1
|
Yu C, Zhao S, Yue S, Chen X, Dong Y. Novel insights into the role of metabolic disorder in osteoarthritis. Front Endocrinol (Lausanne) 2024; 15:1488481. [PMID: 39744183 PMCID: PMC11688211 DOI: 10.3389/fendo.2024.1488481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
Osteoarthritis (OA) is a prevalent condition that affects individuals worldwide and is one of the leading causes of disability. Nevertheless, the underlying pathological mechanisms of OA remain inadequately understood. Current treatments for OA include non-drug therapies, pharmacological interventions, and surgical procedures. These treatments are mainly focused on alleviating clinical manifestations and improving patients' quality of life, but are not effective in limiting the progression of OA. The detailed understanding of the pathogenesis of OA is extremely significant for the development of OA treatment. Metabolic syndrome has become a great challenge for medicine and public health, In recent years, several studies have demonstrated that the metabolic syndrome and its individual components play a crucial role in OA. Consequently, this review summarizes the mechanisms and research progress on how metabolic syndrome and its components affect OA. The aim is to gain a deeper understanding of the pathogenesis of OA and explore effective treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yonghui Dong
- Department of Orthopedics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Wang Y, Zeng T, Tang D, Cui H, Wan Y, Tang H. Integrated Multi-Omics Analyses Reveal Lipid Metabolic Signature in Osteoarthritis. J Mol Biol 2024:168888. [PMID: 39643156 DOI: 10.1016/j.jmb.2024.168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease and the second leading cause of disability worldwide. Single-omics analyses are far from elucidating the complex mechanisms of lipid metabolic dysfunction in OA. This study identified a shared lipid metabolic signature of OA by integrating metabolomics, single-cell and bulk RNA-seq, as well as metagenomics. Compared to the normal counterparts, cartilagesin OA patients exhibited significant depletion of homeostatic chondrocytes (HomCs) (P = 0.03) and showed lipid metabolic disorders in linoleic acid metabolism and glycerophospholipid metabolism which was consistent with our findings obtained from plasma metabolomics. Through high-dimensional weighted gene co-expression network analysis (hdWGCNA), weidentified PLA2G2A as a hub gene associated with lipid metabolic disorders in HomCs. And an OA-associated subtype of HomCs, namely HomC1 (marked by PLA2G2A, MT-CO1, MT-CO2, and MT-CO3) was identified, which also exhibited abnormal activation of lipid metabolic pathways. This suggests the involvement of HomC1 in OA progression through the shared lipid metabolism aberrancies, which were further validated via bulk RNA-Seq analysis. Metagenomic profiling identified specific gut microbial species significantly associated with the key lipid metabolism disorders, including Bacteroides uniformis (P < 0.001, R = -0.52), Klebsiella pneumonia (P = 0.003, R = 0.42), Intestinibacter_bartlettii (P = 0.009, R = 0.38), and Streptococcus anginosus (P = 0.009, R = 0.38). By integrating the multi-omics features, a random forest diagnostic model with outstanding performance was developed (AUC = 0.97). In summary, this study deciphered the crucial role of a integrated lipid metabolic signature in OA pathogenesis, and established a regulatory axis of gut microbiota-metabolites-cell-gene, providing new insights into the gut-joint axis and precision therapy for OA.
Collapse
Affiliation(s)
- Yang Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tianyu Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Deqin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Haipeng Cui
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China; Medical Engineering & Medical Informatics Integration and Transformational Medicine Key Laboratory of Luzhou City, Luzhou 646000, China.
| |
Collapse
|
3
|
Chen X, Liu J, Wang G, Sun Y, Ding X, Zhang X. Regulating lipid metabolism in osteoarthritis: a complex area with important future therapeutic potential. Ann Med 2024; 56:2420863. [PMID: 39466361 PMCID: PMC11520103 DOI: 10.1080/07853890.2024.2420863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), which is characterized by pain, inflammation and pathological changes, is associated with abnormal lipid metabolism. Extensive studies have been conducted on the potential functions of lipids including cholesterol, fatty acids (FAs) and adipokines. MATERIALS AND METHODS By searching and screening the literature included in the PubMed and Web of Science databases from 1 January 2019 to 1 January 2024, providing an overview of research conducted on lipid metabolism and OA in the last 5 years. RESULTS In addition to adiponectin, several studies on the effects of lipid metabolism on OA have been consistent and complementary. Total cholesterol, triglycerides, low-density lipoprotein cholesterol, adipsin, leptin, resistin, saturated FAs, monounsaturated FAs, FA-binding protein 4 and the ratios of the FAs hexadecenoylcarnitine (C16:1) to dodecanoylcarnitine and C16:1 to tetradecanoylcarnitine induced mostly deleterious effects, whereas high-density lipoprotein cholesterol and apolipoprotein A/B/D had a positive impact on the health of joints. The situation for polyunsaturated FAs may be more complicated, as omega-3 increases the genetic susceptibility to OA, whereas omega-6 does the opposite. Alterations in lipid or adipokine levels and the resulting pathological changes in cartilage and other tissues (such as bone and synovium) ultimately affect joint pain, inflammation and cartilage degradation. Lipid or adipokine regulation has potential as a future direction for the treatment of OA, this potential avenue of OA treatment requires high-quality randomized controlled trials of combined lipid regulation therapy, and more in-depth in vivo and in vitro studies to confirm the underlying mechanism.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Guizhen Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Wang Z, Song X, Yin W, Shi K, Lin Y, Liu J, Li X, Tan J, Rong J, Xu K, Wang G. Exposure to High Concentrations of Tetrabromobisphenol A Slows the Process of Tissue Regeneration and Induces an Imbalance of Metabolic Homeostasis in the Regenerated Intestines of Apostichopus japonicus. Genes (Basel) 2024; 15:1448. [PMID: 39596648 PMCID: PMC11594171 DOI: 10.3390/genes15111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Tissue regenerative capacity following evisceration, potentially influenced by environmental contaminants and intestinal microflora, is essential for the financial success of Apostichopus japonicus farming. However, the morphological structure, gut microbiome composition, and genes expression pattern of the regenerated gut after exposure to high levels of TBBPA remain poorly unclear. METHODS In this research, the effect of TBBPA exposure on tissue regeneration in A. japonicus was investigated through a comprehensive multi-omics approach. RESULTS Our results showed that the integrity, the intestinal wall thickness, and the villi length of the regenerated intestines in A. japonicus decreased after treatment with high levels of TBBPA. The findings from PCoA and NMDS analyses revealed that the microbial community composition was significantly altered following exposure to high concentrations of TBBPA in the regenerated intestines of A. japonicus. The KEGG pathway enrichment analysis indicated that the DEGs (differentially expressed genes) were predominantly enriched on metabolism and immunity-related signaling pathways after exposure to high levels of TBBPA. These included pathways involved in the PPAR signaling pathway, ECM receptor interaction, glycerolipid metabolism, and fatty acid degradation. Interestingly, the results have demonstrated that there are 77 transcript factors that were significantly different after exposure to TBBPA. CONCLUSIONS These results suggested that high levels of exposure to TBBPA induces an imbalance of the metabolic homeostasis by regulating the expression levels of transcription factors in the regenerated intestines of A. japonicus.
Collapse
Affiliation(s)
- Zi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Xiaojun Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Wenhui Yin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Kuntao Shi
- Weihai Huancui District Marine Development Research Center, Weihai 264200, China;
| | - Ying Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Jixiang Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Xiaohan Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Jiabo Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Junjie Rong
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Kefeng Xu
- Marine Science Research Institute of Shandong Province, National Oceanographic Center, Qingdao 266104, China
| | - Guodong Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| |
Collapse
|
5
|
Tu B, Zhu Z, Lu P, Fang R, Peng C, Tong J, Ning R. Proteomic and lipidomic landscape of the infrapatellar fat pad and its clinical significance in knee osteoarthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159513. [PMID: 38788831 DOI: 10.1016/j.bbalip.2024.159513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint disease that can be exacerbated by lipid metabolism disorders. The intra-articular fat pad (IFP) has emerged as an active participant in the pathological changes of knee OA (KOA). However, the proteomic and lipidomic differences between IFP tissues from KOA and control individuals remain unclear. Samples of IFP were collected from individuals with and without OA (n = 6, n = 6). Subsequently, these samples underwent liquid chromatography/mass spectrometry-based label-free quantitative proteomic and lipidomic analysis to identify differentially expressed proteins (DEPs) and lipid metabolites (DELMs). The DEPs were further subjected to enrichment analysis, and hub DEPs were identified using multiple algorithms. Additionally, an OA diagnostic model was constructed based on the identified hub DEPs or DELMs. Furthermore, CIBERSORT was utilized to investigate the correlation between hub protein expression and immune-related modules in IFP of OA. Our results revealed the presence of 315 DEPs and eight DELMs in IFP of OA patients compared to the control group. Enrichment analysis of DEPs highlighted potential alterations in pathways related to coagulation, complement, fatty acid metabolism, and adipogenesis. The diagnostic model incorporating four hub DEPs (AUC = 0.861) or eight DELMs (AUC = 0.917) exhibited excellent clinical validity for diagnosing OA. Furthermore, the hub DEPs were found to be associated with immune dysfunction in IFP of OA. This study presents a distinct proteomic and lipidomic landscape of IFP between individuals with OA and those without. These findings provide valuable insights into the molecular changes associated with potential mechanisms underlying OA.
Collapse
Affiliation(s)
- Bizhi Tu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Zheng Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Peizhi Lu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China; Department of Orthopedics, Bengbu Medical College, Bengbu City 233000, China
| | - Run Fang
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Cheng Peng
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Jun Tong
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Rende Ning
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China; Department of Orthopedics, Bengbu Medical College, Bengbu City 233000, China.
| |
Collapse
|
6
|
Ravera F, Efeoglu E, Byrne HJ. A comparative analysis of stem cell differentiation on 2D and 3D substrates using Raman microspectroscopy. Analyst 2024; 149:4041-4053. [PMID: 38973486 DOI: 10.1039/d4an00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Chondrogenesis is a complex cellular process that involves the transformation of mesenchymal stem cells (MSCs) into chondrocytes, the specialised cells that form cartilage. In recent years, three-dimensional (3D) culture systems have emerged as a promising approach to studying cell behaviour and development in a more physiologically relevant environment compared to traditional two-dimensional (2D) cell culture. The use of these systems provided insights into the molecular mechanisms that regulate chondrogenesis and has the potential to revolutionise the development of new therapies for cartilage repair and regeneration. This study demonstrates the successful application of Raman microspectroscopy (RMS) as a label-free, non-destructive, and sensitive method to monitor the chondrogenic differentiation of bone marrow-derived rat mesenchymal stem cells (rMSCs) in a collagen type I hydrogel, and explores the potential benefits of 3D hydrogels compared to conventional 2D cell culture environments. rMSCs were cultured on 3D substrates for 3 weeks and their differentiation was monitored by measuring the spectral signatures of their subcellular compartments. Additionally, the evolution of high-density micromass cultures was investigated to provide a comprehensive understanding of the process and complex interactions between cells and their surrounding extracellular matrix. For comparison, rMSCs were induced into chondrogenesis in identical medium conditions for 21 days in monolayer culture. Raman spectra showed that rMSCs cultured in a collagen type I hydrogel are able to undergo a distinct chondrogenic differentiation pathway at a significantly higher rate than the 2D culture cells. 3D cultures expressed stronger and more homogeneous chondrogenesis-associated peaks such as collagens, glycosaminoglycans (GAGs), and aggrecan while manifesting changes in proteins and lipidic content. These results suggest that 3D type I collagen hydrogel substrates are promising for in vitro chondrogenesis studies, and that RMS is a valuable tool for monitoring chondrogenesis in 3D environments.
Collapse
Affiliation(s)
- F Ravera
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| | - E Efeoglu
- NICB (National Institute for Cellular Biotechnology) at Dublin City University, Dublin 9, Ireland
| | - H J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| |
Collapse
|
7
|
Chang H, Liu L, Zhang Q, Xu G, Wang J, Chen P, Li C, Guo X, Yang Z, Zhang F. A comparative metabolomic analysis reveals the metabolic variations among cartilage of Kashin-Beck disease and osteoarthritis. Bone Joint Res 2024; 13:362-371. [PMID: 39013544 PMCID: PMC11251783 DOI: 10.1302/2046-3758.137.bjr-2023-0403.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Aims The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database. Results A total of 807 ion features were identified for KBD and OA, including 577 positive (240 for upregulated and 337 for downregulated) and 230 negative (107 for upregulated and 123 for downregulated) ions. After annotation, LC-MS identified significant expressions of ten upregulated and eight downregulated second-level metabolites, and 183 upregulated and 162 downregulated first-level metabolites between KBD and OA. We identified differentially expressed second-level metabolites that are highly associated with cartilage damage, including dimethyl sulfoxide, uric acid, and betaine. These metabolites exist in sulphur metabolism, purine metabolism, and glycine, serine, and threonine metabolism. Conclusion This comprehensive comparative analysis of metabolism in OA and KBD cartilage provides new evidence of differences in the pathogenetic mechanisms underlying cartilage damage in these two conditions.
Collapse
Affiliation(s)
- Hong Chang
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingping Zhang
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Gangyao Xu
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Jianpeng Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ping Chen
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Cheng Li
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Xianni Guo
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Zhengjun Yang
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Taskina EA, Alekseeva LI, Kashevarova NG, Strebkova EA, Mikhaylov KM, Sharapova EP, Savushkina NM, Alekseeva OG, Raskina TA, Averkieva JV, Usova EV, Vinogradova IB, Salnikova OV, Markelova AS, Lila AM. [Relationship between hypercholesterolemia and osteoarthritis (preliminary results)]. TERAPEVT ARKH 2024; 96:471-478. [PMID: 38829808 DOI: 10.26442/00403660.2024.05.202702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
AIM To evaluate the relationship of hypercholesterolemia (HCE) with clinical, instrumental, and laboratory parameters in osteoarthritis (OA) in a multicenter, cross-sectional study. MATERIALS AND METHODS The study included 183 patients aged 40-75 years, with a confirmed diagnosis of stage I-III OA (ACR) of the knee joints, who signed an informed consent. The mean age was 55.6±10.7 years (40 to 75), body mass index was 29.3±6.3 kg/m2, and disease duration was 5 [1; 10] years. For each patient, a case record form was filled out, including anthropometric indicators, medical history, clinical examination data, an assessment of knee joint pain according to VAS, WOMAC, KOOS and comorbidities. All patients underwent standard radiography and ultrasound examination of the knee joints and laboratory tests. RESULTS HCE was detected in 59% of patients. Depending on its presence or absence, patients were divided into two groups. Patients were comparable in body mass index, waist and hip measurement, and disease duration but differed significantly in age. Individuals with elevated total cholesterol levels had higher VAS pain scores, total WOMAC and its components, an overall assessment of the patient's health, a worse KOOS index, and ultrasound findings (reduced cartilage tissue). HCE patients showed high levels of cholesterol, low-density lipoproteins, triglycerides, STX-II, and COMP (p<0.05). However, after stratification by age, many initial intergroup differences became insignificant, and differences in the WOMAC pain score persisted. CONCLUSION The results of the study confirmed the high prevalence of HCE in OA patients (59%). Patients with OA and increased total cholesterol have more intense pain in the knee joints.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - A M Lila
- Nasonova Research Institute of Rheumatology
| |
Collapse
|
9
|
Kang X, Liu Q, Shi Y, Wang H, Zhang H, Ye T, Zhang J, He F, Zhang M. Decreased expression of ATP-binding cassette protein G1 promotes abnormal adipogenesis of condylar chondrocytes in temporomandibular joint osteoarthritis. J Oral Rehabil 2024; 51:805-816. [PMID: 38146807 DOI: 10.1111/joor.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/18/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). ATP-binding cassette protein G1 (ABCG1) is crucial in mediating the outflow of cholesterol, phosphatidylcholine and sphingomyelin and reducing intracellular lipid accumulation. OBJECTIVE This study aimed to evaluate whether ABCG1 participates in the abnormal adipogenesis of chondrocytes in osteoarthritic cartilage of temporomandibular joint. METHODS Eight-week-old female rats were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical (IHC) staining, and qRT-PCR were performed. Primary condylar chondrocytes of rats were transfected with ABCG1 shRNA or overexpression lentivirus and then stimulated with fluid flow shear stress (FFSS). Cells were collected for oil red O staining, immunofluorescence staining, and qRT-PCR analysis. RESULTS Abnormal adipogenesis, characterized by increased expression of Adiponectin, CCAAT/enhancer-binding protein α (Cebpα), fatty acid binding protein 4 (Fabp4) and Perilipin1, was enhanced in the degenerative cartilage of TMJ OA in rats with UAC, accompanied by decreased expression of ABCG1. After FFSS stimulation, we observed lipid droplets in the cytoplasm of cultured cells with increased expression of Adiponectin, Cebpα, Fabp4 and Perilipin1 and decreased expression of ABCG1. Knockdown of Abcg1 induced abnormal adipogenesis and differentiation of condylar chondrocytes. Overexpression of ABCG1 alleviated the abnormal adipogenesis and differentiation of condylar chondrocytes induced by FFSS. CONCLUSIONS Abnormal adipogenesis of chondrocytes and decreased ABCG1 expression were observed in degenerative cartilage of TMJ OA. ABCG1 overexpression effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration.
Collapse
Affiliation(s)
- Xinyu Kang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
- Nine Squadron, Three Brigade, School of Basic Medicine, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qian Liu
- Department of stomatology, Air Force Medical Center, Beijing, China
| | - Yuqian Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Helin Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Medical Rehabilitation, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Hongyun Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Tao Ye
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Feng He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Li H, Cui Y, Wang J, Zhang W, Chen Y, Zhao J. Identification and validation of biomarkers related to lipid metabolism in osteoarthritis based on machine learning algorithms. Lipids Health Dis 2024; 23:111. [PMID: 38637751 PMCID: PMC11025229 DOI: 10.1186/s12944-024-02073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Osteoarthritis and lipid metabolism are strongly associated, although the precise targets and regulatory mechanisms are unknown. METHODS Osteoarthritis gene expression profiles were acquired from the GEO database, while lipid metabolism-related genes (LMRGs) were sourced from the MigSB database. An intersection was conducted between these datasets to extract gene expression for subsequent differential analysis. Following this, functional analyses were performed on the differentially expressed genes (DEGs). Subsequently, machine learning was applied to identify hub genes associated with lipid metabolism in osteoarthritis. Immune-infiltration analysis was performed using CIBERSORT, and external datasets were employed to validate the expression of these hub genes. RESULTS Nine DEGs associated with lipid metabolism in osteoarthritis were identified. UGCG and ESYT1, which are hub genes involved in lipid metabolism in osteoarthritis, were identified through the utilization of three machine learning algorithms. Analysis of the validation dataset revealed downregulation of UGCG in the experimental group compared to the normal group and upregulation of ESYT1 in the experimental group compared to the normal group. CONCLUSIONS UGCG and ESYT1 were considered as hub LMRGs in the development of osteoarthritis, which were regarded as candidate diagnostic markers. The effects are worth expected in the early diagnosis and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Hang Li
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jian Wang
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Wei Zhang
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Yuhao Chen
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Jijun Zhao
- Department of Orthopedic, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
11
|
Ma Y, Liu Y, Luo D, Guo Z, Xiang H, Chen B, Wu X. Identification of biomarkers and immune infiltration characterization of lipid metabolism-associated genes in osteoarthritis based on machine learning algorithms. Aging (Albany NY) 2024; 16:7043-7059. [PMID: 38637111 PMCID: PMC11087088 DOI: 10.18632/aging.205740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative condition commonly observed in the elderly, leading to consequential disability. Despite notable advancements made in clinical strategies for OA, its pathogenesis remains uncertain. The intricate association between OA and metabolic processes has yet to receive comprehensive exploration. In our investigation, we leveraged public databases and applied machine learning algorithms, including WGCNA, LASSO, RF, immune infiltration analysis, and pathway enrichment analysis, to scrutinize the role of lipid metabolism-associated genes (LAGs) in the OA. Our findings identified three distinct biomarkers, and evaluated their expression to assess their diagnostic value in the OA patients. The exploration of immune infiltration in these patients revealed an intricate relationship between immune cells and the identified biomarkers. In addition, in vitro experiments, including qRT-PCR, Western blot, chondrocyte lipid droplets detection and mitochondrial fatty acid oxidation measurement, further verified abnormal expressions of selected LAGs in OA cartilage and confirmed the correlation between lipid metabolism and OA.
Collapse
Affiliation(s)
- Yuanye Ma
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yang Liu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Dan Luo
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Zhu Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Hongfei Xiang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Bohua Chen
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| |
Collapse
|
12
|
Ren H, Zhang L, Zhang X, Yi C, Wu L. Specific lipid magnetic sphere sorted CD146-positive bone marrow mesenchymal stem cells can better promote articular cartilage damage repair. BMC Musculoskelet Disord 2024; 25:253. [PMID: 38561728 PMCID: PMC10983655 DOI: 10.1186/s12891-024-07381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.
Collapse
Affiliation(s)
- Hanru Ren
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Lele Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Xu Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Chengqing Yi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| | - Lianghao Wu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| |
Collapse
|
13
|
Pi P, Zeng L, Zeng Z, Zong K, Han B, Bai X, Wang Y. The role of targeting glucose metabolism in chondrocytes in the pathogenesis and therapeutic mechanisms of osteoarthritis: a narrative review. Front Endocrinol (Lausanne) 2024; 15:1319827. [PMID: 38510704 PMCID: PMC10951080 DOI: 10.3389/fendo.2024.1319827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can affect almost any joint, mainly resulting in joint dysfunction and pain. Worldwide, OA affects more than 240 million people and is one of the leading causes of activity limitation in adults. However, the pathogenesis of OA remains elusive, resulting in the lack of well-established clinical treatment strategies. Recently, energy metabolism alterations have provided new insights into the pathogenesis of OA. Accumulating evidence indicates that glucose metabolism plays a key role in maintaining cartilage homeostasis. Disorders of glucose metabolism can lead to chondrocyte hypertrophy and extracellular matrix degradation, and promote the occurrence and development of OA. This article systematically summarizes the regulatory effects of different enzymes and factors related to glucose metabolism in OA, as well as the mechanism and potential of various substances in the treatment of OA by affecting glucose metabolism. This provides a theoretical basis for a better understanding of the mechanism of OA progression and the development of optimal prevention and treatment strategies.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Keqiang Zong
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- School of Physical Education, Qiqihar University, Heilongjiang, Qiqihar, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
14
|
Yu MSC, Edelbacher TV, Grätz C, Chiang DM, Reithmair M, Pfaffl MW. Summary report of the 1st MOVE symposium in Málaga from 24-27th October 2023 - Foster the European mobility for young scientists in extracellular vesicles research. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:95-113. [PMID: 39698417 PMCID: PMC11648475 DOI: 10.20517/evcna.2024.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Mia S. C. Yu
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Authors contributed equally
| | - Tanja V. Edelbacher
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Division of Functional Microbiology, Institute for Microbiology, Center for Pathobiology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Authors contributed equally
| | - Christian Grätz
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Dapi M. Chiang
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich 80336, Germany
- Department of Biomedicine, University of Basel, Basel 4031, Switzerland
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, LMU Munich, Munich 80336, Germany
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
15
|
Xue M, Huang N, Luo Y, Yang X, Wang Y, Fang M. Combined Transcriptomics and Metabolomics Identify Regulatory Mechanisms of Porcine Vertebral Chondrocyte Development In Vitro. Int J Mol Sci 2024; 25:1189. [PMID: 38256262 PMCID: PMC10816887 DOI: 10.3390/ijms25021189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine body length is closely related to meat production, growth, and reproductive performance, thus playing a key role in the profitability of the pork industry. Cartilage development is critical to longitudinal elongation of individual vertebrae. This study isolated primary porcine vertebral chondrocytes (PVCs) to clarify the complex mechanisms of elongation. We used transcriptome and target energy metabolome technologies to confirm crucial genes and metabolites in primary PVCs at different differentiation stages (0, 4, 8, and 12 days). Pairwise comparisons of the four stages identified 4566 differentially expressed genes (DEGs). Time-series gene cluster and functional analyses of these DEGs revealed four clusters related to metabolic processes, cartilage development, vascular development, and cell cycle regulation. We constructed a transcriptional regulatory network determining chondrocyte maturation. The network indicated that significantly enriched transcription factor (TF) families, including zf-C2H2, homeobox, TF_bZIP, and RHD, are important in cell cycle and differentiation processes. Further, dynamic network biomarker (DNB) analysis revealed that day 4 was the tipping point for chondrocyte development, consistent with morphological and metabolic changes. We found 24 DNB DEGs, including the TFs NFATC2 and SP7. Targeted energy metabolome analysis showed that most metabolites were elevated throughout chondrocyte development; notably, 16 differentially regulated metabolites (DRMs) were increased at three time points after cell differentiation. In conclusion, integrated metabolome and transcriptome analyses highlighted the importance of amino acid biosynthesis in chondrocyte development, with coordinated regulation of DEGs and DRMs promoting PVC differentiation via glucose oxidation. These findings reveal the regulatory mechanisms underlying PVC development and provide an important theoretical reference for improving pork production.
Collapse
Affiliation(s)
- Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Ning Huang
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Yubei Wang
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| |
Collapse
|
16
|
Shao R, Suo J, Zhang Z, Kong M, Ma Y, Wen Y, Liu M, Zhuang L, Ge K, Bi Q, Zhang C, Zou W. H3K36 methyltransferase NSD1 protects against osteoarthritis through regulating chondrocyte differentiation and cartilage homeostasis. Cell Death Differ 2024; 31:106-118. [PMID: 38012390 PMCID: PMC10781997 DOI: 10.1038/s41418-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common joint diseases, there are no effective disease-modifying drugs, and the pathological mechanisms of OA need further investigation. Here, we show that H3K36 methylations were decreased in senescent chondrocytes and age-related osteoarthritic cartilage. Prrx1-Cre inducible H3.3K36M transgenic mice showed articular cartilage destruction and osteophyte formation. Conditional knockout Nsd1Prrx1-Cre mice, but not Nsd2Prrx1-Cre or Setd2Prrx1-Cre mice, replicated the phenotype of K36M/+; Prrx1-Cre mice. Immunostaining results showed decreased anabolic and increased catabolic activities in Nsd1Prrx1-Cre mice, along with decreased chondrogenic differentiation. Transcriptome and ChIP-seq data revealed that Osr2 was a key factor affected by Nsd1. Intra-articular delivery of Osr2 adenovirus effectively improved the homeostasis of articular cartilage in Nsd1Prrx1-Cre mice. In human osteoarthritic cartilages, both mRNA and protein levels of NSD1 and OSR2 were decreased. Our results indicate that NSD1-induced H3K36 methylations and OSR2 expression play important roles in articular cartilage homeostasis and OA. Targeting H3K36 methylation and OSR2 would be a novel strategy for OA treatment.
Collapse
Affiliation(s)
- Rui Shao
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingxiang Kong
- Department of Orthopedics, Rehabilitation center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yiyang Ma
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yang Wen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengxue Liu
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lenan Zhuang
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Qing Bi
- Department of Orthopedics, Rehabilitation center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Changqing Zhang
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
17
|
Awad K, Newhart SL, Brotto L, Brotto M. Lipidomics Profiling of the Linoleic Acid Metabolites After Whole-Body Vibration in Humans. Methods Mol Biol 2024; 2816:241-252. [PMID: 38977603 DOI: 10.1007/978-1-0716-3902-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bioactive lipids have been identified as dynamic signaling lipid mediators (LMs). These fats have the ability to activate responses and control bodily functions either directly or indirectly. Linoleic Acid (LA) and Alpha Linoleic Acid (ALA) are types of omega 3 fatty acids that possess inflammatory properties and promote resolution of inflammation either through their own actions or through their metabolites known as oxylipins. In this chapter, we provide an explanation of a method that combines chromatography with tandem mass spectroscopy (LC MS/MS) to identify and measure all the metabolites derived from LA and ALA. Additionally, we employed the described methodology to analyze human serum samples obtained before and after whole-body vibration exercise training. The results indicated an increase in some of the LA and ALA LMs that have beneficial effects in regulating the cardiovascular system.
Collapse
Affiliation(s)
- Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA.
| | - Stephen Leroy Newhart
- Department of Kinesiology, The College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA.
| | - Leticia Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
18
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
19
|
Ma T, Ruan H, Lv L, Wei C, Yu Y, Jia L, Song X, Zhang J, Li Y. Oleanolic acid, a small-molecule natural product, inhibits ECM degeneration in osteoarthritis by regulating the Hippo/YAP and Wnt/β-catenin pathways. Food Funct 2023; 14:9999-10013. [PMID: 37856220 DOI: 10.1039/d3fo01902k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Over the past few decades, osteoarthritis (OA) has been a major health problem worldwide. It is urgent to develop new, effective, and safe drugs to treat OA. There are many pentacyclic triterpenoids in nature that are safe and have health benefits. Oleanolic acid (OLA), one of the pentacyclic triterpenoids, is a potential novel compound for treating OA; however, its mechanism of action is still unclear. In this study, the mechanism of resistance to extracellular matrix (ECM) degradation of OLA and its protective role in the amelioration of OA were investigated by in vivo and in vitro experiments. We found that OLA promoted interleukin-1β (IL-1β)-induced production of type II collagen (collagen II) in rat chondrocytes, decreased the expression of matrix metalloproteinase (MMP)-3 and MMP-13, and inhibited inflammatory cytokine (IL-1β and TNF-α) and cartilage marker (CTX-II and COMP) levels, thereby hindering the pathological process of cartilage. Mechanistically, OLA inhibited the Wnt/β-catenin pathway, activated the Hippo/YAP pathway, and hampered the ECM degradation process by inhibiting the nuclear translocation of β-catenin and YAP. When we knocked down β-catenin, OLA lost its stimulatory effect on the Hippo pathway. These findings confirm that OLA plays an anti-ECM degradation role by regulating the Wnt/β-catenin and Hippo/YAP pathways. Overall, this study provides a theoretical basis for developing highly effective and low-toxic natural products for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Hongri Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Liangyu Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Chengwei Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
| | - Yue Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Xiaopeng Song
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| | - Yanan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150036, China.
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, Heilongjiang 150036, China
| |
Collapse
|
20
|
Wen Y, Wang B, Shi P, Chu X, Shi S, Yao Y, Zhang L, Zhang F. A Metabolomics Study of Feces Revealed That a Disturbance of Selenium-Centered Metabolic Bioprocess Was Involved in Kashin-Beck Disease, an Osteoarthropathy Endemic to China. Nutrients 2023; 15:4651. [PMID: 37960304 PMCID: PMC10650499 DOI: 10.3390/nu15214651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Background: Kashin-Beck disease (KBD) is a distinct osteoarthropathy in China with an unclear pathogenesis. This study aims to explore whether perturbations in the intestine metabolome could be linked to KBD individuals. Methods: An investigation was conducted in KBD endemic villages and fecal samples were collected. After applying inclusion and exclusion criteria, a total of 75 subjects were enrolled for this study, including 46 KBD (including 19 Grade I KBD and 27 Grade II KBD) and 29 controls. Untargeted metabolomics analysis was performed on the platform of UHPLC-MS. PLS-DA and OPLS-DA were conducted to compare the groups and identify the differential metabolites (DMs). Pathway analysis was conducted on MPaLA platform to explore the functional implication of the DMs. Results: Metabolomics analysis showed that compared with the control group, KBD individuals have a total of 584 differential metabolites with dysregulated levels such as adrenic acid (log2FC = -1.87, VIP = 4.84, p = 7.63 × 10-7), hydrogen phosphate (log2FC = -2.57, VIP = 1.27, p = 1.02 × 10-3), taurochenodeoxycholic acid (VIP = 1.16, log2FC = -3.24, p = 0.03), prostaglandin E3 (VIP = 1.17, log2FC = 2.67, p = 5.61 × 10-4), etc. Pathway analysis revealed several significantly perturbed pathways associated with KBD such as selenium micronutrient network (Q value = 3.11 × 10-3, Wikipathways), metabolism of lipids (Q value = 8.43 × 10-4, Reactome), free fatty acid receptors (Q value = 3.99 × 10-3, Reactome), and recycling of bile acids and salts (Q value = 2.98 × 10-3, Reactome). Subgroup comparisons found a total of 267 differential metabolites were shared by KBD vs. control, KBD II vs. control, and KBD I vs. control, while little difference was found between KBD II and KBD I (only one differential metabolite detected). Conclusions: KBD individuals showed distinct metabolic features characterized by perturbations in lipid metabolism and selenium-related bioprocesses. Our findings suggest that the loss of nutrients metabolism balance in intestine was involved in KBD pathogenesis. Linking the nutrients metabolism (especially selenium and lipid) to KBD cartilage damage should be a future direction of KBD study.
Collapse
Affiliation(s)
- Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Bingyi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Panxing Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
- Medical Department, The First Affiliated Hospital of Air Force Medical University, Xi’an 710032, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| |
Collapse
|
21
|
Chen S, Meng C, He Y, Xu H, Qu Y, Wang Y, Fan Y, Huang X, You H. An in vitro and in vivo study: Valencene protects cartilage and alleviates the progression of osteoarthritis by anti-oxidative stress and anti-inflammatory effects. Int Immunopharmacol 2023; 123:110726. [PMID: 37536183 DOI: 10.1016/j.intimp.2023.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a heterogeneous disease involving the whole joint. The pathogenesis involves oxidative stress levels and chronic inflammation, and Valencene (VA) has excellent anti-inflammatory and antioxidant stress abilities. PURPOSE The objective was to study the effects of VA therapy on combating oxidative stress and to evaluate the protective effect of chondrocytes to alleviate the progression of OA. METHODS C57BL6J mouse chondrocytes were used as the primary cells in this study. Mouse chondrocytes were stimulated with IL-1β, and VA was administered in different concentrations. Reactive oxygen species (ROS) assay kits, western blotting, cellular immunofluorescence, and scanning microscopy were used to evaluate VA's antioxidant stress mechanism, anti-inflammatory effect, and cartilage protective ability. The mouse arthritis model constructed by destabilization of medial meniscus (DMM) was observed by micro-CT scan and histology after different treatments. RESULTS We found that VA can reverse the rise of ROS under IL-1β, the degeneration of the cartilage extracellular matrix, and the production of inflammatory mediators. In terms of mechanism, VA activated NRF2/HO-1/NQO1 pathway, thus enhancing ROS clearance. The phosphorylation of IκBα is inhibited, which further reduces the downstream phosphorylation of P65 in nuclear factor-κB (NF-κB) signaling. In addition, VA inhibited mitogen-activated protein kinase (MAPK) signaling molecules P-JNK, P-ERK, and P-P38, inhibiting the production of inflammatory mediators and thus inhibiting Aggrecan and Collagen Type II (COL2)degeneration. In vivo, VA reduced DMM-induced osteophytes and spurs, suppressed subchondral bone destruction, and reduced articular cartilage erosion. CONCLUSION Our study demonstrated that VA is an effective candidate for OA treatment.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chen Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunhui Fan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
22
|
Yang K, Xie Q, Liang J, Shen Y, Li Z, Zhao N, Wu Y, Liu L, Zhang P, Hu C, Chen L, Wang Y. Identification of Andrographolide as a novel FABP4 inhibitor for osteoarthritis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154939. [PMID: 37354697 DOI: 10.1016/j.phymed.2023.154939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND PURPOSE Fatty acid binding protein 4 (FABP4) has been identified as a contributor to cartilage degradation in osteoarthritis (OA) patients, and inhibiting FABP4 using small molecules has emerged as a promising approach for developing OA drugs. Our previous research showed that Andrographis paniculata, a medicinal plant, strongly inhibits FABP4 activity. This led us to hypothesize that Andrographis paniculata ingredients might have protective effects on OA cartilage through FABP4 inhibition. METHODS We analyzed scRNA-seq data from joint tissue of OA patients (GSE152805; GSE145286) using Scanpy 1.9.1 and Single Cell Portal. We conducted docking analysis of FABP4 inhibitors using Autodock Vina v.1.0.2. We evaluated the anti-FABP4 activity using a fluorescence displacement assay and measured the fatty acid oxidation (FAO) activity using the FAOBlue assay. We used H2DCF-DA to measure reactive oxygen species (ROS) levels. We studied signaling pathways using bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. We evaluated anti-OA activity in monosodium iodoacetate (MIA)-induced rats. RESULTS We identified Andrographolide (AP) as a novel FABP4 inhibitor. Bulk RNA-sequencing analysis revealed that FABP4 upregulated FAO and ROS in chondrocytes, which was inhibited by AP. ROS generation activated the NF-κB pathway, leading to overexpression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which is a responsible factor for cartilage degradation in OA patients. AP inhibited FABP4, thereby reducing the overexpression of ADAMTS4 by inhibiting the NF-κB pathway. In MIA rats, AP treatment reduced the overexpression of ADAMTS4, repaired cartilage and subchondral bone, and promoted cartilage regeneration. CONCLUSION Our results indicate that the inhibition of FABP4 activity by AP explains the anti-OA properties of Andrographis paniculata by protecting against cartilage degradation in OA patients. Additionally, our findings suggest that AP may be a promising therapeutic agent for OA treatment due to its ability to alleviate cartilage damage and bone erosion.
Collapse
Affiliation(s)
- Kuangyang Yang
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Qian Xie
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China; Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jianhui Liang
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Yanni Shen
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziqi Li
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Na Zhao
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Yuanyan Wu
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Lichu Liu
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Peng Zhang
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China.
| |
Collapse
|
23
|
Feixiang L, Yanchen F, Xiang L, Yunke Z, Jinxin M, Jianru W, Zixuan L. The mechanism of oxytocin and its receptors in regulating cells in bone metabolism. Front Pharmacol 2023; 14:1171732. [PMID: 37229246 PMCID: PMC10203168 DOI: 10.3389/fphar.2023.1171732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide known to affect social behavior and cognition. The epigenetic modification of the oxytocin receptor (OTR) via DNA methylation stimulates parturition and breast milk secretion and inhibits craniopharyngioma, breast cancer, and ovarian cancer growth significantly as well as directly regulates bone metabolism in their peripheral form rather than the central form. OT and OTR can be expressed on bone marrow mesenchymal stem cells (BMSCs), osteoblasts (OB), osteoclasts (OC), osteocytes, chondrocytes, and adipocytes. OB can synthesize OT under the stimulation of estrogen as a paracrine-autocrine regulator for bone formation. OT/OTR, estrogen, and OB form a feed-forward loop through estrogen mediation. The osteoclastogenesis inhibitory factor (OPG)/receptor activator of the nuclear factor kappa-B ligand (RANKL) signaling pathway is crucially required for OT and OTR to exert anti-osteoporosis effect. Downregulating the expression of bone resorption markers and upregulating the expression of the bone morphogenetic protein, OT could increase BMSC activity and promote OB differentiation instead of adipocytes. It could also stimulate the mineralization of OB by motivating OTR translocation into the OB nucleus. Moreover, by inducing intracytoplasmic Ca2+ release and nitric oxide synthesis, OT could regulate the OPG/RANKL ratio in OB and exert a bidirectional regulatory effect on OC. Furthermore, OT could increase the activity of osteocytes and chondrocytes, which helps increase bone mass and improve bone microstructure. This paper reviews recent studies on the role of OT and OTR in regulating cells in bone metabolism as a reference for their clinical use and research based on their reliable anti-osteoporosis effects.
Collapse
Affiliation(s)
- Liu Feixiang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Feng Yanchen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Zhang Yunke
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Miao Jinxin
- Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wang Jianru
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lin Zixuan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Herrero-Manley L, Alabajos-Cea A, Suso-Martí L, Cuenca-Martínez F, Calatayud J, Casaña J, Viosca-Herrero E, Vázquez-Arce I, Ferrer-Sargues FJ, Blanco-Díaz M. Serum lipid biomarkers and inflammatory cytokines associated with onset and clinical status of patients with early knee osteoarthritis. Front Nutr 2023; 10:1126796. [PMID: 37006936 PMCID: PMC10050464 DOI: 10.3389/fnut.2023.1126796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionOsteoarthritis (OA) is a common joint condition and one of the greatest causes of disability worldwide. The role of serum lipid and inflammatory biomarkers in the origin and development of the disease is not clear, although it could have important implications for diagnosis and treatment. The primary aim of this study was to evaluate differences of serum lipid and inflammatory biomarkers with knee EOA in comparison with matched controls, in order to determine the role of these factors in the origin of EOA.MethodsFor this proposal, a cross-sectional study with a non-randomized sample was performed. 48 subjects with early osteoarthritis (EOA) and 48 matched controls were selected and serum lipid levels (total cholesterol, LDL, HDL) and inflammatory biomarkers C-reactive protein (CRP), uric acid (UA) were analyzed. In addition, clinical (pain, disability) and functional (gait speed, sit-to-stand) variables were measured to establish their relationship to serum lipid levels and inflammatory biomarkers.ResultsPatients with EOA showed higher levels of total cholesterol LDL, UA, and CRP. Higher levels of total cholesterol, LDL and CRP were correlated with higher levels of pain intensity and higher disability (p < 0.05). In addition, UA and CRP were inversely correlated with gait speed and sit-to-stand tests (r = −0.038 to −0.5, p < 0.05).ConclusionThese results highlight the relevance of metabolic and proinflammatory aspects in the early stages of knee OA and could be key to developing early diagnoses to prevent the onset and development of the disease.
Collapse
Affiliation(s)
- Luz Herrero-Manley
- Servicio de Medicina Física y Rehabilitación, Hospital La Fe, Valencia, Spain
| | - Ana Alabajos-Cea
- Servicio de Medicina Física y Rehabilitación, Hospital La Fe, Valencia, Spain
- Grupo de Investigación en Medicina Física y Rehabilitación, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Luis Suso-Martí
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | | | - Joaquín Calatayud
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
- *Correspondence: Joaquín Calatayud,
| | - José Casaña
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | | | - Isabel Vázquez-Arce
- Servicio de Medicina Física y Rehabilitación, Hospital La Fe, Valencia, Spain
| | | | - María Blanco-Díaz
- Department of Surgery and Medical Surgical Specialties, Faculty of Medicine and Health Sciences, University of Oviedo, Oviedo, Spain
| |
Collapse
|
25
|
Kodama J, Wilkinson KJ, Otsuru S. Nutrient metabolism of the nucleus pulposus: A literature review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2022; 13:100191. [PMID: 36590450 PMCID: PMC9801222 DOI: 10.1016/j.xnsj.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Cells take in, consume, and synthesize nutrients for numerous physiological functions. This includes not only energy production but also macromolecule biosynthesis, which will further influence cellular signaling, redox homeostasis, and cell fate commitment. Therefore, alteration in cellular nutrient metabolism is associated with pathological conditions. Intervertebral discs, particularly the nucleus pulposus (NP), are avascular and exhibit unique metabolic preferences. Clinical and preclinical studies have indicated a correlation between intervertebral degeneration (IDD) and systemic metabolic diseases such as diabetes, obesity, and dyslipidemia. However, a lack of understanding of the nutrient metabolism of NP cells is masking the underlying mechanism. Indeed, although previous studies indicated that glucose metabolism is essential for NP cells, the downstream metabolic pathways remain unknown, and the potential role of other nutrients, like amino acids and lipids, is understudied. In this literature review, we summarize the current understanding of nutrient metabolism in NP cells and discuss other potential metabolic pathways by referring to a human NP transcriptomic dataset deposited to the Gene Expression Omnibus, which can provide us hints for future studies of nutrient metabolism in NP cells and novel therapies for IDD.
Collapse
Affiliation(s)
- Joe Kodama
- Corresponding authors at: 670 W Baltimore St. HSFIII 7173, Baltimore, MD 21201, USA.
| | | | - Satoru Otsuru
- Corresponding authors at: 670 W Baltimore St. HSFIII 7173, Baltimore, MD 21201, USA.
| |
Collapse
|