1
|
Zheng X, Xia C, Liu M, Wu H, Yan J, Zhang Z, Huang Y, Gu Q, Li P. Role of folic acid in regulating gut microbiota and short-chain fatty acids based on an in vitro fermentation model. Appl Microbiol Biotechnol 2024; 108:40. [PMID: 38175236 DOI: 10.1007/s00253-023-12825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 01/05/2024]
Abstract
Folic acid deficiency is common worldwide and is linked to an imbalance in gut microbiota. However, based on model animals used to study the utilization of folic acid by gut microbes, there are challenges of reproducibility and individual differences. In this study, an in vitro fecal slurry culture model of folic acid deficiency was established to investigate the effects of supplementation with 5-methyltetrahydrofolate (MTHF) and non-reduced folic acid (FA) on the modulation of gut microbiota. 16S rRNA sequencing results revealed that both FA (29.7%) and MTHF (27.9%) supplementation significantly reduced the relative abundance of Bacteroidetes compared with control case (34.3%). MTHF supplementation significantly improved the relative abundance of Firmicutes by 4.49%. Notably, compared with the control case, FA and MTHF supplementation promoted an increase in fecal levels of Lactobacillus, Bifidobacterium, and Pediococcus. Short-chain fatty acid (SCFA) analysis showed that folic acid supplementation decreased acetate levels and increased fermentative production of isobutyric acid. The in vitro fecal slurry culture model developed in this study can be utilized as a model of folic acid deficiency in humans to study the gut microbiota and demonstrate that exogenous folic acid affects the composition of the gut microbiota and the level of SCFAs. KEY POINTS: • Establishment of folic acid deficiency in an in vitro culture model. • Folic acid supplementation regulates intestinal microbes and SCFAs. • Connections between microbes and SCFAs after adding folic acid are built.
Collapse
Affiliation(s)
- Xiaogu Zheng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Manman Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Hongchen Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Jiaqian Yan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Zihao Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Yingjie Huang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
2
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
3
|
Chakraborty P, Mukherjee C. The interplay of metabolic and epigenetic players in disease development. Biochem Biophys Res Commun 2024; 734:150621. [PMID: 39217811 DOI: 10.1016/j.bbrc.2024.150621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Epigenetic modifications and their alterations can cause variation in gene expression patterns which can ultimately affect a healthy individual. Until a few years ago, it was thought that the epigenome affects the transcriptome which can regulate the proteome and the metabolome. Recent studies have shown that the metabolome independently also plays a major role in regulating the epigenome bypassing the need for transcriptomic control. Alternatively, an imbalanced metabolome, stemming from transcriptome abnormalities, can further impact the transcriptome, creating a self-perpetuating cycle of interconnected occurrences. As a result, external factors such as nutrient intake and diet can have a direct impact on the metabolic pools and its reprogramming can change the levels and activity of epigenetic modifiers. Thus, the epigenetic landscape steers toward a diseased condition. In this review, we have discussed how different metabolites and dietary patterns can bring about changes in different arms of the epigenetic machinery such as methylation, acetylation as well as RNA mediated epigenetic mechanisms. We checked for limiting metabolites such as αKG, acetyl-CoA, ATP, NAD+, and FAD, whose abundance levels can lead to common diseases such as cancer, neurodegeneration etc. This gives a clearer picture of how an integrated approach including both epigenetics and metabolomics can be used for therapeutic purposes.
Collapse
Affiliation(s)
- Pallavi Chakraborty
- RNABio Lab, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India; Shiv Nadar Institute of Eminence, Greater Noida, Uttar Pradesh, India
| | - Chandrama Mukherjee
- RNABio Lab, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Chung MY, Kim BH. Fatty acids and epigenetics in health and diseases. Food Sci Biotechnol 2024; 33:3153-3166. [PMID: 39328231 PMCID: PMC11422405 DOI: 10.1007/s10068-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024] Open
Abstract
Lipids are crucial for human health and reproduction and include diverse fatty acids (FAs), notably polyunsaturated FAs (PUFAs) and short-chain FAs (SCFAs) that are known for their health benefits. Bioactivities of PUFAs, including ω-6 and ω-3 FAs as well as SCFAs, have been widely studied in various tissues and diseases. Epigenetic regulation has been suggested as a significant mechanism affecting the progression of various diseases, including cancers and metabolic and inflammatory diseases. Epigenetics encompasses the reversible modulation of gene expression without altering the DNA sequence itself, mediated by mechanisms such as DNA methylation, histone acetylation, and chromatin remodeling. Bioactive FAs have been demonstrated to regulate gene expression via epigenetic modifications that are potentially important for modulating metabolic control and disease risk. This review paper discusses the evidence in support of bioactive FAs, including ω-6 and ω-3 FAs and SCFAs, eliciting various disease prevention via epigenetic regulation including methylation or acetylation. Graphical abstract
Collapse
Affiliation(s)
- Min-Yu Chung
- Department of Food and Nutrition, Gangseo University, Seoul, 07661 Republic of Korea
| | - Byung Hee Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
5
|
Akbar M, Toppo P, Nazir A. Ageing, proteostasis, and the gut: Insights into neurological health and disease. Ageing Res Rev 2024; 101:102504. [PMID: 39284418 DOI: 10.1016/j.arr.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Recent research has illuminated the profound bidirectional communication between the gastrointestinal tract and the brain, furthering our understanding of neurological ailments facilitating possible therapeutic strategies. Technological advancements in high-throughput sequencing and multi-omics have unveiled significant alterations in gut microbiota and their metabolites in various neurological disorders. This review provides a thorough analysis of the role of microbiome-gut-brain axis in neurodegenerative disease pathology, linking it to reduced age-associated proteostasis. We discuss evidences that substantiate the existence of a gut-brain cross talk ranging from early clinical accounts of James Parkinson to Braak's hypothesis. In addition to understanding of microbes, the review particularly entails specific metabolites which are altered in neurodegenerative diseases. The regulatory effects of microbial metabolites on protein clearance mechanisms, proposing their potential therapeutic implications, are also discussed. By integrating this information, we advocate for a combinatory therapeutic strategy that targets early intervention, aiming to restore proteostasis and ameliorate disease progression. This approach not only provides a new perspective on the pathogenesis of neurodegenerative diseases but also highlights innovative strategies to combat the increasing burden of these age-related disorders.
Collapse
Affiliation(s)
- Mahmood Akbar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pranoy Toppo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
6
|
Zhu X, Tian X, Wang M, Li Y, Yang S, Kong J. Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes. Int Microbiol 2024; 27:1417-1428. [PMID: 38278974 DOI: 10.1007/s10123-024-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Bifidobacteria are the most prevalent members of the intestinal microbiota in mammals and other animals, and they play a significant role in promoting gut health through their probiotic effects. Recently, the potential applications of Bifidobacteria have been extended to skin health. However, the beneficial mechanism of Bifidobacteria on the skin barrier remains unclear. In this study, keratinocyte HaCaT cells were used as models to evaluate the protective effects of the cell-free supernatant (CFS), heat-inactivated bacteria, and bacterial lysate of Bifidobacterium animalis CGMCC25262 on the skin barrier and inflammatory cytokines. The results showed that all the tested samples were able to upregulate the transcription levels of biomarker genes associated with the skin barrier, such as hyaluronic acid synthetase (HAS) and aquaporins (AQPs). Notably, the transcription of the hyaluronic acid synthetase gene-2 (HAS-2) is upregulated by 3~4 times, and AQP3 increased by 2.5 times when the keratinocyte HaCaT cells were co-incubated with 0.8 to 1% CFS. In particular, the expression level of Filaggrin (FLG) in HaCaT cells increased by 1.7 to 2.7 times when incubated with Bifidobacterial samples, reaching its peak at a concentration of 0.8% CFS. Moreover, B. animalis CGMCC25262 also decreased the expression of the proinflammatory cytokine RANTES to one-tenth compared to the levels observed in HaCaT cells induced with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). These results demonstrate the potential of B. animalis CGMCC25262 in protecting the skin barrier and reducing inflammatory response.
Collapse
Affiliation(s)
- Xiaoce Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Xingfang Tian
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yan Li
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Suzhen Yang
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.
| |
Collapse
|
7
|
Kundra P, Geirnaert A, Pugin B, Plüss S, Kariluoto S, Lacroix C, Greppi A. Microbially-produced folate forms support the growth of Roseburia intestinalis but not its competitive fitness in fecal batch fermentations. BMC Microbiol 2024; 24:366. [PMID: 39342101 PMCID: PMC11438134 DOI: 10.1186/s12866-024-03528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Folate (vitamin B9) occurs naturally mainly as tetrahydrofolate (THF), methyl-tetrahydrofolate (M-THF), and formyl-tetrahydrofolate (F-THF), and as dietary synthetic form (folic acid). While folate auxotrophy and prototrophy are known for several gut microbes, the specific folate forms produced by gut prototrophs and their impact on gut auxotrophs and microbiota remain unexplored. METHODS Here, we quantified by UHPLC-FL/UV folate produced by six predicted gut prototrophs (Marvinbryantia formatexigens DSM 14469, Blautia hydrogenotrophica 10507 T, Blautia producta DSM 14466, Bacteroides caccae DSM 19024, Bacteroides ovatus DSM 1896, and Bacteroides thetaiotaomicron DSM 2079 T) and investigated the impact of different folate forms and doses (50 and 200 µg/l) on the growth and metabolism of the gut auxotroph Roseburia intestinalis in pure cultures and during fecal anaerobic batch fermentations (48 h, 37 °C) of five healthy adults. RESULTS Our results confirmed the production of folate by all six gut strains, in the range from 15.3 ng/ml to 205.4 ng/ml. Different folate forms were detected, with THF ranging from 12.8 to 41.4 ng/ml and 5-MTHF ranging from 0.2 to 113.3 ng/ml, and being detected in all strains. Natural folate forms, in contrast to folic acid, promoted the growth and metabolism of the auxotroph R. intestinalis L1-82, with dose-dependent effects. During fecal batch fermentations, folate forms at both levels had no detectable effect on total bacteria concentration, on gut community composition and metabolic activity and on Roseburia spp. abundance, compared to the control without folate addition. CONCLUSIONS Our study demonstrates for the first time in vitro the production of different natural folate forms by predicted gut prototrophs and the stimulation on the growth of the folate auxotrophic butyrate-producing R. intestinalis L1-82. Surprisingly, folate did not impact fecal fermentations. Our data suggest that the dietary folate forms at the tested levels may only have limited effects, if any, on the human gut microbiota in vivo.
Collapse
Affiliation(s)
- Palni Kundra
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland
| | - Annelies Geirnaert
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland
| | - Benoit Pugin
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland
| | - Serafina Plüss
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin Katu 2, 00014, Helsinki, Finland
| | - Christophe Lacroix
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland.
| | - Anna Greppi
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland.
- Present Address: Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Systems Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland.
| |
Collapse
|
8
|
Collins JM, Keane JM, Deady C, Khashan AS, McCarthy FP, O'Keeffe GW, Clarke G, Cryan JF, Caputi V, O'Mahony SM. Prenatal stress impacts foetal neurodevelopment: Temporal windows of gestational vulnerability. Neurosci Biobehav Rev 2024; 164:105793. [PMID: 38971516 DOI: 10.1016/j.neubiorev.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Prenatal maternal stressors ranging in severity from everyday occurrences/hassles to the experience of traumatic events negatively impact neurodevelopment, increasing the risk for the onset of psychopathology in the offspring. Notably, the timing of prenatal stress exposure plays a critical role in determining the nature and severity of subsequent neurodevelopmental outcomes. In this review, we evaluate the empirical evidence regarding temporal windows of heightened vulnerability to prenatal stress with respect to motor, cognitive, language, and behavioural development in both human and animal studies. We also explore potential temporal windows whereby several mechanisms may mediate prenatal stress-induced neurodevelopmental effects, namely, excessive hypothalamic-pituitary-adrenal axis activity, altered serotonin signalling and sympathetic-adrenal-medullary system, changes in placental function, immune system dysregulation, and alterations of the gut microbiota. While broadly defined developmental windows are apparent for specific psychopathological outcomes, inconsistencies arise when more complex cognitive and behavioural outcomes are considered. Novel approaches to track molecular markers reflective of the underlying aetiologies throughout gestation to identify tractable biomolecular signatures corresponding to critical vulnerability periods are urgently required.
Collapse
Affiliation(s)
- James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - James M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Fergus P McCarthy
- The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | |
Collapse
|
9
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
10
|
Mostafavi Abdolmaleky H, Zhou JR. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants (Basel) 2024; 13:985. [PMID: 39199231 PMCID: PMC11351922 DOI: 10.3390/antiox13080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways. Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal permeability, which allows gut-derived toxic products to enter the liver and systemic circulation, further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate, and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms, thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involving epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics, and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including histone modifications, DNA methylomics, and RNA interference) and potential interventions that may prevent or improve metabolic diseases.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
11
|
Carpentier J, Abenaim L, Luttenschlager H, Dessauvages K, Liu Y, Samoah P, Francis F, Caparros Megido R. Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges. INSECTS 2024; 15:611. [PMID: 39194816 DOI: 10.3390/insects15080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The interest in edible insects' mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry including particular detoxification processes. The processes depend on the insect's digestive system which is based on two components: an enzymatic intrinsic cargo to the insect species and another extrinsic cargo provided by the microbial community colonizing-associated with the insect host. Advances have been made in the identification of the origin of the digestive functions observed in the midgut. It is now evident that the community of microorganisms can adapt, improve, and extend the insect's ability to digest and detoxify its food. Nevertheless, edible insect species such as Hermetia illucens and Tenebrio molitor are surprisingly autonomous, and no obligatory symbiosis with a microorganism has yet been uncovered for digestion. Conversely, the intestinal microbiota of a given species can take on different forms, which are largely influenced by the host's environment and diet. This flexibility offers the potential for the development of novel associations between insects and microorganisms, which could result in the creation of synergies that would optimize or expand value chains for agro-industrial by-products, as well as for contaminants.
Collapse
Affiliation(s)
- Joachim Carpentier
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Hugo Luttenschlager
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Kenza Dessauvages
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Yangyang Liu
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
- Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Haidian District, Beijing 100193, China
| | - Prince Samoah
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
12
|
Bhardwaj K, Rajawat NK, Mathur N, Kaushik A. Evaluation of Neuroprotective Effect of Gut Microbe in Parkinson's Disease: An In Silico and In Vivo Approach. Neuromolecular Med 2024; 26:32. [PMID: 39090268 DOI: 10.1007/s12017-024-08799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder marked by the death of dopaminergic neurons in the substantia nigra region of the brain. Aggregation of alpha-synuclein (α-synuclein) is a contributing factor to Parkinson's disease pathogenesis. The objective of this study is to investigate the neuroprotective effects of gut microbes on α-synuclein aggregation using both in silico and in vivo approaches. We focussed on the interaction between α-synuclein and metabolites released by gut bacteria that protect from PD. We employed three probiotic microbe strains against α-synuclein protein: Lactobacillus casei, Escherichia coli, and Bacillus subtilis, with their chosen PDB IDs being Dihydrofolate reductase (3DFR), methionine synthetase (6BM5), and tryptophanyl-tRNA synthetase (3PRH), respectively. Using HEX Dock 6.0 software, we examined the interactions between these proteins. Among the various metabolites, methionine synthetase produced by E. coli showed potential interactions with α-synuclein. To further evaluate the neuroprotective benefits of E. coli, an in vivo investigation was performed using a rotenone-induced Parkinsonian mouse model. The motor function of the animals was assessed through behavioural tests, and oxidative stress and neurotransmitter levels were also examined. The results demonstrated that, compared to the rotenone-induced PD mouse model, the rate of neurodegeneration was considerably reduced in mice treated with E. coli. Additionally, histopathological studies provided evidence of the neuroprotective effects of E. coli. In conclusion, this study lays the groundwork for future research, suggesting that gut bacteria may serve as potential therapeutic agents in the development of medications to treat Parkinson's disease. fig. 1.
Collapse
Affiliation(s)
- Kanika Bhardwaj
- Department of Zoology, IIS (Deemed to be University), Jaipur, Rajasthan, 302020, India
| | - Neelu Kanwar Rajawat
- Department of Zoology, IIS (Deemed to be University), Jaipur, Rajasthan, 302020, India.
| | - Nupur Mathur
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302020, India
| | - Aviral Kaushik
- Birla Institute of Scientific Research, Jaipur, Rajasthan, 302020, India
| |
Collapse
|
13
|
Boeck B, Westmark CJ. Bibliometric Analysis and a Call for Increased Rigor in Citing Scientific Literature: Folic Acid Fortification and Neural Tube Defect Risk as an Example. Nutrients 2024; 16:2503. [PMID: 39125384 PMCID: PMC11313885 DOI: 10.3390/nu16152503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The health benefits of vitamin B9 (folate) are well documented, particularly in regard to neural tube defects during pregnancy; however, much remains to be learned regarding the health effects and risks of consuming folic acid supplements and foods fortified with folic acid. In 2020, our laboratory conducted a population-based analysis of the Food Fortification Initiative (FFI) dataset to determine the strength of the evidence regarding the prevalence of neural tube defects (NTD) at the national level in response to mandatory fortification of cereal grains with folic acid. We found a very weak correlation between the prevalence of NTDs and the level of folic acid fortification irrespective of the cereal grain fortified (wheat, maize, or rice). We found a strong linear relationship between reduced NTDs and higher socioeconomic status (SES). Our paper incited a debate on the proper statistics to employ for population-level data. Subsequently, there has been a large number of erroneous citations to our original work. The objective here was to conduct a bibliometric analysis to quantitate the accuracy of citations to Murphy and Westmark's publication entitled, "Folic Acid Fortification and Neural Tube Defect Risk: Analysis of the Food Fortification Initiative Dataset". We found a 70% inaccuracy rate. These findings highlight the dire need for increased rigor in citing scientific literature, particularly in regard to biomedical research that directly impacts public health policy.
Collapse
Affiliation(s)
- Brynne Boeck
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA;
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA;
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
14
|
Obermaier L, Candelaria Cucick AC, Gombossy de Melo Franco BD, Isay Saad SM, Skurk T, Rychlik M. Assessing a Fermented Whey Beverage Biofortified with Folate as a Potential Folate Source for Humans. Mol Nutr Food Res 2024; 68:e2300888. [PMID: 39094123 DOI: 10.1002/mnfr.202300888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Indexed: 08/04/2024]
Abstract
Folate, a vital water-soluble vitamin (B9), requires specific attention as its recommended daily intake frequently is not reached in countries without mandatory fortification. In this regard, biofortification with microorganisms like Bifidobacterium and Streptococcus offers a compelling approach for enhancing food with natural folates. A randomized, nonblinded, and monocentric human pilot study is conducted to assess the bioavailability of a folate-biofortified fermented whey beverage, comprising 3 intervention days and a controlled replenishment phase before and during the assay. Folate plasma concentration (5-CH3-H4folate) is determined using a stable isotope dilution assay and LC-MS/MS detection. Biokinetic parameters (cmax and tmax) are determined, and areas under the curve (AUC) normalized to the basal folate plasma concentration are calculated. An average bioavailability of 17.1% in relation to the 5-CH3-H4folate supplement, ranging from 0% to 39.8%, is obtained. These results reiterate the significance of additional research into folate bioavailability in general and dairy products. Further investigations are warranted into folate-binding proteins (FBP) and other potential limiting factors within the food and individual factors. In summary, biofortification via fermentation emerges as a promising avenue for enhancing the natural folate content in dairy and other food products.
Collapse
Affiliation(s)
- Lisa Obermaier
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354, Freising, Germany
| | - Ana Clara Candelaria Cucick
- School of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo, Brazil
- Food Research Center, University of São Paulo (USP), São Paulo, Brazil
| | | | - Susana Marta Isay Saad
- School of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo, Brazil
- Food Research Center, University of São Paulo (USP), São Paulo, Brazil
| | - Thomas Skurk
- ZIEL, Institute for Food & Health, Core Facility Human Studies, Technical University of Munich, 85354, Freising, Germany
- Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354, Freising, Germany
- Centre for Nutrition and Food Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Mudhluli TE, Kujawska M, Mueller J, Felsl A, Truppel BA, Hall LJ, Chitsike I, Gomo E, Zhou DT. Exploring the genomic traits of infant-associated microbiota members from a Zimbabwean cohort. BMC Genomics 2024; 25:718. [PMID: 39054474 PMCID: PMC11271062 DOI: 10.1186/s12864-024-10618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Our understanding of particular gut microbiota members such as Bifidobacterium and Enterococcus in low-middle-income countries remains very limited, particularly early life strain-level beneficial traits. This study addresses this gap by exploring a collection of bacterial strains isolated from the gut of Zimbabwean infants; comparing their genomic characteristics with strains isolated from infants across North America, Europe, and other regions of Africa. MATERIALS AND METHOD From 110 infant stool samples collected in Harare, Zimbabwe, 20 randomly selected samples were used to isolate dominant early-life gut microbiota members Bifidobacterium and Enterococcus. Isolated strains were subjected to whole genome sequencing and bioinformatics analysis including functional annotation of carbohydrates, human milk oligosaccharide (HMO) and protein degradation genes and clusters, and the presence of antibiotic resistance genes (ARGs). RESULTS The study observed some location-based clustering within the main five identified taxonomic groups. Furthermore, there were varying and overall species-specific numbers of genes belonging to different GH families encoded within the analysed dataset. Additionally, distinct strain- and species-specific variances were identified in the potential of Bifidobacterium for metabolizing HMOs. Analysis of putative protease activity indicated a consistent presence of gamma-glutamyl hydrolases in Bifidobacterium, while Enterococcus genomes exhibited a high abundance of aspartyl peptidases. Both genera harboured resistance genes against multiple classes of antimicrobial drugs, with Enterococcus genomes containing a higher number of ARGs compared to Bifidobacterium, on average. CONCLUSION This study identified promising probiotic strains within Zimbabwean isolates, offering the potential for early-life diet and microbial therapies. However, the presence of antibiotic resistance genes in infant-associated microbes raises concerns for infection risk and next-stage probiotic development. Further investigation in larger cohorts, particularly in regions with limited existing data on antibiotic and probiotic use, is crucial to validate these initial insights. IMPACT STATEMENT This research represents the first investigation of its kind in the Zimbabwean context, focusing on potential probiotic strains within the early-life gut microbiota. By identifying local probiotic strains, this research can contribute to the development of probiotic interventions that are tailored to the Zimbabwean population, which can help address local health challenges and promote better health outcomes for infants. Another essential aspect of the study is the investigation of antimicrobial resistance genes present in Zimbabwean bacterial strains. Antimicrobial resistance is a significant global health concern, and understanding the prevalence and distribution of resistance genes in different regions can help inform public health policies and interventions.
Collapse
Affiliation(s)
- Taona Emmah Mudhluli
- Faculty of Medicine and Health Sciences, Department of Laboratory Diagnostic and Investigative Sciences, Medical Laboratory Sciences Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe.
- Faculty of Medicine and Health Science, Department of Biochemistry, Midlands State University, P. Bag 9055, Senga Road, Gweru, Zimbabwe.
| | - Magdalena Kujawska
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Julia Mueller
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Angela Felsl
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Bastian-Alexander Truppel
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- BioSciences Building, APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Lindsay J Hall
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 42TT, UK
| | - Inam Chitsike
- Faculty of Medicine and Health Sciences, Department of Family Health, Paediatrics Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe
| | - Exnevia Gomo
- Faculty of Medicine and Health Sciences, Department of Laboratory Diagnostic and Investigative Sciences, Medical Laboratory Sciences Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe
| | - Danai Tavonga Zhou
- Faculty of Medicine and Health Sciences, Department of Laboratory Diagnostic and Investigative Sciences, Medical Laboratory Sciences Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe
| |
Collapse
|
16
|
Kachi K, Sato T, Nagasawa M, Cann I, Atomi H. The Lreu_1276 protein from Limosilactobacillus reuteri represents a third family of dihydroneopterin triphosphate pyrophosphohydrolases in bacteria. Appl Environ Microbiol 2024; 90:e0081424. [PMID: 38888337 PMCID: PMC11267939 DOI: 10.1128/aem.00814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Tetrahydrofolate is a cofactor involved in C1 metabolism including biosynthesis pathways for adenine and serine. In the classical tetrahydrofolate biosynthesis pathway, the steps removing three phosphate groups from the precursor 7,8-dihydroneopterin triphosphate (DHNTP) remain unclear in many bacteria. DHNTP pyrophosphohydrolase hydrolyzes pyrophosphate from DHNTP and produces 7,8-dihydroneopterin monophosphate. Although two structurally distinct DHNTP pyrophosphohydrolases have been identified in the intestinal bacteria Lactococcus lactis and Escherichia coli, the distribution of their homologs is limited. Here, we aimed to identify a third DHNTP pyrophosphohydrolase gene in the intestinal lactic acid bacterium Limosilactobacillus reuteri. In a gene operon including genes involved in dihydrofolate biosynthesis, we focused on the lreu_1276 gene, annotated as Ham1 family protein or XTP/dITP diphosphohydrolase, as a candidate encoding DHNTP pyrophosphohydrolase. The Lreu_1276 recombinant protein was prepared using E. coli and purified. Biochemical analyses of the reaction product revealed that the Lreu_1276 protein displays significant pyrophosphohydrolase activity toward DHNTP. The optimal reaction temperature and pH were 35°C and around 7, respectively. Substrate specificity was relatively strict among 17 tested compounds. Although previously characterized DHNTP pyrophosphohydrolases prefer Mg2+, the Lreu_1276 protein exhibited maximum activity in the presence of Mn2+, with a specific activity of 28.2 ± 2.0 µmol min-1 mg-1 in the presence of 1 mM Mn2+. The three DHNTP pyrophosphohydrolases do not share structural similarity to one another, and the distribution of their homologs does not overlap, implying that the Lreu_1276 protein represents a third structurally novel DHNTP pyrophosphohydrolase in bacteria. IMPORTANCE The identification of a structurally novel DHNTP pyrophosphohydrolase in L. reuteri provides valuable information in understanding tetrahydrofolate biosynthesis in bacteria that possess lreu_1276 homologs. Interestingly, however, even with the identification of a third family of DHNTP pyrophosphohydrolases, there are still a number of bacteria that do not harbor homologs for any of the three genes while possessing other genes involved in the biosynthesis of the pterin ring structure. This suggests the presence of an unrecognized DHNTP pyrophosphohydrolase gene in bacteria. As humans do not harbor DHNTP pyrophosphohydrolase, the high structural diversity of enzymes responsible for a reaction in tetrahydrofolate biosynthesis may provide an advantage in designing inhibitors targeting a specific group of bacteria in the intestinal microbiota.
Collapse
Affiliation(s)
- Kaede Kachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| | - Maina Nagasawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Isaac Cann
- Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Min M, Egli C, Sivamani RK. The Gut and Skin Microbiome and Its Association with Aging Clocks. Int J Mol Sci 2024; 25:7471. [PMID: 39000578 PMCID: PMC11242811 DOI: 10.3390/ijms25137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024] Open
Abstract
Aging clocks are predictive models of biological age derived from age-related changes, such as epigenetic changes, blood biomarkers, and, more recently, the microbiome. Gut and skin microbiota regulate more than barrier and immune function. Recent studies have shown that human microbiomes may predict aging. In this narrative review, we aim to discuss how the gut and skin microbiomes influence aging clocks as well as clarify the distinction between chronological and biological age. A literature search was performed on PubMed/MEDLINE databases with the following keywords: "skin microbiome" OR "gut microbiome" AND "aging clock" OR "epigenetic". Gut and skin microbiomes may be utilized to create aging clocks based on taxonomy, biodiversity, and functionality. The top contributing microbiota or metabolic pathways in these aging clocks may influence aging clock predictions and biological age. Furthermore, gut and skin microbiota may directly and indirectly influence aging clocks through the regulation of clock genes and the production of metabolites that serve as substrates or enzymatic regulators. Microbiome-based aging clock models may have therapeutic potential. However, more research is needed to advance our understanding of the role of microbiota in aging clocks.
Collapse
Affiliation(s)
- Mildred Min
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA
| | - Caitlin Egli
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, University of St. George's, University Centre, West Indies, Grenada
| | - Raja K Sivamani
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA
- Integrative Research Institute, 4825 River Park Drive, Suite 100, Sacramento, CA 95819, USA
- Pacific Skin Institute, 1495 River Park Drive, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, 3301 C St #1400, Sacramento, CA 95816, USA
| |
Collapse
|
18
|
Potrykus M, Czaja-Stolc S, Stankiewicz M, Szymański M, Łoniewski I, Kaska Ł, Proczko-Stepaniak M. Preoperative Multistrain Probiotic Supplementation Does Not Affect Body Weight Changes or Cardiometabolic Risk Factors in Bariatrics: Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:2055. [PMID: 38999802 PMCID: PMC11243469 DOI: 10.3390/nu16132055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Emerging evidence suggests that microbiota plays a crucial role in the development, progression, and therapeutic options in obesity and its comorbidities. This study assessed preoperative probiotic therapy's impact on bariatric treatment outcomes. A 12-week randomized, double-blind, placebo-controlled trial with 48 patients undergoing bariatric surgery was conducted. Participants received probiotics-Sanprobi Barrier-which contained nine strains of bacteria: Bifidobacterium bifidum W23, Bifidobacterium lactis W51 and W52, Lactobacillus acidophilus W37, Levilactobacillus brevis W63, Lacticaseibacillus casei W56, Ligilactobacillus salivarius W24, Lactococcus lactis W19, and Lactococcus lactis W58. Primary outcomes included excess body weight loss, body weight loss, and excess body mass index loss, with secondary objectives focusing on metabolic profiles. Surgical treatment of obesity significantly improved anthropometric and metabolic parameters. No significant differences were observed in primary outcomes or in secondary outcomes between groups at any time point post-surgery. Preoperative probiotics administration did not affect clinical outcomes 1, 3, or 6 months following bariatric surgery.
Collapse
Affiliation(s)
- Marta Potrykus
- Department of Oncological, Transplant, and General Surgery, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.P.); (M.S.); (M.P.-S.)
| | - Sylwia Czaja-Stolc
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Marta Stankiewicz
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Michał Szymański
- Department of Oncological, Transplant, and General Surgery, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.P.); (M.S.); (M.P.-S.)
| | - Igor Łoniewski
- Sanprobi sp. z o.o. sp. k., 70-535 Szczecin, Poland;
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Łukasz Kaska
- Independent Public Health Care Center of the Ministry of Internal Affairs and Administration, 80-210 Gdańsk, Poland;
| | - Monika Proczko-Stepaniak
- Department of Oncological, Transplant, and General Surgery, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.P.); (M.S.); (M.P.-S.)
| |
Collapse
|
19
|
Yu Y, Martins LM. Mitochondrial One-Carbon Metabolism and Alzheimer's Disease. Int J Mol Sci 2024; 25:6302. [PMID: 38928008 PMCID: PMC11203557 DOI: 10.3390/ijms25126302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer's disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. Here, we discuss the intersection between the molecular pathways linked to both mitochondrial one-carbon metabolism and Alzheimer's disease. We propose that enhancing one-carbon metabolism could promote the metabolic processes that help brain cells cope with Alzheimer's disease-related injuries. We also highlight potential therapeutic avenues to leverage one-carbon metabolism to delay Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
20
|
Shalabi OMAK, Hassan AM, Ismail MM, El-Menawy RK. Characterization of the Ayran Made with Commercial Probiotic Cultures for Fatty Acids, Cholesterol, Folic Acid Levels, and Anti-Oxidative Potential. Probiotics Antimicrob Proteins 2024; 16:1065-1075. [PMID: 37278952 PMCID: PMC11126437 DOI: 10.1007/s12602-023-10100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Ayran is a salted drinkable fermented milk food which consumed in many countries around the world. In this study, some chemical parameters were determined to evaluate the healthy properties of ayran prepared using various commercial probiotic cultures. Four treatments of ayran were made from cow's milk and using classic yogurt culture (L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus) [T1], ABT-5 culture (L. acidophilus, Bifidobacterium and S. thermophilus) [T2], exopolysaccharide producing culture (EPS-producing, L. delbrueckii subsp. bulgaricus and S. thermophilus) [T3], and EPS-producing culture + Bifidobacterium animalis subsp. lactis BB12 (mixture culture) [T4]. Treatment 1 had the highest acidity, acetaldehyde, and diacetyl values. Using probiotic [T2] or mixture cultures [T4] reduced saturated fatty acids by 1.97% and increased monounsaturated and polyunsaturated fatty acids of ayran by 4.94 and 5.72%, respectively. Also, the levels of oleic acid (omega-9), linoleic acid (omega-6), and α-linolenic acid (omega-3) increased in ayran produced using probiotic or mixture cultures. Sample T4 was highly richer in the value of antioxidant activity (27.62%) and folic acid (0.1566 mg/100 g) whereas possessed the lowest cholesterol amount (8.983 mg/100 g). Mixture culture (EPS-producing culture + Bifidobacterium animalis subsp. lactis BB12) is a good starter to improve the healthy and nutritional characteristics of bio-ayran.
Collapse
Affiliation(s)
- Ola M A K Shalabi
- Dairy Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Amina M Hassan
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Magdy M Ismail
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt.
| | - Reham K El-Menawy
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| |
Collapse
|
21
|
Majumder A, Bano S. How the Western Diet Thwarts the Epigenetic Efforts of Gut Microbes in Ulcerative Colitis and Its Association with Colorectal Cancer. Biomolecules 2024; 14:633. [PMID: 38927037 PMCID: PMC11201633 DOI: 10.3390/biom14060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease in which the immune system attacks the colon, leading to ulcer development, loss of colon function, and bloody diarrhea. The human gut ecosystem consists of almost 2000 different species of bacteria, forming a bioreactor fueled by dietary micronutrients to produce bioreactive compounds, which are absorbed by our body and signal to distant organs. Studies have shown that the Western diet, with fewer short-chain fatty acids (SCFAs), can alter the gut microbiome composition and cause the host's epigenetic reprogramming. Additionally, overproduction of H2S from the gut microbiome due to changes in diet patterns can further activate pro-inflammatory signaling pathways in UC. This review discusses how the Western diet affects the microbiome's function and alters the host's physiological homeostasis and susceptibility to UC. This article also covers the epidemiology, prognosis, pathophysiology, and current treatment strategies for UC, and how they are linked to colorectal cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
22
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
23
|
Ionescu MI, Zahiu CDM, Vlad A, Galos F, Gradisteanu Pircalabioru G, Zagrean AM, O'Mahony SM. Nurturing development: how a mother's nutrition shapes offspring's brain through the gut. Nutr Neurosci 2024:1-23. [PMID: 38781488 DOI: 10.1080/1028415x.2024.2349336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Pregnancy is a transformative period marked by profound physical and emotional changes, with far-reaching consequences for both mother and child. Emerging research has illustrated the pivotal role of a mother's diet during pregnancy in influencing the prenatal gut microbiome and subsequently shaping the neurodevelopment of her offspring. The intricate interplay between maternal gut health, nutrition, and neurodevelopmental outcomes has emerged as a captivating field of investigation within developmental science. Acting as a dynamic bridge between mother and fetus, the maternal gut microbiome, directly and indirectly, impacts the offspring's neurodevelopment through diverse pathways. This comprehensive review delves into a spectrum of studies, clarifying putative mechanisms through which maternal nutrition, by modulating the gut microbiota, orchestrates the early stages of brain development. Drawing insights from animal models and human cohorts, this work underscores the profound implications of maternal gut health for neurodevelopmental trajectories and offers a glimpse into the formulation of targeted interventions able to optimize the health of both mother and offspring. The prospect of tailored dietary recommendations for expectant mothers emerges as a promising and accessible intervention to foster the growth of beneficial gut bacteria, potentially leading to enhanced cognitive outcomes and reduced risks of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mara Ioana Ionescu
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adelina Vlad
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, Bucharest, Romania
- Department of Pediatrics, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, Section Earth, Environmental and Life Sciences, Section-ICUB, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Wong CB, Huang H, Ning Y, Xiao J. Probiotics in the New Era of Human Milk Oligosaccharides (HMOs): HMO Utilization and Beneficial Effects of Bifidobacterium longum subsp. infantis M-63 on Infant Health. Microorganisms 2024; 12:1014. [PMID: 38792843 PMCID: PMC11124435 DOI: 10.3390/microorganisms12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy gut microbiome is crucial for the immune system and overall development of infants. Bifidobacterium has been known to be a predominant species in the infant gut; however, an emerging concern is the apparent loss of this genus, in particular, Bifidobacterium longum subsp. infantis (B. infantis) in the gut microbiome of infants in industrialized nations, underscoring the importance of restoring this beneficial bacterium. With the growing understanding of the gut microbiome, probiotics, especially infant-type human-residential bifidobacteria (HRB) strains like B. infantis, are gaining prominence for their unique ability to utilize HMOs and positively influence infant health. This article delves into the physiology of a probiotic strain, B. infantis M-63, its symbiotic relationship with HMOs, and its potential in improving gastrointestinal and allergic conditions in infants and children. Moreover, this article critically assesses the role of HMOs and the emerging trend of supplementing infant formulas with the prebiotic HMOs, which serve as fuel for beneficial gut bacteria, thereby emulating the protective effects of breastfeeding. The review highlights the potential of combining B. infantis M-63 with HMOs as a feasible strategy to improve health outcomes in infants and children, acknowledging the complexities and requirements for further research in this area.
Collapse
Affiliation(s)
- Chyn Boon Wong
- International Division, Morinaga Milk Industry Co., Ltd., 5-2, Higashi Shimbashi 1-Chome, Minato-ku, Tokyo 105-7122, Japan
| | - Huidong Huang
- Nutrition Research Institute, Junlebao Dairy Group Co., Ltd., 36 Shitong Road, Shijiazhuang 050221, China
| | - Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Group Co., Ltd., 36 Shitong Road, Shijiazhuang 050221, China
| | - Jinzhong Xiao
- Morinaga Milk Industry (Shanghai) Co., Ltd., Room 509 Longemont Yes Tower, No. 369 Kaixuan Road, Changning District, Shanghai 200050, China
- Department of Microbiota Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China
| |
Collapse
|
25
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
26
|
Jiang Y, Li X, Zhang W, Ji Y, Yang K, Liu L, Zhang M, Qiao W, Zhao J, Du M, Fan X, Dang X, Chen H, Jiang T, Chen L. Effect of folA gene in human breast milk-derived Limosilactobacillus reuteri on its folate biosynthesis. Front Microbiol 2024; 15:1402654. [PMID: 38812695 PMCID: PMC11133606 DOI: 10.3389/fmicb.2024.1402654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Folate supplementation is crucial for the human body, and the chemically synthesized folic acid might have undesirable side effects. The use of molecular breeding methods to modify the genes related to the biosynthesis of folate by probiotics to increase folate production is currently a focus of research. Methods In this study, the folate-producing strain of Limosilactobacillus reuteri B1-28 was isolated from human breast milk, and the difference between B1-28 and folA gene deletion strain ΔFolA was investigated by phenotyping, in vitro probiotic evaluation, metabolism and transcriptome analysis. Results The results showed that the folate producted by the ΔFolA was 2-3 folds that of the B1-28. Scanning electron microscope showed that ΔFolA had rougher surface, and the acid-producing capacity (p = 0.0008) and adhesion properties (p = 0.0096) were significantly enhanced than B1-28. Transcriptomic analysis revealed that differentially expressed genes were mainly involved in three pathways, among which the biosynthesis of ribosome and aminoacyl-tRNA occurred in the key metabolic pathways. Metabolomics analysis showed that folA affected 5 metabolic pathways, involving 89 different metabolites. Discussion In conclusion, the editing of a key gene of folA in folate biosynthesis pathway provides a feasible pathway to improve folate biosynthesis in breast milk-derived probiotics.
Collapse
Affiliation(s)
- Yu Jiang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Xianping Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Wei Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Yadong Ji
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Lu Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Mengjing Du
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Xiaofei Fan
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Xingfen Dang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Huo Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Tiemin Jiang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Lijun Chen
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| |
Collapse
|
27
|
Faienza MF, Urbano F, Anaclerio F, Moscogiuri LA, Konstantinidou F, Stuppia L, Gatta V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr Issues Mol Biol 2024; 46:4358-4378. [PMID: 38785533 PMCID: PMC11119222 DOI: 10.3390/cimb46050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Alterations in a mother's metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring's childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother's gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring's metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (F.U.); (L.A.M.)
| | - Federico Anaclerio
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
28
|
Colucci Cante R, Nigro F, Passannanti F, Lentini G, Gallo M, Nigro R, Budelli AL. Gut health benefits and associated systemic effects provided by functional components from the fermentation of natural matrices. Compr Rev Food Sci Food Saf 2024; 23:e13356. [PMID: 38767859 DOI: 10.1111/1541-4337.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/26/2024] [Accepted: 04/06/2024] [Indexed: 05/22/2024]
Abstract
Recently, the role of the gut microbiota in metabolic health, immunity, behavioral balance, longevity, and intestine comfort has been the object of several studies from scientific communities. They were encouraged by a growing interest from food industries and consumers toward novel fermented ingredients and formulations with powerful biological effects, such as pre, pro, and postbiotic products. Depending on the selected strains, the operating conditions, the addition of suitable reagents or enzymes, the equipment, and the reactor configurations, functional compounds with high bioactivity, such as short-chain fatty acids, gamma-aminobutyric acid, bioactive peptides, and serotonin, can be enhanced and/or produced through fermentation of several vegetable matrices. Otherwise, their formation can also be promoted directly in the gut after the dietary intake of fermented foods: In this case, fermentation will aim to increase the content of precursor substances, such as indigestible fibers, polyphenols, some amino acids, and resistant starch, which can be potentially metabolized by endogenous gut microorganisms and converted in healthy molecules. This review provides an overview of the main functional components currently investigated in literature and the associated gut health benefits. The current state of the art about fermentation technology as a promising functionalization tool to promote the direct or indirect formation of gut-health-enhancing components was deepened, highlighting the importance of optimizing microorganism selection, system setups, and process conditions according to the target compound of interest. The collected data suggested the possibility of gaining novel functional food ingredients or products rich in functional molecules through fermentation without performing additional extraction and purification stages, which are needed when conventional culture broths are used.
Collapse
Affiliation(s)
- Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
29
|
Tang R, Liu R, Zha H, Cheng Y, Ling Z, Li L. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci 2024; 24:2300016. [PMID: 38708414 PMCID: PMC11065334 DOI: 10.1002/elsc.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Rongrong Liu
- Center of Pediatric Hematology‐oncologyPediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang ProvinceNational Clinical Research Center for Child HealthChildren's HospitalZhejiang University School of MedicineHangzhouChina
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
30
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
31
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
32
|
Liang S, Zhang H, Jiao L, Shao R, Lan Y, Liao X, Mai K, Ai Q, Wan M. Vitamin D promotes the folate transport and metabolism in zebrafish ( Danio rerio). Am J Physiol Endocrinol Metab 2024; 326:E482-E492. [PMID: 38324257 DOI: 10.1152/ajpendo.00380.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD3 or 800 IU/kg VD3 for 3 wk. Meanwhile, cyp2r1 mutant zebrafish with impaired VD metabolism was used as another model of VD deficiency. Our results showed that VD deficiency in zebrafish suppressed the gene expression of folate transporters, including reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) in the intestine. Moreover, VD influenced the gene expression of several enzymes related to cellular folate metabolism in the intestine and liver of zebrafish. Importantly, VD-deficient zebrafish contained a remarkably lower level of folate content in the liver. Notably, VD was incapable of altering folate metabolism in zebrafish when gut microbiota was depleted by antibiotic treatment. Further studies proved that gut commensals from VD-deficient fish displayed a lower capacity to produce folate than those from WT fish. Our study revealed the potential correlation between VD and folate metabolism in zebrafish, and gut microbiota played a key role in VD-regulated folate metabolism in zebrafish.NEW & NOTEWORTHY Our study has identified that VD influences intestinal uptake and transport of folate in zebrafish while also altering hepatic folate metabolism and storage. Interestingly, the regulatory effects of VD on folate transport and metabolism diminished after the gut flora was interrupted by antibiotic treatment, suggesting that the regulatory effects of VD on folate metabolism in zebrafish are most likely dependent on the intestinal flora.
Collapse
Affiliation(s)
- Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Lin Jiao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
33
|
Oyebade AO, Taiwo GA, Idowu M, Sidney T, Queiroz O, Adesogan AT, Vyas D, Ogunade IM. Effects of direct-fed microbial supplement on ruminal and plasma metabolome of early-lactation dairy cows: Untargeted metabolomics approach. J Dairy Sci 2024; 107:2556-2571. [PMID: 37939839 DOI: 10.3168/jds.2023-23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
We examined the effects of 2 multispecies direct-fed microbial (DFM) supplements on ruminal and plasma metabolome of early-lactation dairy cows using a high-coverage untargeted metabolomics approach. A total of 45 multiparous Holstein cows (41 ± 7 DIM) were enrolled for the 14-d pre-experimental and 91-d experimental period and were a subset from a lactation performance study, which used 114 cows. Cows were blocked using pre-experimental energy-corrected milk yield and randomly assigned within each block to 1 of 3 treatments: (1) corn silage-based diet with no DFM supplement (control; CON), (2) basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d (PRO-A), or (3) basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d (PRO-B). The basal diet was fed ad libitum daily as a TMR at 0600 and 1200 h for a duration of 91 d. Rumen fluid and blood samples were taken on d -3, 28, 49, 70, and 91 and immediately stored at -80°C. Before analysis, ruminal and plasma samples from d 28, 49, 70, and 91 were composited. An in-depth, untargeted metabolome profile of the composite rumen and plasma samples and the d -3 samples was developed by using a chemical isotope labeling/liquid chromatography-mass spectrometry (LC-MS)-based technique. Differentially abundant metabolites (taking into account fold change [FC] values and false discovery rates [FDR]) were identified with a volcano plot. In the rumen, compared with the CON diet, supplemental PRO-A increased (FC ≥1.2; FDR ≤0.05) the relative concentrations of 9 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, quinolinic acid, and shikimic acid, and PRO-B increased relative concentrations of 16 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, 16-hydroxypalmitic acid, and 2 propionate precursors (succinic and methylsuccinic acids). Relative to PRO-A, supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative rumen concentrations of 3 metabolites, 16-hydroxypalmitic acid, indole-3-carboxylic acid, and 5-aminopentanoic acid, but reduced relative rumen concentrations of 13 metabolites, including carnitine, threonic acid, and shikimic acid. Compared with the CON diet, relative concentrations of 13 plasma metabolites, including myxochelin A and glyceraldehyde, were increased (FC ≥1.2; FDR ≤0.05) by PRO-A supplementation, whereas those of 9 plasma metabolites, including 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylornithine, and S-norlaudanosolin, were reduced (FC ≤0.83; FDR ≤0.05). Supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative concentrations of 9 plasma metabolites, including trans-o-hydroxybenzylidenepyruvic acid and 3-methylsalicylaldehyde, and reduced relative concentrations of 4 plasma metabolites, including β-ethynylserine and kynurenine. Pathway analysis of the differentially abundant metabolites in both rumen and plasma revealed that these metabolites are involved in AA and fatty acid metabolism and have antimicrobial and immune-stimulating properties. The results of this study demonstrated that dietary supplementation with either PRO-A or PRO-B altered the plasma and ruminal metabolome. Notably, ruminal and plasma metabolites involved in the metabolism of AA and fatty acids and those with immunomodulatory properties were altered by either or both of the 2 microbial additives.
Collapse
Affiliation(s)
- A O Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - G A Taiwo
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - Modoluwamu Idowu
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - T Sidney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - O Queiroz
- Chr. Hansen A/S, Animal Health and Nutrition, DK-2970 Hørsholm, Denmark
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - I M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
34
|
Cheng J, Zhou L, Wang H. Symbiotic microbial communities in various locations of the lung cancer respiratory tract along with potential host immunological processes affected. Front Cell Infect Microbiol 2024; 14:1296295. [PMID: 38371298 PMCID: PMC10873922 DOI: 10.3389/fcimb.2024.1296295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers worldwide. The 5-year overall survival rate for non-small cell lung cancer (NSCLC) is estimated at around 26%, whereas for small cell lung cancer (SCLC), the survival rate is only approximately 7%. This disease places a significant financial and psychological burden on individuals worldwide. The symbiotic microbiota in the human body has been significantly associated with the occurrence, progression, and prognosis of various diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Studies have demonstrated that respiratory symbiotic microorganisms and their metabolites play a crucial role in modulating immune function and contributing to the pathophysiology of lung cancer through their interactions with the host. In this review, we provide a comprehensive overview of the microbial characteristics associated with lung cancer, with a focus on the respiratory tract microbiota from different locations, including saliva, sputum, bronchoalveolar lavage fluid (BALF), bronchial brush samples, and tissue. We describe the respiratory tract microbiota's biodiversity characteristics by anatomical region, elucidating distinct pathological features, staging, metastasis, host chromosomal mutations, immune therapies, and the differentiated symbiotic microbiota under the influence of environmental factors. Our exploration investigates the intrinsic mechanisms linking the microbiota and its host. Furthermore, we have also provided a comprehensive review of the immune mechanisms by which microbiota are implicated in the development of lung cancer. Dysbiosis of the respiratory microbiota can promote or inhibit tumor progression through various mechanisms, including DNA damage and genomic instability, activation and regulation of the innate and adaptive immune systems, and stimulation of epithelial cells leading to the upregulation of carcinogenesis-related pathways.
Collapse
Affiliation(s)
- Jiuling Cheng
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lujia Zhou
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Bedani R, Cucick ACC, Albuquerque MACD, LeBlanc JG, Saad SMI. B-Group Vitamins as Potential Prebiotic Candidates: Their Effects on the Human Gut Microbiome. J Nutr 2024; 154:341-353. [PMID: 38176457 DOI: 10.1016/j.tjnut.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
In recent years, thousands of studies have demonstrated the importance of the gut microbiome for human health and its relationship with certain diseases. The search for new gut microbiome modulators has thus become an objective to beneficially alter the gut microbiome composition and/or metabolic activity, which may modify intestinal physiology. Growing evidence has shown that B-group vitamins might be considered as potential candidates as gut microbiome modulators. However, the relationship between the B-group vitamins and the gut microbiome remains largely unexplored. Studies have suggested that non-absorbed B-group vitamins administered orally can reach the distal intestine or even the colon where these vitamins may have potential health benefits for the host. Clinical trials supporting this effect are still limited. In this review, we discuss evidence regarding the modulatory effects of B-group vitamins on the gut microbiome with a focus on their potential role as prebiotic candidates.
Collapse
Affiliation(s)
- Raquel Bedani
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.
| | - Ana Clara Candelaria Cucick
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela Albuquerque Cavalcanti de Albuquerque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Abdelhalim KA. Short-chain fatty acids (SCFAs) from gastrointestinal disorders, metabolism, epigenetics, central nervous system to cancer - A mini-review. Chem Biol Interact 2024; 388:110851. [PMID: 38145797 DOI: 10.1016/j.cbi.2023.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Short-chain fatty acids (SCFAs), generated through microbial fermentation of dietary fibers and proteins in the gut, play a pivotal role in maintaining intestinal integrity, cellular function, and the immune response. SCFAs, including butyrate, acetate, and propionate, are absorbed in the colon or excreted through feces, contributing to essential physiological processes. Butyrate, a primary energy source for colonocytes, exhibits anti-inflammatory properties and regulates key pathways, such as nuclear factor-κB (NF-κB) inhibition. SCFAs' impact extends beyond the intestines, influencing the gut-brain axis, systemic circulation, and folate metabolism. A decline in colonic SCFAs has been linked to gastrointestinal diseases, emphasizing their clinical relevance, while their effects on immune checkpoints, such as ipilimumab, provide intriguing prospects for cancer therapy. This mini-review explores SCFAs' diverse roles, shedding light on their significance in health and potential implications for disease management. Understanding SCFAs' intricate mechanisms enhances our knowledge of their therapeutic potential and highlights their emerging importance in various physiological contexts.
Collapse
|
37
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
38
|
Sun C, Lan F, Zhou Q, Guo X, Jin J, Wen C, Guo Y, Hou Z, Zheng J, Wu G, Li G, Yan Y, Li J, Ma Q, Yang N. Mechanisms of hepatic steatosis in chickens: integrated analysis of the host genome, molecular phenomics and gut microbiome. Gigascience 2024; 13:giae023. [PMID: 38837944 PMCID: PMC11152177 DOI: 10.1093/gigascience/giae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/14/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid β-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.
Collapse
Affiliation(s)
- Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoli Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanxin Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhuocheng Hou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer, Beijing 101206, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Yusuf D, Kholifaturrohmah R, Nurcholis M, Setiarto RHB, Anggadhania L, Sulistiani. Potential of White Jack Bean ( Canavalia ensiformis L. DC) Kefir as a Microencapsulated Antioxidant. Prev Nutr Food Sci 2023; 28:453-462. [PMID: 38188079 PMCID: PMC10764231 DOI: 10.3746/pnf.2023.28.4.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Oxidative stress plays a major role in the pathogenesis and progression of noncommunicable diseases. Kefir is a fermented food that has been reported to repress oxidative stress. This study aimed to assess the antioxidant activity, bioactive composition, and encapsulation efficiency of white jack bean (WJB) kefir. The following procedures were conducted: WJB was prepared and converted into juice using water solvent. The sterilized WJB juice was then fermented with kefir grain (10%) for 24∼72 h. Every 24 h, the kefir was evaluated for antioxidant activity, and the dominant bioactive component suspected to be the source of the antioxidant activity was identified. The final stage was the encapsulation process. WJB kefir showed high antioxidant activity, inhibiting DPPH radicals by 90.51±4.73% and ABTS radicals by 86.63±2.34% after 72 h of fermentation. WJB kefir contained 0.35±0.01 mg GAE/g total phenolics and 0.08 mg/g total flavonoids. The LC/MS identification suggested that the bioactive antioxidant components of the WJB kefir were from the alkaloid, saponin, phenolic, and flavonoid groups. The encapsulation with maltodextrin using freeze drying resulted in microencapsulation of WJB kefir with a particle size of 6.42±0.13 μm. The encapsulation efficiency was 79.61%, and the IC50 value was 32.62 ppm. The encapsulation method was able to maintain the antioxidant stability of the kefir and extend its shelf life. WJB kefir, a nondairy, lactose-free kefir, can be used as an antioxidant functional food.
Collapse
Affiliation(s)
- Dandy Yusuf
- Research Center for Applied Microbiology, National Research and Innovation Agency the Republic of Indonesia, Cibinong 16911, Indonesia
- Research Collaboration Center for Traditional Fermentation, Surakarta 57126, Indonesia
| | - Risa Kholifaturrohmah
- Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Brawijaya University, Malang 65145, Indonesia
| | - Mochamad Nurcholis
- Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Brawijaya University, Malang 65145, Indonesia
| | - R. Haryo Bimo Setiarto
- Research Center for Applied Microbiology, National Research and Innovation Agency the Republic of Indonesia, Cibinong 16911, Indonesia
- Research Collaboration Center for Traditional Fermentation, Surakarta 57126, Indonesia
| | - Lutfi Anggadhania
- Research Center for Applied Microbiology, National Research and Innovation Agency the Republic of Indonesia, Cibinong 16911, Indonesia
| | - Sulistiani
- Research Center for Applied Microbiology, National Research and Innovation Agency the Republic of Indonesia, Cibinong 16911, Indonesia
- Research Collaboration Center for Traditional Fermentation, Surakarta 57126, Indonesia
| |
Collapse
|
40
|
Mahara FA, Nuraida L, Lioe HN, Nurjanah S. Hypothetical Regulation of Folate Biosynthesis and Strategies for Folate Overproduction in Lactic Acid Bacteria. Prev Nutr Food Sci 2023; 28:386-400. [PMID: 38188086 PMCID: PMC10764224 DOI: 10.3746/pnf.2023.28.4.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 01/09/2024] Open
Abstract
Folate (vitamin B9) is an essential nutrient for cell metabolism, especially in pregnant women; however, folate deficiency is a major global health issue. To address this issue, folate-rich fermented foods have been used as alternative sources of natural folate. Lactic acid bacteria (LAB), which are commonly involved in food fermentation, can synthesize and excrete folate into the medium, thereby increasing folate levels. However, screening for folate-producing LAB strains is necessary because this ability is highly dependent on the bacterial strain. Some strains of LAB consume folate, and their presence in a fermentation mix can lower the folate levels of the final product. Since microorganisms efficiently regulate folate biosynthesis to meet their growth needs, some strains of folate-producing LAB can deplete folate levels if folate is available in the media. Such folate-efficient producers possess a feedback inhibition mechanism that downregulates folate biosynthesis. Therefore, the application of folate-overproducing strains may be a key strategy for increasing folate levels in media with or without available folate. Many studies have been conducted to screen folate-producing bacteria, but very few have focused on the identification of overproducers. This is probably because of the limited understanding of the regulation of folate biosynthesis in LAB. In this review, we discuss the roles of folate-biosynthetic genes and their contributions to the ability of LAB to synthesize and regulate folate. In addition, we present various hypotheses regarding the regulation of the feedback inhibition mechanism of folate-biosynthetic enzymes and discuss strategies for obtaining folate-overproducing LAB strains.
Collapse
Affiliation(s)
- Fenny Amilia Mahara
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Lilis Nuraida
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Siti Nurjanah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| |
Collapse
|
41
|
Sevillano E, Lafuente I, Peña N, Cintas LM, Muñoz-Atienza E, Hernández PE, Borrero J. Evaluation of Safety and Probiotic Traits from a Comprehensive Genome-Based In Silico Analysis of Ligilactobacillus salivarius P1CEA3, Isolated from Pigs and Producer of Nisin S. Foods 2023; 13:107. [PMID: 38201135 PMCID: PMC10778751 DOI: 10.3390/foods13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut microbiota. L. salivarius P1CEA3, a porcine isolated strain, was first selected and identified by its antimicrobial activity against a broad range of pathogenic bacteria due to the production of the novel bacteriocin nisin S. The assembled L. salivarius P1CEA3 genome includes a circular chromosome, a megaplasmid (pMP1CEA3) encoding the nisin S gene cluster, and two small plasmids. A comprehensive genome-based in silico analysis of the L. salivarius P1CEA3 genome reveals the presence of genes related to probiotic features such as bacteriocin synthesis, regulation and production, adhesion and aggregation, the production of lactic acid, amino acids metabolism, vitamin biosynthesis, and tolerance to temperature, acid, bile salts and osmotic and oxidative stress. Furthermore, the strain is absent of risk-related genes for acquired antibiotic resistance traits, virulence factors, toxic metabolites and detrimental metabolic or enzymatic activities. Resistance to common antibiotics and gelatinase and hemolytic activities have been discarded by in vitro experiments. This study identifies several probiotic and safety traits of L. salivarius P1CEA3 and suggests its potential as a promising probiotic in swine production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain; (E.S.); (I.L.); (N.P.); (L.M.C.); (E.M.-A.); (P.E.H.)
| |
Collapse
|
42
|
Chacón-Vargas K, Van Haute MJ, Kessinger IMK, McClain KA, Yumul SRP, Christensen CM, Lewis ZT, Auchtung TA. Complete genome sequence of the probiotic Bifidobacterium adolescentis strain iVS-1. Microbiol Resour Announc 2023; 12:e0054123. [PMID: 37943044 PMCID: PMC10720497 DOI: 10.1128/mra.00541-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Bifidobacterium adolescentis iVS-1 is a human-isolated strain known to possess several probiotic properties. Here, its genome was completely sequenced to examine genes associated with lactose metabolism and other potentially beneficial traits, such as the production of folate and gamma-aminobutyric acid (GABA).
Collapse
|
43
|
D’Aimmo MR, Satti M, Scarafile D, Modesto M, Pascarelli S, Biagini SA, Luiselli D, Mattarelli P, Andlid T. Folate-producing bifidobacteria: metabolism, genetics, and relevance. MICROBIOME RESEARCH REPORTS 2023; 3:11. [PMID: 38455078 PMCID: PMC10917623 DOI: 10.20517/mrr.2023.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 03/09/2024]
Abstract
Folate (the general term for all bioactive forms of vitamin B9) plays a crucial role in the evolutionary highly conserved one-carbon (1C) metabolism, a network including central reactions such as DNA and protein synthesis and methylation of macromolecules. Folate delivers 1C units, such as methyl and formyl, between reactants. Plants, algae, fungi, and many bacteria can naturally produce folate, whereas animals, including humans, must obtain folate from external sources. For humans, folate deficiency is, however, a widespread problem. Bifidobacteria constitute an important component of human and many animal microbiomes, providing various health advantages to the host, such as producing folate. This review focuses on bifidobacteria and folate metabolism and the current knowledge of the distribution of genes needed for complete folate biosynthesis across different bifidobacterial species. Biotechnologies based on folate-trophic probiotics aim to create fermented products enriched with folate or design probiotic supplements that can synthesize folate in the colon, improving overall health. Therefore, bifidobacteria (alone or in association with other microorganisms) may, in the future, contribute to reducing widespread folate deficiencies prevalent among vulnerable human population groups, such as older people, women at child-birth age, and people in low-income countries.
Collapse
Affiliation(s)
| | - Maria Satti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Stefano Pascarelli
- Protein Engineering and Evolution Unit, Okinawa Institute of Science, Technology Graduate University, Okinawa 40-0193, Japan
| | - Simone Andrea Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Donata Luiselli
- Department for the Cultural Heritage (DBC), University of Bologna, Ravenna 48121, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | | |
Collapse
|
44
|
Wu H, Huang Y, Liu M, Zheng X, Zhang Z, Chen X, Gu Q, Li P. The regulation function of intestinal microbiota by folate-producing Lactiplantibacillus plantarum LZ227. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7694-7701. [PMID: 37439279 DOI: 10.1002/jsfa.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Folic acid is a class of B vitamins that have the function of improving intestinal microbiota. RESULT Lactiplantibacillus plantarum LZ227, which is a highly folate-producing strain, was used as the research object, and the folic acid produced by LZ227 was further identified by liquid chromatography-mass spectrometry, and the structural diversity, community composition, abundance difference, and short-chain fatty acids content in fermentation broth were studied by the manure slurry fermentation model. The results showed that the folic acid produced by LZ227 was 5-methyltetrahydrofolate. CONCLUSION LZ227 can increase the intestinal microbial diversity in the folate-free state, regulate the intestinal flora, increase the abundance of Firmicutes in the intestinal flora, and inhibit the abundance of Bacteroidetes. LZ227 can inhibit the growth of Alistipes, Parabacteroides, and Bacteroides in the intestine. LZ227 significantly reduced the acetic acid content and significantly increased the butyric acid content in the folate-free case. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongchen Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Yingjie Huang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Manman Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Xiaogu Zheng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Zihao Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Xiangfeng Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|
45
|
Heng YC, Silvaraju S, Lee JKY, Kittelmann S. Lactiplantibacillus brownii sp. nov., a novel psychrotolerant species isolated from sauerkraut. Int J Syst Evol Microbiol 2023; 73. [PMID: 38063497 DOI: 10.1099/ijsem.0.006194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
A Gram-stain-positive, rod-shaped, facultatively anaerobic and homofermentative strain, named WILCCON 0030T, was isolated from sauerkraut (fermented cabbage) collected from a local market in the Moscow region of Russia. Comparative analyses based on 16S rRNA gene sequence similarity and whole genome relatedness indicated that strain WILCCON 0030T was most closely related to the type strains Lactiplantibacillus nangangensis NCIMB 15186T, Lactiplantibacillus daoliensis LMG 31171T and Lactiplantibacillus pingfangensis LMG 31176T. However, the average nucleotide identity and digital DNA-DNA hybridization prediction values with these closest relatives only ranged from 84.6 to 84.9 % and from 24.1 to 24.7 %, respectively, and were below the 95.0 and 70.0% thresholds for species delineation. Substantiated by further physiological and biochemical analyses, strain WILCCON 0030T represents a novel species within the genus Lactiplantibacillus for which we propose the name Lactiplantibacillus brownii sp. nov. (type strain WILCCON 0030T=DSM 116485T=LMG 33211T).
Collapse
Affiliation(s)
- Yu Chyuan Heng
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Shaktheeshwari Silvaraju
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Jolie Kar Yi Lee
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
46
|
Ashagrie H, Baye K, Guibert B, Seyoum Y, Rochette I, Humblot C. Cereal-based fermented foods as a source of folate and cobalamin: The role of endogenous microbiota. Food Res Int 2023; 174:113625. [PMID: 37986477 DOI: 10.1016/j.foodres.2023.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Folate (vitamin B9) and cobalamin (vitamin B12) deficiencies potentially affect millions of people worldwide, leading to different pathologies. In Ethiopia, the diet is characterized by high consumption of fermented cereal-based foods such as injera, a good source of folate but not of cobalamin, which is only found in foods of animal origin that are rarely consumed. Some of the bacteria responsible for the fermentation of cereals can synthesize cobalamin, but whether or not fermented cereal food products contain cobalamin remains underexplored. The objective of this study was to assess the folate and cobalamin content of injera collected from various households in Ethiopia at different stages of production. Global (16S rRNA gene sequencing) and specific (real-time PCR quantification of bacteria known for folate or cobalamin production) bacterial composition of these samples was assessed. UPLC-PDA was used to identify the cobalamin to see whether the active or inactive form was present. Surprisingly, teff flour contained 0.8 μg/100 g of cobalamin, most probably due to microbial contamination from the environment and the harvesting process. While fermentation increased the folate and cobalamin content in some households, their levels decreased in others. Conversely, cooking consistently reduced the level of the vitamins. Fresh injera contained, on average, 21.2 μg/100 g of folate and 2.1 μg/100 g of cobalamin, which is high, but with marked variation depending on the sample. However, the form of cobalamin was a corrinoid that is biologically inactive in humans. Injera fermentation was dominated by lactic acid bacteria, with significant correlations observed between certain bacterial species and folate and cobalamin levels. For example, a high proportion of Fructilactobacillus sanfranciscensis, a known folate consumer, was negatively correlated with the folate content of injera. On the contrary, Lactobacillus coryniformis, known for its cobalamin synthesis ability was present in high proportion in the cobalamin-rich samples. These findings highlight the complex interrelationship between microorganisms and suggest the involvement of specific bacteria in the production of folate and cobalamin during injera fermentation. Controlled fermentation using vitamin-producing bacteria is thus a promising tool to promote folate and cobalamin production in fermented food.
Collapse
Affiliation(s)
- Henok Ashagrie
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Benjamin Guibert
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Yohannes Seyoum
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Isabelle Rochette
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France.
| |
Collapse
|
47
|
Jena R, Choudhury PK. Bifidobacteria in Fermented Dairy Foods: A Health Beneficial Outlook. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10189-w. [PMID: 37979040 DOI: 10.1007/s12602-023-10189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Bifidobacteria, frequently present in the human gastrointestinal tract, play a crucial role in preserving gut health and are mostly recognized as beneficial probiotic microorganisms. They are associated with fermenting complex carbohydrates, resulting in the production of short-chain fatty acids, bioactive peptides, exopolysaccharides, and vitamins, which provide energy and contribute to gut homeostasis. In light of these findings, research in food processing technologies has harnessed probiotic bacteria such as lactobacilli and bifidobacteria for the formulation of a wide range of fermented dairy products, ensuring their maximum survival and contributing to the development of distinctive quality characteristics and therapeutic benefits. Despite the increased interest in probiotic dairy products, introducing bifidobacteria into the dairy food chain has proved to be complicated. However, survival of Bifidobacterium species is conditioned by strain of bacteria used, metabolic interactions with lactic acid bacteria (LAB), fermentation parameters, and the temperature of storage and preservation of the dairy products. Furthermore, fortification of dairy foods and whey beverages with bifidobacteria have ability to change physicochemical and rheological properties beyond economic value of dairy products. In summary, this review underscores the significance of bifidobacteria as probiotics in diverse fermented dairy foods and accentuates their positive impact on human health. By enhancing our comprehension of the beneficial repercussions associated with the consumption of bifidobacteria-rich products, we aim to encourage individuals to embrace these probiotics as a means of promoting holistic health.
Collapse
Affiliation(s)
- Rajashree Jena
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Prasanta Kumar Choudhury
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| |
Collapse
|
48
|
Oliveira RI, de Oliveira IN, de Conto JF, de Souza AM, Batistuzzo de Medeiros SR, Egues SM, Padilha FF, Hernández-Macedo ML. Photocatalytic effect of N-TiO 2 conjugated with folic acid against biofilm-forming resistant bacteria. Heliyon 2023; 9:e22108. [PMID: 38027799 PMCID: PMC10658382 DOI: 10.1016/j.heliyon.2023.e22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/08/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotic resistance challenges the treatment of bacterial biofilm-related infections, but the use of nanoparticles as a treatment is a promising strategy to overcome bacterial infections. This study applied nitrogen-doped titanium dioxide (N-TiO2) conjugated with folic acid (FA) on biofilm-forming resistant bacteria. The photocatalytic effect of TiO2 nanoparticles (NPs) was studied under ultraviolet (UV), visible light, and dark conditions at 60, 120, and 180 min against planktonic cells and biofilms of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. TiO2 NPs were in the anatase phase, spherical shaped with sizes of 10-13 nm, and effectively doped and conjugated with N and FA. The FA-conjugated nanoparticles (N-TiO2-FA and FA-TiO2) were shown to have a bactericidal effect on all bacteria between 60 and 180 min under UV and visible light conditions. Concerning biofilms, N-TiO2-FA was shown to have a highly disruptive effect on all bacterial biofilms under UV irradiation at 180 min. Meanwhile, the nanoparticles did not show DNA damaging potential and they had no cytostatic effect, indicating that these NPs are biocompatible. In sum, nanoparticle conjugation with FA promoted photocatalytic effectiveness, revealing the promise this nanomaterial holds as a biocompatible antimicrobial agent.
Collapse
Affiliation(s)
- Raphaella I.S. Oliveira
- Graduate Program in Industrial Biotechnology, Tiradentes University, 49032-490, Aracaju, SE, Brazil
- Laboratory of Molecular Biology, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| | - Iracema N. de Oliveira
- Laboratory of Molecular Biology, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| | - Juliana F. de Conto
- Laboratory of Materials Synthesis and Chromatography, Center for Studies in Colloidal Systems, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| | - Augusto M. de Souza
- Department of Cell Biology and Genetics, Bioscience Center, Federal University of Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - Silvia R. Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Bioscience Center, Federal University of Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - Silvia M. Egues
- Laboratory of Materials Synthesis and Chromatography, Center for Studies in Colloidal Systems, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
- Graduate Program in Process Engineering, Tiradentes University, 49037-580 Aracaju, SE, Brazil
| | - Francine F. Padilha
- Graduate Program in Industrial Biotechnology, Tiradentes University, 49032-490, Aracaju, SE, Brazil
- Biomaterials Laboratory, Technology and Research Institute, Tiradentes University, Aracaju, Sergipe, Brazil
| | - Maria L. Hernández-Macedo
- Graduate Program in Industrial Biotechnology, Tiradentes University, 49032-490, Aracaju, SE, Brazil
- Laboratory of Molecular Biology, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| |
Collapse
|
49
|
Liu J, Huang B, Ding F, Li Y. Environment factors, DNA methylation, and cancer. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7543-7568. [PMID: 37715840 DOI: 10.1007/s10653-023-01749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Today, the rapid development of science and technology and the rapid change in economy and society are changing the way of life of human beings and affecting the natural, living, working, and internal environment on which human beings depend. At the same time, the global incidence of cancer has increased significantly yearly, and cancer has become the number one killer that threatens human health. Studies have shown that diet, living habits, residential environment, mental and psychological factors, intestinal flora, genetics, social factors, and viral and non-viral infections are closely related to human cancer. However, the molecular mechanisms of the environment and cancer development remain to be further explored. In recent years, DNA methylation has become a key hub and bridge for environmental and cancer research. Some environmental factors can alter the hyper/hypomethylation of human cancer suppressor gene promoters, proto-oncogene promoters, and the whole genome, causing low/high expression or gene mutation of related genes, thereby exerting oncogenic or anticancer effects. It is expected to develop early warning markers of cancer environment based on DNA methylation, thereby providing new methods for early detection of cancers, diagnosis, and targeted therapy. This review systematically expounds on the internal mechanism of environmental factors affecting cancer by changing DNA methylation, aiming to help establish the concept of cancer prevention and improve people's health.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Feifei Ding
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China.
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China.
| |
Collapse
|
50
|
Kovatcheva M, Melendez E, Chondronasiou D, Pietrocola F, Bernad R, Caballe A, Junza A, Capellades J, Holguín-Horcajo A, Prats N, Durand S, Rovira M, Yanes O, Stephan-Otto Attolini C, Kroemer G, Serrano M. Vitamin B 12 is a limiting factor for induced cellular plasticity and tissue repair. Nat Metab 2023; 5:1911-1930. [PMID: 37973897 PMCID: PMC10663163 DOI: 10.1038/s42255-023-00916-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
Transient reprogramming by the expression of OCT4, SOX2, KLF4 and MYC (OSKM) is a therapeutic strategy for tissue regeneration and rejuvenation, but little is known about its metabolic requirements. Here we show that OSKM reprogramming in mice causes a global depletion of vitamin B12 and molecular hallmarks of methionine starvation. Supplementation with vitamin B12 increases the efficiency of reprogramming both in mice and in cultured cells, the latter indicating a cell-intrinsic effect. We show that the epigenetic mark H3K36me3, which prevents illegitimate initiation of transcription outside promoters (cryptic transcription), is sensitive to vitamin B12 levels, providing evidence for a link between B12 levels, H3K36 methylation, transcriptional fidelity and efficient reprogramming. Vitamin B12 supplementation also accelerates tissue repair in a model of ulcerative colitis. We conclude that vitamin B12, through its key role in one-carbon metabolism and epigenetic dynamics, improves the efficiency of in vivo reprogramming and tissue repair.
Collapse
Affiliation(s)
- Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Elena Melendez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Dafni Chondronasiou
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Federico Pietrocola
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Raquel Bernad
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Adrià Caballe
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandra Junza
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Capellades
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
| | - Adrián Holguín-Horcajo
- Department of Physiological Science, School of Medicine, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sylvere Durand
- Metabolomics and Cell Biology Platforms UMS AMMICa/UMR 1138, Institut Gustave Roussy, Villejuif, France
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms UMS AMMICa/UMR 1138, Institut Gustave Roussy, Villejuif, France
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
| |
Collapse
|