. However, if persistently activated, NRF2-induced transcriptional cascade may disrupt normal cell signaling and contribute to numerous chronic pathogenic processes such as fibrosis. In this concise review, we assembled experimental evidence to reveal the cell- and pathophysiological condition-specific roles of NRF2 in renal chemical toxicity, AKI, and chronic kidney disease (CKD), all of which are closely associated with oxidative stress and inflammation. By incorporating pertinent research findings on NRF2 activators, we dissected the spatiotemporal roles of NRF2 in distinct nephrotoxic settings and kidney diseases. Herein, NRF2 exhibits diverse expression patterns and downstream gene profiles across distinct kidney regions and cell types, and during specific phases of nephropathic progression. These changes are directly or indirectly connected to altered antioxidant defense, damage repair, inflammatory response, regulated cell death and fibrogenesis, culminating ultimately in either protective or deleterious outcomes. The spatiotemporal and paradoxical characteristics of NRF2 in mitigating nephrotoxicity suggest that translational application of NRF2 activation strategy for prevention and interventions of kidney injury are unlikely to be straightforward - right timing and spatial precision must be taken into consideration.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
6
|
Gao S, Li J, Wang W, Wang Y, Shan Y, Tan H. Rabdosia rubescens (Hemsl.) H. Hara: A potent anti-tumor herbal remedy - Botany, phytochemistry, and clinical applications and insights. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119200. [PMID: 39631716 DOI: 10.1016/j.jep.2024.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine has unique advantages as anti-cancer drugs and adjuvant therapies. Rabdosia rubescens (Hemsl.) H. Hara (R. rubescens) is a traditional medicinal plant known for its anti-inflammatory, antioxidant, antibacterial, anti-angiogenic and antitumor properties. The antitumor activity of R. rubescens is widely recognized among the folk communities in Henan Province, China. AIM OF THE STUDY This study reviews the botany, ethnopharmacology, phytochemistry, anti-tumor active ingredients, mechanisms, and clinical applications of R. rubescens, aiming to provide a comprehensive understanding for its use as an anti-cancer drug and adjuvant therapy. MATERIALS AND METHODS We systematically searched the literature in PubMed, Web of Science, and CNKI using the following keywords: "Rabdosia rubescens", "Isodon rubescens", "traditional application", "anti-tumor", "phytochemistry", "anti-tumor active compounds", "oridonin" and "clinical application". The search covered publications from 1997 to 2024. Inclusion criteria included original studies or reviews focusing on the anti-tumor properties of R. rubescens or its active components. Exclusion criteria included studies related to non-R. rubescens applications. RESULTS R. rubescens is a perennial herbaceous plant in the family Lamiaceae, mainly found in central and southern China. Historically, it has been used to treat conditions such as sore throat, cough, and excess phlegm. The plant contains various compounds, including diterpenes, triterpenes, steroids, flavonoids, phenolic acids, essential oils, amino acids, alkaloids, and polysaccharides, with diterpenes, triterpenes, flavonoids, and phenolic acids being the most active. This review identifies 50 compounds with anti-tumor properties, comprising 34 diterpenes, 2 triterpenes, 7 flavonoids, and 7 phenolic acids. Notably, besides oridonin and ponicidin, the ent-kaurane diterpenoids (20S)-11β,14β,20-trihydroxy-7α,20-epoxy-ent-kaur-16-en15-one and (20S)-11β,14β-dihydroxy-20-ethoxy7α,20-epoxy-ent-kaur-16-en-15-one demonstrate significant anti-tumor activity, attributed to their carbonyl group at C-15, hydroxyl group at C-1, and OEt group at C-20. Mechanistically, R. rubescens combats tumors by blocking the tumor cell cycle, promoting apoptosis, inhibiting cell migration and angiogenesis, inducing ferroptosis, reversing drug resistance, and enhancing radiosensitivity in tumor cells. Clinically, R. rubescens is available in various forms, including tablets, drops, syrups, capsules, and lozenges, and is primarily used for tonsillitis, pharyngitis, and stomatitis. According to the 2020 edition of the Pharmacopoeia of China, R. rubescens tablets are recognized as an adjuvant therapy for cancer. Clinical studies indicate that R. rubescens syrup, tablets, and thermal therapy can enhance cancer patient survival rates and lower tumor recurrence rates. CONCLUSIONS Given its traditional and modern uses, active anti-tumor components, and mechanisms, R. rubescens is a promising resource in traditional Chinese medicine for anti-tumor therapy. To realize its full potential, future research should explore additional active anti-tumor compounds beyond oridonin and ponicidin. For these key components, studies should focus on structural modifications to identify new active molecules and essential anti-tumor structures. Clinically, it is important to investigate how R. rubescens interacts with other Chinese herbs in anti-tumor formulations to enhance treatment efficacy and guide appropriate clinical use. Furthermore, future studies should undergo ethical review and include larger-scale randomized controlled trials to validate the efficacy of R. rubescens in treating tumors, thereby promoting its role as an anti-tumor traditional Chinese medicine.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Huixin Tan
- Department of Pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Muhammad SNH, Ramli RR, Nik Mohamed Kamal NNS, Fauzi AN. Terpenoids: Unlocking Their Potential on Cancer Glucose Metabolism. Phytother Res 2024; 38:5626-5640. [PMID: 39300823 DOI: 10.1002/ptr.8346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Cancer incidence has increased globally and has become the leading cause of death in the majority of countries. Many cancers have altered energy metabolism pathways, such as increased glucose uptake and glycolysis, as well as decreased oxidative phosphorylation. This is known as the Warburg effect, where cancer cells become more reliant on glucose to generate energy and produce lactate as an end product, even when oxygen is present. These are attributed to the overexpression of key glycolytic enzymes, glucose transporters, and related signaling pathways that occur in cancer cells. Therefore, overcoming metabolic alterations in cancer cells has recently become a target for therapeutic approaches. Natural products have played a key role in drug discovery, especially for cancer and infectious diseases. In this review, we are going to focus on terpenoids, which are gradually gaining popularity among drug researchers due to their reported anti-cancer effects via cell cycle arrest, induction of apoptosis, reduction of proliferation, and metastasis. This review summarizes the potential of 13 terpenoid compounds as anti-glycolytic inhibitors in different cancer models, primarily by inhibiting the glucose uptake and the generation of lactate, as well as by downregulating enzymes associated to glycolysis. As a conclusion, disruption of cancer cell glycolysis may be responsible for the anti-cancer activity of terpenoids.
Collapse
Affiliation(s)
- Siti Nur Hasyila Muhammad
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Redzyque Ramza Ramli
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Agustine Nengsih Fauzi
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Tu J, Kang M, Zhao Q, Xue C, Bi C, Dong N. Oleanolic acid improves antioxidant capacity and the abundance of Faecalibacterium prausnitzii in the intestine of broilers. Poult Sci 2024; 103:104340. [PMID: 39520757 PMCID: PMC11585868 DOI: 10.1016/j.psj.2024.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated the effect of dietary oleanolic acid (OA) addition on broiler intestinal morphology, intestinal antioxidant capacity, changes in cecum microbiota, and the relationship between microbiota and antioxidant capacity. A total of 288 Arbor Acres broilers at 1-day-old broilers were reared, and they were randomly divided into four groups. The control and experimental groups were fed the basal diet and the basal diet supplemented with 50, 100, and 150 mg/kg OA for a total of 42 d respectively. The results showed that OA does not affect the performance of broiler chickens. The OA supplementation increased the ratio between jejunum villus height and crypt depth (P < 0.05). The expression of antioxidant enzymes (GSH-PX and CAT) and antioxidant-related genes (HO-1, NQO1, Nrf2, and CAT) was significantly increased in the jejunum and cecum (P < 0.05). In addition, jejunal T-AOC activity (P < 0.05) and cecum antioxidant-related gene GPX-1 expression (P < 0.01) were significantly increased. The expression of oxidation-related genes (NOX and ROMO1) was significantly down-regulated in both jejunum and cecum (P < 0.05). The addition of 150 mg/kg of OA increased the relative abundance of potentially beneficial bacteria and Faecalibacterium prausnitzii was significantly and positively correlated with the expression levels of antioxidant-related genes. In conclusion, the addition of OA to the diet may improve the intestinal antioxidant capacity and modulate the intestinal microbiota of broilers. Moreover, OA improved intestinal antioxidant capacity by increasing the relative abundance of F. prausnitzii.
Collapse
Affiliation(s)
- Jianing Tu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mingxuan Kang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qianwen Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chongpeng Bi
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
9
|
Deng S, Liu Y, Liu X, Yu J, Chen Y, Huo J. Inhibition of colorectal cancer aggressiveness by Oleanolic acid through Nur77 degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156192. [PMID: 39520953 DOI: 10.1016/j.phymed.2024.156192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second primary malignancy in China with tough treatment challenge. Although Oleanolic acid (OA) protects against various cancers, its mechanisms in CRC are not well defined. Our previously study showed that Nur77 has CRC promoting effect. Thus, we investigated the roles of OA as Nur77 ligand and the regulatory effects on Nur77 degradation in CRC progression. METHODS The proliferative and metastatic phenotypes of OA was examined by CCK-8, EdU, organoid culture, would healing and transwell assays, respectively. Epithelial-mesenchymal transition (EMT) properties were assessed by Western blotting (WB). The interaction between OA and Nur77 was monitored by molecular docking and Molecular Dynamics stimulation (MD). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene set enrichment analysis (GSEA) were employed to screen the downstream regulatory pathways. The half-time and proteasome degradation of Nur77 were treated with cycloheximide (CHX) and MG132. Co-immunoprecipitation (Co-IP) and ubiquitination assays were employed to detect direct association between Nur77 and PPARγ. Rescued experiments were performed by Nur77 agonist Cytosporone B (Csn-B) treatment. The findings were verified in xenograft and in situ models. RESULTS For the first time, we found the effect of OA on ubiquitination degradation. OA inhibited CRC cell survival and EMT phenotypes by suppressing Nur77. Mechanistically, OA directly bind to Nur77 and facilitated the ubiquitin degradation of Nur77. During this process, PPARγ acted as the ubiquitination activator via interacting with Nur77. Rescued experiments revealed that OA-induced inhibition was recovered by replenishing Nur77. In both subcutaneous and orthotopic CRC models, OA exhibited significant anti-tumor effect together with Nur77 inhibition. CONCLUSION We revealed a new regulatory effect of OA in CRC tumorigenesis via PPARγ-mediated Nur77 ubiquitin degradation.
Collapse
Affiliation(s)
- Shan Deng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Yuping Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xiyu Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Jialin Yu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yan Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China; Research Center for Multicomponent of Traditional Chinese Medicine and Microecology, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing, Jiangsu, 210028, People's Republic of China.
| | - Jiege Huo
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China; Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, 100 Shizi Road, Nanjing, Jiangsu, 210028, People's Republic of China.
| |
Collapse
|
10
|
Tao L, Liu Z, Li X, Wang H, Wang Y, Zhou D, Zhang H. Oleanonic acid ameliorates mutant Aβ precursor protein-induced oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in vitro. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167459. [PMID: 39134286 DOI: 10.1016/j.bbadis.2024.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Accumulation in the brain of amyloid-β (Aβ), derived from cleavage of Aβ precursor protein (APP), is a hallmark of Alzheimer's disease (AD). Oleanonic acid (OA), a phytochemical from several plants, has proven anti-inflammatory effects, but its role in AD remains unknown. Here we found that OA reduced APP expression and inhibited oxidative stress via Nrf2/HO-1 signaling in SH-SY5Y neuroblastoma cells stably overexpressing APP. OA suppressed phosphorylated mTOR but increased autophagy markers ATG5 and LC3-II. Moreover, OA rescued ferroptosis-related factors GPX4, NCOA, and COX2 and ER stress markers GRP78, CHOP, and three main induction pathways of ER stress including IRE1/XBP1s, PERK/EIF2α, and ATF6. OA alleviated mitochondrial damage through MFN1, MFN2, OPA1, FIS1, and DRP1. Furthermore, OA upregulated GDF11 expression and downregulated phosphorylation of ErbB4 and TrkB without affecting BDNF levels. Thus, OA might protect neurons from APP-induced neurotoxicity by inhibiting oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in AD, providing a new promising therapeutic strategy in patients with AD.
Collapse
Affiliation(s)
- Liqing Tao
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Zewang Liu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Zhang
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
11
|
Haraguchi A, Nagasawa J, Kuramochi K, Tsuchida S, Kobayashi A, Hatabu T, Sasai K, Ikadai H, Ushida K, Matsubayashi M. Anticoccidial activity of the secondary metabolites in alpine plants frequently ingested by wild Japanese rock ptarmigans. Int J Parasitol Parasites Wildl 2024; 25:100967. [PMID: 39220322 PMCID: PMC11362645 DOI: 10.1016/j.ijppaw.2024.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024]
Abstract
The Japanese rock ptarmigan (Lagopus muta japonica) is an herbivorous species of partridges that inhabits only alpine zones. Alpine plants are their main source of food. These alpine plants contain toxic compounds to deter herbivores from consuming them. A previous analysis of the alpine plants frequently consumed by Japanese rock ptarmigans revealed the presence of a unique mixture of secondary metabolites and a novel compound. Additionally, wild Japanese rock ptarmigans are often infected by two species of Eimeria parasites. When these parasites were experimentally administered to Svalbard rock ptarmigans (Lagopus muta hyperborean), which do not feed on alpine plants, the birds exhibited symptoms, such as diarrhea and depression, and in some cases, they died. Although little is known about the pathogenesis of these parasites in wild Japanese rock ptarmigans, it was hypothesized that compounds found in alpine plants, their main food source, may reduce the pathogenicity of Eimeria parasites. In the present study, we evaluated the anticoccidial activity of the compounds derived from alpine plants in vitro using Eimeria tenella, which infects chickens belonging to the same pheasant family, as an experimental model. Twenty-seven natural components were extracted from eight alpine plants. The natural components were added to E. tenella sporozoites and incubated for 24 h to evaluate their direct effect. Additionally, Madin-Darby bovine kidney cells were incubated with sporozoites and natural components for 24 h to evaluate the inhibitory effect of the components on sporozoite cell invasion. Six compounds from four alpine plants decreased sporozoite viability by up to 88.3%, and two compounds inhibited sporozoite invasion into the cells. Although further studies are needed to evaluate the effects of these components against Eimeria infections in vivo, our findings suggest that these alpine plants may reduce the degree of infection by decreasing the number of sporozoites in the intestinal tract.
Collapse
Affiliation(s)
- Asako Haraguchi
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Jyunki Nagasawa
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Sayaka Tsuchida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| | - Atsushi Kobayashi
- Shin-etsu Nature Conservation Office, Ministry of the Environment, Ministry of Environment, Nagano, 380-0846, Japan
| | - Toshimitsu Hatabu
- Laboratory of Animal Physiology, Department of Animal Science, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kazumi Sasai
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kazunari Ushida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| | - Makoto Matsubayashi
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
12
|
Wang R, Li Y, Yin W, Sun H, Xu S, Shuang S, Tian Y, Huang X, Chen G, Che Z. Synthesis, Anti-Oomycete and Anti-Fungal Activities of Anhydride Derivatives of Oleanolic Acid. Chem Biodivers 2024; 21:e202401952. [PMID: 39198232 DOI: 10.1002/cbdv.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
Oleanolic acid is a pentacyclic triterpenoid extracted and isolated from the fruit of plants in the Ligustrum lucidum Ait. in the family Oleaceae. To discover biorational natural product-based pesticides, a series of oleanolic acid derivatives containing anhydride active skeletons were prepared by ingeniously introducing an active acyloxy group at its C-28 carboxyl position, and their structures were well characterized by 1H-NMR, 13C NMR, HRMS, and m.p. The stereochemical configuration of compound 8 e was confirmed using single-crystal X-ray diffraction. Furthermore, bioactivities of these compounds as anti-oomycete and anti-fungal agents against two serious agricultural pests, Phytophthora capsici (P. capsici) and Fusarium graminearum (F. graminearum) we assessed. Amongst evaluated compounds, 1) Compounds 8 h and 8 j displayed significant anti-oomycete against P. capsici, with EC50 values of 54.73 and 65.15 mg/L, respectively. 2) The target compounds have obvious selectivity, and their anti-oomycete activity is significantly better than their anti-fungal activity. 3) Interestingly, there are significant differences in the structure-activity relationship of different substituents or the same substituent at different positions anti-oomycete and anti-fungal against P. capsici and F. graminearum, respectively. The study provides an idea for further exploring the bioactivities of 28-acyloxyoleanolic acid derivatives, and develops the application of 28-acyloxyoleanolic acid derivatives containing anhydride in agriculture.
Collapse
Affiliation(s)
- Ruiguang Wang
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yuanhao Li
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wanying Yin
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Huilu Sun
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shaobin Xu
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shaoyan Shuang
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yuee Tian
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Genqiang Chen
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhiping Che
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
13
|
Zhou Y, Wang H, Zhu X, Zhao Q, Deng G, Li Y, Chen Q. Improving anti-oxidant stress treatment of subarachnoid hemorrhage through self-assembled nanoparticles of oleanolic acid. Drug Deliv 2024; 31:2388735. [PMID: 39169653 PMCID: PMC11342817 DOI: 10.1080/10717544.2024.2388735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular disease, with early brain injury (EBI) being the main cause of high mortality and severe neurological dysfunction. Oxidative stress plays a crucial role in the pathogenesis of EBI. In this study, we synthesized antioxidant stress nanoparticles based on self-assembled oleanolic acid (OA) using the solvent volatilization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques were employed to analyze and understand the self-assembly mechanism of oleic acid nanoparticles (OA NPs). The TUNEL assay, Nissl staining, and brain water content measurements were conducted to investigate the impact of OA NPs on cortical neuronal injury. Additionally, Western blot analysis was performed to investigate the antioxidant stress mechanism of OA NPs. The result showed that OA NPs exhibited a spherical structure with an average diameter of 168 nm. The application of OA NPs in SAH has been found to contribute to the reduction of keap1 protein levels and an increase in the nuclear level of Nrf2. As a result, the transcription of antioxidant stress proteins, including HO1 and NQO1, is triggered. The activation of the antioxidant stress pathway by OA NPs ultimately leads to a decrease in neuron damage and an improvement in neurological dysfunction. In conclusion, we successfully designed and synthesized OA NPs that can efficiently target the site of SAH. These nanoparticles have demonstrated their potential as antioxidants for the treatment of SAH, offering significant clinical applications.
Collapse
Affiliation(s)
- Youdong Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, China
| | - Hengyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qingyu Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
14
|
Mattingly A, Vickery Z, Ivankovic D, Farrell CL, Hakonarson H, Nguyen K, Boccuto L. Exploring the Therapeutic Potential for Breast Cancer of Phytochemicals and Secondary Metabolites in Marjoram, Thyme, and Persimmon. Metabolites 2024; 14:652. [PMID: 39728433 DOI: 10.3390/metabo14120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Breast cancer is the most common cause of death in women worldwide and the most commonly diagnosed cancer. Although several therapeutic approaches are widely used against breast cancer, their adverse effects often lead to symptoms severely affecting the quality of life. Alternative methods have been explored to reduce these adverse effects, and nutraceuticals have yielded promising results. This review will discuss mechanisms of action and potential applications against breast cancer of some nutraceuticals, specifically marjoram, thyme, and persimmon leaves. Methods: A systematic search was conducted across the public databases of PubMed, PubChem, and Google Scholar, with a specific focus on the plant extracts and phytochemicals of interest, as well as the anticarcinogenic mechanisms. Results: Ethnopharmacological and biochemical evidence support the anticarcinogenic role of marjoram, thyme, and persimmon. Numerous phytochemicals contained in these herbs' extracts, like terpenes and flavonoids, possess remarkable potential to effectively treat breast cancer. Discussion: The phytochemicals contained in the reviewed nutraceuticals target the main cellular pathways involved in cell growth and disrupted in carcinogenesis, such as Nf-κB, MAPK/p38, TNF-α/IL-1β, and PI3K/Akt. The mechanisms of action of these compounds can successfully limit the abnormal growth and proliferation of cancerous breast cells. Conclusions: The potential use of the phytochemicals discussed in this review, either alone or in combination, may offer a valid alternative to chemotherapy against breast cancer with virtually no adverse effects, and further research on these molecules may lead to the identification of additional chemo-preventative and chemotherapeutic candidates.
Collapse
Affiliation(s)
- Aubrey Mattingly
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Zoe Vickery
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Diana Ivankovic
- Center for Cancer Research, Anderson University, Anderson, SC 29621, USA
| | - Christopher L Farrell
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Katie Nguyen
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Luigi Boccuto
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
15
|
Tuktarova RA, Dzhemileva LU, Dzhemilev UM, D'yakonov VA. New Synthetic Analogs of Natural 5Z,9Z-Dienoic Acids-Hybrid Molecules Based on Oleanolic Acid: Synthesis and Study of Antitumor Activity. Cancers (Basel) 2024; 16:3893. [PMID: 39682082 DOI: 10.3390/cancers16233893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives: A series of synthetic analogs of natural (5Z,9Z)-diene acids were synthesized for the first time in the form of hybrid molecules containing an oleanolic acid fragment. This fragment was simultaneously linked by an amide bond to various hetero- and carbocyclic amines and a complex ester bond to (5Z,9Z)-tetradeca-5,9-dienecarboxylic acid, which was synthesized by a new reaction of Ti-catalyzed homocyclomagnification of 1,2-dienes. Results: Among the synthesized hybrids, the highest cytotoxic activity was observed for compound 9a in the series of Jurkat, K562, U937, and HEK293, with IC50 values of 4.5; 3.1; 2.8; and 26.17 μM/L, respectively. Furthermore, the synthesized compound 9a has been observed to induce apoptosis and exhibit genotoxicity in Jurkat culture, which suggests that it may be a promising candidate for further investigation as an antitumor agent.
Collapse
Affiliation(s)
- Regina A Tuktarova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
- Chemical Engineering Center, ITMO University, Kronverksky Prospekt 49, Saint Petersburg 191002, Russia
| | - Lilya U Dzhemileva
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Usein M Dzhemilev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Vladimir A D'yakonov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
16
|
Karwowska K, Gniadek M, Urbaniak W, Petelska AD. Physicochemical and electrical properties of DPPC bilayer membranes in the presence of oleanolic or asiatic acid. Sci Rep 2024; 14:27282. [PMID: 39516535 PMCID: PMC11549409 DOI: 10.1038/s41598-024-79234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to investigate the effect of selected compounds from the group of triterpene sapogenins on model phosphatidylcholine membranes. Two types of biological membrane model systems were used in the work, i.e., liposomes (microelectrophoresis method) and spherical bilayers (interfacial tension method). Each model was modified with the tested sapogenin compounds, and the change in their physicochemical and electrical parameters was analyzed. Parameters characterizing the equilibrium in the membrane of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-oleanolic acid (OA) and DPPC-asiatic acid (AA) were determined). Based on the Young-Laplace equation, the interfacial tensions of spherical lipid bilayers were measured. The formation of 1:1 complexes was assumed in the DPPC-OA and DPPC-AA membrane systems, and the parameters characterizing the interactions in the formed complexes were calculated. Microelectrophoresis was used to study the surface charge density of lipid membranes. These values were obtained from electrophoretic mobility data using Smoluchowsky's equation. The influence of pH on the electrolyte solution and the composition of the membranes was investigated. The results indicate that modifying DPPC membranes with selected triterpene sapogenins, both OA and AA, causes changes in the surface charge density and shifts of the isoelectric point. Data presented in this work, obtained through mathematical derivation and confirmed experimentally, are of great importance for interpreting phenomena occurring in lipid membranes. A quantitative description of equilibria between phosphatidylcholine and sapogenins lets us understand the processes on the membrane surface. The equilibria are particularly significant from the standpoint of cell functioning. Phosphatidylcholine-sapogenin interactions modulate a range of physicochemical properties of membranes, and they are important in the course of the multiple processes involving membranes in the living cell (e.g., transport mechanism).
Collapse
Affiliation(s)
- Katarzyna Karwowska
- Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Maciej Gniadek
- Faculty of Mechatronics, Kazimierz Wielki University, Chodkiewicz 30, 85-867, Bydgoszcz, Poland
| | - Wiesław Urbaniak
- Faculty of Mechatronics, Kazimierz Wielki University, Chodkiewicz 30, 85-867, Bydgoszcz, Poland
| | - Aneta D Petelska
- Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
17
|
Sui L, Wang S, Wang X, Su L, Xu H, Xu W, Chen L, Li H. Analysis of Different Strains Fermented Douchi by GC×GC-TOFMS and UPLC-Q-TOFMS Omics Analysis. Foods 2024; 13:3521. [PMID: 39517305 PMCID: PMC11545308 DOI: 10.3390/foods13213521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Douchi is a kind of soybean-fermented food in China. To explore the common and differential compounds in different Douchi, Douchi was fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, respectively, and co-fermented by the three strains in this study. The common and characteristic flavor compounds and common and characteristic non-volatile components of different strains of fermented Douchi were explored through GC×GC-TOFMS and UPLC-Q-TOFMS omics analysis. The result suggested that Pyrazines, ketones, and alkenes such as tetramethyl-pyrazine, 2,5-dimethyl pyrazine, furaneol, 2,3-butanedione, gamma-terpinene might contribute to the basic flavor of the Douchi fermented by A. niger, R. arrhizus, and B. circulans. Peptides, amines, and flavonoids, such as N-acetylhistamine, 7,3',4'-trihydroxyflavone, (3S,8As)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione might contribute to the basic function of the above three Douchi. The common metabolic pathways involved in the fermentation were isoflavonoid biosynthesis, flavonoid biosynthesis, etc. Ketones and esters such as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 3-octanone, 5-methylfurfural and nonanal contributed to the unique flavor, while betaine, oleanolic acid, saikosaponin D and leucine might contribute to the unique function of A. niger fermented Douchi. Alkenes, pyrazine, and ketones such as α-terpinene, ethyl-pyrazine, dihydro-3-methyl-2(3H)-furanone, and linalool might contribute to unique flavor, while cordycepin, 2-Phenylacetamide might contributed to the unique function of R. arrhizus fermented Douchi. The unique flavor of B. circulans fermented Douchi might derived from ketones and esters such as 3-acetyl-2-butanone, 2-tridecanone, propionic acid-2-phenylethyl ester, while vitexin, astragalin, and phenethylamine might contribute to the unique function. Compared with single-strain fermented Douchi, the flavor substances and non-volatile components in multi-strain fermented Douchi were more abundant, such as hexadecanoic acid methyl ester, benzeneacetic acid ethyl ester, 9,12-octadecadienoic acid ethyl ester, nuciferine, and erucamide. It was speculated that there were common and differential substances in Douchi fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, which might contribute to the basic and unique flavor and function. Compared with single-strain fermented Douchi, the flavor substances and metabolites in multi-strain fermented Douchi were more abundant. This study provided a reference for the research of flavor and functional substances of Douchi.
Collapse
Affiliation(s)
- Liqiang Sui
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (L.S.)
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Sugui Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (L.S.)
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Xin Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (L.S.)
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Lingling Su
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (L.S.)
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Huilong Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (L.S.)
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (L.S.)
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
- Fujian Key Laboratory of Chinese Materia Medica, Fuzhou 350122, China
| | - Lixia Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang 110016, China
| | - Hua Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (L.S.)
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
- Fujian Key Laboratory of Chinese Materia Medica, Fuzhou 350122, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
18
|
Badgujar P, Malik AK, Mehata AK, Setia A, Verma N, Randhave N, Shukla VN, Kande V, Singh P, Tiwari P, Mahto SK, Muthu MS. Polyvinyl alcohol-chitosan based oleanolic acid nanofibers against bacterial infection: In vitro studies and in vivo evaluation by optical and laser Doppler imaging modalities. Int J Biol Macromol 2024; 279:135532. [PMID: 39265903 DOI: 10.1016/j.ijbiomac.2024.135532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The present work focuses on the fabrication of polyvinyl alcohol-chitosan-loaded oleanolic acid-nanofibers (PVA-CS-OLA-NFs) for bacterial infection. The prepared PVA-CS-OLA-NFs were characterized for contact angle, SEM, AFM, XRD, FTIR, and TGA. The solid-state characterization and in vitro performance evaluation of nanofibers reveal consistent interconnection and diameters ranging from 102 ± 9.5 to 386 ± 11.6 nm. The nanofibers have a flat surface topography and exhibit efficient drug entrapment. Moreover, the in vitro release profile of PVA-CS-OLA-NFs was found to be 51.82 ± 1.49 % at 24 h. Furthermore, the hemocompatibility study showed that the developed PVA-CS-OLA-NFs are non-hemolytic to human blood. The PVA-CS-OLA-NFs demonstrate remarkable antibacterial capabilities, as evidenced by their MBC and MIC values, which range from 128 and 32 μg/mL, against the strains of S. aureus. The in-vivo fluorescence optical imaging showed the sustained PVA-CS-OLA-NFs release at the wound site infected with S. aureus for a longer duration of time. Moreover, the PVA-CS-OLA-NFs showed superior wound healing performance against S. aureus infected wounds compared to the marketed formulation. Further, the laser Doppler imaging system improved oxygen saturation, blood supply, and wound healing by providing real-time blood flow and oxygen saturation information.
Collapse
Affiliation(s)
- Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Vishwa Nath Shukla
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Vilas Kande
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Priya Singh
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
19
|
Sishu NK, Selvaraj CI. Phytochemistry, pharmacological applications, and therapeutic effects of green synthesized nanomaterials using Cichorium species-a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8527-8559. [PMID: 38900250 DOI: 10.1007/s00210-024-03221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Cichorium is a genus of potential medicinal herbs that finds widespread cultivation in regions spanning Asia and Europe. Belonging to the Asteraceae family, these plants are typically biennial or perennial in nature. Among the various explored varieties of chicory plants, the most commonly studied ones include Cichorium intybus, Cichorium endivia, and Cichorium pumilum. In Ayurveda, chicory has long been used as a remedy for many health problems. This versatile plant is renowned for its efficacy in managing conditions such as gallstones, gastroenteritis, sinus ailments, and the treatment of skin abrasions and wounds. Numerous bioactives, including polysaccharides, caffeic acid, flavonoids, coumarins, steroids, alkaloids, organic acids, triterpenoids, sesquiterpenoids, and essential oils, are present, according to a thorough phytochemical examination. The phytochemicals isolated from chicory have displayed significant therapeutic activities, including antidiabetic effects, hepatoprotective benefits, anti-obesity properties, and anti-cancer potential, as extensively documented by numerous researchers. The incorporation of these bioactive compounds into one's diet as part of a healthy lifestyle has demonstrated considerable advantages for human well-being. Green synthesis is a recent technology in which plant extracts or phytochemicals are used for synthesizing nanoparticles since plant extracts are generally less toxic and contain capping and reducing agents. This review summarizes current developments in green synthesis employing phytoconstituents from Cichorium species and extracts from various plant parts and their application to scientific problems. In order to preserve lifestyles and cure human diseases, the investigation emphasizes the therapeutic effects of the chemical components and nanoparticles obtained from the extract of Cichorium species.
Collapse
Affiliation(s)
- Nayan Kumar Sishu
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
20
|
Yang W, Liu F, Wu G, Liang S, Bai X, Liu B, Zhang B, Chen H, Yang J. Widely Targeted Metabolomics Analysis of the Roots, Stems, Leaves, Flowers, and Fruits of Camellia luteoflora, a Species with an Extremely Small Population. Molecules 2024; 29:4754. [PMID: 39407682 PMCID: PMC11477736 DOI: 10.3390/molecules29194754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Camellia luteoflora is a rare and endangered plant endemic to China. It has high ornamental and potential economic and medicinal value, and is an important germplasm resource of Camellia. To understand the distributions and differences in metabolites from different parts of C. luteoflora, in this study, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to examine the types and contents of chemical constituents in five organs of C. luteoflora: roots, stems, leaves, flowers, and fruits. The results showed that a total of 815 metabolites were identified in the five organs and were classified into 18 main categories, including terpenoids (17.1%), amino acids (10.4%), flavonoids (10.3%), sugars and alcohols (9.8%), organic acids (9.0%), lipids (7.1%), polyphenols (4.8%), alkaloids (4.8%), etc. A total of 684 differentially expressed metabolites (DEMs) in five organs were obtained and annotated into 217 KEGG metabolic pathways, among which metabolic pathways, ABC transporters, the biosynthesis of cofactors, and the biosynthesis of amino acids were significantly enriched. In DEMs, flowers are rich in flavonoids, polyphenols, organic acids, and steroids; fruits are rich in amino acids, alkaloids, vitamins, and xanthones; stems are rich in lignans; and leaves have the highest relative content of phenylpropanoids, ketoaldehydic acids, quinones, sugars and alcohols, terpenoids, coumarins, lipids, and others; meanwhile, the metabolite content is lower in roots. Among the dominant DEMs, 58 were in roots, including arachidonic acid, lucidone, isoliquiritigenin, etc.; 75 were in flowers, including mannose, shikimic acid, d-gluconic acid, kaempferol, etc.; 45 were in the fruit, including pterostilbene, l-ascorbic acid, riboflavin, etc.; 27 were in the stems, including salicylic acid, d-(-)-quinic acid, mannitol, (-)-catechin gallate, etc.; there was a maximum number of 119 dominant metabolites in the leaves, including oleanolic acid, l-glucose, d-arabitol, eugenol, etc. In sum, the rich chemical composition of C. luteoflora and the significant differences in the relative contents of metabolites in different organs will provide theoretical references for the study of tea, flower tea, edible oil, nutraceuticals, and the medicinal components of C. luteoflora.
Collapse
Affiliation(s)
- Weicheng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Fen Liu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Gaoyin Wu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Sheng Liang
- Chishui Alsophila National Nature Reserve Management Bureau, Chishui 646259, China; (S.L.); (X.B.); (B.L.)
| | - Xiaojie Bai
- Chishui Alsophila National Nature Reserve Management Bureau, Chishui 646259, China; (S.L.); (X.B.); (B.L.)
| | - Bangyou Liu
- Chishui Alsophila National Nature Reserve Management Bureau, Chishui 646259, China; (S.L.); (X.B.); (B.L.)
| | - Bingcheng Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Hangdan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Jiao Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| |
Collapse
|
21
|
Li J, Sun Y, Su K, Wang X, Deng D, Li X, Liang L, Huang W, Shang X, Wang Y, Zhang Z, Ang S, Wong WL, Wu P, Hong WD. Design and synthesis of unique indole-benzosulfonamide oleanolic acid derivatives as potent antibacterial agents against MRSA. Eur J Med Chem 2024; 276:116625. [PMID: 38991300 DOI: 10.1016/j.ejmech.2024.116625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
The rapid emergence of antibiotic resistance and the scarcity of novel antibacterial agents have necessitated an urgent pursuit for the discovery and development of novel antibacterial agents against multidrug-resistant bacteria. This study involved the design and synthesis of series of novel indole-benzosulfonamide oleanolic acid (OA) derivatives, in which the indole and benzosulfonamide pharmacophores were introduced into the OA skeleton semisynthetically. These target OA derivatives show antibacterial activity against Staphylococcus strains in vitro and in vivo. Among them, derivative c17 was the most promising antibacterial agent while compared with the positive control of norfloxacin, especially against methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In addition, derivative c17 also showed remarkable efficacy against MRSA-infected murine skin model, leading to a significant reduction of bacterial counts during this in vivo study. Furthermore, some preliminary studies indicated that derivative c17 could effectively inhibit and eradicate the biofilm formation, disrupt the integrity of the bacterial cell membrane. Moreover, derivative c17 showed low hemolytic activity and low toxicity to mammalian cells of NIH 3T3 and HEK 293T. These aforementioned findings strongly support the potential of novel indole-benzosulfonamide OA derivatives as anti-MRSA agents.
Collapse
Affiliation(s)
- Jinxuan Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Ying Sun
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kaize Su
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xu Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Duanyu Deng
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xiaofang Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Lihua Liang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Wenhuan Huang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xiangcun Shang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Yan Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Zhen Zhang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Song Ang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Weiqian David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| |
Collapse
|
22
|
Chen L, Xiang H, Yang H, Zhang J, Huang B, Tan Z, Wang Y, Ma H. Inhibition of porcine origin Klebsiella pneumoniae capsular polysaccharide and immune escape by BY3 compounded traditional Chinese medicine residue fermentation broth. Microb Pathog 2024; 195:106853. [PMID: 39147214 DOI: 10.1016/j.micpath.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a gram-negative conditionally pathogenic bacterium that causes disease primarily in immunocompromised individuals. Recently, highly virulent K. pneumoniae strains have caused severe disease in healthy individuals, posing significant challenges to global infection control. Capsular polysaccharide (CPS), a major virulence determinant of K. pneumoniae, protects the bacteria from being killed by the host immune system, suggesting an urgent need for the development of drugs to prevent or treat K. pneumoniae infections. In this study, BY3 compounded traditional Chinese medicine residue (TCMR) was carried out using Lactobacillus rhamnosus as a fermentation strain, and BY3 compounded TCMR fermentation broth (BY3 fermentation broth) was obtained. The transcription of K. pneumoniae CPS-related biosynthesis genes after treatment with BY3 fermentation broth was detected using quantitative real-time polymerase chain reaction. The effects of BY3 fermentation broth on K. pneumoniae serum killing, macrophage phagocytosis, complement deposition and human β-defensin transcription were investigated. The therapeutic effect of BY3 fermentation broth on K. pneumoniae-infected mice was also observed, and the major active components of BY3 fermentation broth were analysed via LC‒MS analysis, network pharmacology, and molecular docking. The results showed that BY3 fermentation broth inhibited K. pneumoniae CPS production and downregulated transcription of CPS-related biosynthesis genes, which weakened bacterial resistance to serum killing and phagocytosis, while promoting bacterial surface complement C3 deposition and human β-defensin expression. BY3 fermentation broth demonstrated safety and therapeutic effects in vivo and in vitro, restoring body weight and visceral indices, significantly reducing the organ bacterial load and serum cytokine levels, and alleviating pathological organ damage in mice. In addition, three natural compounds-oleanolic acid, quercetin, and palmitoleic acid-were identified as the major active components in the BY3 fermentation broth. Therefore, BY3 fermentation broth may be a promising strategy for the prevention or treatment of K. pneumoniae infections.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Hua Xiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Yang
- Jilin Province Wanbang Goose Technical Service Company, Changchun, 130000, China
| | - Jiabin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Bowen Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Zining Tan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Yiming Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongxia Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
23
|
Liu C, Du W, Zhang L, Wang J. Natural synergy: Oleanolic acid-curcumin co-assembled nanoparticles combat osteoarthritis. Colloids Surf B Biointerfaces 2024; 245:114286. [PMID: 39378706 DOI: 10.1016/j.colsurfb.2024.114286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Curcumin (Cur) is a natural polyphenol that is one of the most valuable natural products. However, its use as a functional food is limited by low water solubility, chemical instability and poor bioavailability. In this study, a supramolecular co-assembly strategy was used to construct an oleanolic acid-curcumin (OLA-Cur) co-assembly composite nano-slow-release treatment system. As a co-assembled compound, OLA is a widely present pentacyclic triterpenoid compound with multiple biological activities in the plant kingdom, which is expected to jointly alleviate the damaging effects of papain-induced mouse osteoarthritis model. The OLA-Cur NPs shows the solid core-shell structure, which can effectively improve the water solubility of Cur and OLA, and has good stability and sustained release characteristics. The analysis results show that the two compounds are mainly assembled through hydrogen bonding interactions, hydrophobic interactions, and π - π stacking interactions. The OLA-Cur NPs can inhibit the release of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β induced by LPS in RAW264.7 mouse macrophages, promote the secretion of anti-inflammatory cytokine IL-10, and improve the oxidative stress index of hydrogen peroxide induced human rheumatoid arthritis synovial fibroblasts. In addition, it has a certain improvement effect on cartilage and subchondral bone damage in mouse osteoarthritis models. These findings suggest that constructing co-assembled composite nanoparticles based on pure natural compounds may break through the limitations of a variety of important nutritional ingredients in functional foods.
Collapse
Affiliation(s)
- Chen Liu
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Wanchun Du
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Liang Zhang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China.
| | - Jiacheng Wang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
24
|
Zhang G, Zhang H, Dong R, Zhao H, Li J, Yue W, Ma Z. Oleanolic acid attenuates obesity through modulating the lipid metabolism in high-fat diet-fed mice. Food Sci Nutr 2024; 12:8243-8254. [PMID: 39479652 PMCID: PMC11521747 DOI: 10.1002/fsn3.4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 11/02/2024] Open
Abstract
As a natural pentacyclic triterpenoid, oleanolic acid has hepatoprotective, anti-inflammatory, and antioxidant activities. This work performed the in vitro experiments and animal assay to explore whether oleanolic acid alleviates lipid accumulation induced by high-fat diet by mediating PPARγ. Oil red O staining showed that oleanolic acid can reduce lipid accumulation in HepG2 cells, which were treated with oleic acid and palmitic acid. Immunofluorescence, western blot analysis, and RT-qPCR showed that oleanolic acid could promote nuclear translocation of PPARγ and reduce the expression level of PPARγ, C/EBP-β, and SREBP-1c. The results of in vivo experiments indicated that dietary intervention with oleanolic acid can effectively improve the fat accumulation in liver tissue and attenuate the level of IL-6 and TNF-α in serum caused by high-fat diet. Meanwhile, oleanolic acid did not cause lesions in vital organs at the experimental concentrations. In addition, the computer simulation indicated that oleanolic acid could directly bind to PPARγ with a reasonable and stable docking conformation. The above research results can provide new evidence for oleanolic acid to prevent nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Guangjie Zhang
- School of Biology and Food EngineeringAnyang Institute of TechnologyAnyangChina
| | - Huiying Zhang
- Department of Thoracic SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Ruiyi Dong
- College of Physical EducationHunan Normal UniversityChangshaChina
| | - Hongmei Zhao
- School of Biology and Food EngineeringAnyang Institute of TechnologyAnyangChina
| | - Junfeng Li
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Weiming Yue
- Department of Thoracic SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Zheng Ma
- Department of Thoracic SurgeryQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
25
|
Łyko L, Olech M, Gawlik U, Krajewska A, Kalemba D, Tyśkiewicz K, Piórecki N, Prokopiv A, Nowak R. Rhododendron luteum Sweet Flower Supercritical CO 2 Extracts: Terpenes Composition, Pro-Inflammatory Enzymes Inhibition and Antioxidant Activity. Int J Mol Sci 2024; 25:9952. [PMID: 39337440 PMCID: PMC11432528 DOI: 10.3390/ijms25189952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical CO2 (SC-CO2) extracts of Rhododendron luteum Sweet flower (RLF). An LC-APCI-MS/MS analysis showed the presence of eight pentacyclic triterpenes and one phytosterol in the extracts obtained with pure CO2 as well as CO2 with the addition of aqueous ethanol as a co-solvent. Among the compounds detected, oleanolic/ursolic acid, β-sitosterol and 3β-taraxerol were the most abundant. The extract obtained with pure SC-CO2 was additionally subjected to HS-SPME-GC-FID-MS, which revealed more than 100 volatiles, mainly eugenol, β-phenylethanol, dodecane, β-caryophyllene, estragole and (Z)- and (E)-cinnamyl alcohol, followed by δ-cadinene. The extracts demonstrated significant hyaluronidase inhibition and exhibited varying modes of lipoxygenase and xanthine oxidase inhibitory activities. The studies of RLF have shown that their SC-CO2 extracts can be a rich source of triterpenes with anti-inflammatory potential.
Collapse
Affiliation(s)
- Lena Łyko
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences, ul. Skromna 8, 20-704 Lublin, Poland
| | - Agnieszka Krajewska
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Danuta Kalemba
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Katarzyna Tyśkiewicz
- Supercritical Extraction Department, Łukasiewicz Research Network-New Chemical Syntheses Institute, ul. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, ul. Cicha 2A, 35-326 Rzeszow, Poland
| | - Andriy Prokopiv
- Department of Botany, Botanical Garden, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
26
|
Vasarri M, Bergonzi MC, Ivanova Stojcheva E, Bilia AR, Degl’Innocenti D. Olea europaea L. Leaves as a Source of Anti-Glycation Compounds. Molecules 2024; 29:4368. [PMID: 39339362 PMCID: PMC11434099 DOI: 10.3390/molecules29184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
High concentrations of advanced glycation end products (AGEs) have been linked to diseases, including diabetic complications. The pathophysiological effects of AGEs are mainly due to oxidative stress and inflammatory processes. Among the proteins most affected by glycation are albumin, the most abundant circulating protein, and collagen, which has a long biological half-life and is abundant in the extracellular matrix. The potential cellular damage caused by AGEs underscores the importance of identifying and developing natural AGE inhibitors. Indeed, despite initial promise, many synthetic inhibitors have been withdrawn from clinical trials due to issues such as cytotoxicity and poor pharmacokinetics. In contrast, natural products have shown significant potential in inhibiting AGE formation. Olea europaea L. leaves, rich in bioactive compounds like oleuropein and triterpenoids, have attracted scientific interest, emphasizing the potential of olive leaf extracts in health applications. This study investigates the anti-glycation properties of two polyphenol-rich extracts (OPA40 and OPA70) and a triterpene-enriched extract (TTP70) from olive leaves. Using in vitro protein glycation methods with bovine serum albumin (BSA)-glucose and gelatin-glucose systems, this study assesses AGE formation inhibition by these extracts through native polyacrylamide gel electrophoresis (N-PAGE) and autofluorescence detection. OPA40 and OPA70 exhibited strong, dose-dependent anti-glycation effects. These effects were corroborated by electrophoresis and further supported by similar results in a gelatin-glucose system. Additionally, TTP70 showed moderate anti-glycation activity, with a synergistic effect of its components. The results support the real possibility of using olive leaf bioproducts in ameliorating diabetic complications, contributing to sustainable bio-economy practices.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | | | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|
27
|
Pi Y, Zuo H, Wang Y, Zheng W, Zhou H, Deng L, Song H. Oleanolic acid alleviating ischemia-reperfusion injury in rat severe steatotic liver via KEAP1/NRF2/ARE. Int Immunopharmacol 2024; 138:112617. [PMID: 38972213 DOI: 10.1016/j.intimp.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Severe steatosis in donor livers is contraindicated for transplantation due to the high risk of ischemia-reperfusion injury (IRI). Although Ho-1 gene-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs) can mitigate IRI, the role of gut microbiota and metabolites in this protection remains unclear. This study aimed to explore how gut microbiota and metabolites contribute to HO-1/BMMSCs-mediated protection against IRI in severe steatotic livers. Using rat models and cellular models (IAR20 and THLE-2 cells) of steatotic liver IRI, this study revealed that ischemia-reperfusion led to significant liver and intestinal damage, heightened immune responses, impaired liver function, and altered gut microbiota and metabolite profiles in rats with severe steatosis, which were partially reversed by HO-1/BMMSCs transplantation. Integrated microbiome and metabolome analyses identified gut microbial metabolite oleanolic acid as a potential protective agent against IRI. Experimental validation showed that oleanolic acid administration alone alleviated IRI and inhibited ferroptosis in both rat and cellular models. Network pharmacology and molecular docking implicated KEAP1/NRF2 pathway as a potential target of oleanolic acid. Indeed, OA experimentally upregulated NRF2 activity, which underlies its inhibition of ferroptosis and protection against IRI. The gut microbial metabolite OA protects against IRI in severe steatotic liver by promoting NRF2 expression and activity, thereby inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yilin Pi
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Yuxin Wang
- School of Medicine, Nankai University, Tianjin 300071, PR China.
| | - Weiping Zheng
- Department of Liver Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory of Critical Care Medicine, Tianjin 300192, PR China.
| | - Huiyuan Zhou
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Lamei Deng
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Hongli Song
- Department of Liver Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, PR China; Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, PR China.
| |
Collapse
|
28
|
Xu CS, Shao YL, Li Q, Zhang Y, Wu HW, Yu HL, Su YY, Zhang J, Wang C, Liao ZX. Dentatacid A: An Unprecedented 2, 3- Seco-arbor-2, 3-dioic Triterpenoid from the Invasive Plant Euphorbia dentata, with Cytotoxicity Effect on Colon Cancer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2533. [PMID: 39274018 PMCID: PMC11397642 DOI: 10.3390/plants13172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Euphorbia dentata Michx. is an invasive plant species in China, known for its toxicity and potential to reduce crop yields, posing numerous threats. To gain a deeper understanding of this invasive plant, phytochemical methods were employed to isolate 13 terpenoids (1-11, 19, 20) and 7 sterols (12-18) from the ethanol extract of E. dentata, identifying one new compound and 19 known compounds. Within spectroscopic methods such as NMR, HR-ESI-MS, and ECD, the structures and absolute configurations of these compounds were established. Among them, dentatacid A (11) possesses an unprecedented 2, 3-seco-arbor-2, 3-dioic skeleton within the potential biosynthetic pathway proposed. Dentatacid A also exhibited excellent anti-proliferative activity against the HT-29 (human colorectal adenocarcinoma) cell line, with an IC50 value of 2.64 ± 0.78 μM, which was further confirmed through network pharmacology and molecular docking. This study significantly expands the chemical diversity of E. dentata and offers new insights into the resource utilization and management of this invasive plant from the perspective of natural product discovery.
Collapse
Affiliation(s)
- Chen-Sen Xu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yuan-Ling Shao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Changshu Institute for Products Quality Supervision and Inspection, Changshu Measurement and Testing Center, Suzhou 215500, China
| | - Qing Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hong-Wei Wu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hao-Lin Yu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yun-Yun Su
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jing Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Chao Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
29
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
30
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
31
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
32
|
Jannus F, Sainz J, Reyes-Zurita FJ. Principal Bioactive Properties of Oleanolic Acid, Its Derivatives, and Analogues. Molecules 2024; 29:3291. [PMID: 39064870 PMCID: PMC11279785 DOI: 10.3390/molecules29143291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Natural products have always played an important role in pharmacotherapy, helping to control pathophysiological processes associated with human disease. Thus, natural products such as oleanolic acid (OA), a pentacyclic triterpene that has demonstrated important activities in several disease models, are in high demand. The relevant properties of this compound have motivated re-searchers to search for new analogues and derivatives using the OA as a scaffold to which new functional groups have been added or modifications have been realized. OA and its derivatives have been shown to be effective in the treatment of inflammatory processes, triggered by chronic diseases or bacterial and viral infections. OA and its derivatives have also been found to be effective in diabetic disorders, a group of common endocrine diseases characterized by hyperglycemia that can affect several organs, including the liver and brain. This group of compounds has been reported to exhibit significant bioactivity against cancer processes in vitro and in vivo. In this review, we summarize the bioactive properties of OA and its derivatives as anti-inflammatory, anti-bacterial, antiviral, anti-diabetic, hepatoprotective, neuroprotective, and anticancer agents.
Collapse
Affiliation(s)
- Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración, 114, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
| |
Collapse
|
33
|
Lei T, Jiang C, Zhao L, Zhang J, Xiao Q, Chen Y, Zhang J, Zhou C, Wang G, Han J. Exploring the Mechanism of Topical Application of Clematis Florida in the Treatment of Rheumatoid Arthritis through Network Pharmacology and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:914. [PMID: 39065764 PMCID: PMC11280274 DOI: 10.3390/ph17070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Clematis Florida (CF) is a folk medicinal herb in the southeast of China, which is traditionally used for treating osteoarticular diseases. However, the mechanism of its action remains unclear. The present study used network pharmacology and experimental validation to explore the mechanism of CF in the treatment of rheumatoid arthritis (RA). Liquid chromatography-mass spectrometry (LC-MS/MS) identified 50 main compounds of CF; then, their targets were obtained from TCMSP, ETCM, ITCM, and SwissTargetPrediction databases. RA disease-related targets were obtained from DisGeNET, OMIM, and GeneCards databases, and 99 overlapped targets were obtained using a Venn diagram. The protein-protein interaction network (PPI), the compound-target network (CT), and the compound-potential target genes-signaling pathways network (CPS) were constructed and analyzed. The results showed that the core compounds were screened as oleanolic acid, oleic acid, ferulic acid, caffeic acid, and syringic acid. The core therapeutic targets were predicted via network pharmacology analysis as PTGS2 (COX-2), MAPK1, NF-κB1, TNF, and RELA, which belong to the MAPK signaling pathway and NF-κB signaling pathway. The animal experiments indicated that topical application of CF showed significant anti-inflammatory activity in a mouse model of xylene-induced ear edema and had strong analgesic effect on acetic acid-induced writhing. Furthermore, in the rat model of adjuvant arthritis (AA), topical administration of CF was able to alleviate toe swelling and ameliorate joint damage. The elevated serum content levels of IL-6, COX-2, TNF-α, IL-1β, and RF caused by adjuvant arthritis were reduced by CF treatment. Western blotting tests showed that CF may regulate the ERK and NF-κB pathway. The results provide a new perspective for the topical application of CF for treatment of RA.
Collapse
Affiliation(s)
- Ting Lei
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chang Jiang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
| | - Li Zhao
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
| | - Jizhou Zhang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
| | - Qing Xiao
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
| | - Yanhong Chen
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jie Zhang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
| | - Chunquan Zhou
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
| | - Gong Wang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Chinese Medical Science, Fuzhou 350003, China; (T.L.); (G.W.)
| |
Collapse
|
34
|
Elhady SS, Goda MS, Mehanna ET, El-Sayed NM, Hazem RM, Elfaky MA, Almalki AJ, Mohamed MS, Abdelhameed RFA. Ziziphus spina-christi L. extract attenuates bleomycin-induced lung fibrosis in mice via regulating TGF-β1/SMAD pathway: LC-MS/MS Metabolic profiling, chemical composition, and histology studies. Biomed Pharmacother 2024; 176:116823. [PMID: 38834008 DOI: 10.1016/j.biopha.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
Ancient Egyptians (including Bedouins and Nubians) have long utilized Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, to alleviate swellings and inflammatory disorders. It is also mentioned in Christian and Muslim traditions. Ziziphus spina-christi L. (Family: Rhamnaceae) is a plentiful source of polyphenols, revealing free radical scavenging, antioxidant, metal chelating, cytotoxic, and anti-inflammatory activities. Herein, different classes of the existing bioactive metabolites in Z. spina-christi L. were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the first time. The study also aimed to assess the anti-inflammatory and antifibrotic properties of Z. spina-christi L. extract against bleomycin-induced lung fibrosis in an experimental mouse model. 32 male Swiss Albino mice were assigned into 4 groups; the first and second were the normal control group and the bleomycin positive control (single 2.5 U/kg bleomycin intratracheal dose). The third and fourth groups received 100 and 200 mg/kg/day Z. spina-christi L. extract orally for 3 weeks, 2 weeks before bleomycin, and 1 week after. The bioactive metabolites in Z. spina-christi L. extract were identified as phenolic acids, catechins, flavonoids, chalcones, stilbenes, triterpenoid acids, saponins, and sterols. The contents of total phenolic compounds and flavonoids were found to be 196.62 mg GAE/gm and 33.29 mg QE/gm, respectively. In the experimental study, histopathological examination revealed that lung fibrosis was attenuated in both Z. spina-christi L.- treated groups. Z. spina-christi L. extract downregulated the expression of nuclear factor kappa B (NF-κB) p65 and decreased levels of the inflammatory markers tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and c-Jun N-terminal kinase (JNK) in lung tissue. Z. spina-christi L. also downregulated the expression of the fibrotic parameters collagen-1, alpha-smooth muscle actin (α-SMA), transforming growth factor-beta 1 (TGF-β1), matrix metalloproteinase-9 (MMP-9) and SMAD3, with upregulation of the antifibrotic SMAD7 in lung tissue. Overall, the present study suggests a potential protective effect of Z. spina-christi L. extract against bleomycin-induced lung fibrosis through regulation of the TGF-β1/SMAD pathway.
Collapse
Affiliation(s)
- Sameh S Elhady
- King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Marwa S Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Khartoum University, Khartoum 11111, Sudan
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| |
Collapse
|
35
|
Triaa N, Znati M, Ben Jannet H, Bouajila J. Biological Activities of Novel Oleanolic Acid Derivatives from Bioconversion and Semi-Synthesis. Molecules 2024; 29:3091. [PMID: 38999041 PMCID: PMC11243203 DOI: 10.3390/molecules29133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Oleanolic acid (OA) is a vegetable chemical that is present naturally in a number of edible and medicinal botanicals. It has been extensively studied by medicinal chemists and scientific researchers due to its biological activity against a wide range of diseases. A significant number of researchers have synthesized a variety of analogues of OA by modifying its structure with the intention of creating more potent biological agents and improving its pharmaceutical properties. In recent years, chemical and enzymatic techniques have been employed extensively to investigate and modify the chemical structure of OA. This review presents recent advancements in medical chemistry for the structural modification of OA, with a special focus on the biotransformation, semi-synthesis and relationship between the modified structures and their biopharmaceutical properties.
Collapse
Affiliation(s)
- Nahla Triaa
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Mansour Znati
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Hichem Ben Jannet
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| |
Collapse
|
36
|
Hu J, Liu W, Zou Y, Jiao C, Zhu J, Xu Q, Zou J, Sun Y, Guo W. Allosterically activating SHP2 by oleanolic acid inhibits STAT3-Th17 axis for ameliorating colitis. Acta Pharm Sin B 2024; 14:2598-2612. [PMID: 38828149 PMCID: PMC11143531 DOI: 10.1016/j.apsb.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2) is an essential tyrosine phosphatase that is pivotal in regulating various cellular signaling pathways such as cell growth, differentiation, and survival. The activation of SHP2 has been shown to have a therapeutic effect in colitis and Parkinson's disease. Thus, the identification of SHP2 activators and a complete understanding of their mechanism is required. We used a two-step screening assay to determine a novel allosteric activator of SHP2 that stabilizes it in an open conformation. Oleanolic acid was identified as a suitable candidate. By binding to R362, K364, and K366 in the active center of the PTP domain, oleanolic acid maintained the active open state of SHP2, which facilitated the binding between SHP2 and its substrate. This oleanolic acid-activated SHP2 hindered Th17 differentiation by disturbing the interaction between STAT3 and IL-6Rα and inhibiting the activation of STAT3. Furthermore, via the activation of SHP2 and subsequent attenuation of the STAT3-Th17 axis, oleanolic acid effectively mitigated colitis in mice. This protective effect was abrogated by SHP2 knockout or administration of the SHP2 inhibitor SHP099. These findings underscore the potential of oleanolic acid as a promising therapeutic agent for treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jinbo Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yi Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jiazhen Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
37
|
Cheng X, Pang Y, Ban Y, Cui S, Shu T, Lv B, Li C. Application of multiple strategies to enhance oleanolic acid biosynthesis by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2024; 401:130716. [PMID: 38641301 DOI: 10.1016/j.biortech.2024.130716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Oleanolic acid and its derivatives are widely used in the pharmaceutical, agricultural, cosmetic and food industries. Previous studies have shown that oleanolic acid production levels in engineered cell factories are low, which is why oleanolic acid is still widely extracted from traditional medicinal plants. To construct a highly efficient oleanolic acid production strain, rate-limiting steps were regulated by inducible promoters and the expression of key genes in the oleanolic acid synthetic pathway was enhanced. Subsequently, precursor pool expansion, pathway refactoring and diploid construction were considered to harmonize cell growth and oleanolic acid production. The multi-strategy combination promoted oleanolic acid production of up to 4.07 g/L in a 100 L bioreactor, which was the highest level reported.
Collapse
Affiliation(s)
- Xu Cheng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yaru Pang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yali Ban
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Cui
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Shu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Pan D, Qu Y, Shi C, Xu C, Zhang J, Du H, Chen X. Oleanolic acid and its analogues: promising therapeutics for kidney disease. Chin Med 2024; 19:74. [PMID: 38816880 PMCID: PMC11140902 DOI: 10.1186/s13020-024-00934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Kidney diseases pose a significant threat to human health due to their high prevalence and mortality rates. Worryingly, the clinical use of drugs for kidney diseases is associated with more side effects, so more effective and safer treatments are urgently needed. Oleanolic acid (OA) is a common pentacyclic triterpenoid that is widely available in nature and has been shown to have protective effects in kidney disease. However, comprehensive studies on its role in kidney diseases are still lacking. Therefore, this article first explores the botanical sources, pharmacokinetics, derivatives, and safety of OA, followed by a summary of the anti-inflammatory, immunomodulatory, anti-oxidative stress, autophagy-enhancing, and antifibrotic effects of OA and its analogues in renal diseases, and an analysis of the molecular mechanisms, aiming to provide further insights for the development of novel drugs for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Dan Pan
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yilun Qu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Cheng Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Jie Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
39
|
Wasim M, Bergonzi MC. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems. Pharmaceutics 2024; 16:692. [PMID: 38931816 PMCID: PMC11206505 DOI: 10.3390/pharmaceutics16060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
40
|
Mapfumari S, Matseke B, Bassey K. Isolation of a Marker Olean-12-en-28-butanol Derivative from Viscum continuum E. Mey. Ex Sprague and the Evaluation of Its Antioxidant and Antimicrobial Potentials. PLANTS (BASEL, SWITZERLAND) 2024; 13:1382. [PMID: 38794452 PMCID: PMC11125446 DOI: 10.3390/plants13101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Viscum continuum E. Mey. Ex Sprague (Mistletoe) is a semi-parasitic plant that grows on the branches of other trees with reported numerous biological activities. This study was aimed at isolating a compound/s that will be used as a standard reference for quality control of South African-based commercialized mistletoe products and to further perform antioxidant and antimicrobial tests on the isolated compound. A dried sample of mistletoe was ground and extracted successively with hexane, dichloromethane (DCM), acetone and methanol using a serial exhaustive cold maceration procedure. The compound was isolated using column chromatography, and its chemical structure was elucidated using two-dimensional nuclear magnetic resonance (2D NMR) and ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS). The antioxidant activity of the compound was determined using DPPH, hydrogen radical scavenging activity and reducing power assays, whereas antimicrobial activity was assessed using the minimum inhibitory concentration (MIC) method. Subjection of the DCM extract to column chromatography resulted in the isolation of a compound elucidated as olean-12-en-28-butanol-1-one, 3-hydroxy-4,4,10, 14, 20-pentamethyl (D4). Both the DPPH, H2O2 radical scavenging activity and reducing power assays revealed a significant antioxidant potential of compound D4 with an IC50 of 0.701 mg/mL, lower than that of gallic acid (0.793 mg/mL) for the H2O2 radical scavenging assay. The results also indicated good antibacterial activity of D4 with an IC50 of 0.25 mg/mL, compared to ciprofloxacin with an IC50 of 0.0039 mg/mL, against two Gram-negative (Pseudomonas aeruginosa, Escherichia coli) and three Gram-positive (Streptococcus pyogenes, Bacillus cereus and Staphylococcus aureus) bacteria. This study is the first to report on the isolation of the olean-12-en-28-butanol derivative from mistletoe of the South African ecotype.
Collapse
Affiliation(s)
| | | | - Kokoette Bassey
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa; (S.M.); (B.M.)
| |
Collapse
|
41
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
42
|
Shimazu K, Ookoshi K, Fukumitsu S, Kagami H, Mitsuhata C, Nomura R, Aida K. Effects of Oleanolic Acid Derived from Wine Pomace on Periodontopathic Bacterial Growth in Healthy Individuals: A Randomized Placebo-Controlled Study. Dent J (Basel) 2024; 12:133. [PMID: 38786531 PMCID: PMC11119493 DOI: 10.3390/dj12050133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Periodontal disease is caused by oral pathogenic bacteria and is associated with systemic disease and frailty. Therefore, its prevention is crucial in extending healthy life expectancy. This study aimed to evaluate the effect of orally administered oleanolic acid, extracted from wine pomace, on periodontopathic bacterial growth in healthy individuals. In this randomized, placebo-controlled, double-blind, parallel-group comparison study, 84 healthy adults were assigned to a placebo (n = 29), low-dose (n = 29, 9 mg oleanolic acid), or high-dose (n = 26, 27 mg oleanolic acid) groups. The number of oral bacteria in their saliva, collected before and 5 h after administration, was determined using the polymerase chain reaction-invader technique. The proportion of periodontopathic bacteria among the total oral bacteria in the saliva was calculated. Oleanolic acid significantly decreased the proportion of Porphyromonas gingivalis among the total oral bacteria in a dose-dependent manner (p = 0.005 (low-dose) and p = 0.003 (high-dose) vs. placebo, Williams' test). Moreover, high-dose oleanolic acid decreased the proportion of Tannerella forsythia (p = 0.064 vs. placebo, Williams' test). Periodontopathic bacteria are closely associated with the development and progression of periodontal disease; thus, the continuous daily intake of oleanolic acid derived from pomace may be helpful in maintaining a healthy oral microbiome by controlling the proportion of periodontopathic bacteria.
Collapse
Affiliation(s)
- Kyoko Shimazu
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | - Kouta Ookoshi
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | - Satoshi Fukumitsu
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | | | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (C.M.); (R.N.)
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (C.M.); (R.N.)
| | - Kazuhiko Aida
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| |
Collapse
|
43
|
Kang L, Han X, Chang X, Su Z, Fu F, Shan Y, Guo J, Li G. Redox-sensitive self-assembling polymer micelles based on oleanolic modified hydroxyethyl starch: Synthesis, characterisation, and oleanolic release. Int J Biol Macromol 2024; 266:131211. [PMID: 38552688 DOI: 10.1016/j.ijbiomac.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Our study aimed at developing polymer micelles that possess redox sensitivity and excellent controlled release properties. 3,3'-dithiodipropionic acid (DTDPA, Abbreviation in synthetic polymers: SS) was introduced as ROS (Reactive oxygen species)response bond and connecting arm to couple hydroxyethyl starch (HES) with oleanolic acid (OA), resulting in the synthesis of four distinct grafting ratios of HES-SS-OA. FTIR (Fourier Transform infrared spectroscopy) and 1H NMR (1H Nuclear magnetic resonance spectra) were used to verify the triumphant combination of HES-SS-OA. Polymer micelles were found to encapsulate OA in an amorphous form, as indicated by the results of XRD (X-ray diffraction) and DSC (Differential scanning calorimetry). When the OA grafting rate on HES increased from 7.72 % to 11.75 %, the particle size decreased from 297.79 nm to 201.39 nm as the polymer micelles became compact due to enhanced hydrophobicity. In addition, the zeta potential changed from -16.42 mv to -25.78 mv, the PDI (polydispersity index) decreased from 0.3649 to 0.2435, and the critical micelle concentration (CMC) decreased from 0.0955 mg/mL to 0.0123 mg/mL. Results of erythrocyte hemolysis, cytotoxicity and cellular uptake illustrated that HES-SS-OA had excellent biocompatibility and minimal cytotoxicity for AML-12 cells. Disulfide bond breakage of HES-SS-OA in the presence of H2O2 and GSH confirmed the redox sensitivity of the HES-SS-OA micelles and their excellent controlled release properties for OA. These findings suggest that HES-SS-OA can be potentially used in the future as a healthcare drug and medicine for the prevention or adjuvant treatment of inflammation.
Collapse
Affiliation(s)
- Lingtao Kang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xiaolei Han
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zhipeng Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
44
|
El Ghallab Y, Dakir M, Aainouss A, El Messaoudi MD, Derfoufi S. Oleanolic acid: an antimycobacterial component of Syzygium aromaticum L. and inhibitor of efflux mediated drug resistance. Nat Prod Res 2024:1-7. [PMID: 38635391 DOI: 10.1080/14786419.2024.2343916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Oleanolic acid (OA) was isolated from Syzygium aromaticum L. buds, and structurally characterised using different spectroscopic techniques; MS, IR,1H/13C-NMR and 2D NMR experiments. The antimycobacterial activity according to a resazurin microtiter assay (REMA) showed important inhibitory effect of OA on the virulent H37Rv strain, with the lowest minimum concentration of 50 µg/mL, compared to other fractions. Molecular docking of OA with BacA drug efflux pump resulted in good binding affinity of hydrophobic interaction type. Therefore, OA could contribute to the antimycobacterial action of clove buds, and has potential as an efflux pump inhibitor. Further studies are required on its use to combat multidrug resistant strains.
Collapse
Affiliation(s)
- Yassine El Ghallab
- Laboratory of Drugs Sciences, Biomedical Research and Biotechnology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Dakir
- Laboratory of Organic Synthesis, Extraction and Valorization, Department of Chemistry, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Achraf Aainouss
- Laboratory of Mycobacteria and Tuberculosis, Institut Pasteur of Morocco, Casablanca, Morocco
| | - My Driss El Messaoudi
- Laboratory of Mycobacteria and Tuberculosis, Institut Pasteur of Morocco, Casablanca, Morocco
| | - Sanae Derfoufi
- Laboratory of Drugs Sciences, Biomedical Research and Biotechnology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
45
|
Chen J, Ding Z. Natural products as potential drug treatments for acute promyelocytic leukemia. Chin Med 2024; 19:57. [PMID: 38566147 PMCID: PMC10988969 DOI: 10.1186/s13020-024-00928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Acute promyelocytic leukemia (APL), which was once considered one of the deadliest types of leukemia, has become a curable malignancy since the introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) as clinical treatments. ATO, which has become the first-line therapeutic agent for APL, is derived from the natural mineral product arsenic, exemplifying an important role of natural products in the treatment of APL. Many other natural products, ranging from small-molecule compounds to herbal extracts, have also demonstrated great potential for the treatment and adjuvant therapy of APL. In this review, we summarize the natural products and representative components that have demonstrated biological activity for the treatment of APL. We also discuss future directions in better exploring their medicinal value, which may provide a reference for subsequent new drug development and combination therapy programs.
Collapse
Affiliation(s)
- Jiaxin Chen
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Zuoqi Ding
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China.
- Editorial Board of Chinese Journal of Natural Medicines, Nanjing, China.
| |
Collapse
|
46
|
Xi Y, Hu L, Chen X, Zuo L, Bai X, Du W, Xu N. Antibacterial and Anti-Inflammatory Polysaccharide from Fructus Ligustri Lucidi Incorporated in PVA/Pectin Hydrogels Accelerate Wound Healing. Molecules 2024; 29:1423. [PMID: 38611703 PMCID: PMC11012603 DOI: 10.3390/molecules29071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
In cutaneous wound healing, an overproduction of inflammatory chemokines and bacterial infections impedes the process. Hydrogels can maintain a physiologically moist microenvironment, absorb chemokines, prevent bacterial infection, inhibit bacterial reproduction, and facilitate wound healing at a wound site. The development of hydrogels provides a novel treatment strategy for the entire wound repair process. Here, a series of Fructus Ligustri Lucidi polysaccharide extracts loaded with polyvinyl alcohol (PVA) and pectin hydrogels were successfully fabricated through the freeze-thaw method. A hydrogel containing a 1% mixing weight ratio of FLL-E (named PVA-P-FLL-E1) demonstrated excellent physicochemical properties such as swellability, water retention, degradability, porosity, 00drug release, transparency, and adhesive strength. Notably, this hydrogel exhibited minimal cytotoxicity. Moreover, the crosslinked hydrogel, PVA-P-FLL-E1, displayed multifunctional attributes, including significant antibacterial properties, earlier re-epithelialization, production of few inflammatory cells, the formation of collagen fibers, deposition of collagen I, and faster remodeling of the ECM. Consequently, the PVA-P-FLL-E1 hydrogel stands out as a promising wound dressing due to its superior formulation and enhanced healing effects in wound care.
Collapse
Affiliation(s)
- Yanli Xi
- Department of Toxicology, School of Public Health, Jilin Medical University, Jilin 132013, China; (Y.X.); (X.C.); (W.D.)
| | - Lianxin Hu
- Department of Clinical Medicine, School of Clinical Medicine, Jilin Medical University, Jilin 132013, China;
| | - Xiang Chen
- Department of Toxicology, School of Public Health, Jilin Medical University, Jilin 132013, China; (Y.X.); (X.C.); (W.D.)
| | - Lili Zuo
- Department of Food Quality and Safety, School of Public Health, Jilin Medical University, Jilin 132013, China;
| | - Xuesong Bai
- Department of Nutrition, School of Public Health, Jilin Medical University, Jilin 132013, China;
| | - Weijie Du
- Department of Toxicology, School of Public Health, Jilin Medical University, Jilin 132013, China; (Y.X.); (X.C.); (W.D.)
| | - Na Xu
- Office of Educational Administration, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
47
|
Ma M, Li M, Wu Z, Liang X, Zheng Q, Li D, Wang G, An T. The microbial biosynthesis of noncanonical terpenoids. Appl Microbiol Biotechnol 2024; 108:226. [PMID: 38381229 PMCID: PMC10881772 DOI: 10.1007/s00253-024-13048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Terpenoids are a class of structurally complex, naturally occurring compounds found predominantly in plant, animal, and microorganism secondary metabolites. Classical terpenoids typically have carbon atoms in multiples of five and follow well-defined carbon skeletons, whereas noncanonical terpenoids deviate from these patterns. These noncanonical terpenoids often result from the methyltransferase-catalyzed methylation modification of substrate units, leading to irregular carbon skeletons. In this comprehensive review, various activities and applications of these noncanonical terpenes have been summarized. Importantly, the review delves into the biosynthetic pathways of noncanonical terpenes, including those with C6, C7, C11, C12, and C16 carbon skeletons, in bacteria and fungi host. It also covers noncanonical triterpenes synthesized from non-squalene substrates and nortriterpenes in Ganoderma lucidum, providing detailed examples to elucidate the intricate biosynthetic processes involved. Finally, the review outlines the potential future applications of noncanonical terpenoids. In conclusion, the insights gathered from this review provide a reference for understanding the biosynthesis of these noncanonical terpenes and pave the way for the discovery of additional unique and novel noncanonical terpenes. KEY POINTS: •The activities and applications of noncanonical terpenoids are introduced. •The noncanonical terpenoids with irregular carbon skeletons are presented. •The microbial biosynthesis of noncanonical terpenoids is summarized.
Collapse
Affiliation(s)
- Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
48
|
Santa K, Kumazawa Y, Watanabe K, Nagaoka I. The Potential Use of Vitamin D3 and Phytochemicals for Their Anti-Ageing Effects. Int J Mol Sci 2024; 25:2125. [PMID: 38396804 PMCID: PMC10889119 DOI: 10.3390/ijms25042125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Unlike other vitamins, vitamin D3 is synthesised in skin cells in the body. Vitamin D3 has been known as a bone-related hormone. Recently, however, it has been considered as an immune vitamin. Vitamin D3 deficiency influences the onset of a variety of diseases. Vitamin D3 regulates the production of proinflammatory cytokines such as tumour necrosis factor-α (TNF-α) through binding to vitamin D receptors (VDRs) in immune cells. Since blood levels of vitamin D3 (25-OH-D3) were low in coronavirus disease 2019 (COVID-19) patients, there has been growing interest in the importance of vitamin D3 to maintaining a healthy condition. On the other hand, phytochemicals are compounds derived from plants with over 7000 varieties and have various biological activities. They mainly have health-promoting effects and are classified as terpenoids, carotenoids, flavonoids, etc. Flavonoids are known as the anti-inflammatory compounds that control TNF-α production. Chronic inflammation is induced by the continuous production of TNF-α and is the fundamental cause of diseases like obesity, dyslipidaemia, diabetes, heart and brain diseases, autoimmune diseases, Alzheimer's disease, and cancer. In addition, the ageing process is induced by chronic inflammation. This review explains the cooperative effects of vitamin D3 and phytochemicals in the suppression of inflammatory responses, how it balances the natural immune response, and its link to anti-ageing effects. In addition, vitamin D3 and phytochemicals synergistically contribute to anti-ageing by working with ageing-related genes. Furthermore, prevention of ageing processes induced by the chronic inflammation requires the maintenance of healthy gut microbiota, which is related to daily dietary habits. In this regard, supplementation of vitamin D3 and phytochemicals plays an important role. Recently, the association of the prevention of the non-disease condition called "ME-BYO" with the maintenance of a healthy condition has been an attractive regimen, and the anti-ageing effect discussed here is important for a healthy and long life.
Collapse
Affiliation(s)
- Kazuki Santa
- Department of Biotechnology, Tokyo College of Biotechnology, Ota-ku, Tokyo 114-0032, Japan;
| | - Yoshio Kumazawa
- Vino Science Japan Inc., Kawasaki 210-0855, Kanagawa, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
- Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of Medical Science, Juntendo University, Urayasu 279-0013, Chiba, Japan
| |
Collapse
|
49
|
Yin F, Liu Q, Hu J, Ju Y. Natural Oleanolic Acid-Tailored Eutectogels Featuring Multienvironment Shape Memory Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6424-6432. [PMID: 38264907 DOI: 10.1021/acsami.3c17517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Shape memory gels, one of the primary modern smart materials, hold great promise in a myriad of applications spanning from soft robotics to medical devices. Nevertheless, most shape memory gels rely on water, organic solvents, and ionic liquids as dispersion mediums, posing the risks of freezing, dehydration, and toxicity to humans or environment. Herein, we have developed a thermoresponsive shape memory eutectogel by introducing an oleanolic acid-modified polyacrylamide network into a deep eutectic solvent (DES). The resulting eutectogel shows a fracture strength of 4.46 MPa along with elongation of 345%, Young's modulus of 14.83 MPa, and toughness of 9.51 MJ m-3. Thanks to the low freezing point and low volatility inherited from DES, this eutectogel possesses good antifreezing and long-term storage stability, which facilitate the shape memory behavior both in silicone oil and in air. The shape fixity and shape recovery ratios of this eutectogel maintain almost 90% during 10 cycles in silicone oil and more than 70% during four cycles in air that cannot be realized in hydrogels. By virtue of shape memory effect and conductivity, the eutectogel can be further used as a thermoswitch. This work presents a simple approach to fabricating shape memory eutectogels and imparts exciting prospects to smart eutectogels.
Collapse
Affiliation(s)
- Feng Yin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qian Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Ju
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Luo Q, Wei Y, Lv X, Chen W, Yang D, Tuo Q. The Effect and Mechanism of Oleanolic Acid in the Treatment of Metabolic Syndrome and Related Cardiovascular Diseases. Molecules 2024; 29:758. [PMID: 38398510 PMCID: PMC10892503 DOI: 10.3390/molecules29040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic syndromes (MetS) and related cardiovascular diseases (CVDs) pose a serious threat to human health. MetS are metabolic disorders characterized by obesity, dyslipidemia, and hypertension, which increase the risk of CVDs' initiation and development. Although there are many availabile drugs for treating MetS and related CVDs, some side effects also occur. Considering the low-level side effects, many natural products have been tried to treat MetS and CVDs. A five-cyclic triterpenoid natural product, oleanolic acid (OA), has been reported to have many pharmacologic actions such as anti-hypertension, anti-hyperlipidemia, and liver protection. OA has specific advantages in the treatment of MetS and CVDs. OA achieves therapeutic effects through a variety of pathways, attracting great interest and playing a vital role in the treatment of MetS and CVDs. Consequently, in this article, we aim to review the pharmacological actions and potential mechanisms of OA in treating MetS and related CVDs.
Collapse
Affiliation(s)
- Quanye Luo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Yu Wei
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Xuzhen Lv
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, The School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Dongmei Yang
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Qinhui Tuo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| |
Collapse
|