1
|
Geng P, Zhao N, Zhou Y, Harris RS, Ge Y. Faecalibacterium prausnitzii regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice. Gut Microbes 2025; 17:2455503. [PMID: 39841201 DOI: 10.1080/19490976.2025.2455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. Faecalibacterium prausnitzii is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct F. prausnitzii strains might lead to functional differences in the gut microbiome. Here, we isolated and characterized a novel F. prausnitzii strain (UT1) that belongs to the most prevalent but underappreciated phylogenetic clade in the global human population. Genome analysis showed that this butyrate-producing isolate carries multiple putative mobile genetic elements, a clade-specific defense system, and a range of carbohydrate catabolic enzymes. Multiomic approaches were used to profile the impact of UT1 on the gut microbiome and associated metabolic activity of C57BL/6 mice at homeostasis. Both 16S rRNA and metagenomic sequencing demonstrated that oral administration of UT1 resulted in profound microbial compositional changes including a significant enrichment of Lactobacillus, Bifidobacterium, and Turicibacter. Functional profiling of the fecal metagenomes revealed a markedly higher abundance of carbohydrate-active enzymes (CAZymes) in UT1-gavaged mice. Accordingly, UT1-conditioned microbiota possessed the elevated capability of utilizing starch in vitro and exhibited a lower availability of microbiota-accessible carbohydrates in the gut. Further analysis uncovered a functional network wherein UT1 reduced the abundance of mucin-degrading CAZymes and microbes, which correlated with a concomitant reduction of fecal mucin glycans. Collectively, our results reveal a crucial role of UT1 in facilitating the carbohydrate metabolism of the gut microbiome and expand our understanding of the genetic and phenotypic diversity of F. prausnitzii.
Collapse
Affiliation(s)
- Peiling Geng
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ni Zhao
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Wei C, Wu X, Li C, Zhang Y, Yuan Q, Huang R. Aerobic exercise regulates gut microbiota profiles and metabolite in the early stage of Alzheimer's disease. FASEB J 2025; 39:e70327. [PMID: 39831888 PMCID: PMC11745210 DOI: 10.1096/fj.202402572r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Aerobic exercise (AE) has been shown to offer significant benefits for Alzheimer's disease (AD), potentially influencing the gut microbiota. However, the impact of changes in intestinal flora in early Alzheimer's disease induced by aerobic exercise on metabolic pathways and metabolites is not well understood. In this study, 3-month-old APP/PS1 and C57BL/6 mice were divided into two groups each: a control group (ADC for APP/PS1 and WTC for C57BL/6) and an aerobic exercise group (ADE for APP/PS1 and WTE for C57BL/6). The exercise groups underwent a 20-week aerobic training program on a motorized treadmill before the behavioral test (both the Morris water maze experiment (MWM) and the eight-arm maze test). Fecal samples were collected to analyze gut microbiota profiles via 16S rRNA gene sequencing. At the same time, the metabolic pathway analysis and the detection of metabolites were carried out. At the phylum level, the ADE group exhibited a significant reduced in the relative abundance of Bacteroidetes compared to the ADC group. At the genus level, both Ileibacterium and Faecalibaculum were found to be more abundant in the ADE group than in the ADC group. Additionally, PICRUSt analysis revealed that lipid metabolism and bile acid metabolism pathways were significantly enriched in the cecal microbiota of mice in the ADE group. The metabolites detected further confirmed the changes in the metabolic pathways mentioned above. Aerobic exercise may modify gut microbiota profiles and metabolites in APP/PS1 mice, thereby potentially playing a beneficial role in delaying cognitive impairment associated with early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Cuilan Wei
- School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
- Sports Institute of Chengdu University of TechnologyChengduChina
| | - Xiaojing Wu
- Department of Orthopaedics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Chuikun Li
- School of Physical EducationChengdu UniversityChengduChina
| | - Yeting Zhang
- Civil Aviation Flight University of ChinaGuanghanChina
| | - Qiongjia Yuan
- School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
3
|
Patterson RA, Cho NA, Fernandes TS, Tuplin EWN, Lowry DE, Silva GAV, Reimer RA. Effects of a paternal diet high in animal protein (casein) versus plant protein (pea protein with added methionine) on offspring metabolic and gut microbiota outcomes in rats. Appl Physiol Nutr Metab 2025; 50:1-15. [PMID: 39689296 DOI: 10.1139/apnm-2024-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Evidence suggests that paternal diet can influence offspring metabolic health intergenerationally but whether dietary animal and plant proteins differ in their impact on fathers and their offspring is not known. Our objective was to examine the effects of a paternal diet high in casein versus pea protein on fathers and their offspring. Five-week-old male rats were fed: (1) control, (2) high animal protein (AP, 36.1% of energy as casein), or (3) high plant protein (PP, 36.1% of energy as pea protein with added methionine) diets for 8-11 weeks before being mated. Offspring were challenged with a high fat/sucrose diet (HFD) from 10 to 16 weeks of age. Metabolic and microbial outcomes were assessed in both generations. In fathers fed PP diet, enhanced insulin sensitivity and lower liver triglycerides were seen alongside altered hepatic microRNA expression and gut microbial profiles. Few changes were seen in their offspring. In contrast, the paternal AP diet influenced adult offspring hepatic microRNA expression and programmed a latent increase in adiposity, dysregulated satiety hormones, and modified gut microbial composition in their adult offspring that occurred following the HFD. Overall, a diet high in pea protein with added methionine demonstrated protective effects on biomarkers of metabolic health in the fathers but led to minimal effects on the offspring while a paternal diet high in casein led to evidence of an increase in characteristics of metabolic dysfunction in their adult offspring when unmasked by exposure to a HFD for 6 weeks.
Collapse
Affiliation(s)
- Riley A Patterson
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Nicole A Cho
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Tyra S Fernandes
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Erin W Noye Tuplin
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Dana E Lowry
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Gabriel A Venegas Silva
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
4
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
5
|
Mignini I, Galasso L, Piccirilli G, Calvez V, Termite F, Esposto G, Borriello R, Miele L, Ainora ME, Gasbarrini A, Zocco MA. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1532. [PMID: 39765860 PMCID: PMC11727446 DOI: 10.3390/antiox13121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress has been described as one of the main drivers of intracellular damage and metabolic disorders leading to metabolic syndrome, a major health problem worldwide. In particular, free radicals alter lipid metabolism and promote lipid accumulation in the liver, existing in the hepatic facet of metabolic syndrome, the metabolic dysfunction-associated steatotic liver disease (MASLD). Recent literature has highlighted how nicotine, especially if associated with a high-fat diet, exerts a negative effect on the induction and progression of MASLD by upregulating inflammation and increasing oxidative stress, abdominal fat lipolysis, and hepatic lipogenesis. Moreover, considerable evidence shows the central role of intestinal dysbiosis in the pathogenesis of MASLD and the impact of nicotine-induced oxidative stress on the gut microbiome. This results in an intricate network in which oxidative stress stands at the intersection point between gut microbiome, nicotine, and MASLD. The aim of this review is to delve into the molecular mechanisms linking tobacco smoking and MASLD, focusing on nicotine-induced microbiota modifications and their impact on MASLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (L.G.); (G.P.); (V.C.); (F.T.); (G.E.); (R.B.); (L.M.); (M.E.A.); (A.G.)
| |
Collapse
|
6
|
Jia L, Wang R, Huang Z, Sun N, Sun H, Wang H, Lu F, Liu Y. Phosphatidylcholine ameliorates lipid accumulation and liver injury in high-fat diet mice by modulating bile acid metabolism and gut microbiota. Int J Food Sci Nutr 2024:1-14. [PMID: 39632393 DOI: 10.1080/09637486.2024.2437469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Phosphatidylcholine (PC) has garnered considerable attention due to its involvement in a wide array of crucial biological functions. However, there is still much to active explore regarding the precise mechanisms that underlie PC's actions in the context of high-fat diet. In this study, we found that both PC intervention and treatment significantly mitigated lipid accumulation, liver damage, and body weight gaining triggered by the high-fat diet. Untargeted and targeted metabolomic analyses uncovered substantial effects of PC on bile acid metabolism, especially led to a substantial reduction in elevated levels of free bile acids. 16S rRNA gene sequencing revealed that PC modulated the gut microbiota structures and compositions in high-fat diet mice, particularly exhibiting a positive association with Pseudoflavonifractor abundance, and a negative correlation with Olsenella, Parasutterella, and Allobaculum abundance. Our study suggested that PC held promise as a potential candidate for alleviating lipid metabolism injury, liver disease or obesity.
Collapse
Affiliation(s)
- Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ruijia Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Zhiqi Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Nana Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
7
|
Jinato T, Anuntakarun S, Satthawiwat N, Chuaypen N, Tangkijvanich P. Distinct alterations of gut microbiota between viral- and non-viral-related hepatocellular carcinoma. Appl Microbiol Biotechnol 2024; 108:34. [PMID: 38183473 PMCID: PMC10771587 DOI: 10.1007/s00253-023-12845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 01/08/2024]
Abstract
Altered gut microbiota has been connected to hepatocellular carcinoma (HCC) occurrence and advancement. This study was conducted to identify a gut microbiota signature in differentiating between viral-related HCC (Viral-HCC) and non-hepatitis B-, non-hepatitis C-related HCC (NBNC-HCC). Fecal specimens were obtained from 16 healthy controls, 33 patients with viral-HCC (17 and 16 cases with hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, respectively), and 18 patients with NBNC-HCC. Compositions of fecal microbiota were assessed by 16S rRNA sequencing. Bioinformatic analysis was performed by the DADA2 pipeline in the R program. Significantly different genera from the top 50 relative abundance were used to classify between subgroups of HCC by the Random Forest algorithm. Our data demonstrated that the HCC group had a significantly decreased alpha-diversity and changed microbial composition in comparison with healthy controls. Within the top 50 relative abundance, there were 11 genera including Faecalibacterium, Agathobacter, and Coprococcus that were significantly enhanced in Viral-HCC, while 5 genera such as Bacteroides, Streptococcus, Ruminococcus gnavus group, Parabacteroides, and Erysipelatoclostridium were enhanced in NBNC-HCC. Compared to Viral-HCC, the NBNC-HCC subgroup significantly reduced various short-chain fatty acid-producing bacteria, as well as declined fecal butyrate but elevated plasma surrogate markers of microbial translocation. Based on the machine learning algorithm, a high diagnostic accuracy to classify HCC subgroups was achieved with an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.94. Collectively, these data revealed that gut dysbiosis was distinct according to etiological factors of HCC, which might play an essential role in hepatocarcinogenesis. These findings underscore the possible use of a gut microbiota signature for the diagnosis and therapeutic approaches regarding different subgroups of HCC. KEY POINTS: • Gut dysbiosis is connected to hepatocarcinogenesis and can be used as a novel biomarker. • Gut microbiota composition is significantly altered in different etiological factors of HCC. • Microbiota-based signature can accurately distinguish between Viral-HCC and NBNC-HCC.
Collapse
Affiliation(s)
- Thananya Jinato
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Doctor of Philosophy Program in Medical Sciences, Graduate Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Songtham Anuntakarun
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nantawat Satthawiwat
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Xi YY, Chen C, Zheng JJ, Jiang B, Dong XY, Lou SY, Luo JG, Zhang XH, Zhou ZY, Luo QJ, Wang W, Zhou XD. Ampelopsis grossedentata tea alleviating liver fibrosis in BDL-induced mice via gut microbiota and metabolite modulation. NPJ Sci Food 2024; 8:93. [PMID: 39537664 PMCID: PMC11561287 DOI: 10.1038/s41538-024-00334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Liver fibrosis (LF) is a common sequela to diverse chronic liver injuries, leading to rising rates of cirrhosis and hepatocellular carcinoma (HCC). As the medicinal and edible homologous material, traditional teas have exhibited promising applications in the clinical management of liver fibrosis. Here, we generated a liver fibrosis mouse model to explore the potent therapeutic ability of Ampelopsis grossedentata (AG) tea on this condition by multi-omics analysis. The biochemistry results pointed towards mitigated increases of ALT, AST, TBIL, and ALP triggered by BDL in the AG-treated group. Examination using H&E and Sirius Red staining revealed severe liver injuries, inflammation infiltration, amplified fibrosed regions, and the creation of bile ducts, all of which were fallout from BDL. Immunohistochemistry findings also implicated a noteworthy upregulation of the HSC activation marker α-smooth muscle actin (α-SMA) and the fibrosis marker collagen I in the BDL group. However, these symptoms demonstrated a significant improvement in the group treated with 100 mg/kg AG. Findings from the Western Blot test corroborated the prominent elevation of TNF-α, col1a1, α-SMA, and TGF-β, instigated by BDL, while AG treatment meaningfully modulated these proteins. Furthermore, our study underscored the potential involvement of several microbiota, such as Ruminococcaceae UCG-014, Eubacterium Ruminantium, Ruminococcus 1, Christensenellaceae R-7, Acetatifactor, Dubosiella, Parasutterella, Faecalibaculum, and Defluviitaleaceae UCG-011, in the progression of liver fibrosis and the therapeutic efficacy of AG. This investigation shows that during the process of AG ameliorating BDL-induced liver fibrosis, bile acid derivatives such as CDCA, TCDCA, 3-DHC, UCA, DCA, among others, play significant roles. In this study, we identified that several non-bile acid metabolites, such as Deltarasin, Thr-Ile-Arg, etc., are entailed in the process of AG improving liver fibrosis.
Collapse
Affiliation(s)
- Yi-Yuan Xi
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Chen
- School of Electronic and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Ju-Jia Zheng
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bing Jiang
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xin-Ya Dong
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shu-Ying Lou
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jin-Guo Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiu-Hua Zhang
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zi-Ye Zhou
- The Clinical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qu-Jing Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
9
|
Song X, Sun J, Yue Y, Li D, Chen F. Microbiota-derived succinic acid mediates attenuating effect of dietary tomato juice supplementation on steatohepatitis through enhancing intestinal barrier. Food Res Int 2024; 196:115123. [PMID: 39614583 DOI: 10.1016/j.foodres.2024.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/06/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
The hepatoprotective potential of tomato juice (TJ) has been reported in chronic liver models, and its potential prebiotic properties may be key to its preventative effects. However, the mechanistic role of the gut microbiota and its derived metabolites in ameliorating nonalcoholic steatohepatitis (NASH) via TJ remains unclear. In this study, we explored how TJ regulates gut microbiota and succinic acid (SA) to restore intestinal barrier function and thus suppress NASH progression. TJ supplementation effectively reduced serum lipid concentrations, alleviated endotoxin levels, and suppressed activation of the endotoxin-TLR4-NF-κB pathway in methionine-choline-deficient (MCD) diet-induced NASH mice. TJ restored the MCD diet-induced gut microbiota dysbiosis, increased the abundance of short-chain fatty acid and SA-producing bacteria (Bifidobacterium, Ileibacterium, Odoribacter, and Parasutterella) and enhanced the expression of intestinal barrier-associated proteins (E-cadherin, Claudin-1, MUC-2, and ZO-1). The hepatoprotective and enteroprotective effects of TJ were abolished in an antibiotic-treated mouse model, underscoring the pivotal role of the gut microbiota in the beneficial effects of TJ on NASH. Fecal metabolomics demonstrated that TJ significantly upregulated the tricarboxylic acid cycle, pyruvate metabolism, and butanoate metabolism pathways, increasing levels of butyric acid (BA) and SA-metabolites associated with reduced hepatic steatosis and intestinal damage. We further found that the physiological concentration of SA, rather than BA, could reduce pro-inflammatory cytokines (TNF-α and IL-6) levels and enhance mucin proteins and tight junction markers in the LPS-induced colon cell line LS174T. This study uncovers new mechanisms by which TJ prevents NASH, highlighting the potential of TJ and SA as effective dietary supplements for patients with chronic liver diseases.
Collapse
Affiliation(s)
- Xunyu Song
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jun Sun
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yunshuang Yue
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Wang H, Liu Z, Zhan K, Ma Q, Xu L, Li Y, Liu Y. Vitamin K2 alleviates dextran sulfate sodium-induced colitis via inflammatory responses, gut barrier integrity, and the gut microbiota in mice. Int J Biol Macromol 2024; 280:136091. [PMID: 39353519 DOI: 10.1016/j.ijbiomac.2024.136091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Vitamin K2 (VK2) has been shown to have potential benefits in improving intestinal integrity, but its potential and mechanisms for alleviating intestinal inflammation are still unclear. The present results showed that VK2 supplementation significantly alleviated the symptoms of colitis and maintained the intestinal barrier integrity. In addition, VK2 significantly down-regulated the mRNA expression levels of pro-inflammatory cytokines including IL-1β, IL-6, and TNF-α, while up-regulated the mRNA expression level of anti-inflammatory cytokines such as IL-10. Moreover, VK2 significantly alleviated DSS-induced intestinal epithelial barrier dysfunction by maintaining the tight junction function. Furthermore, VK2 also regulated DSS-induced gut microbiota dysbiosis by reshaping the structure of gut microbiota, such as increasing the relative abundance of Firmicutes, Euryarchaeota, Prevotellaceae, and Prevotella and reducing the relative abundance of Proteobacteria, Rikenellaceae, Enterobacteriaceae, Acetatifactor, and Alistioes. In conclusion, these results indicated that VK2 effectively alleviates DSS-induced colitis in mice by modulating the gut microbiota.
Collapse
Affiliation(s)
- Huakai Wang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhen Liu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Kai Zhan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Qiugang Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lei Xu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yinghao Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Yun Liu
- Guangde City animal husbandry and veterinary aquatic services center, Xuancheng 242299, China
| |
Collapse
|
11
|
Wang H, Mao R, Wang L, Wang C, Teka T, Zhang Z, Choi SS, Fu Z, Han L. Combination of Metabolomics, Lipidomics, and Molecular Biology for the Investigation of the Metabolic Disturbance of Short-Term Administration of Emodin. J Proteome Res 2024; 23:4327-4342. [PMID: 39279465 DOI: 10.1021/acs.jproteome.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Emodin, a natural anthraquinone derivative, is an active ingredient in many Chinese traditional herbs. Interestingly, although it is generally considered to possess hepatoprotective activity, some studies have also reported that it has a certain degree of hepatotoxicity. Additionally, the underlying metabolic regulation of emodin remains uncertain. Therefore, we conducted a nontargeted metabolomic study based on UHPLC/Q-Orbitrap-MS and NMR. Data are available via ProteomeXchange with the identifier PXD055000. The results indicated a close association between the short-term administration of emodin and lipid metabolism. Moreover, a lipidomics investigation utilizing QTRAP 6500+ UHPLC-MS/MS was conducted, with a focus on determining the position of C═C double bonds in unsaturated lipids based on Paternò-Büchi (PB) reaction to discover the metabolic disturbance more precisely. Specifically, lipidomics revealed elevated levels of free fatty acids (FFA) alongside notable reductions in sphingomyelin (SM) and triacylglycerol (TAG) levels. Furthermore, the combination of PB reaction and molecular biology results indicated that short-term administration of emodin may lead to the accumulation of n-6 polyunsaturated fatty acids by up-regulating the expression of FASN, stearyl CoA desaturase 1 (SCD1), and cytosolic phospholipase A 2 (cPLA2). Simultaneously, up-regulation of cyclooxygenase-2 (Cox-2) expression was observed, potentially fostering the production of prostaglandin E2 (PGE2) and subsequent inflammation.
Collapse
Affiliation(s)
- Haitao Wang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Rui Mao
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
- Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, PR China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Zixin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Shin Sik Choi
- The Natural Science Research Institute, Department of Food and Nutrition, Myongji University, Yongin 17058; elegslab Inc., Seoul 06083, Republic of Korea
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| |
Collapse
|
12
|
Yang Y, Fan G, Lan J, Li X, Li X, Liu R. Polysaccharide-mediated modulation of gut microbiota in the treatment of liver diseases: Promising approach with significant challenges. Int J Biol Macromol 2024:135566. [PMID: 39270901 DOI: 10.1016/j.ijbiomac.2024.135566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Liver disease represents a significant global health burden, with an increasing prevalence and a lack of efficient treatment options. The microbiota-gut-liver axis involves bidirectional communication between liver function and intestinal microorganisms. A balanced gut flora protects intestinal homeostasis, while imbalances contribute to the development of liver diseases. Distinct alterations in the structure of gut flora during illness are crucial in the management of various liver diseases. Polysaccharides derived from herbal products, fungi, and other sources have been identified to possess diverse biological activities and are well-tolerated in the treatment of liver diseases. This review provides updates on the therapeutic effects of polysaccharides on liver diseases, including fatty liver diseases, acute liver injuries and liver cancers. It also summarizes advancements in understanding the mechanisms involved, particularly from the perspective of gut microbiota and metabolites, by highlighting the changes in the composition of potentially beneficial and harmful bacteria and their correlation with the therapeutic effects of polysaccharides. Additionally, by exploring the structure-activity relationship, our review provides valuable insights for the structural modification of polysaccharides and expanding their applications. In conclusion, this review offers theoretical support and novel perspectives on developing polysaccharides-based therapeutic approaches for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jianhang Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
13
|
Xu R, Wu J, Pan J, Zhang S, Yang Y, Zhang L, Zhou W, Wu N, Hu D, Ji G, Dang Y. Gan-jiang-ling-zhu decoction improves steatohepatitis by regulating gut microbiota-mediated 12-tridecenoic acid inhibition. Front Pharmacol 2024; 15:1444561. [PMID: 39246653 PMCID: PMC11377346 DOI: 10.3389/fphar.2024.1444561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction: Gan-jiang-ling-zhu (GJLZ) decoction is a classical traditional Chinese medicine prescription. Through invigorating yang, activating qi and dissipating dampness, GJLZ decoction is widely applied for the treatment of chronic digestive disease, including nonalcoholic fatty liver disease. However, efficacy and mechanism of GJLZ decoction behind nonalcoholic steatohepatitis (NASH) treatment remains unelucidated. Methods: NASH was induced in mice, followed by treatment with GJLZ decoction. Various methods including hematoxylin-eosin, oil red O staining, and triglyceride analysis were employed to evaluate the treatment effects of GJLZ decoction on NASH. Gut microbiota, metabolomics, cell viability assays, immunofluorescence and Western blotting were performed to unveil the mechanism behind GJLZ decoction. Results: GJLZ decoction treatment significantly improved hepatic steatosis in mice with NASH. It led to remodeling of gut flora and metabolite structures, including the 12-tridecenoic acid level. 12-Tridecenoic acid aggravated hepatic steatosis by promoting acetyl-coenzyme A carboxylase alpha (ACC) expression and inhibiting carnitine palmitoyltransferase 1A (CPT1A) expression. GJLZ decoction treatment reduced the 12-tridecenoic acid level, inhibited ACC activity and promoted CPT1A expression. Conclusion: Our results demonstrated that 12-tridecenoic acid aggravated hepatic steatosis by affecting the ACC-CPT1A axis and GJLZ decoction treatment effectively reduced the 12-tridecenoic acid level and improved steatosis.
Collapse
Affiliation(s)
- Ruohui Xu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traditional Chinese Medicine, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaxuan Wu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Jiashu Pan
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Shengan Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yunuo Yang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Na Wu
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yanqi Dang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
14
|
Essex M, Millet Pascual-Leone B, Löber U, Kuhring M, Zhang B, Brüning U, Fritsche-Guenther R, Krzanowski M, Fiocca Vernengo F, Brumhard S, Röwekamp I, Anna Bielecka A, Lesker TR, Wyler E, Landthaler M, Mantei A, Meisel C, Caesar S, Thibeault C, Corman VM, Marko L, Suttorp N, Strowig T, Kurth F, Sander LE, Li Y, Kirwan JA, Forslund SK, Opitz B. Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in COVID-19. NPJ Biofilms Microbiomes 2024; 10:66. [PMID: 39085233 PMCID: PMC11291933 DOI: 10.1038/s41522-024-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
The clinical course of COVID-19 is variable and often unpredictable. To test the hypothesis that disease progression and inflammatory responses associate with alterations in the microbiome and metabolome, we analyzed metagenome, metabolome, cytokine, and transcriptome profiles of repeated samples from hospitalized COVID-19 patients and uninfected controls, and leveraged clinical information and post-hoc confounder analysis. Severe COVID-19 was associated with a depletion of beneficial intestinal microbes, whereas oropharyngeal microbiota disturbance was mainly linked to antibiotic use. COVID-19 severity was also associated with enhanced plasma concentrations of kynurenine and reduced levels of several other tryptophan metabolites, lysophosphatidylcholines, and secondary bile acids. Moreover, reduced concentrations of various tryptophan metabolites were associated with depletion of Faecalibacterium, and tryptophan decrease and kynurenine increase were linked to enhanced production of inflammatory cytokines. Collectively, our study identifies correlated microbiome and metabolome alterations as a potential contributor to inflammatory dysregulation in severe COVID-19.
Collapse
Affiliation(s)
- Morgan Essex
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Belén Millet Pascual-Leone
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mathias Kuhring
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, BIH Metabolomics Platform, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Core Unit Bioinformatics, Berlin, Germany
| | - Bowen Zhang
- Department of Computational Biology for Individualized Infection Medicine, Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, joint ventures between the Helmholtz Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ulrike Brüning
- Berlin Institute of Health (BIH) at Charité, BIH Metabolomics Platform, Berlin, Germany
| | | | - Marta Krzanowski
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agata Anna Bielecka
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Christian Meisel
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor M Corman
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Lajos Marko
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Till Strowig
- Department of Computational Biology for Individualized Infection Medicine, Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Yang Li
- Department of Computational Biology for Individualized Infection Medicine, Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, joint ventures between the Helmholtz Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jennifer A Kirwan
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, BIH Metabolomics Platform, Berlin, Germany
- University of Nottingham School of Veterinary Medicine and Science, Loughborough, UK
| | - Sofia K Forslund
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany.
- German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
15
|
Vallianou NG, Kounatidis D, Psallida S, Vythoulkas-Biotis N, Adamou A, Zachariadou T, Kargioti S, Karampela I, Dalamaga M. NAFLD/MASLD and the Gut-Liver Axis: From Pathogenesis to Treatment Options. Metabolites 2024; 14:366. [PMID: 39057689 PMCID: PMC11278747 DOI: 10.3390/metabo14070366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) poses an emerging threat topublic health. Nonalcoholic steatohepatitis (NASH) is reported to be the most rapidly rising cause of hepatocellular carcinoma in the western world. Recently, a new term has been proposed: metabolic dysfunction-associated steatotic liver disease (MASLD). The introduction of this new terminology has sparked a debate about the interchangeability of these terms. The pathogenesis of NAFLD/MASLD is thought to be multifactorial, involving both genetic and environmental factors. Among these factors, alterations in gut microbiota and gut dysbiosis have recently garnered significant attention. In this context, this review will further discuss the gut-liver axis, which refers to the bidirectional interaction between the human gut microbiota and the liver. Additionally, the therapeutic potential of probiotics, particularly next-generation probiotics and genetically engineered bacteria, will be explored. Moreover, the role of prebiotics, synbiotics, postbiotics, and phages as well as fecal microbiota transplantation will be analyzed. Particularly for lean patients with NAFLD/MASLD, who have limited treatment options, approaches that modify the diversity and composition of the gut microbiota may hold promise. However, due to ongoing safety concerns with approaches that modulate gut microbiota, further large-scale studies are necessary to better assess their efficacy and safety in treating NAFLD/MASLD.
Collapse
Affiliation(s)
- Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias Str., 11527 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, “KAT” General Hospital of Attica, 14561 Athens, Greece;
| | - Nikolaos Vythoulkas-Biotis
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Andreas Adamou
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Tatiana Zachariadou
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Sofia Kargioti
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Attikon University Hospital, 1 Rimini Str., 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| |
Collapse
|
16
|
Chen D, Wang Y, Yang J, Ou W, Lin G, Zeng Z, Lu X, Chen Z, Zou L, Tian Y, Wu A, Keating SE, Yang Q, Lin C, Liang Y. Shenling Baizhu San ameliorates non-alcoholic fatty liver disease in mice by modulating gut microbiota and metabolites. Front Pharmacol 2024; 15:1343755. [PMID: 38720776 PMCID: PMC11076757 DOI: 10.3389/fphar.2024.1343755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its related mortality is increasing at an unprecedented rate. Traditional Chinese medicine (TCM) has been shown to offer potential for early prevention and treatment of NAFLD. The new mechanism of "Shenling Baizhu San" (SLBZS) is examined in this study for the prevention and treatment of NAFLD at the preclinical level. Methods: Male C57BL/6J mice were randomly divided into three groups: normal diet (ND), western diet + CCl4 injection (WDC), and SLBZS intervention (WDC + SLBZS). Body weights, energy intake, liver enzymes, pro-inflammatory factors, and steatosis were recorded in detail. Meanwhile, TPH1, 5-HT, HTR2A, and HTR2B were tested using qRT-PCR or ELISA. Dynamic changes in the gut microbiota and metabolites were further detected through the 16S rRNA gene and untargeted metabolomics. Results: SLBZS intervention for 6 weeks could reduce the serum and liver lipid profiles, glucose, and pro-inflammatory factors while improving insulin resistance and liver function indexes in the mice, thus alleviating NAFLD in mice. More importantly, significant changes were found in the intestinal TPH-1, 5-HT, liver 5-HT, and related receptors HTR2A and HTR2B. The 16S rRNA gene analysis suggested that SLBZS was able to modulate the disturbance of gut microbiota, remarkably increasing the relative abundance of probiotics (Bifidobacterium and Parvibacter) and inhibiting the growth of pro-inflammatory bacteria (Erysipelatoclostridium and Lachnoclostridium) in mice with NAFLD. Combined with metabolomics in positive- and negative-ion-mode analyses, approximately 50 common differential metabolites were selected via non-targeted metabolomics detection, which indicated that the targeting effect of SLBZS included lipid metabolites, bile acids (BAs), amino acids (AAs), and tryptophan metabolites. In particular, the lipid metabolites 15-OxEDE, vitamin D3, desoxycortone, and oleoyl ethanol amide were restored by SLBZS. Conclusion: Integrating the above results of multiple omics suggests that SLBZS ameliorates NAFLD via specific gut microbiota, gut-derived 5-HT, and related metabolites to decrease fat accumulation in the liver and inflammatory responses.
Collapse
Affiliation(s)
- Dongliang Chen
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuanfei Wang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Jianmei Yang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Wanyi Ou
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Guiru Lin
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze Zeng
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaomin Lu
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Zumin Chen
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Lili Zou
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Yaling Tian
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Aiping Wu
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Shelley E. Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Qinhe Yang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| | - Chenli Lin
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| | - Yinji Liang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Kounatidis D, Vallianou NG, Geladari E, Panoilia MP, Daskou A, Stratigou T, Karampela I, Tsilingiris D, Dalamaga M. NAFLD in the 21st Century: Current Knowledge Regarding Its Pathogenesis, Diagnosis and Therapeutics. Biomedicines 2024; 12:826. [PMID: 38672181 PMCID: PMC11048710 DOI: 10.3390/biomedicines12040826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health issue worldwide. It is the most common liver disease in Western countries, andits global prevalence is estimated to be up to 35%. However, its diagnosis may be elusive, because liver biopsy is relatively rarely performed and usually only in advanced stages of the disease. Therefore, several non-invasive scores may be applied to more easily diagnose and monitor NAFLD. In this review, we discuss the various biomarkers and imaging scores that could be useful in diagnosing and managing NAFLD. Despite the fact that general measures, such as abstinence from alcohol and modulation of other cardiovascular disease risk factors, should be applied, the mainstay of prevention and management is weight loss. Bariatric surgery may be suggested as a means to confront NAFLD. In addition, pharmacological treatment with GLP-1 analogues or the GIP agonist tirzepatide may be advisable. In this review, we focus on the utility of GLP-1 analogues and GIP agonists in lowering body weight, their pharmaceutical potential, and their safety profile, as already evidenced inanimal and human studies. We also elaborate on other options, such as the use of vitamin E, probiotics, especially next-generation probiotics, and prebiotics in this context. Finally, we explore future perspectives regarding the administration of GLP-1 analogues, GIP agonists, and probiotics/prebiotics as a means to prevent and combat NAFLD. The newest drugs pegozafermin and resmetiron, which seem to be very promising, arealso discussed.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias str, 11527 Athens, Greece;
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 1 Sismanogliou str, 15126 Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45–47Ipsilantou str, 10676 Athens, Greece
| | - Maria Paraskevi Panoilia
- First Department of Internal Medicine, Sismanogleio General Hospital, 1 Sismanogliou str, 15126 Athens, Greece
| | - Anna Daskou
- First Department of Internal Medicine, Sismanogleio General Hospital, 1 Sismanogliou str, 15126 Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 45–47Ipsilantou str, 10676 Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Demokritus University of Thrace, 68100 Alexandroupoli, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece;
| |
Collapse
|
18
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
19
|
Alves Costa Silva C, Piccinno G, Suissa D, Bourgin M, Schreibelt G, Durand S, Birebent R, Fidelle M, Sow C, Aprahamian F, Manghi P, Punčochář M, Asnicar F, Pinto F, Armanini F, Terrisse S, Routy B, Drubay D, Eggermont AMM, Kroemer G, Segata N, Zitvogel L, Derosa L, Bol KF, de Vries IJM. Influence of microbiota-associated metabolic reprogramming on clinical outcome in patients with melanoma from the randomized adjuvant dendritic cell-based MIND-DC trial. Nat Commun 2024; 15:1633. [PMID: 38395948 PMCID: PMC10891084 DOI: 10.1038/s41467-024-45357-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor immunosurveillance plays a major role in melanoma, prompting the development of immunotherapy strategies. The gut microbiota composition, influencing peripheral and tumoral immune tonus, earned its credentials among predictors of survival in melanoma. The MIND-DC phase III trial (NCT02993315) randomized (2:1 ratio) 148 patients with stage IIIB/C melanoma to adjuvant treatment with autologous natural dendritic cell (nDC) or placebo (PL). Overall, 144 patients collected serum and stool samples before and after 2 bimonthly injections to perform metabolomics (MB) and metagenomics (MG) as prespecified exploratory analysis. Clinical outcomes are reported separately. Here we show that different microbes were associated with prognosis, with the health-related Faecalibacterium prausnitzii standing out as the main beneficial taxon for no recurrence at 2 years (p = 0.008 at baseline, nDC arm). Therapy coincided with major MB perturbations (acylcarnitines, carboxylic and fatty acids). Despite randomization, nDC arm exhibited MG and MB bias at baseline: relative under-representation of F. prausnitzii, and perturbations of primary biliary acids (BA). F. prausnitzii anticorrelated with BA, medium- and long-chain acylcarnitines. Combined, these MG and MB biomarkers markedly determined prognosis. Altogether, the host-microbial interaction may play a role in localized melanoma. We value systematic MG and MB profiling in randomized trials to avoid baseline differences attributed to host-microbe interactions.
Collapse
Grants
- The MIND-DC trial was funded by ZonMw, Ministry of Health, Welfare and Sport (VWS), Stichting ATK, Miltenyi Biotec (in-kind). This work was supported by SEERAVE Foundation, European Union Horizon 2020:Project Number: 825410 and Project Acronym: ONCOBIOME, Institut National du Cancer (INCa), ANR Ileobiome - 19-CE15-0029-01, ANR RHU5 “ANR-21-RHUS-0017” IMMUNOLIFE”, MAdCAM INCA_ 16698, Ligue contre le cancer, LABEX OncoImmunology, la direction generale de l’offre de soins (DGOS), Universite Paris-Sud, SIRIC SOCRATE (INCa/DGOS/INSERM 6043), and PACRI network. G.K. is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); European Research Council Advanced Investigator Award (ERC-2021-ADG, ICD-Cancer, Grant No. 101052444), European Union Horizon 2020 Projects Oncobiome, Prevalung (grant No. 101095604) and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Immunolife; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. This work is supported by the Prism project funded by the Agence Nationale de la Recherche under grant number ANR-18-IBHU-0002. CACS was funded by MSD Avenir. MF is funded by SEERAVE Foundation and MERCK Foundation. LD and BR were supported by Philantropia at Gustave Roussy Foundation.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Gianmarco Piccinno
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Déborah Suissa
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Mélanie Bourgin
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
| | - Gerty Schreibelt
- Medical BioSciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
| | - Roxanne Birebent
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Marine Fidelle
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Cissé Sow
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
| | - Paolo Manghi
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michal Punčochář
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Asnicar
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Federica Pinto
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Safae Terrisse
- Oncology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Paris, France
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Damien Drubay
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Office of Biostatistics and Epidemiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Inserm, Université Paris-Saclay, CESP U1018, Oncostat, labeled Ligue Contre le Cancer, Villejuif, France
| | - Alexander M M Eggermont
- Princess Máxima Center and University Medical Center Utrecht, 3584 CS Utrecht, The Netherlands
- Comprehensive Cancer Center Munich, Technical University Munich & Ludwig Maximiliaan University, Munich, Germany
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France.
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France.
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Villejuif, France.
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Kalijn F Bol
- Medical BioSciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Medical BioSciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Ji C, Miao J, Zhao N, Dai Y, Yang J, Qu J, Zhu J, Zhao M. N-nitrosamines induced gender-dimorphic effects on infant rats at environmental levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169196. [PMID: 38097075 DOI: 10.1016/j.scitotenv.2023.169196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The safety of drinking water has always been a concern for people all over the world. N-nitrosamines (NAs), a kind of nitrogenous disinfection by-products (N-DBPs), are generally detected as a mixture in drinking water at home and abroad. Studies have shown that individual NAs posed strong carcinogenicity at high concentrations. However, health risks of NAs at environmental levels (concentrations in drinking water) are still unclear. Therefore, the potential health risks of environmentally relevant NAs exposure in drinking water needs to be conducted. In this study, blood biochemical analysis and metabolomics based on nuclear magnetic resonance (NMR) were performed to comprehensively investigate NAs induced metabolic disturbance in infant rats at environmental levels. Results of blood biochemical indices analysis indicated that AST in the serum of male rats in NAs-treated group exhibited a significant gender-specific difference. Multivariate statistics showed that two and eight significantly disturbed metabolic pathways were identified in the serum samples of NAs-treated male and female rats, respectively. In the urine samples of NAs-treated female rats, glycine, serine, and threonine metabolism pathway was significantly disturbed; while three significantly disturbed metabolic pathways were found in the urine of NAs-treated male rats. Finally, results of spearman correlation coefficients suggested that the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota (data derived from our published paper). Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management. ENVIRONMENTAL IMPLICATION: N-nitrosamines (NAs) are a kind of nitrogenous disinfection by-products (N-DBPs) generated during drinking water disinfection processes. Herein, health risks of NAs at environmental levels (concentrations in drinking water) are investigated using blood biochemical analysis and nuclear magnetic resonance (NMR)-based metabolomics. Results confirmed NAs induced gender-specific on the metabolism in rat and the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota. Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management.
Collapse
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiahui Miao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiawen Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Life Science, Taizhou University, Taizhou 318000, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
21
|
Li H, Wang XK, Tang M, Lei L, Li JR, Sun H, Jiang J, Dong B, Li HY, Jiang JD, Peng ZG. Bacteroides thetaiotaomicron ameliorates mouse hepatic steatosis through regulating gut microbial composition, gut-liver folate and unsaturated fatty acids metabolism. Gut Microbes 2024; 16:2304159. [PMID: 38277137 PMCID: PMC10824146 DOI: 10.1080/19490976.2024.2304159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Gut microbiota plays an essential role in the progression of nonalcoholic fatty liver disease (NAFLD), making the gut-liver axis a potential therapeutic strategy. Bacteroides genus, the enriched gut symbionts, has shown promise in treating fatty liver. However, further investigation is needed to identify specific beneficial Bacteroides strains for metabolic disorders in NAFLD and elucidate their underlying mechanisms. In this study, we observed a positive correlation between the abundance of Bacteroides thetaiotaomicron (B. theta) and the alleviation of metabolic syndrome in the early and end stages of NAFLD. Administration of B. theta to HFD-fed mice for 12 weeks reduced body weight and fat accumulation, decreased hyperlipidemia and insulin resistance, and prevented hepatic steatohepatitis and liver injury. Notably, B. theta did not affect these indicators in low-fat diet (LFD)-fed mice and exhibited good safety. Mechanistically, B. theta regulated gut microbial composition, characterized by a decreased Firmicutes/Bacteroidetes ratio in HFD-Fed mice. It also increased gut-liver folate levels and hepatic metabolites, alleviating metabolic dysfunction. Additionally, treatment with B. theta increased the proportion of polyunsaturated fatty acid in the mouse liver, offering a widely reported benefit for NAFLD improvement. In conclusion, this study provides evidence that B. theta ameliorates NAFLD by regulating gut microbial composition, enhancing gut-liver folate and unsaturated fatty acid metabolism, highlighting the therapeutic role of B. theta as a potential probiotic for NAFLD.
Collapse
Affiliation(s)
- Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Gu S, Qiao Y, Liu S, Yang S, Cong S, Wang S, Yu D, Wang W, Chai X. Frontiers and hotspots of adipose tissue and NAFLD: a bibliometric analysis from 2002 to 2022. Front Physiol 2023; 14:1278952. [PMID: 38187139 PMCID: PMC10768199 DOI: 10.3389/fphys.2023.1278952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Background: The annual incidence of non-alcoholic fatty liver disease (NAFLD) continues to rise steadily. In recent years, adipose tissue (AT) has gained recognition as a pivotal contributor to the pathogenesis of NAFLD. Employing bibliometric analysis, we examined literature concerning AT and NAFLD. Methods: Relevant literature on AT in NAFLD from 1980 to 2022 was extracted from the Web of Science Core Collection. These records were visualized using CiteSpace and VOSviewer regarding publications, countries/regions, institutions, authors, journals, references, and keywords. Results: Since 2002, a total of 3,330 papers have been included, exhibiting an annual surge in publications. Notably, the quality of publications is superior in the USA and Europe. Kenneth Cusi stands out as the author with the highest number of publications and H-index. Hepatology is the journal boasting the highest citation and H-index. The University of California System holds the highest centrality among institutions. References specifically delve into physiological processes associated with AT in NAFLD. Currently, lipid metabolism and inflammation constitute the principal research mechanisms in the AT-based regulation of NAFLD, with pertinent keywords including microRNA, T cell, hypoxia, sarcopenia, hepatokine, gut microbiota, and autophagy. The Mediterranean diet is among the most widely recommended dietary approaches for potential NAFLD treatment. Conclusion: This paper represents the inaugural bibliometric study on the effects of AT on NAFLD, offering valuable insights and directions for future research.
Collapse
Affiliation(s)
- Shuxiao Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfang Qiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Susu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangjie Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shibo Cong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sili Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Deshuai Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinlou Chai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Hizo GH, Rampelotto PH. The Role of Bifidobacterium in Liver Diseases: A Systematic Review of Next-Generation Sequencing Studies. Microorganisms 2023; 11:2999. [PMID: 38138143 PMCID: PMC10745637 DOI: 10.3390/microorganisms11122999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The physiopathology of liver diseases is complex and can be caused by various factors. Bifidobacterium is a bacterial genus commonly found in the human gut microbiome and has been shown to influence the development of different stages of liver diseases significantly. This study investigated the relationship between the Bifidobacterium genus and liver injury. In this work, we performed a systematic review in major databases using the key terms "Bifidobacterium", "ALD", "NAFLD", "NASH", "cirrhosis", and "HCC" to achieve our purpose. In total, 31 articles were selected for analysis. In particular, we focused on studies that used next-generation sequencing (NGS) technologies. The studies focused on assessing Bifidobacterium levels in the diseases and interventional aimed at examining the therapeutic potential of Bifidobacterium in the mentioned conditions. Overall, the abundance of Bifidobacterium was reduced in hepatic pathologies. Low levels of Bifidobacterium were associated with harmful biochemical and physiological parameters, as well as an adverse clinical outcome. However, interventional studies using different drugs and treatments were able to increase the abundance of the genus and improve clinical outcomes. These results strongly support the hypothesis that changes in the abundance of Bifidobacterium significantly influence both the pathophysiology of hepatic diseases and the related clinical outcomes. In addition, our critical assessment of the NGS methods and related statistical analyses employed in each study highlights concerns with the methods used to define the differential abundance of Bifidobacterium, including potential biases and the omission of relevant information.
Collapse
Affiliation(s)
- Gabriel Henrique Hizo
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-907, Brazil
| |
Collapse
|
24
|
Mouratidis I, Chantzi N, Khan U, Konnaris MA, Chan CSY, Mareboina M, Moeckel C, Georgakopoulos-Soares I. Frequentmers - a novel way to look at metagenomic next generation sequencing data and an application in detecting liver cirrhosis. BMC Genomics 2023; 24:768. [PMID: 38087204 PMCID: PMC10714505 DOI: 10.1186/s12864-023-09861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Early detection of human disease is associated with improved clinical outcomes. However, many diseases are often detected at an advanced, symptomatic stage where patients are past efficacious treatment periods and can result in less favorable outcomes. Therefore, methods that can accurately detect human disease at a presymptomatic stage are urgently needed. Here, we introduce "frequentmers"; short sequences that are specific and recurrently observed in either patient or healthy control samples, but not in both. We showcase the utility of frequentmers for the detection of liver cirrhosis using metagenomic Next Generation Sequencing data from stool samples of patients and controls. We develop classification models for the detection of liver cirrhosis and achieve an AUC score of 0.91 using ten-fold cross-validation. A small subset of 200 frequentmers can achieve comparable results in detecting liver cirrhosis. Finally, we identify the microbial organisms in liver cirrhosis samples, which are associated with the most predictive frequentmer biomarkers.
Collapse
Affiliation(s)
- Ioannis Mouratidis
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA.
| | - Nikol Chantzi
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Umair Khan
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Maxwell A Konnaris
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
- Department of Statistics, Penn State, University Park, PA, USA
- Huck Institutes of the Life Sciences, Penn State, University Park, PA, USA
| | - Candace S Y Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Manvita Mareboina
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Camille Moeckel
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
25
|
Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 2023; 24:1189-1204. [PMID: 37840104 DOI: 10.1007/s11154-023-09843-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It's also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world's population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota's potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai center of Thyroid diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
26
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
27
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
28
|
Liu R, Qian MP, Cui YY. Protein kinases: The key contributors in pathogenesis and treatment of nonalcoholic fatty liver disease-derived hepatocellular carcinoma. Metabolism 2023; 147:155665. [PMID: 37517794 DOI: 10.1016/j.metabol.2023.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Protein kinases (PKs), one of the largest protein families, can be further divided into different groups based on their substrate or structure and function. PKs are important signaling messengers in numerous life activities, including cell metabolism, proliferation, division, differentiation, senescence, death, and disease. Among PK-related diseases, nonalcoholic fatty liver disease (NAFLD) has been recognized as a major contributor to hepatocellular carcinoma (HCC) and liver transplantation. Unfortunately, NAFLD-derived HCC (NAFLD-HCC) has poor prognosis because it is typically accompanied by older age, multiple metabolic syndromes, obstacles in early-stage diagnosis, and limited licensed drugs for treatment. Accumulating evidence suggests that PKs are implicated in the pathogenic process of NAFLD-HCC, via aberrant metabolism, hypoxia, autophagy, hypoxia, gut microbiota dysbiosis, and/or immune cell rearrangement. The present review aims to summarize the latest research advances and emphasize the feasibility and effectiveness of therapeutic strategies that regulate the expression and activities of PKs. This might yield clinically significant effects and lead to the design of novel PK-targeting therapies. Furthermore, we discuss emerging PK-based strategies for the treatment of other malignant diseases similar to NAFLD-HCC.
Collapse
Affiliation(s)
- Rong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ming-Ping Qian
- Department of General Surgery, Suzhou First People's Hospital, Anhui 234099, China; Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ying-Yu Cui
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200331, China; Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200331, China; Key Laboratory of Arrhythmias of the Ministry of Education of China (Tongji University), Tongji University School of Medicine, Shanghai 200331, China.
| |
Collapse
|
29
|
Yang M, Wang JH, Shin JH, Lee D, Lee SN, Seo JG, Shin JH, Nam YD, Kim H, Sun X. Pharmaceutical efficacy of novel human-origin Faecalibacterium prausnitzii strains on high-fat-diet-induced obesity and associated metabolic disorders in mice. Front Endocrinol (Lausanne) 2023; 14:1220044. [PMID: 37711887 PMCID: PMC10497875 DOI: 10.3389/fendo.2023.1220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Obesity and related metabolic issues are a growing global health concern. Recently, the discovery of new probiotics with anti-obesity properties has gained interest. Methods In this study, four Faecalibacte-rium prausnitzii strains were isolated from healthy human feces and evaluated on a high-fat diet-induced mouse model for 12 weeks. Results The F. prausnitzii strains reduced body weight gain, liver and fat weights, and calorie intake while improving lipid and glucose metabolism in the liver and adipose tissue, as evidenced by regulating lipid metabolism-associated gene expression, including ACC1, FAS, SREBP1c, leptin, and adiponectin. Moreover, the F. prausnitzii strains inhibited low-grade inflammation, restored gut integrity, and ameliorated hepatic function and insulin resistance. Interestingly, the F. prausnitzii strains modulated gut and neural hormone secretion and reduced appetite by affecting the gut-brain axis. Supplementation with F. prausnitzii strains noticeably changed the gut microbiota composition. Discussion In summary, the novel isolated F. prausnitzii strains have therapeutic effects on obesity and associated metabolic disorders through modulation of the gut-brain axis. Additionally, the effectiveness of different strains might not be achieved through identical mechanisms. Therefore, the present findings provide a reliable clue for developing novel therapeutic probiotics against obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Meng Yang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Joo-Hyun Shin
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Xiaomin Sun
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Kallassy J, Gagnon E, Rosenberg D, Silbart LK, McManus SA. Strains of Faecalibacterium prausnitzii and its extracts reduce blood glucose levels, percent HbA1c, and improve glucose tolerance without causing hypoglycemic side effects in diabetic and prediabetic mice. BMJ Open Diabetes Res Care 2023; 11:11/3/e003101. [PMID: 37277225 DOI: 10.1136/bmjdrc-2022-003101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/20/2023] [Indexed: 06/07/2023] Open
Abstract
INTRODUCTION The commensal bacterium Faecalibacterium prausnitzii is a prominent member of the microbiome of animals and humans, and it plays an important role in several physiological processes. Numerous studies have correlated the reduction of F. prausnitzii abundance with many disease states, including irritable bowel syndrome, Crohn's disease, obesity, asthma, major depressive disorder, and metabolic diseases in humans. Studies have also correlated F. prausnitzii with diseases in humans involved in altered glucose metabolism, including diabetes. RESEARCH DESIGN AND METHODS The aim of this study was to investigate the effects of compositions derived from three strains of F. prausnitzii (coined FPZ) on glucose metabolism in diet-induced obese male C57BL/6J prediabetic and type 2 diabetic mice. The primary endpoints of these studies were measuring changes in fasting blood glucose, glucose tolerance (as measured by a glucose tolerance test), and percent hemoglobin A1c (HbA1c) with longer term treatment. Two placebo-controlled trials were carried out using both live cell FPZ and killed cell FPZ and extracts. Two additional placebo-controlled trials were carried out in non-diabetic mice and mice that previously had type 2 diabetes (T2D). RESULTS Both trials in prediabetic and diabetic mice revealed that peroral administration of live FPZ or extracts from FPZ lowered fasting blood glucose levels and improved glucose tolerance compared with control mice. A trial administering longer FPZ treatment also resulted in lowered percent HbA1c compared with control mice. Additionally, trials in non-diabetic mice treated with FPZ demonstrated that FPZ treatment does not lead to hypoglycemia. CONCLUSIONS The trial results have shown that treatment with different formulations of FPZ result in lower blood glucose levels, lower percent HbA1c, and improved glucose response in mice compared with control prediabetic/diabetic mice. FPZ is a promising candidate as an orally administered probiotic or postbiotic to manage and improve pre-diabetes and T2D.
Collapse
Affiliation(s)
| | | | | | - Lawrence K Silbart
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | |
Collapse
|
31
|
Li X, Du Y, Xue C, Kang X, Sun C, Peng H, Fang L, Han Y, Xu X, Zhao C. SIRT2 Deficiency Aggravates Diet-Induced Nonalcoholic Fatty Liver Disease through Modulating Gut Microbiota and Metabolites. Int J Mol Sci 2023; 24:8970. [PMID: 37240315 PMCID: PMC10219207 DOI: 10.3390/ijms24108970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chao Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Huanyan Peng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
| |
Collapse
|
32
|
Wen X, Liu H, Luo X, Lui L, Fan J, Xing Y, Wang J, Qiao X, Li N, Wang G. Supplementation of Lactobacillus plantarum ATCC14917 mitigates non-alcoholic fatty liver disease in high-fat-diet-fed rats. Front Microbiol 2023; 14:1146672. [PMID: 37266005 PMCID: PMC10229879 DOI: 10.3389/fmicb.2023.1146672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) have been increasing at an alarming rate worldwide. Many clinical studies have underlined the link between NAFLD and atherosclerosis. Our previous experiments have discovered that Lactobacillus (L.) plantarum ATCC14917 supplementation could decrease the progression of atherosclerotic lesion formation. In this study, we aimed to investigate the role of supplementation of L. plantarum ATCC14917 mitigates liver injury in rats fed with a high-fat diet (HFD, 45% kcal from fat). A total of 32 rats were randomly divided into four groups, including two intervention groups, who fed with HFD and administering either 1 × 107 or 1 × 109 colony forming units (CFU) of L. plantarum ATCC14917, the normal control group, and the HFD control group. The results showed that supplementation with low-dose and high-dose of L. plantarum ATCC14917 for 8 weeks could alleviate the body weight gain (p < 0.05), hepatic steatosis, and serum lipid metabolism (p < 0.05) in HFD-fed rats. Moreover, supplementation of L. plantarum ATCC 14917 decreased total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels (p < 0.05) in serum, and improved HFD-associated inflammation (p < 0.05). Furthermore, cecal contents were analyzed by high-throughput 16S ribosomal RNA sequencing. The results indicated that supplementation of L. plantarum ATCC 14917 could ameliorate HFD-induced gut dysbiosis. In summary, our findings suggest that supplementation of L. plantarum ATCC 14917 could mitigate NAFLD in rats, suggesting it may be considered as a probiotic agent for preventing HFD-induced obesity.
Collapse
Affiliation(s)
- Xingjian Wen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hejing Liu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoling Luo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Li Lui
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jiuyu Fan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yajing Xing
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jia Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xingfang Qiao
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Na Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Guixue Wang
- College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
33
|
Kunst C, Schmid S, Michalski M, Tümen D, Buttenschön J, Müller M, Gülow K. The Influence of Gut Microbiota on Oxidative Stress and the Immune System. Biomedicines 2023; 11:biomedicines11051388. [PMID: 37239059 DOI: 10.3390/biomedicines11051388] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gastrointestinal tract is home to a complex microbial community that plays an important role in the general well-being of the entire organism. The gut microbiota generates a variety of metabolites and thereby regulates many biological processes, such as the regulation of the immune system. In the gut, bacteria are in direct contact with the host. The major challenge here is to prevent unwanted inflammatory reactions on one hand and on the other hand to ensure that the immune system can be activated when pathogens invade. Here the REDOX equilibrium is of utmost importance. This REDOX equilibrium is controlled by the microbiota either directly or indirectly via bacterial-derived metabolites. A balanced microbiome sorts for a stable REDOX balance, whereas dysbiosis destabilizes this equilibrium. An imbalanced REDOX status directly affects the immune system by disrupting intracellular signaling and promoting inflammatory responses. Here we (i) focus on the most common reactive oxygen species (ROS) and (ii) define the transition from a balanced REDOX state to oxidative stress. Further, we (iii) describe the role of ROS in regulating the immune system and inflammatory responses. Thereafter, we (iv) examine the influence of microbiota on REDOX homeostasis and how shifts in pro- and anti-oxidative cellular conditions can suppress or promote immune responses or inflammation.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Marlen Michalski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Deniz Tümen
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Jonas Buttenschön
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| |
Collapse
|
34
|
Monserrat-Mesquida M, Bouzas C, Mascaró CM, Tejada S, Sureda A. Probiotics as Potential Therapy in the Management of Non-Alcoholic Fatty Liver Disease (NAFLD). FERMENTATION-BASEL 2023; 9:395. [DOI: 10.3390/fermentation9040395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, the prevalence of which has increased over the years. The management of this pathology is not clear, and a specific pharmacological drug that can treat NAFLD is not available. In this sense, efforts are focused on the potential use of compounds with a natural origin that can contribute to reversing hepatic steatosis. Supplementation with probiotics, live microorganisms, is a potential strategy for the management of NAFLD. Methods: In the present review, the available information on the potential therapeutic effects of probiotics in NAFLD, mainly in animal models and in some clinical trials, is summarized. Results: Studies carried out using animal models of NAFLD induced by a high-fat diet have shown the beneficial effects of probiotic supplementation in reducing liver steatosis and normalizing the blood lipid profile and liver enzyme activities. In addition, a decrease in lipogenesis and an increase in lipolysis have been observed, together with a reduction in the pro-oxidative and pro-inflammatory state and a normalization of intestinal dysbiosis. Clinical trials have reported a decrease in the serum transaminases and an improved lipid profile, as well as a reduction in inflammatory markers. Conclusions: In conclusion, probiotic supplementation can be used as a potential therapy for the management of NAFLD.
Collapse
Affiliation(s)
- Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Catalina M. Mascaró
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Tejada
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
35
|
Vallianou NG, Kounatidis D, Tsilingiris D, Panagopoulos F, Christodoulatos GS, Evangelopoulos A, Karampela I, Dalamaga M. The Role of Next-Generation Probiotics in Obesity and Obesity-Associated Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:ijms24076755. [PMID: 37047729 PMCID: PMC10095285 DOI: 10.3390/ijms24076755] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Obesity and obesity-associated disorders pose a major public health issue worldwide. Apart from conventional weight loss drugs, next-generation probiotics (NGPs) seem to be very promising as potential preventive and therapeutic agents against obesity. Candidate NGPs such as Akkermansia muciniphila, Faecalibacterium prausnitzii, Anaerobutyricum hallii, Bacteroides uniformis, Bacteroides coprocola, Parabacteroides distasonis, Parabacteroides goldsteinii, Hafnia alvei, Odoribacter laneus and Christensenella minuta have shown promise in preclinical models of obesity and obesity-associated disorders. Proposed mechanisms include the modulation of gut flora and amelioration of intestinal dysbiosis, improvement of intestinal barrier function, reduction in chronic low-grade inflammation and modulation of gut peptide secretion. Akkermansia muciniphila and Hafnia alvei have already been administered in overweight/obese patients with encouraging results. However, safety issues and strict regulations should be constantly implemented and updated. In this review, we aim to explore (1) current knowledge regarding NGPs; (2) their utility in obesity and obesity-associated disorders; (3) their safety profile; and (4) their therapeutic potential in individuals with overweight/obesity. More large-scale, multicentric and longitudinal studies are mandatory to explore their preventive and therapeutic potential against obesity and its related disorders.
Collapse
Affiliation(s)
- Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
- Department of Microbiology, Sismanogleio General Hospital, 1 Sismanogleiou Street, 15126 Athens, Greece
| | - Angelos Evangelopoulos
- Roche Hellas Diagnostics S.A., 18-20 Amarousiou-Chalandriou Street, 15125 Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
36
|
Shin JH, Lee Y, Song EJ, Lee D, Jang SY, Byeon HR, Hong MG, Lee SN, Kim HJ, Seo JG, Jun DW, Nam YD. Faecalibacterium prausnitzii prevents hepatic damage in a mouse model of NASH induced by a high-fructose high-fat diet. Front Microbiol 2023; 14:1123547. [PMID: 37007480 PMCID: PMC10060964 DOI: 10.3389/fmicb.2023.1123547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionNonalcoholic steatohepatitis (NASH) is an advanced nonalcoholic fatty liver disease characterized by chronic inflammation and fibrosis. A dysbiosis of the gut microbiota has been associated with the pathophysiology of NASH, and probiotics have proven helpful in its treatment and prevention. Although both traditional and next-generation probiotics have the potential to alleviate various diseases, studies that observe the therapeutic effect of next-generation probiotics on NASH are lacking. Therefore, we investigated whether a next-generation probiotic candidate, Faecalibacterium prausnitzii, contributed to the mitigation of NASH.MethodsIn this study, we conducted 16S rRNA sequencing analyses in patients with NASH and healthy controls. To test F. prausnitzii could alleviate NASH symptoms, we isolated four F. prausnitzii strains (EB-FPDK3, EB-FPDK9, EB-FPDK11, and EB-FPYYK1) from fecal samples collected from four healthy individuals. Mice were maintained on a high-fructose high-fat diet for 16 weeks to induce a NASH model and received oral administration of the bacterial strains. Changes in characteristic NASH phenotypes were assessed via oral glucose tolerance tests, biochemical assays, and histological analyses.Results16S rRNA sequencing analyses confirmed that the relative abundance of F. prausnitzii reduced significantly in patients with NASH compared to healthy controls (p < 0.05). In the NASH mice, F. prausnitzii supplementation improved glucose homeostasis, prevented hepatic lipid accumulation, curbed liver damage and fibrosis, restored damaged gut barrier functions, and alleviated hepatic steatosis and liver inflammation. Furthermore, real-time PCR assays documented that the four F. prausnitzii strains regulated the expression of genes related to hepatic steatosis in these mice.DiscussionOur study, therefore, confirms that the administration of F. prausnitzii bacteria can alleviate NASH symptoms. We propose that F. prausnitzii has the potential to contribute to the next-generation probiotic treatment of NASH.
Collapse
Affiliation(s)
- Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoonmi Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Seo-Yul Jang
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hye Rim Byeon
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Moon-Gi Hong
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
- *Correspondence: Jae-Gu Seo,
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University, College of Medicine, Seoul, Republic of Korea
- Dae Won Jun,
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Young-Do Nam,
| |
Collapse
|
37
|
Ney LM, Wipplinger M, Grossmann M, Engert N, Wegner VD, Mosig AS. Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol 2023; 13:230014. [PMID: 36977462 PMCID: PMC10049789 DOI: 10.1098/rsob.230014] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The human intestinal microbiome substantially affects human health and resistance to infections in its dynamic composition and varying release of microbial-derived metabolites. Short-chain fatty acids (SCFA) produced by commensal bacteria through fermentation of indigestible fibres are considered key regulators in orchestrating the host immune response to microbial colonization by regulating phagocytosis, chemokine and central signalling pathways of cell growth and apoptosis, thereby shaping the composition and functionality of the intestinal epithelial barrier. Although research of the last decades provided valuable insight into the pleiotropic functions of SCFAs and their capability to maintain human health, mechanistic details on how SCFAs act across different cell types and other organs are not fully understood. In this review, we provide an overview of the various functions of SCFAs in regulating cellular metabolism, emphasizing the orchestration of the immune response along the gut-brain, the gut-lung and the gut-liver axes. We discuss their potential pharmacological use in inflammatory diseases and infections and highlight new options of relevant human three-dimensional organ models to investigate and validate their biological functions in more detail.
Collapse
Affiliation(s)
- Lisa-Marie Ney
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Maximilian Wipplinger
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Martha Grossmann
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Nicole Engert
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
38
|
Guo J, Wang P, Cui Y, Hu X, Chen F, Ma C. Protective Effects of Hydroxyphenyl Propionic Acids on Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Nutrients 2023; 15:nu15041043. [PMID: 36839401 PMCID: PMC9959022 DOI: 10.3390/nu15041043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Gut microbiota imbalances lead to the pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is primarily accompanied by hepatic steatosis. Hydroxyphenyl propionic acids (HPP) have shown great potential in inhibiting lipid accumulation but their protective effects concerning NAFLD and intestinal microbiota have remained unclear. In this paper, we investigated the efficacies of 3-HPP and 4-HPP on hepatic steatosis and gut flora in mice fed a high-fat diet (HFD). We found that 3-HPP and 4-HPP administration decreased body weight and liver index, ameliorated dyslipidemia, and alleviated hepatic steatosis. Furthermore, 3-HPP and 4-HPP enhanced the multiformity of gut microbiota; improved the relative abundance of GCA-900066575, unidentified_Lachnospiraceae, and Lachnospiraceae_UCG-006 at genus level; increased concentration of acetic acid, propionic acid and butanoic acid in faeces; and reduced systemic endotoxin levels in NAFLD mice. Moreover, 4-HPP upregulated the relative abundance of genera Rikenella and downregulated the relative abundance of Faecalibaculum. Furthermore, 3-HPP and 4-HPP regulated lipid metabolism and ameliorated gut dysbiosis in NAFLD mice and 4-HPP was more effective than 3-HPP.
Collapse
Affiliation(s)
- Jingling Guo
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pan Wang
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yifan Cui
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Ma
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-158-4777-3782
| |
Collapse
|
39
|
Zhu M, Wang X, Wang K, Zhao Z, Dang Y, Ji G, Li F, Zhou W. Lingguizhugan decoction improves non-alcoholic steatohepatitis partially by modulating gut microbiota and correlated metabolites. Front Cell Infect Microbiol 2023; 13:1066053. [PMID: 36779187 PMCID: PMC9908757 DOI: 10.3389/fcimb.2023.1066053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Background Lingguizhugan decoction is a traditional Chinese medicine prescription that has been used to improve non-alcoholic fatty liver disease and its progressive form, non-alcoholic steatohepatitis (NASH). However, the anti-NASH effects and underlying mechanisms of Lingguizhugan decoction remain unclear. Methods Male Sprague-Dawley rats were fed a methionine- and choline-deficient (MCD) diet to induce NASH, and then given Lingguizhugan decoction orally for four weeks. NASH indexes were evaluated by histopathological analysis and biochemical parameters including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver triglycerides (TG), etc. Fecal samples of rats were subjected to profile the changes of gut microbiota and metabolites using 16S rRNA sequencing and ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS). Bioinformatics was used to identify Lingguizhugan decoction reversed candidates, and Spearman's correlation analysis was performed to uncover the relationship among gut microbiota, fecal metabolites, and NASH indexes. Results Four-week Lingguizhugan decoction treatment ameliorated MCD diet-induced NASH features, as evidenced by improved hepatic steatosis and inflammation, as well as decreased serum AST and ALT levels. Besides, Lingguizhugan decoction partially restored the changes in gut microbial community composition in NASH rats. Meanwhile, the relative abundance of 26 genera was significantly changed in NASH rats, and 11 genera (such as odoribacter, Ruminococcus_1, Ruminococcaceae_UCG-004, etc.) were identified as significantly reversed by Lingguizhugan decoction. Additionally, a total of 99 metabolites were significantly altered in NASH rats, and 57 metabolites (such as TDCA, Glutamic acid, Isocaproic acid, etc.) enriched in different pathways were reversed by Lingguizhugan decoction. Furthermore, Spearman's correlation analyses revealed that most of the 57 metabolites were significantly correlated with 11 genera and NASH indexes. Conclusion Lingguizhugan decoction may exert protective effects on NASH partially by modulating gut microbiota and correlated metabolites.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Wang
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqiang Zhao
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenghua Li
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
40
|
Jiang X, Yang Q, Qu H, Chen Y, Zhu S. Endogenous n-3 PUFAs Improve Non-Alcoholic Fatty Liver Disease through FFAR4-Mediated Gut-Liver Crosstalk. Nutrients 2023; 15:nu15030586. [PMID: 36771292 PMCID: PMC9919706 DOI: 10.3390/nu15030586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The gut-liver axis plays a key role in the development and progression of non-alcoholic fatty liver disease (NAFLD). Due to the complexity and incomplete understanding of the cross-talk between the gut and liver, effective therapeutic targets are largely unknown. Free fatty acid receptors (FFARs) may bridge the cross-talk between the gut and liver. FFAR4 has received considerable attention due to its important role in lipid metabolism. However, the role of FFAR4 in this cross talk in NAFLD remains unclear. In this study, mice with high endogenous n-3 PUFAs but FFAR4 deficiency were generated by crossbreeding Fat-1 and FFAR4 knockout mice. FFAR4 deficiency blocked the protective effects of high endogenous n-3 PUFAs on intestinal barrier dysfunction and hepatic steatosis. In addition, FFAR4 deficiency decreased gut microbiota diversity and enriched Rikenella, Anaerotruncus, and Enterococcus, and reduced Dubosiella, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Coriobacteriaceae UCG-002, Faecalibaculum, Ruminococcaceae UCG-009, and Akkermansia. Notably, FFAR4 deficiency co-regulated pantothenic acid and CoA biosynthesis, β-alanine metabolism, and sphingolipid metabolism pathways in the gut and liver, potentially associated with the aggravation of NAFLD. Together, the beneficial effects of n-3 PUFAs on the gut and liver were mediated by FFAR4, providing insights on the role of FFAR4 in the treatment of NAFLD through the gut-liver axis.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
41
|
Huang J, Xu Y, Wang M, Yu S, Li Y, Tian H, Zhang C, Li H. Enterococcus faecium R-026 combined with Bacillus subtilis R-179 alleviate hypercholesterolemia and modulate the gut microbiota in C57BL/6 mice. FEMS Microbiol Lett 2023; 370:fnad118. [PMID: 37960899 DOI: 10.1093/femsle/fnad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Probiotics have been demonstrated to lower total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in individuals with mild hypercholesterolemia. Our previous study found that intervention with Bacillus subtilis R-179 and Enterococcus faecium R-026, well-known probiotics, improved obesity-associated dyslipidemia through ameliorating the gut microbiota, but similar studies on hypercholesterolemia have not been reported to date. Here, we investigated the therapeutic effect of live combined B. subtilis R-179 and E. faecium R-026 (LCBE) in a C57BL/6 mouse model of hypercholesterolemia. A total of 40 mice were administered with a high-cholesterol diet (containing 1.2% cholesterol) to establish a state of hypercholesterolemia for 4 weeks. Then, mice were divided into one model group (group M) and three treatment groups (n = 10 per group), which were administered with LCBE at 0.023 g/mouse/day (group L) or 0.230 g/mouse/day (group H), or atorvastatin 0.010 g/kg/day (group A), for 5 weeks while on a high-cholesterol diet. LCBE at high doses significantly alleviated the symptoms of group M and reduced serum TC, LDL-C, and lipopolysaccharide (LPS). LCBE improved liver steatosis and adipocyte enlargement caused by a high-cholesterol diet. In addition, the administration of LCBE regulated the change in gut microbiota and diversity (Shannon index). Compared with group M, the relative abundance of Actinobacteriota, Colidextribacter, and Dubosiella dramatically decreased in the treatment groups, which were positively correlated with serum TC and LPS. These findings indicated that the mechanism of action of LCBE in treating hypercholesterolemia may be modulation of the gut microbiota. In conclusion, LCBE ameliorated lipid accumulation, reduced inflammation, and alleviated the gut microbiota imbalance in hypercholesterolemic mice. These findings support the probiotic role of LCBE as a clinical candidate for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China
| | - Yafang Xu
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| | - Minghao Wang
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| | - Shu Yu
- Dalian Women and Children Medical Center (Group), 116033, Dalian, China
| | - Yixuan Li
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| | - Haoxin Tian
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| | - Caihua Zhang
- Department of Pathophysiology, Dalian Medical University, 116044, Dalia, China
| | - Huajun Li
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| |
Collapse
|
42
|
Du T, Xiang L, Zhang J, Yang C, Zhao W, Li J, Zhou Y, Ma L. Vitamin D improves hepatic steatosis in NAFLD via regulation of fatty acid uptake and β-oxidation. Front Endocrinol (Lausanne) 2023; 14:1138078. [PMID: 37033263 PMCID: PMC10074590 DOI: 10.3389/fendo.2023.1138078] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION The study aimed to explore the association of serum 25(OH)D3 and hepatic steatosis in non-alcoholic fatty liver disease (NAFLD) patients and to determine whether the effect of vitamin D (VD) is mediated by activation of the peroxisome proliferator-activated receptor α (PPARα) pathway. METHODS The study contained a case-control study, in vivo and in vitro experiments. A case-control study was conducted to compare serum parameters between NAFLD patients and controls and to evaluate the association of 25(OH)D3 and NAFLD. In vivo study, male Wistar rats were randomly divided into control and model groups, fed a standard chow diet and a high-fat diet (HFD), respectively, for 7 weeks to generate an NAFLD model. Then, the rats were treated with VD and a PPARα antagonist (MK886) for 7 weeks. Tissue and serum were collected and assessed by biochemical assays, morphological analysis, histological analysis, and western blot analysis. In vitro, HepG2 cells were incubated with oleic acid (OA) to induce steatosis, which was evaluated by staining. HepG2 cells were pretreated with MK886 followed by calcitriol treatment, and differences in lipid metabolism-related proteins were detected by western blot. RESULTS NAFLD patients were characterized by impaired liver function, dyslipidemia, and insulin resistance. Serum 25(OH)D3 was negatively associated with alanine aminotransferase (ALT) in NAFLD. VD deficiency was a risk factor for patients with no advanced fibrosis. Adequate VD status (25(OH)D3 >20 ng/mL) had a protective effect in patients after adjustment for confounding variables. NAFLD rats showed hyperlipidemia with severe hepatic steatosis, systematic inflammation, and lower serum 25(OH)D3. VD treatment ameliorated hepatic steatosis both in NAFLD rats and OA-induced HepG2 cells. Further, MK886 inhibited the anti-steatosis effect of VD. CONCLUSION The study revealed that an adequate VD level may act as a protective factor in NAFLD and that VD may alleviate hepatic steatosis via the PPARα signaling pathway.
Collapse
Affiliation(s)
- Tingwan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Lian Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jingjing Zhang
- Department of Clinical Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunmei Yang
- Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenxin Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jialu Li
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Southwest Medical University, Luzhou, China
- *Correspondence: Yong Zhou, ; Ling Ma,
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
- *Correspondence: Yong Zhou, ; Ling Ma,
| |
Collapse
|
43
|
Wang Y, Wang Z, Wan Y, Jin F, Shi X, Xing Z, Tian B, Li B. Assessing the in vivo ameliorative effects of Lactobacillus acidophilus KLDS1.0901 for induced non-alcoholic fatty liver disease treatment. Front Nutr 2023; 10:1147423. [PMID: 37020807 PMCID: PMC10067668 DOI: 10.3389/fnut.2023.1147423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 04/07/2023] Open
Abstract
Reputed as a significant metabolic disorder, non-alcoholic fatty liver disease (NAFLD) is characterized by high-fat deposits in the liver and causes substantial economic challenges to any country's workforce. Previous studies have indicated that some lactic acid bacteria may effectively prevent or treat NAFLD. Overall, L. acidophilus KLDS1.0901 protected against HFD-induced NAFLD by improving liver characteristics and modulating microbiota composition, and thus could be a candidate for improving NAFLD. This study aimed to assess the protective effects of L. acidophilus KLDS1.0901 on a high-fat diet(HFD)-induced NAFLD. First, hepatic lipid profile and histological alterations were determined to study whether L. acidophilus KLDS1.0901 could ameliorate NAFLD. Then, the intestinal permeability and gut barrier were explored. Finally, gut microbiota was analyzed to elucidate the mechanism from the insights of the gut-liver axis. The results showed that Lactobacillus KLDS1.0901 administration significantly decreased body weight, Lee's index body, fat rate, and liver index. L. acidophilus KLDS1.0901 administration significantly improved lipid profiles by decreasing the hepatic levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) and by increasing the high-density lipoprotein cholesterol (HDL-C) levels. A conspicuous decrease of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum was observed after L. acidophilus KLDS1.0901 administration. Meanwhile, the H&E and Oil Red O-stained staining showed that L. acidophilus KLDS1.0901 significantly reduced liver lipid accumulation of HFD-fed mice by decreasing the NAS score and lipid area per total area. Our results showed that L. acidophilus KLDS1.0901 administration decreased the interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) concentrations accompanied by the increase of interleukin-10 (IL-10). L. acidophilus KLDS1.0901 administration could improve the intestinal barrier function by upregulating the mRNA levels of occludin, claudin-1, ZO-1, and Muc-2, which were coupled to the decreases of the concentration of LPS and D-lactic acid. Notably, L. acidophilus KLDS1.0901 administration modulated the gut microbiota to a near-normal pattern. Hence, our results suggested that L. acidophilus KLDS1.0901 can be used as a candidate to ameliorate NAFLD.
Collapse
Affiliation(s)
- Yanbo Wang
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zengbo Wang
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yang Wan
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Furong Jin
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaodan Shi
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhishuang Xing
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Bo Tian
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Bo Tian
| | - Bailiang Li
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Bailiang Li
| |
Collapse
|