1
|
Cheng M, Liu Q, Li M, He M. Cognitive frailty as a predictor of hospitalisation among older adults: a systematic review and meta-analysis. Psychogeriatrics 2025; 25:e13213. [PMID: 39569746 DOI: 10.1111/psyg.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
To examine whether cognitive frailty serves as a predictor of hospitalisation in older adults. PubMed, Web of Science, Embase, Scopus and Cochrane Library databases were systematically searched from inception to February 6, 2024. The reviewers independently selected studies, extracted data and evaluated the quality of studies. Stata 15.1 Software was used to perform the meta-analysis. A total of 13 articles were included in this study, including 34 230 participants. The results suggested that cognitive frailty was associated with hospitalisation in older adults (odds ratio (OR) = 1.79, 95% CI: 1.33-2.42, P < 0.001). The risk of hospitalisation for patients with cognitive frailty was 1.76 times higher than that for patients without cognitive frailty (relative risk = 1.76, 95% CI: 1.48-2.08, P < 0.001). According to different models of cognitive frailty, the results of subgroup analysis showed that the frail + cognitive impairment group had the highest risk of hospitalisation (OR = 2.22, 95% CI: 1.51-3.26, P < 0.001). Subgroup analysis based on study design showed that the incidence of hospitalisation was lowest in the cohort study group (OR = 1.51, 95% CI: 1.14-2.00, P = 0.004). This study suggested that cognitive frailty was an important predictor of hospitalisation in older adults. Future studies are needed to investigate the impact of cognitive frailty on hospitalisation in older adults, as this may help reduce hospitalisation rates and improve patients' quality of life.
Collapse
Affiliation(s)
- Min Cheng
- School of Nursing, North Sichuan Medical College, Nanchong, China
- Nursing Department of Mianyang Central Hospital, School of Medicine Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Qin Liu
- School of Nursing, North Sichuan Medical College, Nanchong, China
- Nursing Department of Mianyang Central Hospital, School of Medicine Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Miao Li
- School of Nursing, North Sichuan Medical College, Nanchong, China
- Nursing Department of Mianyang Central Hospital, School of Medicine Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Mei He
- Nursing Department of Mianyang Central Hospital, School of Medicine Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
2
|
Liu H, Topping A, Guo P. Intergenerational engagement with Asian residents in long-term care facilities: a mixed method systematic review. Front Public Health 2024; 12:1422134. [PMID: 39081361 PMCID: PMC11286590 DOI: 10.3389/fpubh.2024.1422134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Asian countries are experiencing a rapid rise in their aging populations. Cognitive and physical decline associated with aging can limit social interaction. This particularly impacts on those residing in long-term care facilities and engagement with children and young people. Intergenerational engagement has known benefits on the health and wellbeing of older people, it is unclear what the impact of intergeneration engagement interventions might have on older people in Asian long-term care settings. This review aims to evaluate the effectiveness and experiences of intergenerational engagement with older people in long-term care facilities in Asia. Methods Ten databases were searched to locate empirical studies of any design published in English or Chinese from January 2000 to June 2023. The search was limited to papers reporting effectiveness and/or experiences of intergenerational engagement on older people residing in Asian long-term care settings. The protocol was registered with PROSPERO (CRD42023413935) and followed PRISMA guidelines for reporting. A convergent design employing narrative synthesis was used to synthesize and integrate findings. Results From initial searches, 1,092 records were identified, of which 13 studies were retained for the review: 7 quantitative (including 1 randomized controlled trial, 1 cross-sectional observational design, and 5 quasi-experimental designs), 3 qualitative, and 3 mixed methods. Included studies were of variable quality. Quantitative evidence revealed that intergenerational engagement reduced depression (4.47 vs. 8.67, p = 0.005), negative emotions (14.11 vs. 16.56, p = 0.030), and feelings of loneliness (p < 0.01) among older people; and increased quality of life (mean change = -1.91; 95% CI = -3.18, -0.64) and strengthens interpersonal interactions (p = 0.025). Qualitative insights suggested that intergenerational engagement could foster emotional bonds, enhance intergenerational relationships, promote lifelong learning, satisfy social needs and improve older peoples' overall quality of life. However, some challenges such as language differences and noise levels can hinder successful implementation of intergenerational engagement. Conclusion This review indicates that intergenerational engagement can reduce depression and loneliness, improve quality of life, and strengthen social bonds for older individuals in Asian long-term care facilities. Despite some challenges, the evidence underlines its potential to meet the emotional and social needs of older people. Recognizing and addressing delivery challenges is essential for effective implementation. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023413935, identifier: CRD42023413935.
Collapse
Affiliation(s)
- Hao Liu
- University of Birmingham, School of Nursing and Midwifery, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Anne Topping
- University of Birmingham, School of Nursing and Midwifery, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Ping Guo
- University of Birmingham, School of Nursing and Midwifery, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham, United Kingdom
| |
Collapse
|
3
|
Liu Y, Kang M, Wei W, Hui J, Gou Y, Liu C, Zhou R, Wang B, Shi P, Liu H, Cheng B, Jia Y, Wen Y, Zhang F. Dietary diversity score and the acceleration of biological aging: a population-based study of 88,039 participants. J Nutr Health Aging 2024; 28:100271. [PMID: 38810510 DOI: 10.1016/j.jnha.2024.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES Our study aimed to investigate the association of dietary diversity score (DDS), as reflected by five dietary categories, with biological age acceleration. DESIGN A cross-sectional study. SETTING AND PARTICIPANTS This study included 88,039 individuals from the UK Biobank. METHODS Biological age (BA) was assessed using Klemerae-Doubal (KDM) and PhenoAge methods. The difference between BA and chronological age represents the age acceleration (AgeAccel), termed as "KDMAccel" and "PhenoAgeAccel". AgeAccel > 0 indicates faster aging. Generalized linear regression models were performed to assess the associations of DDS with AgeAccel. Similar analyses were performed for the five dietary categories. RESULTS After adjusting for multiple variables, DDS was inversely associated with KDMAccel (βHigh vs Low= -0.403, 95%CI: -0.492 to -0.314, P < 0.001) and PhenoAgeAccel (βHigh vs Low= -0.545, 95%CI: -0.641 to -0.450, P < 0.001). Each 1-point increment in the DDS was associated with a 4.4% lower risk of KDMAccel and a 5.6% lower risk of PhenoAgeAccel. The restricted cubic spline plots demonstrated a non-linear dose-response association between DDS and the risk of AgeAccel. The consumption of grains (βKDMAccel = -0.252, βPhenoAgeAccel = -0.197), vegetables (βKDMAccel = -0.044, βPhenoAgeAccel = -0.077) and fruits (βKDMAccel = -0.179, βPhenoAgeAccel = -0.219) was inversely associated with the two AgeAccel, while meat and protein alternatives (βKDMAccel = 0.091, βPhenoAgeAccel = 0.054) had a positive association (All P < 0.001). Stratified analysis revealed stronger accelerated aging effects in males, smokers, and drinkers. A strengthening trend in the association between DDS and AgeAccel as TDI quartiles increased was noted. CONCLUSIONS This study suggested that food consumption plays a role in aging process, and adherence to a higher diversity dietary is associated with the slowing down of the aging process.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Meijuan Kang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yifan Gou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chen Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ruixue Zhou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bingyi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Panxing Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Hu FB. Diet strategies for promoting healthy aging and longevity: An epidemiological perspective. J Intern Med 2024; 295:508-531. [PMID: 37867396 PMCID: PMC10939982 DOI: 10.1111/joim.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
In recent decades, global life expectancies have risen significantly, accompanied by a marked increase in chronic diseases and population aging. This narrative review aims to summarize recent findings on the dietary factors influencing chronic diseases and longevity, primarily from large cohort studies. First, maintaining a healthy weight throughout life is pivotal for healthy aging and longevity, mirroring the benefits of lifelong, moderate calorie restriction in today's obesogenic food environment. Second, the specific types or food sources of dietary fat, protein, and carbohydrates are more important in influencing chronic disease risk and mortality than their quantity. Third, some traditional diets (e.g., the Mediterranean, Nordic, and Okinawa) and contemporary dietary patterns, such as healthy plant-based diet index, the DASH (dietary approaches to stop hypertension) diet, and alternate healthy eating index, have been associated with lower mortality and healthy longevity. These patterns share many common components (e.g., a predominance of nutrient-rich plant foods; limited red and processed meats; culinary herbs and spices prevalent in global cuisines) while embracing distinct elements from different cultures. Fourth, combining a healthy diet with other lifestyle factors could extend disease-free life expectancies by 8-10 years. While adhering to core principles of healthy diets, it is crucial to adapt dietary recommendations to individual preferences and cultures as well as nutritional needs of aging populations. Public health strategies should aim to create a healthier food environment where nutritious options are readily accessible, especially in public institutions and care facilities for the elderly. Although further mechanistic studies and human trials are needed to better understand molecular effects of diet on aging, there is a pressing need to establish and maintain long-term cohorts studying diet and aging in culturally diverse populations.
Collapse
Affiliation(s)
- Frank B. Hu
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115. USA
| |
Collapse
|
5
|
Baranowska-Wójcik E, Winiarska-Mieczan A, Olcha P, Kwiecień M, Jachimowicz-Rogowska K, Nowakowski Ł, Miturski A, Gałczyński K. Polyphenols Influence the Development of Endometrial Cancer by Modulating the Gut Microbiota. Nutrients 2024; 16:681. [PMID: 38474808 DOI: 10.3390/nu16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dysbiosis of the microbiota in the gastrointestinal tract can induce the development of gynaecological tumours, particularly in postmenopausal women, by causing DNA damage and alterations in metabolite metabolism. Dysbiosis also complicates cancer treatment by influencing the body's immune response and disrupting the sensitivity to chemotherapy drugs. Therefore, it is crucial to maintain homeostasis in the gut microbiota through the effective use of food components that affect its structure. Recent studies have shown that polyphenols, which are likely to be the most important secondary metabolites produced by plants, exhibit prebiotic properties. They affect the structure of the gut microbiota and the synthesis of metabolites. In this review, we summarise the current state of knowledge, focusing on the impact of polyphenols on the development of gynaecological tumours, particularly endometrial cancer, and emphasising that polyphenol consumption leads to beneficial modifications in the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Piotr Olcha
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23, 20-049 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Łukasz Nowakowski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Andrzej Miturski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Krzysztof Gałczyński
- Faculty of Medical Sciences and Health Sciences, Siedlce University of Natural Sciences and Humanities, Konarskiego 2, 08-110 Siedlce, Poland
| |
Collapse
|
6
|
Zhang R, Wu M, Zhang W, Liu X, Pu J, Wei T, Zhu Z, Tang Z, Wei N, Liu B, Cui Q, Wang J, Liu F, Lv Y. Association between life's essential 8 and biological ageing among US adults. J Transl Med 2023; 21:622. [PMID: 37710295 PMCID: PMC10503107 DOI: 10.1186/s12967-023-04495-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Biological ageing is tightly linked to cardiovascular disease (CVD). We aimed to investigate the relationship between Life's Essential 8 (LE8), a currently updated measure of cardiovascular health (CVH), and biological ageing. METHODS This cross-sectional study selected adults ≥ 20 years of age from the 2005-2010 National Health and Nutrition Examination Survey. LE8 scores (range 0-100) were obtained from measurements based on American Heart Association definitions, divided into health behavior and health factor scores. Biological ageing was assessed by different methods including phenotypic age, phenotypic age acceleration (PhenoAgeAccel), biological age and biological age acceleration (BioAgeAccel). Correlations were analyzed by weighted linear regression and restricted cubic spline models. RESULTS Of the 11,729 participants included, the mean age was 47.41 ± 0.36 years and 5983 (51.01%) were female. The mean phenotypic and biological ages were 42.96 ± 0.41 and 46.75 ± 0.39 years, respectively, and the mean LE8 score was 67.71 ± 0.35. After adjusting for potential confounders, higher LE8 scores were associated with lower phenotypic age, biological age, PhenoAgeAccel, and BioAgeAccel, with nonlinear dose-response relationships. Negative associations were also found between health behavior and health factor scores and biological ageing, and were stronger for health factors. In health factor-specific analyses, the β negativity was greater for blood glucose and blood pressure. The inverse correlations of LE8 scores with phenotypic age and biological age in the stratified analyses remained solid across strata. CONCLUSIONS LE8 and its subscale scores were strongly negatively related to biological ageing. Encouraging optimal CVH levels may be advantageous in preventing and slowing down ageing.
Collapse
Affiliation(s)
- Ronghuai Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Min Wu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Wei Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Xuna Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jie Pu
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Tao Wei
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
- Department of Cardiovascular Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Zhanfang Zhu
- Xi'an Jiaotong University Hospital, Xi'an, People's Republic of China
| | - Zhiguo Tang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Na Wei
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Bo Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Fuqiang Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Ying Lv
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|