1
|
Basile L, Cannarella R, Magni P, Condorelli RA, Calogero AE, La Vignera S. Role of gliflozins on hepatocellular carcinoma progression: a systematic synthesis of preclinical and clinical evidence. Expert Opin Drug Saf 2024. [PMID: 39714931 DOI: 10.1080/14740338.2024.2447057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/02/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION The risk of HCC is twice as high in diabetic patients compared to non-diabetic ones, suggesting that diabetes advances carcinogenesis in the liver through a variety of mechanisms. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been shown to improve liver outcomes, emerging as promising agents to treat hepatocellular carcinoma (HCC) in patients with type 2 diabetes mellitus (T2DM). METHODS We searched PubMed and Scopus databases for articles presenting an association between SGLT2is and HCC to explore the putative mechanisms of action underlying the anti-proliferative activity of SGLT2is. Results: A total of 24 articles were selected for inclusion, of which 14 were preclinical and 10 were clinical. Preclinical studies were mainly focused on canagliflozin, used alone or in combination with other drugs. Conclusions: Overall, canagliflozin had a negative effect on HCC cell proliferation by interfering with glucose-dependent and independent metabolic pathways, negatively impacting angiogenesis, and inducing apoptosis in in-vitro cell models. In-vivo, a protective effect on hepatic steatosis and fibrosis and HCC development has been reported. Human studies showed a lower risk of developing HCC in patients on SGLT2is. However, this is supported by retrospective cohort studies. Clinical trials are needed to confirm the causal relationship between SGLT2i administration and HCC development.
Collapse
Affiliation(s)
- Livia Basile
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Nesci A, Ruggieri V, Manilla V, Spinelli I, Santoro L, Di Giorgio A, Santoliquido A, Ponziani FR. Endothelial Dysfunction and Liver Cirrhosis: Unraveling of a Complex Relationship. Int J Mol Sci 2024; 25:12859. [PMID: 39684569 DOI: 10.3390/ijms252312859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelial dysfunction (ED) is the in the background of multiple metabolic diseases and a key process in liver disease progression and cirrhosis decompensation. ED affects liver sinusoidal endothelial cells (LSECs) in response to different damaging agents, causing their progressive dedifferentiation, unavoidably associated with an increase in intrahepatic resistance that leads to portal hypertension and hyperdynamic circulation with increased cardiac output and low peripheral artery resistance. These changes are driven by a continuous interplay between different hepatic cell types, invariably leading to increased reactive oxygen species (ROS) formation, increased release of pro-inflammatory cytokines and chemokines, and reduced nitric oxide (NO) bioavailability, with a subsequent loss of proper vascular tone regulation and fibrosis development. ED evaluation is often accomplished by serum markers and the flow-mediated dilation (FMD) measurement of the brachial artery to assess its NO-dependent response to shear stress, which usually decreases in ED. In the context of liver cirrhosis, the ED assessment could help understand the complex hemodynamic changes occurring in the early and late stages of the disease. However, the instauration of a hyperdynamic state and the different NO bioavailability in intrahepatic and systemic circulation-often defined as the NO paradox-must be considered confounding factors during FMD analysis. The primary purpose of this review is to describe the main features of ED and highlight the key findings of the dynamic and intriguing relationship between ED and liver disease. We will also focus on the significance of FMD evaluation in this setting, pointing out its key role as a therapeutic target in the never-ending battle against liver cirrhosis progression.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Manilla
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Spinelli
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
3
|
La Mura V, Cardinale V, De Cristofaro R, De Santis A, Di Minno G, Fabris L, Marra F, Morisco F, Peyvandi F, Pompili M, Santoro C, Zanon E, Castaman G. Liver-related aspects of valoctocogene roxaparvovec gene therapy for hemophilia A: expert guidance for clinical practice. Blood Adv 2024; 8:5725-5734. [PMID: 39226466 PMCID: PMC11599981 DOI: 10.1182/bloodadvances.2024013750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
ABSTRACT Adeno-associated virus-based gene therapy (valoctocogene roxaparvovec) is an attractive treatment for hemophilia A. Careful clinical management is required to minimize the risk of hepatotoxicity, including assessment of baseline liver condition to determine treatment eligibility and monitoring liver function after gene therapy. This article describes recommendations (developed by a group of hemophilia experts) on hepatic function monitoring before and after gene therapy. To prevent harmful liver-related effects, gene therapy is contraindicated in patients with uncontrolled liver infections, autoimmune hepatitis, liver stiffness ≥8 kPa, or cirrhosis. Before using gene therapy in patients with liver steatosis or other liver disorders, the risk of liver damage should be considered using a highly individualized approach. Treatment is not recommended in patients with abnormal liver enzymes, including alanine aminotransferase (ALT) at any level above the upper limit of normal (ULN). Therefore, pretreatment assessment of liver health should include laboratory tests, abdominal ultrasound, and liver stiffness measurements by transient elastography (TE). In the first year after therapy, ALT levels should be monitored 1 to 2 times per week to detect elevations ≥1.5× ULN, which may require immunosuppressant therapy. Patients with ALT elevation should receive prednisone 60 mg/d for 2 weeks, followed by stepwise tapering when ALT returns to baseline. ALT monitoring should continue long term (every 3-6 months), along with abdominal ultrasound (every 6 months) and TE (yearly) evaluations. When patients with good liver health are selected for treatment and closely monitored thereafter, ALT elevations can be promptly treated and are expected to resolve without long-term hepatic sequelae.
Collapse
Affiliation(s)
- Vincenzo La Mura
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Cardinale
- Dipartimento di Medicina Traslazionale e di Precisione, Sapienza Università di Roma, Rome, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore Roma, Rome, Italy
| | - Adriano De Santis
- Dipartimento di Medicina Traslazionale e di Precisione, Sapienza Università di Roma, Rome, Italy
| | - Giovanni Di Minno
- Regional Reference Centre for Hemo-Coagulation Diseases, Federico II University, Naples, Italy
| | - Luca Fabris
- Department of Medicine, Clinical Medicine 1, University-Hospital of Padua, Padua, Italy
- Department of Internal Medicine, Digestive Disease Section, Yale Liver Center, Yale University, New Haven, CT
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, Liver and Biliary Diseases Unit, University Federico II, Naples, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maurizio Pompili
- UOC Medicina Interna e del Trapianto di Fegato, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del S. Cuore, Rome, Italy
| | - Cristina Santoro
- Department of Hematology, University Hospital Policlinico Umberto I, Rome, Italy
| | - Ezio Zanon
- Hemophilia Centre, Clinical Medicine 1, University Hospital of Padua, Padua, Italy
| | - Giancarlo Castaman
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Florence, Italy
| |
Collapse
|
4
|
Haewphet T, Parhira S, Chaisupasakul P, Wangteeraprasert A, Phoungpetchara I, Pekthong D, Kaewkong W, Jiang ZH, Bai LP, Somran J, Srisawang P. The dichloromethane fraction from Calotropis gigantea (L.) dryand. Stem bark extract prevents liver cancer in SDT rats with insulin-independent diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118516. [PMID: 38971341 DOI: 10.1016/j.jep.2024.118516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calotropis gigantea (L.) Dryand. (C. gigantea) is a traditional medicinal plant, recognized for its effectiveness in managing diabetes, along with its notable antioxidant, anti-inflammatory, and anticancer properties. Type II diabetes mellitus (T2DM) is characterized by chronic metabolic disorders associated with an elevated risk of hepatocellular carcinoma (HCC) due to hyperglycemia and impaired insulin response. The scientific validation of C. gigantea's ethnopharmacological efficacy offers advantages in alleviating cancer progression in T2DM complications, enriching existing knowledge and potentially aiding future clinical cancer treatments. AIM This study aimed to investigate the preventive potential of the dichloromethane fraction of C. gigantea stem bark extract (CGDCM) against diethylnitrosamine (DEN)-induced HCC in T2DM rats, aiming to reduce cancer incidence associated with diabetes while validating C. gigantea's ethnopharmacological efficacy. MATERIALS AND METHODS Spontaneously Diabetic Torii (SDT) rats were administered DEN to induce HCC (SDT-DEN-VEH), followed by treatment with CGDCM. Metformin was used as a positive control (SDT-DEN-MET). All the treatments were administered for 10 weeks after the initial DEN injection. Diabetes-related parameters, including serum levels of glucose, insulin, and glycosylated hemoglobin (HbA1c), as well as liver function enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gamma-glutamyl transferase), were quantified. Serum inflammation biomarkers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were evaluated. Liver tissue samples were analyzed for inflammation protein expression (IL-6, TNF-α, transforming growth factor-β1 (TGF-β1), and α-smooth muscle actin (α-SMA)). Histopathological evaluation was performed to assess hepatic necrosis, inflammation, and fibrosis. Liver cell proliferation was determined using immunohistochemistry for Ki-67 expression. RESULTS Rats with SDT-DEN-induced HCC treated with CGDCM exhibited reduced serum glucose levels, elevated insulin levels, and decreased HbA1c levels. CGDCM treatment also reduced elevated hepatic IL-6, TNF-α, TGF-β1, and α-SMA levels in SDT-DEN-VEH rats. Additionally, CGDCM treatment prevented hepatocyte damage, fibrosis, and cell proliferation. No adverse effects on normal organs were observed with CGDCM treatment, suggesting its safety for the treatment of HCC complications associated with diabetes. Additionally, the absence of adverse effects in SD rats treated with CGDCM at 2.5 mg/kg further supports the notion of its safe usage. CONCLUSIONS These findings suggest that C. gigantea stem bark extract exerts preventive effects against the development of HCC complications in patients with T2DM, expanding the potential benefits of its ethnopharmacological advantages.
Collapse
Affiliation(s)
- Thaiyawat Haewphet
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand; Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Pattaraporn Chaisupasakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand.
| | | | - Ittipon Phoungpetchara
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand; Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, China.
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, China.
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
5
|
Piccoli RC, Simões WS, Custódio SV, Goularte KCM, Luduvico KP, de Mello JE, de Souza AA, Teixeira AC, da Costa DA, Barschak AG, Deniz BF, de Almeida W, Pereira P, Nicolai M, Spanevello RM, Stefanello FM, Tavares RG, Palma ML. Sustainable Intervention: Grape Pomace Flour Ameliorates Fasting Glucose and Mitigates Streptozotocin-Induced Pancreatic Damage in a Type 2 Diabetes Animal Model. Pharmaceuticals (Basel) 2024; 17:1530. [PMID: 39598440 PMCID: PMC11597639 DOI: 10.3390/ph17111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycemia, increased risk of cardiovascular diseases, and oxidative imbalances. This study aimed to investigate the impact of dietary supplementations with 'Arinto' grape pomace flour (GPF) (WGPF) and 'Touriga Nacional' GPF (RGPF) in an animal model of T2DM. Methods: T2DM was induced by a high-fat diet (HFD) for 28 days and a single dose of streptozotocin (STZ) (35 mg/kg) on the 21st day. Forty adult male Wistar rats were divided into five groups: Control (CT), T2DM, T2DM + Metformin (250 mg/kg), T2DM + 10% 'Arinto' GPF (WGPF), and T2DM + 10% 'Touriga Nacional' GPF (RGPF). On the 21st day of the experimental protocol, animals were submitted to an oral glucose tolerance test. An oral glucose tolerance test, oxidative stress parameters, biochemical analysis, and pancreas histological analyses were performed. Results: T2DM impaired glucose tolerance, elevated serum triglycerides and cholesterol, increased oxidative damage in the liver, and induced pancreatic histological abnormalities. However, supplementation with WGPF and RGPF demonstrated positive effects, mitigating glycemic and lipid disruptions, ameliorating oxidative stress, and protecting pancreatic Islets β-cells. Conclusions: Our findings highlight the protective effects of WGPF and RGPF in the adverse impacts of T2DM. Additionally, our study emphasizes the innovative use of grape pomace, a winemaking by-product, promoting sustainability by transforming waste into functional foods with significant health benefits.
Collapse
Affiliation(s)
- Raphaela Cassol Piccoli
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - William Sanabria Simões
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Solange Vega Custódio
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Kelen Cristiane Machado Goularte
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Karina Pereira Luduvico
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Julia Eisenhardt de Mello
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Anita Avila de Souza
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Ana Carolina Teixeira
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Diego Araujo da Costa
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
| | - Alethéa Gatto Barschak
- Clinical Analysis Laboratory, Federal University of Health Sciences of Porto Alegre, Department of Basic Health Sciences, Porto Alegre 90050-170, RS, Brazil;
| | - Bruna Ferrary Deniz
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Wellington de Almeida
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Paula Pereira
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Natural Resources and Environment (CERENA), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- EPCV, School of Phycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Marisa Nicolai
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| | - Roselia Maria Spanevello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Francieli Moro Stefanello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Rejane Giacomelli Tavares
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Maria Lídia Palma
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| |
Collapse
|
6
|
Liu GM, Zhu WB, Xu JW. Triglyceride-glucose index predicts postoperative overall survival in hepatocellular carcinoma: a retrospective cohort study. Discov Oncol 2024; 15:651. [PMID: 39537878 PMCID: PMC11561194 DOI: 10.1007/s12672-024-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Insulin resistance is important in hepatocellular carcinoma (HCC) carcinogenesis and progression. The triglyceride-glucose (TyG) index, triglyceride to high-density lipoprotein cholesterol (TG/HDL-c) ratio or TyG-body mass index (TyG-BMI) are three non-invasive parameters for insulin resistance. However, their prognostic role in HCC patients undergoing hepatectomy remains unclear. MATERIALS AND METHODS HCC patients who underwent hepatectomy at the Meizhou People's Hospital from May 2011 to February 2023 were retrospectively explored. Patients were classified into high and low groups based on different TyG, TG/HDL-c, and TyG-BMI indices. The prognostic role of TyG, TG/HDL-c, and TyG-BMI was evaluated using Kaplan-Meier analysis and Cox regression models. A nomogram incorporating significant prognostic factors was constructed and validated. RESULTS A lower TyG, lower TG/HDL-c, and lower TyG-BMI were linked to worse overall survival (OS) in HCC patients. Multivariate analysis indicated the TyG index, but not the TG/HDL-c and TyG-BMI index, could independently predict HCC OS. The nomogram incorporating the TNM stage and TyG index demonstrated good calibration, discriminative ability, and clinical benefit for predicting OS in HCC patients. CONCLUSIONS The TyG index could independently predict HCC OS after hepatectomy in this cohort. The nomogram incorporating the TyG index may aid in the prognosis management of HCC.
Collapse
Affiliation(s)
- Gao-Min Liu
- Meizhou Clinical Institute of Shantou University Medical College, No. 38 Huangtang Road, Meizhou, 514000, China
- Department of Hepatobiliary Surgery, Department of Pathology, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000, China
| | - Wen-Biao Zhu
- Meizhou Clinical Institute of Shantou University Medical College, No. 38 Huangtang Road, Meizhou, 514000, China.
| | - Ji-Wei Xu
- Meizhou Clinical Institute of Shantou University Medical College, No. 38 Huangtang Road, Meizhou, 514000, China.
- Department of Hepatobiliary Surgery, Department of Pathology, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000, China.
| |
Collapse
|
7
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
8
|
Chen S, Suo J, Wang Y, Tang C, Ma B, Li J, Hou Y, Yan B, Shen T, Zhang Q, Ma B. Cordycepin alleviates diabetes mellitus-associated hepatic fibrosis by inhibiting SOX9-mediated Wnt/β-catenin signal axis. Bioorg Chem 2024; 153:107812. [PMID: 39260158 DOI: 10.1016/j.bioorg.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Diabetes mellitus can induce liver injury and easily progress to liver fibrosis. However, there is still a lack of effective treatments for diabetes-induced hepatic fibrosis. Cordycepin (COR), a natural nucleoside derived from Cordyceps militaris, has demonstrated remarkable efficacy in treating metabolic diseases and providing hepatoprotective effects. However, its protective effect and underlying mechanism in diabetes-induced liver injury remain unclear. This study utilized a high-fat diet/streptozotocin-induced diabetic mouse model, as well as LX-2 and AML-12 cell models exposed to high glucose and TGF-β1, to explore the protective effects and mechanisms of Cordycepin in liver fibrosis associated with diabetes. The results showed that COR lowered blood glucose levels, enhanced liver function, mitigated fibrosis, and suppressed HSC activation in diabetic mice. Mechanistically, COR attenuated the activation of the Wnt/β-catenin pathway by inhibiting β-catenin nuclear translocation, and β-catenin knockdown further intensified this effect. Meanwhile, COR significantly inhibited SOX9 expression in vivo and in vitro. Knockdown of SOX9 downregulated Wnt3a and β-catenin expression at the protein and gene levels to exacerbate the inhibitory action of COR on HG&TGF-β1-induced HSCs activations. These results indicate SOX9 is involved in the mechanism by which COR deactivates the Wnt/β-catenin pathway in hepatic fibrosis induced by diabetes. Moreover, prolonged half-life time, slower metabolism and higher exposure of COR were observed in diabetes-induced liver injury animal model via pharmacokinetics studies. Altogether, COR holds potential as a therapeutic agent for ameliorating hepatic injury and fibrosis in diabetes by suppressing the activation of the SOX9-mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shuang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Jialiang Suo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Yu Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Chenglun Tang
- Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Nanjing 210000, PR China
| | - Beiting Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Yuyang Hou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Bingrong Yan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
9
|
Nithyasree V, Magdalene P, Praveen Kumar PK, Preethi J, Gromiha MM. Role of HSP90 in Type 2 Diabetes Mellitus and Its Association with Liver Diseases. Mol Biotechnol 2024:10.1007/s12033-024-01251-1. [PMID: 39162909 DOI: 10.1007/s12033-024-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Non-alcoholic fatty acid liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) are the fatal liver diseases which encompass a spectrum of disease severity associated with increased risk of type 2 diabetes mellitus (T2DM), a metabolic disorder. Heat shock proteins serve as markers in early prognosis and diagnosis of early stages of liver diseases associated with metabolic disorder. This review aims to comprehensively investigate the significance of HSP90 isoforms in T2DM and liver diseases. Additionally, we explore the collective knowledge on plant-based drug compounds that regulate HSP90 isoform targets, highlighting their potential in treating T2DM-associated liver diseases. Furthermore, this review focuses on the computational systems' biology and next-generation sequencing technology approaches that are used to unravel the potential medicine for the treatment of pleiotropy of these 2 diseases and to further elucidate the mechanism.
Collapse
Affiliation(s)
- V Nithyasree
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - P Magdalene
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - P K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - J Preethi
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
10
|
Zhu XX, Zhao CY, Meng XY, Yu XY, Ma LC, Chen TX, Chang C, Chen XY, Zhang Y, Hou B, Cai WW, Du B, Han ZJ, Qiu LY, Sun HJ. Bacteroides uniformis Ameliorates Carbohydrate and Lipid Metabolism Disorders in Diabetic Mice by Regulating Bile Acid Metabolism via the Gut-Liver Axis. Pharmaceuticals (Basel) 2024; 17:1015. [PMID: 39204119 PMCID: PMC11357665 DOI: 10.3390/ph17081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- Department of Physiology, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Chen-Yang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xiao-Yi Yu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Lin-Chun Ma
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Tian-Xiao Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Chang Chang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Yuan Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Wei-Wei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, China;
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
11
|
Wang ZJ, Ma P, Xu CY, Xu TS, Zhang L, He P, Hou BY, Yang XY, Du GH, Ji TF, Qiang GF. Identification of a novel hypoglycemic small molecule, trans-2, 4-dimethoxystilbene by rectifying gut microbiota and activating hepatic AMPKα-PPARγ pathway through gut-liver axis. Biomed Pharmacother 2024; 176:116760. [PMID: 38788595 DOI: 10.1016/j.biopha.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
With the increasing prevalence of metabolic disorders, hyperglycemia has become a common risk factor that endangers people's lives and the need for new drug solutions is burgeoning. Trans-2, 4-dimethoxystilbene (TDMS), a synthetic stilbene, has been found as a novel hypoglycemic small molecule from glucose consumption test. Normal C57BL/6 J mice, mouse models of type 1 diabetes mellitus and diet-induced obesity subjected to TDMS gavage were found with lower glycemic levels and better glycemic control. TDMS significantly improved the symptoms of polydipsia and wasting in type 1 diabetic mice, and could rise their body temperature at the same time. It was found that TDMS could promote the expression of key genes of glucose metabolism in HepG2, as do in TDMS-treated liver, while it could improve the intestinal flora and relieve intestinal metabolic dysbiosis in hyperglycemic models, which in turn affected its function in the liver, forming the gut-liver axis. We further fished PPARγ by virtual screening that could be promoted by TDMS both in-vitro and in-vivo, which was regulated by upstream signaling of AMPKα phosphorylation. As a novel hypoglycemic small molecule, TDMS was proven to be promising with its glycemic improvements and amelioration of diabetes symptoms. It promoted glucose absorption and utilization by the liver and improved the intestinal flora of diabetic mice. Therefore, TDMS is expected to become a new hypoglycemic drug that acts through gut-liver axis via AMPKα-PPARγ signaling pathway in improving glycemic metabolism, bringing new hope to patients with diabetes and glucose metabolism disorders.
Collapse
Affiliation(s)
- Zi-Jing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chun-Yang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Tian-Shu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Ping He
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Teng-Fei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
12
|
Zhang S, Wang Q, Tan DEL, Sikka V, Ng CH, Xian Y, Li D, Muthiah M, Chew NWS, Storm G, Tong L, Wang J. Gut-liver axis: Potential mechanisms of action of food-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12466. [PMID: 38887165 PMCID: PMC11183959 DOI: 10.1002/jev2.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease. Interestingly, therapeutic effects of FEVs have recently also been observed in non-gastrointestinal diseases. However, the mechanisms remain unclear or even mysterious. It is speculated that orally administered FEVs could enter the bloodstream, reach remote organs, and thus exert therapeutic effects therein. However, emerging evidence suggests that the amount of FEVs reaching organs beyond the gastrointestinal tract is marginal and may be insufficient to account for the significant therapeutic effects achieved regarding diseases involving remote organs such as the liver. Thus, we herein propose that FEVs primarily act locally in the intestine by modulating intestinal microenvironments such as barrier integrity and microbiota, thereby eliciting therapeutic impact remotely on the liver in non-gastrointestinal diseases via the gut-liver axis. Likewise, drugs delivered to the gastrointestinal system through FEVs may act via the gut-liver axis. As the liver is the main metabolic hub, the intestinal microenvironment may be implicated in other metabolic diseases. In fact, many patients with non-alcoholic fatty liver disease, obesity, diabetes and cardiovascular disease suffer from a leaky gut and dysbiosis. In this review, we provide an overview of the recent progress in FEVs and discuss their biomedical applications as therapeutic agents and drug delivery systems, highlighting the pivotal role of the gut-liver axis in the mechanisms of action of FEVs for the treatment of gut disorders and metabolic diseases.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qiyue Wang
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Daniel En Liang Tan
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vritika Sikka
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
| | - Yan Xian
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dan Li
- Department of Food Science and Technology, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
- National University Centre for Organ TransplantationNational University Health SystemSingaporeSingapore
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart CentreNational University Health SystemSingaporeSingapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lingjun Tong
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute (CVRI)National University Heart Centre Singapore (NUHCS)SingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
13
|
Huang C, Qian J, Liu Y, Zhang L, Yang Y. Empagliflozin attenuates liver fibrosis in high-fat diet/streptozotocin-induced mice by modulating gut microbiota. Clin Exp Pharmacol Physiol 2024; 51:e13842. [PMID: 38302074 DOI: 10.1111/1440-1681.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
The effects of SGLT2 inhibitors on hepatic fibrosis in diabetes remain unclear. This study aimed to investigate the effects of empagliflozin on liver fibrosis in high-fat diet/streptozotocin-induced mice and the correlation with gut microbiota. After the application of empagliflozin for 6 weeks, we performed oral glucose tolerance and intraperitoneal insulin tolerance tests to assess glucose tolerance and insulin resistance, and stained liver sections to evaluate histochemical and hepatic pathological markers of liver fibrosis. Moreover, 16S rRNA amplicon sequencing was performed on stool samples to explore changes in the composition of intestinal bacteria. We finally analysed the correlation between gut microbiome and liver fibrosis scores or indicators of glucose metabolism. The results showed that empagliflozin intervention improved glucose metabolism and liver function with reduced liver fibrosis, which might be related to changes in intestinal microbiota. In addition, the abundance of intestinal probiotic Lactobacillus increased, while Ruminococcus and Adlercreutzia decreased after empagliflozin treatment, and correlation analysis showed that the changes in microbiota were positively correlated with liver fibrosis and glucose metabolism. Overall, considering the contribution of the gut microbiota in metabolism, empagliflozin might have improved the beneficial balance of intestinal bacteria composition. The present study provides evidence and indicates the involvement of the gut-liver axis by SGLT2 inhibitors in T2DM with liver fibrosis.
Collapse
Affiliation(s)
- Chuxin Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|