1
|
Aït-Kaddour A, Hassoun A, Tarchi I, Loudiyi M, Boukria O, Cahyana Y, Ozogul F, Khwaldia K. Transforming plant-based waste and by-products into valuable products using various "Food Industry 4.0" enabling technologies: A literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176872. [PMID: 39414050 DOI: 10.1016/j.scitotenv.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The last several years have seen unprecedented strain on food systems as a result of pandemics, climate change, population growth, and urbanization. Thus, academic and scientific communities now view global food security as a critical issue. However, food loss and waste are a major challenge when adopting food security and sustainability strategies, since a large proportion of food is lost or wasted along the food supply chain. In order to use resources efficiently and enhance food security and sustainability, food waste and by-products must be reduced and properly valorized. Plant-based food production generates various by-products which are generally rich in nutrients and bioactive compounds. Emerging technologies have been effectively employed to extract these valuable compounds with health benefits. Recently, Industry 4.0 technologies such as artificial intelligence, the Internet of Things, blockchain, robotics, smart sensors, 3D printing, and digital twins have a great deal of potential for waste reduction and by-products valorization in food industry. Reducing food waste not only benefits the environment, but also reduces greenhouse gas emissions and thus contributes to sustainable resource management. This review provides up-to-date information on the potential of Industry 4.0 for converting plant-based waste and by-products into valuable products. Recent studies showed that innovations in Industry 4.0 provide attractive opportunities to increase the effectiveness of manufacturing operations and improve food quality, safety and traceability. By leveraging Food Industry 4.0, companies can transform plant-based waste and by-products into valuable products and contribute to a more sustainable and efficient food production system.
Collapse
Affiliation(s)
- Abderrahmane Aït-Kaddour
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, F-63370 Lempdes, France; Laboratory of Food Chemistry, Department of Food Technology, Universitas Padjadjaran, Bandung, Indonesia.
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), 62000 Arras, France
| | - Inès Tarchi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, F-63370 Lempdes, France
| | - Mohammed Loudiyi
- Groupe d'Etude et de contrôle des Variétés Et des Semences (GEVES), 25 Rue Georges Morel, 49070 Beaucouzé, France
| | - Oumayma Boukria
- Applied Organic Chemistry Laboratory, Sciences and Techniques Faculty, Sidi Mohamed Ben Abdellah University, BP 2202 route d'Immouzer, Fes, Morocco
| | - Yana Cahyana
- Laboratory of Food Chemistry, Department of Food Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Biotech Pole, Sidi Thabet 2020, Tunisia
| |
Collapse
|
2
|
Bamigbade GB, Oyelami OI, Babalola OO, Adewolu A, Omemu AM, Ogunsanya TF, Sanusi JF, Daniel OM. An updated comprehensive review on waste valorization: Informetric analysis, current insights and future perspectives on cereal waste and byproduct utilization for sustainable industrial applications. BIORESOURCE TECHNOLOGY 2024:131868. [PMID: 39581479 DOI: 10.1016/j.biortech.2024.131868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Cereal crops have been integral to human sustenance since the Neolithic era which have earned significant attention as staple foods. The year-round cultivation and consumption of cereal-based products have led to the escalating global production of cereals and a rise in industrial processing which results in significant waste generation. These wastes contain high-value nutrients such as carbohydrates, proteins, and lipids. Due to their dense nutritional values, there is a need to link the diverse array of nutrients in major cereal wastes and by-products to their functionalities and relevant industrial applications. This will not only promote sustainable waste management but also economic stability. Existing studies on cereal research were investigated using informetric analysis to provide a quantitative outlook and identify key trends, research priorities, and gaps in cereal studies. Overall, this review presents a comprehensive update on the past, present, and future of sustainable cereal waste valorization, highlighting previous studies and providing insights for future exploration of these biowastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates; Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria.
| | - Oluwaseun Isaac Oyelami
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa.
| | - Abiodun Adewolu
- Department of Chemistry and Biochemistry, Chemical Science Laboratory, Florida State University, Tallahassee, FL 32306, USA
| | - Adebukunola Mobolaji Omemu
- Department of Hospitality and Tourism Management, College of Food Sciences and Human Ecology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Tobiloba Felix Ogunsanya
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| | - Jadesola Fawzhia Sanusi
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| | - Olujimi Makanjuola Daniel
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| |
Collapse
|
3
|
Ficco DBM, Petroni K, Mistura L, D'Addezio L. Polyphenols in Cereals: State of the Art of Available Information and Its Potential Use in Epidemiological Studies. Nutrients 2024; 16:2155. [PMID: 38999902 PMCID: PMC11243113 DOI: 10.3390/nu16132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Cereals are the basis of much of the world's daily diet. Recently, there has been considerable interest in the beneficial properties of wholegrains due to their content of phytochemicals, particularly polyphenols. Despite this, the existing data on polyphenolic composition of cereal-based foods reported in the most comprehensive databases are still not updated. Many cereal-based foods and phenolic compounds are missing, including pigmented ones. Observational epidemiological studies reporting the intake of polyphenols from cereals are limited and inconsistent, although experimental studies suggest a protective role for dietary polyphenols against cardiovascular disease, diabetes, and cancer. Estimating polyphenol intake is complex because of the large number of compounds present in foods and the many factors that affect their levels, such as plant variety, harvest season, food processing and cooking, making it difficult matching consumption data with data on food composition. Further, it should be taken into account that food composition tables and consumed foods are categorized in different ways. The present work provides an overview of the available data on polyphenols content reported in several existing databases, in terms of presence, missing and no data, and discusses the strengths and weaknesses of methods for assessing cereal polyphenol consumption. Furthermore, this review suggests a greater need for the inclusion of most up-to-date cereal food composition data and for the harmonization of standardized procedures in collecting cereal-based food data and adequate assessment tools for dietary intake.
Collapse
Affiliation(s)
- Donatella Bianca Maria Ficco
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)-Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 m 25200, 71122 Foggia, Italy
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Lorenza Mistura
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)-Centro di Ricerca Alimenti e Nutrizione, Via Ardeatina 546, 00178 Roma, Italy
| | - Laura D'Addezio
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)-Centro di Ricerca Alimenti e Nutrizione, Via Ardeatina 546, 00178 Roma, Italy
| |
Collapse
|
4
|
Wang X, Cao L, Tang J, Deng J, Hao E, Bai G, Tang PL, Yang J, Li H, Yao L, He C, Hou X. Research on the Mechanism and Material Basis of Corn ( Zea mays L.) Waste Regulating Dyslipidemia. Pharmaceuticals (Basel) 2024; 17:868. [PMID: 39065719 PMCID: PMC11279488 DOI: 10.3390/ph17070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Corn (Zea mays L.) is an essential gramineous food crop. Traditionally, corn wastes have primarily been used in feed, harmless processing, and industrial applications. Except for corn silk, these wastes have had limited medicinal uses. However, in recent years, scholars have increasingly studied the medicinal value of corn wastes, including corn silk, bracts, husks, stalks, leaves, and cobs. Hyperlipidemia, characterized by abnormal lipid and/or lipoprotein levels in the blood, is the most common form of dyslipidemia today. It is a significant risk factor for atherosclerosis and can lead to cardiovascular and cerebrovascular diseases if severe. According to the authors' literature survey, corn wastes play a promising role in regulating glucose and lipid metabolism. This article reviews the mechanisms and material basis of six different corn wastes in regulating dyslipidemia, aiming to provide a foundation for the research and development of these substances.
Collapse
Affiliation(s)
- Xiaodong Wang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Lewei Cao
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Jiajun Tang
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Pei Ling Tang
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur 50250, Malaysia
| | - Jieyi Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Lihao Yao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Cuiwei He
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530011, China
| |
Collapse
|
5
|
Liu X, Xie J, Jacquet N, Blecker C. Valorization of Grain and Oil By-Products with Special Focus on Hemicellulose Modification. Polymers (Basel) 2024; 16:1750. [PMID: 38932097 PMCID: PMC11207775 DOI: 10.3390/polym16121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Hemicellulose is one of the most important natural polysaccharides in nature. Hemicellulose from different sources varies in chemical composition and structure, which in turn affects the modification effects and industrial applications. Grain and oil by-products (GOBPs) are important raw materials for hemicellulose. This article reviews the modification methods of hemicellulose in GOBPs. The effects of chemical and physical modification methods on the properties of GOBP hemicellulose biomaterials are evaluated. The potential applications of modified GOBP hemicellulose are discussed, including its use in film production, hydrogel formation, three-dimensional (3D) printing materials, and adsorbents for environmental remediation. The limitations and future recommendations are also proposed to provide theoretical foundations and technical support for the efficient utilization of these by-products.
Collapse
Affiliation(s)
| | | | - Nicolas Jacquet
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2B, B-5030 Gembloux, Belgium; (X.L.); (J.X.)
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2B, B-5030 Gembloux, Belgium; (X.L.); (J.X.)
| |
Collapse
|
6
|
Yılmaz B, Sırbu A, Altıntaş Başar HB, Goksen G, Chabı IB, Kumagaı H, Ozogul F. Potential roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes: A review of the current knowledge. Crit Rev Food Sci Nutr 2023:1-18. [PMID: 38148641 DOI: 10.1080/10408398.2023.2292790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Diabetes is one of the most common non-communicable diseases in both developed and underdeveloped countries with a 9.3% prevalence. Unhealthy diets and sedentary lifestyles are among the most common reasons for type 2 diabetes mellitus (T2DM). Diet plays a crucial role in both the etiology and treatment of T2DM. There are several recommendations regarding the carbohydrate intake of patients with T2DM. One of them is about reducing the total carbohydrate intake and/or changing the type of carbohydrate to reduce the glycaemic index. Cereals are good sources of carbohydrates in the diet with a significant amount of soluble and non-soluble fiber content. Apart from fiber, it has been shown that the bioactive compounds present in cereals such as proteins, phenolic compounds, carotenoids, and tocols have beneficial impacts in the prevention and treatment of T2DM. Moreover, cereal by-products especially the by-products of milling processes, which are bran and germ, have been reported to have anti-diabetic activities mainly because of their fiber and polyphenols content. Considering the potential functions of cereals in patients with T2DM, this review focuses on the roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Birsen Yılmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | - Alexandrina Sırbu
- FMMAE Ramnicu Valcea, Constantin Brancoveanu University of Pitesti, Valcea, Romania
| | | | - Gülden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Ifagbémi Bienvenue Chabı
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Jericho Cotonou, Benin
| | - Hitomi Kumagaı
- Nihon University College of Bioresource Sciences Graduate School of Bioresource Sciences, Fujisawa, Japan
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkiye
| |
Collapse
|
7
|
Colombo R, Moretto G, Barberis M, Frosi I, Papetti A. Rice Byproduct Compounds: From Green Extraction to Antioxidant Properties. Antioxidants (Basel) 2023; 13:35. [PMID: 38247461 PMCID: PMC10812773 DOI: 10.3390/antiox13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Currently, rice (Oryza sativa L.) production and consumption is increasing worldwide, and many efforts to decrease the substantial impact of its byproducts are needed. In recent years, the interest in utilizing rice kernels, husk, bran, and germ for the recovery of different molecules, from catalysts (to produce biodiesel) to bioactive compounds, has grown. In fact, rice byproducts are rich in secondary metabolites (phenolic compounds, flavonoids, and tocopherols) with different types of bioactivity, mainly antioxidant, antimicrobial, antidiabetic, and anti-inflammatory, which make them useful as functional ingredients. In this review, we focus our attention on the recovery of antioxidant compounds from rice byproducts by using innovative green techniques that can overcome the limitations of traditional extraction processes, such as their environmental and economic impact. In addition, traditional assays and more innovative methodologies to evaluate the antioxidant activity are discussed. Finally, the possible molecular mechanisms of action of the rice byproduct antioxidant compounds (phenolic acids, flavonoids, γ-oryzanol, and vitamin E) are discussed as well. In the future, it is expected that rice byproduct antioxidants will be important food ingredients that reduce the risk of the development of several human disorders involving oxidative stress, such as metabolic diseases, inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Raffaella Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Giulia Moretto
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Marta Barberis
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Ilaria Frosi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
- Center for Colloid and Surface Science (C.S.G.I.), Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
8
|
Danciu CA, Tulbure A, Stanciu MA, Antonie I, Capatana C, Zerbeș MV, Giurea R, Rada EC. Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing. Foods 2023; 12:3770. [PMID: 37893664 PMCID: PMC10606821 DOI: 10.3390/foods12203770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In an increasingly resource-constrained era, using waste and by-products from grain processing has a wide appeal. This is due to the nutritive value and economic aspects of this process and due to its compatibility with the trend towards more sustainable food systems. Following the fundamentals of circular economy, a current need is the effective utilization of grain waste and by-products for conversion into value-added products in the food industry. The aim of this study is twofold: (1) using bibliometrics and the literature found in various databases, we aim to understand the progress of valorizing grain waste and by-products in human nutrition. The literature within various databases, namely, Google Scholar, Web of Science, and Elsevier Scopus, has been evaluated for its merits and values. (2) We aim to explore knowledge-based strategies by reviewing the literature concerning the possible use of grain waste and by-products for the food processing industry, reducing the burden on virgin raw materials. The review allowed us to unlock the latest advances in upcycling side streams and waste from the grain processing industry.
Collapse
Affiliation(s)
- Cristina-Anca Danciu
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Anca Tulbure
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Mirela-Aurora Stanciu
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Iuliana Antonie
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Ciprian Capatana
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Mihai Victor Zerbeș
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 4 Emil Cioran Street, 550025 Sibiu, Romania; (M.V.Z.); (R.G.)
| | - Ramona Giurea
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 4 Emil Cioran Street, 550025 Sibiu, Romania; (M.V.Z.); (R.G.)
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, University of Insubria, 46 Via G.B. Vico, 21100 Varese, Italy;
| |
Collapse
|
9
|
García-Castro A, Román-Gutiérrez AD, Castañeda-Ovando A, Guzmán-Ortiz FA. Total Phenols and Flavonoids in Germinated Barley Using Different Solvents. Chem Biodivers 2023; 20:e202300617. [PMID: 37547995 DOI: 10.1002/cbdv.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Sprouts are a source of secondary metabolites as phenolic compounds. Germination and the use of solvents can affect their content. The aim of this work was to identify the total content of phenols and flavonoids in ungerminated and germinated (3, 5, and 7 days) Esmeralda and Perla barley. Different solvents (water, 50 % acetone, 80 % methanol, 80 % ethanol) were used to recover total phenols and flavonoids. The 7-day germination proved to be ideal for total phenol and flavonoid obtention from Esmeralda barley and the highest total phenol and flavonoid content in Perla variety was observed at 5 and 7 days of germination, respectively. Methanol and ethanol (80 %) yielded the highest extraction percentage of total phenols; 50 % acetone recovered the highest flavonoid concentrations in Esmeralda barley and 80 % methanol in Perla barley. The highest total phenol concentration was obtained from Perla samples at 13.60 mg GAE/g, and the highest total flavonoids were observed in Esmeralda barley at 1.73 mg QE/g. A high correlation was found between the concentration of phenols (0.995) and total flavonoids (0.780) with the radicle size in the Esmeralda samples.
Collapse
Affiliation(s)
- Abigail García-Castro
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo, 42184, México
| | - Alma Delia Román-Gutiérrez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo, 42184, México
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo, 42184, México
| | - Fabiola Araceli Guzmán-Ortiz
- CONAHCyT, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo, 42184, México
| |
Collapse
|
10
|
Hadidi M, Garcia SR, Ziogkas D, McClements DJ, Moreno A. Cereal bran proteins: recent advances in extraction, properties, and applications. Crit Rev Food Sci Nutr 2023; 64:10583-10607. [PMID: 37366171 DOI: 10.1080/10408398.2023.2226730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The projected global population is expected to reach around 9.7 billion by 2050, indicating a greater demand for proteins in the human diet. Cereal bran proteins (CBPs) have been identified as high-quality proteins, with potential applications in both the food and pharmaceutical industries. In 2020, global cereal grain production was 2.1 billion metric tonnes, including wheat, rice, corn, millet, barley, and oats. Cereal bran, obtained through milling, made up 10-20% of total cereal grain production, varying by grain type and milling degree. In this article, the molecular composition and nutritional value of CBPs are summarized, and recent advances in their extraction and purification are discussed. The functional properties of CBPs are then reviewed, including their solubility, binding, emulsifying, foaming, gelling, and thermal properties. Finally, current challenges to the application of CBPs in foods are highlighted, such as the presence of antinutritional factors, low digestibility, and allergenicity, as well as potential strategies to improve the nutritional and functional properties by overcoming these challenges. CBPs exhibit nutritional and functional attributes that are similar to those of other widely used plant-based protein sources. Thus, CBPs have considerable potential for use as ingredients in food, pharmaceutical, and other products.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Samuel Rodriguez Garcia
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | | | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
11
|
Jaouhari Y, Travaglia F, Giovannelli L, Picco A, Oz E, Oz F, Bordiga M. From Industrial Food Waste to Bioactive Ingredients: A Review on the Sustainable Management and Transformation of Plant-Derived Food Waste. Foods 2023; 12:2183. [PMID: 37297428 PMCID: PMC10252586 DOI: 10.3390/foods12112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
According to the United Nations, approximately one-third of the food produced for human consumption is wasted. The actual linear "Take-Make-Dispose" model is nowadays obsolete and uneconomical for societies and the environment, while circular thinking in production systems and its effective adoption offers new opportunities and benefits. Following the "Waste Framework Directive" (2008/98/CE), the European Green Deal, and the actual Circular Economy Action Plan, when prevention is not possible, recovering an unavoidable food waste as a by-product represents a most promising pathway. Using last year's by-products, which are rich in nutrients and bioactive compounds, such as dietary fiber, polyphenols, and peptides, offer a wake-up call to the nutraceutical and cosmetic industry to invest and develop value-added products generated from food waste ingredients.
Collapse
Affiliation(s)
- Yassine Jaouhari
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| | - F. Travaglia
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| | - L. Giovannelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| | - A. Picco
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| | - E. Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye;
| | - F. Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye;
| | - M. Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| |
Collapse
|
12
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
13
|
Dega V, Barbhai MD. Exploring the underutilized novel foods and starches for formulation of low glycemic therapeutic foods: a review. Front Nutr 2023; 10:1162462. [PMID: 37153914 PMCID: PMC10160467 DOI: 10.3389/fnut.2023.1162462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Rising incidences of life-style disorders like obesity, diabetes and cardiovascular diseases are a matter of concern coupled with escalated consumption of highly refined and high energy foods with low nutrient density. Food choices of consumers have witnessed significant changes globally with rising preference to highly processed palatable foods. Thus, it calls food scientists, researchers and nutritionists' attention towards developing and promoting pleasant-tasting yet healthy foods with added nutritional benefits. This review highlights selected underutilized and novel ingredients from different food sources and their by-products that are gaining popularity because of their nutrient density, that can be employed to improve the nutritional quality of conventionally available empty-calorie foods. It also emphasizes on the therapeutic benefits of foods developed from these understudied grains, nuts, processing by-products of grains, fruits- and vegetable-byproducts and nutraceutical starches. This review aims to draw attention of food scientists and industrialists towards popularizing the utilization of these unconventional, yet nutrient rich foods sources in improving the nutritional profile of the conventional foods lacking in nutrient density.
Collapse
|
14
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Emulsion-Based Delivery Systems to Enhance the Functionality of Bioactive Compounds: Towards the Use of Ingredients from Natural, Sustainable Sources. Foods 2023; 12:foods12071502. [PMID: 37048323 PMCID: PMC10094036 DOI: 10.3390/foods12071502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, the trend in the population towards consuming more natural and sustainable foods has increased significantly. This claim has led to the search for new sources of bioactive compounds and extraction methods that have less impact on the environment. Moreover, the formulation of systems to protect these compounds is also focusing on the use of ingredients of natural origin. This article reviews novel, natural alternative sources of bioactive compounds with a positive impact on sustainability. In addition, it also contains information on the most recent studies based on the use of natural (especially from plants) emulsifiers in the design of emulsion-based delivery systems to protect bioactive compounds. The properties of these natural-based emulsion-delivery systems, as well as their functionality, including in vitro and in vivo studies, are also discussed. This review provides relevant information on the latest advances in the development of emulsion delivery systems based on ingredients from sustainable natural sources.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | | | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| |
Collapse
|
15
|
Vinci G, Prencipe SA, Armeli F, Businaro R. A Multimethodological Approach for the Valorization of "Senatore Cappelli" Wheat Milling By-Products as a Source of Bioactive Compounds and Nutraceutical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5057. [PMID: 36981970 PMCID: PMC10048793 DOI: 10.3390/ijerph20065057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Wheat is the third most cultivated cereal in the world and represents the major contributor to human nutrition. Milling wheat by-products such as husks (17-20% of the total processing output weight), even if still containing high-value-added bioactive compounds, are often left untreated or unused, thus resulting in environmental and human health burdens. In these regards, the present study is aimed at evaluating in a multimethodological approach the nutraceutical properties of durum wheat husks belonging to the ancient cultivar "Senatore Cappelli", thus assessing their potential as bioactive compound sources in terms of phytochemical, cytotoxic, and nutraceutical properties. By means of HPLC-FD analyses, wheat husk samples analyzed revealed a higher content of serotonin, amounting to 35% of the total BAs, and were confirmed to occur at biogenic amines quality index (BAQI) values <10 mg/100 g. In addition, spectrophotometric assays showed a significant variable content in the phenolic (189.71-351.14 mg GAE/100 g) and antioxidant compounds (31.23-37.84 mg TE/100 g) within the wheat husk samples analyzed, according to the different cultivar areas of origin. Considering wheat husk extracts' anti-inflammatory and antioxidant activity, in vitro analyses were performed on BV-2 murine microglia cells cultured in the presence or absence of LPS, thus evaluating their ability to promote microglia polarization towards an anti-inflammatory phenotype. Cytotoxicity assays showed that wheat extracts do not affect microglia viability. Wheat husks activity on microglial polarization was assessed by analyzing the expression of M1 and M2 markers' mRNA by RT-PCR. Wheat husk antioxidant activity was assessed by analysis of NRF2 and SOD1 mRNA expression. Moreover, the sustainability assessment for the recovery of bioactive components from wheat by-products was carried out by applying the life cycle assessment (LCA) methodology using SimaPro v9.2.2. software.
Collapse
Affiliation(s)
- Giuliana Vinci
- Department of Management, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
16
|
Difonzo G, Antonino C, Squeo G, Caponio F, Faccia M. Application of Agri-Food By-Products in Cheesemaking. Antioxidants (Basel) 2023; 12:antiox12030660. [PMID: 36978908 PMCID: PMC10045188 DOI: 10.3390/antiox12030660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Agri-food companies produce large quantities of plant by-products that in many instances contain functional bioactive compounds. This review summarizes the main applications of agro-industrial by-products in cheesemaking, considering their bioactivities and functional properties. Polyphenol-rich by-products increase antioxidant and antimicrobial activity in cheeses, positively impacting their shelf life. Contrasting results have been obtained regarding the color and sensory properties of enriched cheeses depending on the selected by-products and on the technology adopted for the extract preparation. Furthermore, functional compounds in cheeses perform a prebiotic function and their bioavailability improves human health. Overall, the use of agri-food by-products in cheese formulation can offer benefits for agri-food chain sustainability and consumer health.
Collapse
|
17
|
Zargar S, Wani TA, Rizwan Ahamad S. An Insight into Wheat Germ Oil Nutrition, Identification of Its Bioactive Constituents and Computer-Aided Multidimensional Data Analysis of Its Potential Anti-Inflammatory Effect via Molecular Connections. Life (Basel) 2023; 13:life13020526. [PMID: 36836883 PMCID: PMC9960255 DOI: 10.3390/life13020526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Wheat germ oil (WGO) is the richest source of unexplored antioxidants and anti-inflammatory compounds. In this study, we identified the constituents of WGO by gas chromatography-mass spectrometry (GC-MS). The physicochemical and pharmacokinetic behaviors were evaluated for the top 12 constituents with the common target FABP4. Three fatty acids with significant anti-inflammatory activity were evaluated for their interaction with FABP4 by molecular docking. The molecular mechanisms involved in anti-inflammatory responses were analyzed by various in-silico analytical tools and multidimensional data analysis. WGO showed anti-inflammatory activities via FABP4 interacting physically with target genes (77.84%) and by co-expressing with 8.01% genes. Primary targets for inflammatory pathways were PPARα, PPARγ, LPL, LEP, and ADIPOQ, as depicted by gene network enrichment analysis. The key pathways implicated were the metabolism of lipids, PPAR signaling, cellular response to alcohol, oxygen and nitrogen pathway, inflammatory response pathway, and regulation of the inflammatory pathway. The common transcription factors implicated were HNF1, AP2α, CEBP, FOX, STATS, MYC, Zic, etc. In this study, we found that WGO possesses anti-inflammatory potential via FABP4 binding to PPARα, PPARγ, LPL, LEP, and ADIPOQ gene expression by regulatory transcription factors HNF, AP2α, and CEPB.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence:
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023; 28:molecules28041533. [PMID: 36838522 PMCID: PMC9966428 DOI: 10.3390/molecules28041533] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The Vaccinium L. (Ericaceae) genus consists of a globally widespread and diverse genus of around 4250 species, of which the most valuable is the Vaccinioidae subfamily. The current review focuses on the distribution, history, bioactive compounds, and health-related effects of three species: cranberry, blueberry, and huckleberry. Several studies highlight that the consumption of Vaccinium spp. presents numerous beneficial health-related outcomes, including antioxidant, antimicrobial, anti-inflammatory, and protective effects against diabetes, obesity, cancer, neurodegenerative diseases and cardiovascular disorders. These plants' prevalence and commercial value have enhanced in the past several years; thus, the generated by-products have also increased. Consequently, the identified phenolic compounds found in the discarded leaves of these plants are also presented, and their impact on health and economic value is discussed. The main bioactive compounds identified in this genus belong to anthocyanins (cyanidin, malvidin, and delphinidin), flavonoids (quercetin, isoquercetin, and astragalin), phenolic acids (gallic, p-Coumaric, cinnamic, syringic, ferulic, and caffeic acids), and iridoids.
Collapse
|
19
|
Guazzotti S, Pagliano C, Dondero F, Manfredi M. Lipidomic Profiling of Rice Bran after Green Solid-Liquid Extractions for the Development of Circular Economy Approaches. Foods 2023; 12:384. [PMID: 36673474 PMCID: PMC9857567 DOI: 10.3390/foods12020384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Rice bran is a rather underutilized by-product of the rice industry that nowadays is far from being valorized. In this study, the lipidomic profile of bran of the Italian rice variety, Roma, has been evaluated through ultra performance liquid chromatography-tandem mass spectrometry. Crude lipid extracts were obtained from rice bran treated with different green solvents (1-butanol, ethanol and methyl tert-butyl ether/methanol mixture) in combination with an ultrasonic pre-treatment, and then compared with extracts obtained with standard solvents (chloroform/methanol mixture). Lipid yield, number and type of lipids and composition of prevalent lipid classes extracted were evaluated in order to provide an exhaustive lipid profile of the rice bran and to identify the most efficient green solvent for solid-liquid extractions. Twelve different lipid classes and a maximum of 276 lipids were identified. Ethanol and methyl tert-butyl ether/methanol solvents provided higher lipid extraction yields, the former being the most effective solvent for the extraction of triglycerides and N-acylethanolamines and the latter the most effective for the extraction of diglycerides, phospholipids and ceramides at 4 °C. Moreover, extraction with ethanol at 20 °C gave similar results as at 4 °C in terms of lipid yield and for most of the classes of lipids extracted. Taken together, our results indicate ethanol and methyl tert-butyl ether/methanol as excellent solvents for lipid extraction from rice bran, with the aim to further valorize this food by-product in the perspective of a circular economy.
Collapse
Affiliation(s)
- Silvia Guazzotti
- Biological Mass Spectrometry Lab, Department of Translational Medicine (DiMeT), University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases—CAAD, University of Piemonte Orientale, Corso Trieste 15/A, 28100 Novara, Italy
| | - Cristina Pagliano
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Francesco Dondero
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Marcello Manfredi
- Biological Mass Spectrometry Lab, Department of Translational Medicine (DiMeT), University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases—CAAD, University of Piemonte Orientale, Corso Trieste 15/A, 28100 Novara, Italy
| |
Collapse
|
20
|
Polyphenol Release from Wheat Bran Using Ethanol-Based Organosolv Treatment and Acid/Alkaline Catalysis: Process Modeling Based on Severity and Response Surface Optimization. Antioxidants (Basel) 2022; 11:antiox11122457. [PMID: 36552665 PMCID: PMC9774914 DOI: 10.3390/antiox11122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Wheat bran (WB) is globally a major food industry waste, with a high prospect as a bioresource in the production of precious polyphenolic phytochemicals. In this framework, the current investigation had as objectives (i) to use ethanol organosolv treatment and study the effect of acid and alkali catalysts on releasing bound polyphenols, (ii) establish linear and quadratic models of polyphenol recovery based on severity and response surface, and (iii) examine the polyphenolic composition of the extracts generated. Using sulfuric acid and sodium hydroxide as the acid and the alkali catalyst, respectively, it was found that the correlation of combined severity factor with total polyphenol yield was significant in the acid catalysis, but a highly significant correlation in the alkali-catalyzed process was established with modified severity factor, which takes into consideration catalyst concentration, instead of pH. Optimization of the process with response surface confirmed that polyphenol release from WB was linked to treatment time, but also catalyst concentration. Under optimized conditions, the acid- and alkali-catalyzed processes afforded total polyphenol yields of 10.93 ± 0.62 and 19.76 ± 0.76 mg ferulic acid equivalents g-1 dry mass, respectively. Examination of the polyphenolic composition revealed that the alkali-catalyzed process had a striking effect on releasing ferulic acid, but the acid catalysis was insufficient in this regard. The outcome concerning the antioxidant properties was contradictory with respect to the antiradical activity and ferric-reducing power of the extracts, a fact most probably attributed to extract constituents other than ferulic acid. The process modeling proposed herein may be valuable in assessing both process effectiveness and severity, with a perspective of establishing WB treatments that would provide maximum polyphenol recovery with minimum harshness and cost.
Collapse
|
21
|
Szabo K, Mitrea L, Călinoiu LF, Teleky BE, Martău GA, Plamada D, Pascuta MS, Nemeş SA, Varvara RA, Vodnar DC. Natural Polyphenol Recovery from Apple-, Cereal-, and Tomato-Processing By-Products and Related Health-Promoting Properties. Molecules 2022; 27:7977. [PMID: 36432076 PMCID: PMC9697562 DOI: 10.3390/molecules27227977] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Polyphenols of plant origin are a broad family of secondary metabolites that range from basic phenolic acids to more complex compounds such as stilbenes, flavonoids, and tannins, all of which have several phenol units in their structure. Considerable health benefits, such as having prebiotic potential and cardio-protective and weight control effects, have been linked to diets based on polyphenol-enriched foods and plant-based products, indicating the potential role of these substances in the prevention or treatment of numerous pathologies. The most representative phenolic compounds in apple pomace are phloridzin, chlorogenic acid, and epicatechin, with major health implications in diabetes, cancer, and cardiovascular and neurocognitive diseases. The cereal byproducts are rich in flavonoids (cyanidin 3-glucoside) and phenolic acids (ferulic acid), all with significant results in reducing the incidence of noncommunicable diseases. Quercetin, naringenin, and rutin are the predominant phenolic molecules in tomato by-products, having important antioxidant and antimicrobial activities. The present understanding of the functionality of polyphenols in health outcomes, specifically, noncommunicable illnesses, is summarized in this review, focusing on the applicability of this evidence in three extensive agrifood industries (apple, cereal, and tomato processing). Moreover, the reintegration of by-products into the food chain via functional food products and personalized nutrition (e.g., 3D food printing) is detailed, supporting a novel direction to be explored within the circular economy concept.
Collapse
Affiliation(s)
- Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Diana Plamada
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mihaela Stefana Pascuta
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|