1
|
Burr SD, Chen Y, Hartley CP, Zhao X, Liu J. Replacement of saturated fatty acids with linoleic acid in western diet attenuates atherosclerosis in a mouse model with inducible ablation of hepatic LDL receptor. Sci Rep 2023; 13:16832. [PMID: 37803087 PMCID: PMC10558454 DOI: 10.1038/s41598-023-44030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Dietary saturate fatty acids (SFAs) have been consistently linked to atherosclerosis and obesity, both of which are characterized by chronic inflammation and impaired lipid metabolism. In comparison, the effects of linoleic acid (LA), the predominant polyunsaturated fatty acid in the Western diet, seem to diverge. Data from human studies suggest a positive association between high dietary intake of LA and the improvement of cardiovascular risk. However, excessive LA intake has been implicated in the development of obesity. Concerns have also been raised on the potential pro-inflammatory properties of LA metabolites. Herein, by utilizing a mouse model with liver-specific Ldlr knockdown, we directly determined the effects of replacing SFAs with LA in a Western diet on the development of obesity and atherosclerosis. Specifically, mice treated with a Ldlr ASO were placed on a Western diet containing either SFA-rich butter (WD-B) or LA-rich corn oil (WD-CO) for 12 weeks. Despite of showing no changes in body weight gain or adiposity, mice on WD-CO exhibited significantly less atherosclerotic lesions compared to those on WD-B diet. Reduced lesion formation in the WD-CO-fed mice corresponded with a reduction of plasma triglyceride and cholesterol content, especially in VLDL and LDL, and ApoB protein levels. Although it increased expression of proinflammatory cytokines TNF-α and IL-6 in the liver, WD-CO did not appear to affect hepatic injury or damage when compared to WD-B. Collectively, our results indicate that replacing SFAs with LA in a Western diet could reduce the development of atherosclerosis independently of obesity.
Collapse
Affiliation(s)
- Stephanie D Burr
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Guggenheim Building 14-11A, 222 3Rd Avenue SW, Rochester, MN, 55905, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Christopher P Hartley
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Rochester, Rochester, MN, 55905, USA
| | - Xianda Zhao
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Rochester, Rochester, MN, 55905, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Guggenheim Building 14-11A, 222 3Rd Avenue SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Ogłuszka M, Lipiński P, Starzyński RR. Effect of Omega-3 Fatty Acids on Telomeres-Are They the Elixir of Youth? Nutrients 2022; 14:nu14183723. [PMID: 36145097 PMCID: PMC9504755 DOI: 10.3390/nu14183723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres—the food compound’s ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Correspondence:
| |
Collapse
|
3
|
Szabo Z, Marosvölgyi T, Szabo E, Koczka V, Verzar Z, Figler M, Decsi T. Effects of Repeated Heating on Fatty Acid Composition of Plant-Based Cooking Oils. Foods 2022; 11:foods11020192. [PMID: 35053923 PMCID: PMC8774349 DOI: 10.3390/foods11020192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/25/2023] Open
Abstract
Several polyunsaturated fatty acids are considered to have beneficial health effects, while saturated fatty acids and industrial trans fatty acids (TFAs) are linked to negative health consequences. Given the increased formation of TFAs during heating, many studies already investigated compositional changes in oils after prolonged heating or at extremely high temperatures. In contrast, our aim was to measure changes in fatty acid composition and in some health-related indices in edible oils after short-time heating that resembles the conventional household use. Potatoes were fried in palm, rapeseed, soybean, sunflower and extra virgin olive oils at 180 °C for 5 min, and samples were collected from fresh oils and after 1, 5 and 10 consecutive heating sequences. Regardless of the type of oil, the highest linoleic acid and alpha-linolenic acid values were measured in the fresh samples, whereas significantly lower values were detected in almost all samples following the heating sequences. In contrast, the lowest levels of TFAs were detected in the fresh oils, while their values significantly increased in almost all samples during heating. Indices of atherogenicity and thrombogenicity were also significantly higher in these oils after heating. The present data indicate that prolonged or repeated heating of vegetable oils should be avoided; however, the type of oil has a greater effect on the changes of health-related indices than the number of heating sequences.
Collapse
Affiliation(s)
- Zoltan Szabo
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (Z.S.); (Z.V.); (M.F.)
| | - Tamas Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Department of Pediatrics, Clinical Centre, University of Pecs, 7623 Pecs, Hungary;
| | - Eva Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Correspondence:
| | - Viktor Koczka
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary
| | - Zsofia Verzar
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (Z.S.); (Z.V.); (M.F.)
| | - Maria Figler
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (Z.S.); (Z.V.); (M.F.)
- 2nd Department of Internal Medicine and Nephrology Centre, Clinical Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamas Decsi
- Department of Pediatrics, Clinical Centre, University of Pecs, 7623 Pecs, Hungary;
| |
Collapse
|
4
|
YANG L, YANG C, SONG ZX, WAN M, XIA H, XU D, PAN D, WANG SK, SHU G, SUN G. Effects of blended oils with different n-6/n-3 polyunsaturated fatty acid ratios on high-fat diet-induced metabolic disorders and hepatic steatosis in rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.81322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Zhi Xiu SONG
- Nanjing University of Traditional Chinese Medicine, China
| | | | | | | | - Da PAN
- Southeast University, China
| | | | - Guofang SHU
- Zhongda Hospital of Southeast University, China
| | | |
Collapse
|
5
|
Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166281. [PMID: 34610472 DOI: 10.1016/j.bbadis.2021.166281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. The occurrence and development of CRC are complicated processes. Obesity and dysbacteriosis have been increasingly regarded as the main risk factors for CRC. Understanding the etiology of CRC from multiple perspectives is conducive to screening for some potential drugs or new treatment strategies to limit the serious side effects of conventional treatment and prolong the survival of CRC patients. Melatonin, a natural indoleamine, is mainly produced by the pineal gland, but it is also abundant in other tissues, including the gastrointestinal tract, retina, testes, lymphocytes, and Harder's glands. Melatonin could participate in lipid metabolism by regulating adipogenesis and lipolysis. Additionally, many studies have focused on the potential beneficial effects of melatonin in CRC, such as promotion of apoptosis; inhibition of cell proliferation, migration, and invasion; antioxidant activity; and immune regulation. Meaningfully, gut microbiota is the main determinant of all aspects of health and disease (including obesity and tumorigenesis). The gut microbiota is of great significance for understanding the relationship between obesity and increased risk of CRC. Although the current understanding of how the melatonin-mediated gut microbiota coordinates a variety of physiological and pathological activities is fairly comprehensive, there are still many unknown topics to be explored in the face of a complex nutritional status and a changeable microbiota. This review summarizes the potential links among melatonin, lipid metabolism, gut microbiota, and CRC to promote the development of melatonin as a preventive and therapeutic agent for CRC.
Collapse
|
6
|
Wang H, Yun HM, Kim IH. Evaluation of dietary-coated omega-3 fatty acid supplementation on reproduction performance, growth performance, nutrient digestibility, and blood profiles in lactating sows and suckling piglets. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 16 sows (Landrace × Yorkshire) were used in a 33-d trial (7 d before expected parturition) to determine the effects of dietary-coated omega-3 fatty acid supplementation on reproduction performance, growth performance, nutrient digestibility, and blood profiles in lactating sows and suckling piglets. Pigs were randomly allotted into two treatments with eight replicates per treatment, and the parity was 4.9. The dietary treatments were as follows: CON, corn–soybean-meal-based diet [omega-6:omega-3 polyunsaturated fatty acids (PUFA) ratio of 17:1] and TRT, CON + 0.9% omega-3 PUFA (omega-6:omega-3 PUFA ratio of 5:1). The supplementation of coated omega-3 increased piglet’s body weight (BW) (day 7) and average daily gain (ADG) (days 0–7) (P < 0.05) from farrowing to weanling compared with control. No differences (P > 0.05) were observed on reproduction performance, nutrient digestibility, and blood profile in sows. In conclusion, our study demonstrated that the dietary supplementation of 0.9% omega-3 PUFA in corn–soybean-meal-based diet (omega-6:omega3 PUFA ratio of 5:1) improved BW and ADG of suckling piglets during the first week.
Collapse
Affiliation(s)
- Huan Wang
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
- School of Biology and Food Engineering, Chuzhou University, Chuzhou, People’s Republic of China
| | - Hyeok Min Yun
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| |
Collapse
|
7
|
Zhang Y, Zhang T, Liang Y, Jiang L, Sui X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8929-8943. [PMID: 34161727 DOI: 10.1021/acs.jafc.1c01369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary lipids are an indispensable source of energy and nutrition in human life. Numerous studies have shown that dietary bioactive lipids have many health benefits, including prevention or treatment of chronic diseases. The different chemical compositions and structural characteristics of bioactive lipids not only affect their digestion, absorption, and metabolism but also affect their health properties. In this review, the major dietary bioactive lipids (fatty acids, carotenoids, phytosterols, phenolic lipids, fat-soluble vitamins, and sphingomyelins) in foods are systematically summarized, from the aspects of composition, digestion, absorption, metabolism, source, structural characteristics, and their health properties. In particular, the relationship between the compositional and structural changes of bioactive lipids and their absorption and metabolism is discussed as well as their effect on health properties. This review provides a comprehensive summary toward health properties of dietary bioactive lipids.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yan Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
8
|
MacIntosh BA, Ramsden CE, Honvoh G, Faurot KR, Palsson OS, Johnston AD, Lynch C, Anderson P, Igudesman D, Zamora D, Horowitz M, Gaylord S, Mann JD. Methodology for altering omega-3 EPA+DHA and omega-6 linoleic acid as controlled variables in a dietary trial. Clin Nutr 2021; 40:3859-3867. [PMID: 34130033 PMCID: PMC8293619 DOI: 10.1016/j.clnu.2021.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Increasing dietary intake of n-3 EPA+DHA and lowering dietary n-6 LA is under investigation as a therapeutic diet for improving chronic pain syndromes as well as other health outcomes. Herein we describe the diet methodology used to modulate intake of n-3 and n-6 PUFA in a free living migraine headache population and report on nutrient intake, BMI and diet acceptability achieved at week 16 of the intensive diet intervention and week 22 follow-up time-point. METHODS A total of 178 participants were randomized and began one of three diet interventions: 1) a high n-3 PUFA, average n-6 PUFA (H3) diet targeting 1500 mg EPA+DHA/day and 7% of energy (en%) from n-6 linoleic acid (LA), 2) a high-n-3 PUFA, low-n-6 PUFA (H3L6) targeting 1500 mg EPA+DHA/day and <1.8 en% n-6 LA or 3) a Control diet with typical American intakes of both EPA+DHA (<150 mg/day) and 7 en% from n-6 LA. Methods used to achieve diet change to week 16 include diet education, diet counseling, supply of specially prepared foods, self-monitoring and access to online diet materials. Only study oils and website materials were provided for the follow-up week 16 to week 22 periods. Diet adherence was assessed by multiple 24 h recalls administered throughout the trial. Diet acceptability was assessed in a subset of participants at 4 time points by questionnaire. RESULTS At week 16 H3 and H3L6 diet groups significantly increased median n-3 EPA+DHA intake from 48 mg/2000 kcals at baseline to 1484 mg/2000 kcals (p < 0.0001) and from 44 mg/2000 kcals to 1341 mg/2000 kcals (p < 0.0001), respectively. In the Control group, EPA+DHA intake remained below the typical American intake with baseline median at 60 mg/2000 kcals and 80 mg/2000 kcals (p = 0.6) at week 16. As desired, LA intake was maintained in the H3 and Control group with baseline median of 6.5 en% to 7.1 en% (p = 0.4) at week 16 and from 6.5 en% to 6.8 en% (p = 1.0) at week 16, respectively. In the H3L6 group, n-6 LA decreased from 6.3 en% at baseline to 3.2 en% (p < 0.0001) at week 16. There were no significant changes in BMI or diet acceptability throughout the trial or between diet groups. CONCLUSIONS We find this diet method to be acceptable to research participants and successful in altering dietary n-3 EPA+DHA with and without concurrent decreases in n-6 LA. If n-6 LA of less than 3 en% is desired, additional techniques to limit LA may need to be employed.
Collapse
Affiliation(s)
- Beth A MacIntosh
- Metabolic and Nutrition Research Core, UNC Medical Center, 102 Mason Farm Rd., CB#7777, NC, 27599, USA.
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA; Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA; Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Gilson Honvoh
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Olafur S Palsson
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela D Johnston
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Chanee Lynch
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Paula Anderson
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Daria Igudesman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daisy Zamora
- Department of Psychiatry, UNC School of Medicine, Chapel Hill, NC, USA; Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Susan Gaylord
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - John D Mann
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Jin J, Boeglin WE, Brash AR. Analysis of 12/15-lipoxygenase metabolism of EPA and DHA with special attention to authentication of docosatrienes. J Lipid Res 2021; 62:100088. [PMID: 34022182 PMCID: PMC8219989 DOI: 10.1016/j.jlr.2021.100088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
A proposed beneficial impact of highly unsaturated “fish oil” fatty acids is their conversion by lipoxygenase (LOX) enzymes to specialized proresolving lipid mediators, including 12/15-LOX products from EPA and DHA. The transformations of DHA include formation of docosatrienes, named for the distinctive conjugated triene of the double bonds. To further the understanding of biosynthetic pathways and mechanisms, herein we meld together biosynthesis and NMR characterization of the unstable leukotriene A (LTA)-related epoxide intermediates formed by recombinant human 15-LOX-1, along with identification of the stable enzymatic products, and extend the findings into the 12/15-LOX metabolism in resident murine peritoneal macrophages. Oxygenation of EPA by 15-LOX-1 converts the initial 15S-hydroperoxide to 14S,15S-trans-epoxy-5Z,8Z,10E,12E,17Z-EPA (appearing as its 8,15-diol hydrolysis products) and mixtures of dihydroperoxy fatty acids, while mainly the epoxide hydrolysis products are evident in the murine cells. DHA also undergoes transformations to epoxides and dihydroperoxides by 15-LOX-1, resulting in a mixture of 10,17-dihydro(pero)xy derivatives (docosatrienes) and minor 7S,17S- and 14,17S-dihydroperoxides. The 10,17S-dihydroxy hydrolysis products of the LTA-related epoxide intermediate dominate the product profile in mouse macrophages, whereas (neuro)protectin D1, the leukotriene B4-related derivative with trans,trans,cis conjugated triene, was undetectable. In this study, we emphasize the utility of UV spectral characteristics for product identification, being diagnostic of the different double bond configurations and hydroxy fatty acid functionality versus hydroperoxide. LC-MS is not definitive for configurational isomers. Secure identification is based on chromatographic retention times, comparison with authentic standards, and the highly distinctive UV spectra.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Effects of Three-Month Feeding High Fat Diets with Different Fatty Acid Composition on Myocardial Proteome in Mice. Nutrients 2021; 13:nu13020330. [PMID: 33498641 PMCID: PMC7911225 DOI: 10.3390/nu13020330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Westernized diet is characterized by a high content of saturated fatty acids (SFA) and a low level of omega-3 polyunsaturated fatty acids (PUFA), often accompanied by an imbalance in the omega-6/omega-3 PUFA ratio. Since increased intake of SFA and n-6 PUFA is considered as a cardiovascular disease risk factor, this study was conducted to determine whether a three-month dietary supplementation of high-fat diets (HFDs) with saturated fatty acids and a significant proportion of various n-6 and n-3 PUFA ratios would affect the architecture and protein expression patterns of the murine heart. Therefore, three HFD (n = 6) feeding groups: rich in SFA, dominated by PUFA with the n-6/n-3–14:1, and n-6/n-3–5:1, ratios were compared to animals fed standard mouse chow. For this purpose, we performed two-dimensional electrophoresis with MALDI-ToF mass spectrometry-based identification of differentially expressed cardiac proteins, and a histological examination of cardiac morphology. The results indicated that mice fed with all HFDs developed signs of hypertrophy and cardiac fibrosis. Animals fed SFA-rich HFD manifested the most severe cardiac hypertrophy and fibrosis lesions, whereas less pronounced changes were observed in the group of animals that ingested the highest amount of omega-3 FA. In general, all HFDs, regardless of FA composition, evoked a comparable pattern of cardiac protein changes and affected the following biological processes: lipid metabolism and FA β-oxidation, glycolysis, TCA cycle, respiratory chain, myocardium contractility, oxidative stress and PUFA eicosanoid metabolism. However, it should be noted that three proteins, namely IDH3A, LDHB, and AK1, were affected differently by various FA contents. High expression of these myocardial proteins found in the group of animals fed a HFD with the highest n-3 PUFA content could be closely related to the observed development of hypertrophy.
Collapse
|
11
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
12
|
Chiang KY, Lin WC, Tsai TY, Lin CW, Huang SJ, Huang CY, Wu SH, Ken CF, Gong HY, Chen JY, Wu JL. Dual expression of transgenic delta-5 and delta-6 desaturase in tilapia alters gut microbiota and enhances resistance to Vibrio vulnificus infection. PLoS One 2020; 15:e0236601. [PMID: 32730353 PMCID: PMC7392239 DOI: 10.1371/journal.pone.0236601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exhibit antibacterial and anti-inflammatory activities. Furthermore, diets rich in n-3 PUFAs are known to improve disease resistance and limit pathogen infection in commercial aquaculture fishes. In this study, we examined the effects of transgenic overexpression of n-3 PUFA biosynthesis genes on the physiological response to bacterial infection in tilapia. We first established tilapia strains with single or dual expression of salmon delta-5 desaturase and/or delta-6 desaturase and then challenged the fish with Vibrio vulnificus infection. Interestingly, our data suggest that n-3 PUFA-mediated alterations in gut microbiota may be important in determining disease outcome via effects on immune response of the host. Both liver- and muscle-specific single and dual expression of delta-5 desaturase and delta-6 desaturase resulted in higher n-3 PUFA content in transgenic fish fed with a LO basal diet. The enrichment of n-3 PUFAs in dual-transgenic fish is likely responsible for their improved survival rate and comparatively reduced expression of inflammation- and immune-associated genes after V. vulnificus infection. Gut microbiome analysis further revealed that dual-transgenic tilapia had high gut microbiota diversity, with low levels of inflammation-associated microbiota (i.e., Prevotellaceae). Thus, our findings indicate that dual expression of transgenic delta-5 and delta-6 desaturase in tilapia enhances disease resistance, an effect that is associated with increased levels of n-3 PUFAs and altered gut microbiota composition.
Collapse
Affiliation(s)
- Keng-Yu Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Tsung-Yu Tsai
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Cheng-Wei Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shin-Jie Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ching-Yu Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Sheng-Han Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chuian-Fu Ken
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (HYG); (JLW); (JYC)
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
- * E-mail: (HYG); (JLW); (JYC)
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
- * E-mail: (HYG); (JLW); (JYC)
| |
Collapse
|
13
|
Lemke RAS, Olson SM, Morse K, Karlen SD, Higbee A, Beebe ET, Ralph J, Coon JJ, Fox BG, Donohue TJ. A bacterial biosynthetic pathway for methylated furan fatty acids. J Biol Chem 2020; 295:9786-9801. [PMID: 32434926 PMCID: PMC7380195 DOI: 10.1074/jbc.ra120.013697] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria. Each of the steps in FuFA biosynthesis occurs on pre-existing phospholipid fatty acid chains, and we identified pathway intermediates and the gene products that catalyze 9M5-FuFA and 9D5-FuFA synthesis in Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas palustris CGA009. One previously unknown pathway intermediate was a methylated diunsaturated fatty acid, (10E,12E)-11-methyloctadeca-10,12-dienoic acid (11Me-10t,12t-18:2), produced from (11E)-methyloctadeca-11-enoic acid (11Me-12t-18:1) by a newly identified fatty acid desaturase, UfaD. We also show that molecular oxygen (O2) is the source of the oxygen atom in the furan ring of 9M5-FuFA, and our findings predict that an O2-derived oxygen atom is incorporated into 9M5-FuFA via a protein, UfaO, that uses the 11Me-10t,12t-18:2 fatty acid phospholipid chain as a substrate. We discovered that R. palustris also contains a SAM-dependent methylase, FufM, that produces 9D5-FuFA from 9M5-FuFA. These results uncover the biochemical sequence of intermediates in a bacterial pathway for 9M5-FuFA and 9D5-FuFA biosynthesis and suggest the existence of homologs of the enzymes identified here that could function in FuFA biosynthesis in other organisms.
Collapse
Affiliation(s)
- Rachelle A S Lemke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Stephanie M Olson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Kaitlin Morse
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Steven D Karlen
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Alan Higbee
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily T Beebe
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Joshua J Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Brian G Fox
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA .,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Harauma A, Sueyasu T, Tokuda H, Yasuda H, Hoshi Y, Kaneda Y, Rogi T, Shibata H, Nakamura MT, Moriguchi T. Changes in behavior and fatty acid composition induced by long-term reduction in murine Δ6-desaturation activity. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102079. [PMID: 32145668 DOI: 10.1016/j.plefa.2020.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/28/2022]
Abstract
Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in biological regulation. In our previous study using mice deficient in Δ6 desaturase (D6D), we reported that ARA is required for body growth, while DHA is necessary for functional development. In mammals, ARA and DHA are supplied directly or by synthesis from linoleic acid (LA) and α-linolenic acid (ALA). However, as desaturase enzyme activity is immature or low in newborns, and humans with minor alleles of the gene encoding desaturase, respectively, they require dietary supplementation with ARA and DHA. To investigate how the body reacts to a long-term reduction in fatty acid synthesis, we measured behavioral changes and fatty acid composition in mice heterozygous for the D6D null mutation with reduced D6D activity fed a diet containing only LA and ALA as PUFAs. During the growth-maturity period, heterozygous mice showed a slightly change in interest and curiosity compared with the wild-type group. ARA levels were decreased in the brain and liver in the heterozygous group, especially during the growth-maturity period, whereas DHA levels were decreased in the liver only in the old age period, suggesting that there are differences in the synthesis of and demand for ARA and DHA during life. For newborns, and humans with minor alleles with low desaturase activity, direct ARA intake is particularly important during the growth-maturity period, but they may need to be supplemented with DHA in the old age period. Further research is needed to determine the optimal intake and duration of these fatty acids.
Collapse
Affiliation(s)
- Akiko Harauma
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Toshiaki Sueyasu
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hisanori Tokuda
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hidemi Yasuda
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yukino Hoshi
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yoshihisa Kaneda
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Tomohiro Rogi
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Manabu T Nakamura
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, United States
| | - Toru Moriguchi
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
15
|
Single-Dose SDA-Rich Echium Oil Increases Plasma EPA, DPAn3, and DHA Concentrations. Nutrients 2019; 11:nu11102346. [PMID: 31581725 PMCID: PMC6835614 DOI: 10.3390/nu11102346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 01/10/2023] Open
Abstract
The omega-3 (n3) polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with health benefits. The primary dietary source of EPA and DHA is seafood. Alpha-linoleic acid (ALA) has not been shown to be a good source for EPA and DHA; however, stearidonic acid (SDA)-which is naturally contained in echium oil (EO)-may be a more promising alternative. This study was aimed at investigating the short-term n3 PUFA metabolism after the ingestion of a single dose of EO. Healthy young male subjects (n = 12) ingested a single dose of 26 g of EO after overnight fasting. Plasma fatty acid concentrations and relative amounts were determined at baseline and 2, 4, 6, 8, 24, 48, and 72 h after the ingestion of EO. During the whole examination period, the participants received standardized nutrition. Plasma ALA and SDA concentrations increased rapidly after the single dose of EO. Additionally, EPA and DPAn3 concentrations both increased significantly by 47% after 72 h compared to baseline; DHA concentrations also significantly increased by 21% after 72 h. To conclude, EO increases plasma ALA, SDA, EPA, DPAn3, and DHA concentrations and may be an alternative source for these n3 PUFAs.
Collapse
|
16
|
Adam AC, Lie KK, Whatmore P, Jakt LM, Moren M, Skjærven KH. Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid. PLoS One 2019; 14:e0220934. [PMID: 31398226 PMCID: PMC6688801 DOI: 10.1371/journal.pone.0220934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
Diet has been shown to influence epigenetic key players, such as DNA methylation, which can regulate the gene expression potential in both parents and offspring. Diets enriched in omega-6 and deficient in omega-3 PUFAs (low dietary omega-3/omega-6 PUFA ratio), have been associated with the promotion of pathogenesis of diseases in humans and other mammals. In this study, we investigated the impact of increased dietary intake of arachidonic acid (ARA), a physiologically important omega-6 PUFA, on 2 generations of zebrafish. Parental fish were fed either a low or a high ARA diet, while the progeny of both groups were fed the low ARA diet. We screened for DNA methylation on single base-pair resolution using reduced representation bisulfite sequencing (RRBS). The DNA methylation profiling revealed significant differences between the dietary groups in both parents and offspring. The majority of differentially methylated loci associated with high dietary ARA were found in introns and intergenic regions for both generations. Common loci between the identified differentially methylated loci in F0 and F1 livers were reported. We described overlapping gene annotations of identified methylation changes with differential expression, but based on a small number of overlaps. The present study describes the diet-associated methylation profiles across genomic regions, and it demonstrates that parental high dietary ARA modulates DNA methylation patterns in zebrafish liver.
Collapse
Affiliation(s)
| | | | | | - Lars Martin Jakt
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mari Moren
- Institute of Marine Research, Bergen, Norway
| | | |
Collapse
|
17
|
Upadhaya SD, Yang J, Lee KY, Kim IH. Effects of changing omega-6 to omega-3 fatty acid ratios in corn–soybean meal-based diet on performance, serum lipid profile and colostrum and milk composition of sows and performance of piglets. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to test the effects of changing omega-6 to omega-3 fatty acid (FA) ratios in corn–soybean meal-based diet on performance, serum lipid profile and colostrum and milk nutrient contents of lactating sows as well as performance of suckling piglets. In total, 32 multiparous sows (Landrace × Yorkshire) were randomly allocated into one of four dietary treatments with eight replicates per treatment. The treatment diets were fed 7 days before farrowing until weaning. The omega-3 FA used in the experiment was from linseed oil and was coated using a spray-drying method. The dietary treatments consisted of control (CON, corn–soybean meal-based basal diet with omega-6:omega-3 FA ratios of 25:1), and basal diets (CON) containing omega-6: omega-3 FA ratios at 20:1, 15:1 and 10:1 levels. Inclusion of omega-6 and omega-3 FA at different ratios in the feed did not affect (P > 0.05) the performance, nutrient digestibility and milk nutrient composition of sows. The concentrations of high-density lipid cholesterol (HDL-C) increased (P < 0.05) and the low-density lipid cholesterol (LDL-C) tended to be reduced (P = 0.08) at weaning for sows fed 10:1 omega 6:omega-3 ratio diet. The bodyweights (BW) and average daily gains (ADG) of piglets born from sows fed 10:1 omega-6:omega-3 FA diet were greater (P < 0.05) at Week 3 and overall respectively. The BW of piglets raised from sows fed all treatment diets were heavier (P < 0.05) at Week 4 (weaning) than those in the CON. Positive correlations between dietary omega-6:omega-3 FA ratio and serum HDL-C concentrations and a negative correlations between dietary omega-6:omega-3 FA ratio and serum LDL-C concentrations for sows at weaning were observed. In addition, a positive correlation between omega-6:omega-3 FA in the diet and ADG in piglets was also observed. In conclusion, inclusion of omega-6:omega-3 FA at different ratios in different proportions did not affect sow performance, while increasing HDL-C and tending to reduce LDL-C in serum lipids. However, the piglets born to sows fed 10:1 diets benefitted, with increased BW and ADG.
Collapse
|
18
|
Halade GV, Black LM, Verma MK. Paradigm shift - Metabolic transformation of docosahexaenoic and eicosapentaenoic acids to bioactives exemplify the promise of fatty acid drug discovery. Biotechnol Adv 2018; 36:935-953. [PMID: 29499340 PMCID: PMC5971137 DOI: 10.1016/j.biotechadv.2018.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Fatty acid drug discovery (FADD) is defined as the identification of novel, specialized bioactive mediators that are derived from fatty acids and have precise pharmacological/therapeutic potential. A number of reports indicate that dietary intake of omega-3 fatty acids and limited intake of omega-6 promotes overall health benefits. In 1929, Burr and Burr indicated the significant role of essential fatty acids for survival and functional health of many organs. In reference to specific dietary benefits of differential omega-3 fatty acids, docosahexaenoic and eicosapentaenoic acids (DHA and EPA) are transformed to monohydroxy, dihydroxy, trihydroxy, and other complex mediators during infection, injury, and exercise to resolve inflammation. The presented FADD approach describes the metabolic transformation of DHA and EPA in response to injury, infection, and exercise to govern uncontrolled inflammation. Metabolic transformation of DHA and EPA into a number of pro-resolving molecules exemplifies a novel, inexpensive approach compared to traditional, expensive drug discovery. DHA and EPA have been recommended for prevention of cardiovascular disease since 1970. Therefore, the FADD approach is relevant to cardiovascular disease and resolution of inflammation in many injury models. Future research demands identification of novel action targets, receptors for biomolecules, mechanism(s), and drug-interactions with resolvins in order to maintain homeostasis.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, AL, United States.
| | - Laurence M Black
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, AL, United States
| | - Mahendra Kumar Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
19
|
de Figueiredo Junior AG, Serafim PVP, de Melo AA, Felipe AV, Lo Turco EG, da Silva IDCG, Forones NM. Analysis of the Lipid Profile in Patients with Colorectal Cancer in Advanced Stages. Asian Pac J Cancer Prev 2018; 19:1287-1293. [PMID: 29802561 PMCID: PMC6031810 DOI: 10.22034/apjcp.2018.19.5.1287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Backgrounds: Colorectal (CRC) is one of the main cause of cancer worldwide. The search for noninvasive markers for diagnosis and monitoring as the use of analytical technologies such as mass spectrometry (MS), which allowed the search for lipid metabolites as candidates for probable biomarkers are needed. Objective and Methods: The objective was to establish the lipid profile of patients with locally advanced, unresectable or metastatic CRC. Peripheral blood was collected from patients with CRC and controls with normal colonoscopy. After lipid extraction, the samples were processed and analyzed in the MALDI TOF / TOF equipment. From the data matrix, the statistical analyzes were performed by the principal component analysis methods and the least squares discriminant analysis. The importance of the variable in the projection was used to identify the ions that had the greatest discriminatory effect between the groups. Results: Eight lipids were identified as potential biomarkers and a multiple logistic regression model was proposed to calculate the performance of the test where we observed values of AUC 0.87, sensitivity 88.33% and specificity 83.78% and for a validation test with 1,000 permutations a p <0.001. The classes of lipids found were sphingolipids, glycerophospholipids and policetidis. The strength of the association between the peak intensities of these lipids and the presence of CRC make these metabolites candidates for possible biomarkers. The sphingolipid (m / z = 742.98869) could be a biomarker in monitoring patients with CRC. In the survival analysis, three lipids showed a prognostic value for colorectal cancer, sphingolipid (m / z = 857.11525) and policetidis (m / z = 876.20796) and glycerophospholipid (m / z = 1031.54773).
Collapse
|
20
|
Greupner T, Kutzner L, Pagenkopf S, Kohrs H, Hahn A, Schebb NH, Schuchardt JP. Effects of a low and a high dietary LA/ALA ratio on long-chain PUFA concentrations in red blood cells. Food Funct 2018; 9:4742-4754. [DOI: 10.1039/c8fo00735g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is a debate about the optimal dietary ratio of LA and ALA to promote an efficient conversion of ALA to EPA and DHA, which have implications for human health.
Collapse
Affiliation(s)
- Theresa Greupner
- Institute of Food Science and Human Nutrition
- Leibniz University Hannover
- Germany
| | - Laura Kutzner
- Institute for Food Toxicology
- University of Veterinary Medicine Hannover
- Germany
| | - Svenja Pagenkopf
- Institute of Food Science and Human Nutrition
- Leibniz University Hannover
- Germany
| | - Heike Kohrs
- Institute of Food Science and Human Nutrition
- Leibniz University Hannover
- Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition
- Leibniz University Hannover
- Germany
| | - Nils Helge Schebb
- Institute for Food Toxicology
- University of Veterinary Medicine Hannover
- Germany
- Chair of Food Chemistry
- Faculty of Mathematics and Natural Sciences
| | | |
Collapse
|
21
|
Greupner T, Kutzner L, Nolte F, Strangmann A, Kohrs H, Hahn A, Schebb NH, Schuchardt JP. Effects of a 12-week high-α-linolenic acid intervention on EPA and DHA concentrations in red blood cells and plasma oxylipin pattern in subjects with a low EPA and DHA status. Food Funct 2018; 9:1587-1600. [DOI: 10.1039/c7fo01809f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The essential omega-3 fatty acid alpha-linolenic acid (ALA, 18:3n3) can be converted into EPA and DHA.
Collapse
Affiliation(s)
- Theresa Greupner
- Institute of Food Science and Human Nutrition
- Leibniz University Hannover
- Germany
| | - Laura Kutzner
- Institute for Food Toxicology
- University of Veterinary Medicine Hannover
- Germany
| | - Fabian Nolte
- Institute for Food Toxicology
- University of Veterinary Medicine Hannover
- Germany
| | - Alena Strangmann
- Institute of Food Science and Human Nutrition
- Leibniz University Hannover
- Germany
| | - Heike Kohrs
- Institute of Food Science and Human Nutrition
- Leibniz University Hannover
- Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition
- Leibniz University Hannover
- Germany
| | - Nils Helge Schebb
- Institute for Food Toxicology
- University of Veterinary Medicine Hannover
- Germany
- Chair of Food Chemistry
- Faculty of Mathematics and Natural Sciences
| | | |
Collapse
|
22
|
Anti-obesity effect of a traditional Chinese dietary habit-blending lard with vegetable oil while cooking. Sci Rep 2017; 7:14689. [PMID: 29089626 PMCID: PMC5665938 DOI: 10.1038/s41598-017-14704-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/16/2017] [Indexed: 11/24/2022] Open
Abstract
Obesity, which is associated with dietary habits, has become a global social problem and causes many metabolic diseases. In China, both percentages of adult obesity and overweight are far lower compared to western countries. It was designed to increase the two levels of daily intake in human, namely 3.8% and 6.5%, which are recommendatory intake (25 g/d) and Chinese citizens’ practical intake (41.4 g/d), respectively. The mice were respectively fed with feeds added with soybean oil, lard or the oil blended by both for 12 weeks. In the mice fed with diet containing 3.8% of the three oils or 6.5% blended oil, their body weight, body fat rate, cross-sectional area of adipocytes, adipogenesis and lipogenesis in adipose were decreased, whereas hydrolysis of triglyserides in adipose was increased. This study demonstrated that the oil mixture containing lard and soybean oil had a remarkable anti-obesity effect. It suggests that the traditional Chinese dietary habits using oils blended with lard and soybean oil, might be one of the factors of lower percentages of overweight and obesity in China, and that the increasing of dietary oil intake and the changing of its component resulted in the increasing of obesity rate in China over the past decades.
Collapse
|
23
|
Omega-6 and omega-3 oxylipins are implicated in soybean oil-induced obesity in mice. Sci Rep 2017; 7:12488. [PMID: 28970503 PMCID: PMC5624939 DOI: 10.1038/s41598-017-12624-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
Abstract
Soybean oil consumption is increasing worldwide and parallels a rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance, and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6 male mice. Proteomic analysis of the liver reveals global differences in hepatic proteins when comparing diets rich in the two soybean oils, coconut oil, and a low-fat diet. Metabolomic analysis of the liver and plasma shows a positive correlation between obesity and hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway. While Plenish induced less insulin resistance than conventional soybean oil, it resulted in hepatomegaly and liver dysfunction as did olive oil, which has a similar fatty acid composition. These results implicate a new class of compounds in diet-induced obesity–C18 epoxide and diol oxylipins.
Collapse
|
24
|
Piegari M, Soria EA, Eynard AR, Valentich MA. Delay of Lung Adenocarcinoma (LAC-1) Development in Mice by Dietary Oleic Acid. Nutr Cancer 2017; 69:1069-1074. [DOI: 10.1080/01635581.2017.1359319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mariana Piegari
- Cátedra de Biología Celular, Histología y Embriología, Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Universidad Nacional de Córdoba, CONICET, Enrique Barros, Córdoba, Argentina
| | - Elio A. Soria
- Cátedra de Biología Celular, Histología y Embriología, Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Universidad Nacional de Córdoba, CONICET, Enrique Barros, Córdoba, Argentina
| | - Aldo R. Eynard
- Cátedra de Biología Celular, Histología y Embriología, Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Universidad Nacional de Córdoba, CONICET, Enrique Barros, Córdoba, Argentina
| | - Mirta A. Valentich
- Cátedra de Biología Celular, Histología y Embriología, Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Universidad Nacional de Córdoba, CONICET, Enrique Barros, Córdoba, Argentina
| |
Collapse
|
25
|
Harris C, Demmelmair H, von Berg A, Lehmann I, Flexeder C, Koletzko B, Heinrich J, Standl M. Associations between fatty acids and low-grade inflammation in children from the LISAplus birth cohort study. Eur J Clin Nutr 2017; 71:1303-1311. [DOI: 10.1038/ejcn.2017.73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
|
26
|
Dhenge A, Limbkar K, Melinkeri S, Kale VP, Limaye L. Arachidonic acid and Docosahexanoic acid enhance platelet formation from human apheresis-derived CD34 + cells. Cell Cycle 2017; 16:979-990. [PMID: 28388313 DOI: 10.1080/15384101.2017.1312233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
An Aberration in megakaryopoiesis and thrombopoiesis, 2 important processes that maintain hemostasis, leads to thrombocytopenia. Though platelet transfusions are used to treat this condition, blood banks frequently face a shortage of platelets. Therefore, methods to generate platelets on a large scale are strongly desirable. However, to generate megakaryocytes (MKs) and platelets (PLTs) in numbers sufficient for clinical application, it is essential to understand the mechanism of platelet production and explore efficient strategies accordingly. We have earlier reported that the N-6 and N-3 poly-unsaturated fatty acids (PUFAs), Arachidonic acid (AA)/Docosahexanoic acid (DHA) have beneficial effect on the generation of MKs and PLTs from umbilical cord blood derived CD34+ cells. Here we tested if a similar effect is observed with peripheral blood derived CD34+ cells, which are more commonly used in transplantation settings. We found a significant enhancement in cell numbers, surface marker expression, cellular ploidy and expression of cytoskeletal components during PLT biogenesis in cultures exposed to media containing AA/DHA than control cultures that were not exposed to these PUFAs. The test cells engrafted more efficiently in NOD/SCID mice than control cells. AA/DHA appears to have enhanced MK/PLT generation through upregulation of the NOTCH and AKT pathways. Our data show that PUFAs could be valuable additives in the culture system for large scale production of platelets for clinical applications.
Collapse
Affiliation(s)
- Ankita Dhenge
- a National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus , Pune , India
| | - Kedar Limbkar
- a National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus , Pune , India
| | - Sameer Melinkeri
- b Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital , Pune , India
| | - Vaijayanti Prakash Kale
- a National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus , Pune , India
| | - Lalita Limaye
- a National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus , Pune , India
| |
Collapse
|
27
|
Integrating multi-omics biomarkers and postprandial metabolism to develop personalized treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat 2017; 132:69-76. [PMID: 28232135 DOI: 10.1016/j.prostaglandins.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Anorexia Nervosa (AN) is a serious mental illness characterized by emaciation, an intense fear of gaining weight despite being underweight, and distorted body image. Few treatments reverse the core symptoms in AN such as profound aversion to food and food avoidance. Consequently, AN has a chronic and relapsing course and the highest mortality rate of any psychiatric illness. A more complete understanding of the disease pathogenesis is needed in order to develop better treatments and improve AN outcome. The pathogenesis and psychopathophysiology of AN can be better elucidated by combining longitudinal phenotyping with multiple "omics" techniques, including genomics, proteomics, lipidomics, and metabolomics. DESIGN This paper summarizes the key findings of a series of interrelated studies including new experimental data and previously published data, and describes our current initiatives and future directions. RESULTS Exon sequencing data was analyzed in 1205 AN and 1948 controls. Targeted metabolomics, lipidomics, and proteomics data were collected in two independent convenience samples consisting of 75 subjects with eating disorders and 61 sex- and age-matched healthy controls. Study participants were female and the mean age was 22.9 (4.9 [SD]) years. Epoxide hydrolase 2 (EPHX2) genetic variations were significantly associated with AN risk, and epoxide hydrolase (sEH) activity was elevated in AN compared to controls. The polyunsaturated fatty acids (PUFAs) and eicosanoids data revealed that cytochrome P450 pathway was implicated in AN, and AN displayed a dysregulated postprandial metabolism of PUFAs and sEH-dependent eicosanoids. IMPLICATION AND CURRENT INITIATIVES Collectively, our data suggest that dietary factors may contribute to the burden of EPHX2-associated AN susceptibility and affect disease outcome. We are implementing new investigations using a longitudinal study design in order to validate and develop an EPHX2 multi-omics biomarker system. We will test whether sEH-associated postprandial metabolism increases AN risk and affects treatment outcome through an ω-6 rich breakfast challenge. Participants will include 100 ill AN patients, 100 recovered AN patients, and 100 age- and race-matched healthy women. These data will allow us to investigate 1) how genetic and dietary factors independently and synergistically contribute to AN risk and progression, and 2) if clinical severity and treatment response in AN are affected by sEH activity and eicosanoid dysregulation. Results of our study will 1) identify clinically relevant biomarkers, 2) unravel mechanistic functions of sEH, and 3) delineate contributory roles of dietary PUFAs and cytochrome P450 pathway eicosanoids for the purpose of developing novel AN treatments and improving disease prognosis.
Collapse
|
28
|
Ogłuszka M, Szostak A, Te Pas MFW, Poławska E, Urbański P, Blicharski T, Pareek CS, Juszczuk-Kubiak E, Dunkelberger JR, Horbańczuk JO, Pierzchała M. A porcine gluteus medius muscle genome-wide transcriptome analysis: dietary effects of omega-6 and omega-3 fatty acids on biological mechanisms. GENES AND NUTRITION 2017; 12:4. [PMID: 28163789 PMCID: PMC5282897 DOI: 10.1186/s12263-017-0552-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/09/2017] [Indexed: 01/27/2023]
Abstract
Background The level of omega-6 and omega-3 polyunsaturated fatty acids can affect many cellular systems and function via nuclear receptors or the bioactive lipid regulation of gene expression. The objective of this study was to investigate changes in the muscle transcriptome and the biological functions regulated by increased consumption of omega-3 and omega-6 fatty acids in the pig gluteus medius muscle. Results The transcriptome of the gluteus medius muscle was studied for pigs subjected to either a control diet or a diet supplemented with linseed and rapeseed oil to increase polyunsaturated fatty acid content. Next-generation sequencing (NGS) was used to generate the muscle tissue transcriptome database pointing differentially expressed genes (DEG). Comparative expression analyses identified 749 genes significantly differing at least in the twofold of change between two groups of animals fed with divergent level of omega-3 and omega-6 fatty acids. The expression of 219 genes was upregulated, and the expression of 530 genes was downregulated in the group of pigs supplemented with omega-3 and omega-6 fatty acids in relation to control group pigs. Results of RNA-seq indicated a role of fatty acid in the regulation of the expression of genes which are essential for muscle tissue development and functioning. Functional analysis revealed that the identified genes were important for a number of biological processes including inflammatory response, signaling, lipid metabolism, and homeostasis. Conclusions Summarizing, obtained results provide strong evidence that omega-6 and omega-3 fatty acids regulate fundamental metabolic processes in muscle tissue development and functioning. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0552-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Agnieszka Szostak
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Marinus F W Te Pas
- Breeding and Genomic Centre, Wageningen UR Livestock Research, 6700 AH Wageningen, The Netherlands
| | - Ewa Poławska
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Paweł Urbański
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Tadeusz Blicharski
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Chandra S Pareek
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Edyta Juszczuk-Kubiak
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Jenelle R Dunkelberger
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011 USA
| | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| |
Collapse
|
29
|
Abstract
Cardiovascular disease (CVD) is a preventable disease, which combines two general processes: chronic vascular inflammation and acute thrombosis. Both are amplified with positive feedback signals by n-6 eicosanoids derived from food-based n-6 highly unsaturated fatty acids (n-6 HUFA). This amplification is lessened by competing actions of n-3 HUFA. Death results from fatal interactions of the vascular wall with platelets and clotting proteins. The benefits of fish oil interventions are confounded by complex details in pharmacokinetics, pharmacodynamics, adverse events, timescale factors, topology, financial incentives and people's sense of cause and effect. Two basic aspects of n-3 HUFA that are overlooked in CVD dynamics are saturable, hyperbolic responses of the enzymes continually supplying n-6 HUFA and hard-to-control positive feedback receptor signals by excessive n-6 HUFA-based mediators. Multiple feedback loops in inflammation and thrombosis have diverse mediators, and reducing one mediator that occurs above its rate-limiting levels may not reduce the pathophysiology. Clinicians have developed some successful interventions that decrease CVD deaths in the form of secondary prevention. However, the current high CVD prevalence in the USA remains unchanged, and successful primary prevention of CVD remains uncertain. This review weighs the available evidence to help clinicians, the biomedical community and the public put the use of fish oil supplements into a balanced perspective.
Collapse
Affiliation(s)
- Bill Lands
- American Society for Nutrition, Rockville, MD, USA.
- American Association for the Advancement of Science, Washington, DC, USA.
- , 6100 Westchester Park Drive, #1219, College Park, MD, 20740, USA.
| |
Collapse
|
30
|
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths. Understanding its pathophysiology is essential for developing efficient strategies to treat this disease. Lipidome, the sum of total lipids, related enzymes, receptors and signaling pathways, plays crucial roles in multiple cellular processes, such as metabolism, energy storage, proliferation and apoptosis. Dysregulation of lipid metabolism and function contributes to the development of CRC, and can be used towards the evaluation of prognosis. The strategies targeting lipidome have been applied in clinical trails and showed promising results. Here we discuss recent advances in abnormal lipid metabolism in CRC, the mechanisms by which the lipidome regulates tumorigenesis and tumor progression, and suggest potential therapeutic targets for clinical trials.
Collapse
Affiliation(s)
- Guifang Yan
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Szostak A, Ogłuszka M, Te Pas MFW, Poławska E, Urbański P, Juszczuk-Kubiak E, Blicharski T, Pareek CS, Dunkelberger JR, Horbańczuk JO, Pierzchała M. Effect of a diet enriched with omega-6 and omega-3 fatty acids on the pig liver transcriptome. GENES AND NUTRITION 2016; 11:9. [PMID: 27482299 PMCID: PMC4959555 DOI: 10.1186/s12263-016-0517-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/28/2015] [Indexed: 01/10/2023]
Abstract
The optimal ratio of omega-6 to omega-3 polyunsaturated fatty acids (PUFAs) is important for keeping the homeostasis of biological processes and metabolism, yet the underlying biological mechanism is poorly understood. The objective of this study was to identify changes in the pig liver transcriptome induced by a diet enriched with omega-6 and omega-3 fatty acids and to characterize the biological mechanisms related to PUFA metabolism. Polish Landrace pigs (n = 12) were fed diet enriched with linoleic acid (LA, omega-6) and α-linolenic acid (ALA, omega-3) or standard diet as a control. The fatty acid profiling was assayed in order to verify how feeding influenced the fatty acid content in the liver, and subsequently next-generation sequencing (NGS) was used to identify differentially expressed genes (DEG) between transcriptomes between dietary groups. The biological mechanisms and pathway interaction networks were identified using DAVID and Cytoscape tools. Fatty acid profile analysis indicated a higher contribution of PUFAs in the liver for LA- and ALA-enriched diet group, particularly for the omega-3 fatty acid family, but not omega-6. Next-generation sequencing identified 3565 DEG, 1484 of which were induced and 2081 were suppressed by PUFA supplementation. A low ratio of omega-6/omega-3 fatty acids resulted in the modulation of fatty acid metabolism pathways and over-representation of genes involved in energy metabolism, signal transduction, and immune response pathways. In conclusion, a diet enriched with omega-6 and omega-3 fatty acids altered the transcriptomic profile of the pig liver and would influence animal health status.
Collapse
Affiliation(s)
- Agnieszka Szostak
- Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzębiec, Poland
| | - Magdalena Ogłuszka
- Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzębiec, Poland
| | - Marinus F W Te Pas
- Animal Breeding and Genetics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands
| | - Ewa Poławska
- Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzębiec, Poland
| | - Paweł Urbański
- Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzębiec, Poland
| | - Edyta Juszczuk-Kubiak
- Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzębiec, Poland
| | - Tadeusz Blicharski
- Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzębiec, Poland
| | - Chandra Shekhar Pareek
- Functional Genomics Laboratory, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | | | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzębiec, Poland
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzębiec, Poland
| |
Collapse
|
32
|
Castellini C, Dal Bosco A, Mattioli S, Davidescu M, Corazzi L, Macchioni L, Rimoldi S, Terova G. Activity, Expression, and Substrate Preference of the Δ(6)-Desaturase in Slow- or Fast-Growing Rabbit Genotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:792-800. [PMID: 26745387 DOI: 10.1021/acs.jafc.5b05425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the present paper liver fatty acid Δ(6) desaturation (fads2) activity was analyzed in two rabbit strains with slow- (S, 27.5 g/day) or fast-growing (F, 48.5 g/day) rate. The fatty acid profile of the liver showed a different PUFA profile in the two strains with a lower n-6/n-3 ratio in the S rabbits. The expression of fads2 was 2-fold higher in S than in F rabbits, whereas enzyme activity was higher in F and more oriented toward the desaturation of linoleic acid (90%). In contrast, S showed a higher preference for linolenic acid (38.9 vs 10%). This study identified a single difference in the fads2 amino acid sequence between these two strains. Such a difference consists in the substitution of Gly104 to Ser104 in the sequence of F fads2. These results indicate for the first time that genetic selection for performance may affect the preference for PUFA toward desaturation of linoleic/linolenic acid.
Collapse
Affiliation(s)
- Cesare Castellini
- Department of Agricultural, Food and Environmental Science, University of Perugia , Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Food and Environmental Science, University of Perugia , Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Simona Mattioli
- Department of Agricultural, Food and Environmental Science, University of Perugia , Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Magdalena Davidescu
- Department of Experimental Medicine, University of Perugia , Piazza Gambuli 1, 06123 Perugia, Italy
| | - Lanfranco Corazzi
- Department of Experimental Medicine, University of Perugia , Piazza Gambuli 1, 06123 Perugia, Italy
| | - Lara Macchioni
- Department of Experimental Medicine, University of Perugia , Piazza Gambuli 1, 06123 Perugia, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria , Via J. H. Dunant 3, 21100 Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria , Via J. H. Dunant 3, 21100 Varese, Italy
- Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria , 21100 Varese, Italy
| |
Collapse
|
33
|
Rashid MA, Haque M, Akbar M. Role of Polyunsaturated Fatty Acids and Their Metabolites on Stem Cell Proliferation and Differentiation. ADVANCES IN NEUROBIOLOGY 2016; 12:367-80. [PMID: 27651264 DOI: 10.1007/978-3-319-28383-8_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nervous system is highly enriched with long-chain polyunsaturated fatty acids (PUFAs). Essential fatty acids, namely, ω-6 (n - 6) and ω-3 (n - 3) PUFA, and their metabolites are critical components of cell structure and function and could therefore influence stem cell fate. The available supporting experimental data reveal that n - 6 and n - 3 PUFA and their metabolites can act through multiple mechanisms to promote the proliferation and differentiation of various stem cell types. PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signaling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Therefore, elucidating the role of PUFAs and their metabolites in stem cell fate regulation is important for stem cell biology as well as stem cell therapy. PUFA-based interventions to generate a positive environment for stem cell proliferation or differentiation might be a promising and practical approach to controlling stem cell fate for clinical applications.
Collapse
Affiliation(s)
- Mohammad Abdur Rashid
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA.
| | - Mahmuda Haque
- Department of Pharmacy, Southeast University, Dhaka, 1213, Bangladesh
| | - Mohammed Akbar
- Laboratory of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| |
Collapse
|
34
|
Synthesis and Molecular Structures of (E)-non-2-enoic Acid and (E)-dec-2-enoic Acid. CRYSTALS 2015. [DOI: 10.3390/cryst5040466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Li S, Li B, Cheng C, Xiong Z, Liu Q, Lai J, Carey HV, Zhang Q, Zheng H, Wei S, Zhang H, Chang L, Liu S, Zhang S, Yu B, Zeng X, Hou Y, Nie W, Guo Y, Chen T, Han J, Wang J, Wang J, Chen C, Liu J, Stambrook PJ, Xu M, Zhang G, Gilbert MTP, Yang H, Jarvis ED, Yu J, Yan J. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol 2015; 15:557. [PMID: 25496777 PMCID: PMC4290368 DOI: 10.1186/s13059-014-0557-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 01/19/2023] Open
Abstract
Background Nearly one-quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North-East Asia, by 1981 only seven individuals from two breeding pairs remained in the wild. The recovering crested ibis populations thus provide an excellent example for conservation genomics since every individual bird has been recruited for genomic and demographic studies. Results Using high-quality genome sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify that genetic inbreeding and loss-of-function genes in the crested ibis may all constitute genetic susceptibility to other factors including long-term climate change, over-hunting, and agrochemical overuse. We also establish a genome-wide DNA identification platform for molecular breeding and conservation practices, to facilitate sustainable recovery of endangered species. Conclusions These findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0557-1) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Yamazaki I, Kimura F, Nakagawa K, Nakai K, Arima T, Kawabata T, Kagawa Y, Saitoh S, Mizuno S, Yaegashi N, Miyazawa T. Heterogeneity of the Fatty Acid Composition of Japanese Placentae for Determining the Perinatal Fatty Acid Status: a Methodological Study. J Oleo Sci 2015; 64:905-14. [PMID: 26179007 DOI: 10.5650/jos.ess15071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of the placenta can be a useful way to determine the fatty acid (FA) status of pregnant women and neonates since this large organ can be obtained easily and non-invasively. Although several studies have been conducted on using placental tissue for FA analysis, the sampling methods have not been thoroughly examined. The aim of the present study was to determine a suitable method of sampling human placentae by focusing on their heterogeneity. Twenty-four placentae were collected from healthy pregnant Japanese women in the Miyagi Prefecture of Japan. Five of them were used to compare the FA composition between the peripheral area and the central area of the placentae. The other 19 were examined to determine differences in the FA composition between the fetal and maternal side. Placental tissue crude lipid was saponified, and methyl was esterified with 14% sodium boron trifluoride methanol for gas chromatography with flame ionization detector analysis. Fifty-six peaks were detected from the methyl esters of the placental total lipid, and 33 of those were identified as FA methyl esters. There were considerable variations in the FA composition, as the variation was low in the central parts and high in the peripheral parts of the placentae. The 18:1n-9 and 18:2n-6 levels were higher in the fetal side, whereas the 20:3n-6, 20:4n-6, and 22:6n-3 levels were higher in the maternal side. These findings indicate the presence of heterogeneity in the FA composition of human placenta, and they suggest the necessity for standardizing the sampling method so that the placental tissue can be used to determine the FA status.
Collapse
Affiliation(s)
- Isao Yamazaki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Sciences, Tohoku University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bharadwaj S, Gohel T, Deen OJ, DeChicco R, Shatnawei A. Fish oil-based lipid emulsion: current updates on a promising novel therapy for the management of parenteral nutrition-associated liver disease. Gastroenterol Rep (Oxf) 2015; 3:110-4. [PMID: 25858884 PMCID: PMC4423466 DOI: 10.1093/gastro/gov011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/09/2015] [Indexed: 01/16/2023] Open
Abstract
Intestinal failure is characterized by loss of enteral function to absorb necessary nutrients and water to sustain life. Parenteral nutrition (PN) is a lifesaving therapeutic modality for patients with intestinal failure. Lifelong PN is also needed for patients who have short bowel syndrome due to extensive resection or a dysmotility disorder with malabsorption. However, prolonged PN is associated with short-term and long-term complications. Parenteral nutrition-associated liver disease (PNALD) is one of the long-term complications associated with the use of an intravenous lipid emulsion to prevent essential fatty acid deficiency in these patients. PNALD affects 30-60% of the adult population on long-term PN. Further, PNALD is one of the indications for isolated liver or combined liver and intestinal transplantation. There is no consensus on how to manage PNALD, but fish oil-based lipid emulsion (FOBLE) has been suggested to play an important role both in its prevention and reversal. There is significant improvement in liver function in those who received FOBLE as lipid supplement compared with those who received soy-based lipid emulsion. Studies have also demonstrated that FOBLE reverses hepatic steatosis and reduces markers of inflammation in patients on long-term PN. Future prospective studies with larger sample sizes are needed to further strengthen the positive role of FOBLE in PNALD.
Collapse
Affiliation(s)
- Shishira Bharadwaj
- Center for Human Nutrition, Department of Gastroenterology/Hepatology, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tushar Gohel
- Center for Human Nutrition, Department of Gastroenterology/Hepatology, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Omer J Deen
- Center for Human Nutrition, Department of Gastroenterology/Hepatology, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Robert DeChicco
- Center for Human Nutrition, Department of Gastroenterology/Hepatology, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Abdullah Shatnawei
- Center for Human Nutrition, Department of Gastroenterology/Hepatology, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
38
|
Guo Y, Cui JY, Lu H, Klaassen CD. Effect of various diets on the expression of phase-I drug-metabolizing enzymes in livers of mice. Xenobiotica 2015; 45:586-97. [PMID: 25733028 DOI: 10.3109/00498254.2015.1006300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Previous studies have shown that diets can alter the metabolism of drugs; however, it is difficult to compare the effects of multiple diets on drug metabolism among different experimental settings. Phase-I-related genes play a major role in the biotransformation of pro-drugs and drugs. 2. In the current study, effects of nine diets on the mRNA expression of phase-I drug metabolizing enzymes in livers of mice were simultaneously investigated. Compared to the AIN-93M purified diet (control), 73 of the 132 critical phase-I drug-metabolizing genes were differentially regulated by at least one diet. Diet restriction produced the largest number of changed genes (51), followed by the atherogenic diet (27), high-fat diet (25), standard rodent chow (21), western diet (20), high-fructose diet (5), EFA deficient diet (3) and low n-3 FA diet (1). The mRNAs of the Fmo family changed most, followed by Cyp2b and 4a subfamilies, as well as Por (from 1121- to 21-fold increase of theses mRNAs). There were 59 genes not altered by any of these diets. 3. The present results may improve the interpretation of studies with mice and aid in determining effective and safe doses for individuals with different nutritional diets.
Collapse
Affiliation(s)
- Ying Guo
- Department of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University , Changsha, Hunan , People's Republic of China
| | | | | | | |
Collapse
|
39
|
Jurczyszyn A, Czepiel J, Gdula-Argasińska J, Paśko P, Czapkiewicz A, Librowski T, Perucki W, Butrym A, Castillo JJ, Skotnicki AB. Plasma fatty acid profile in multiple myeloma patients. Leuk Res 2014; 39:400-5. [PMID: 25666255 DOI: 10.1016/j.leukres.2014.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/01/2014] [Accepted: 12/16/2014] [Indexed: 11/30/2022]
Abstract
New membrane formation in the proliferating tumor cells consequently results in hypermetabolism of fatty acids (FA), as seen in many cancer patients, including multiple myeloma (MM). The FA composition of plasma reflects both endogenous synthesis as well as the dietary supply of these compounds. Additionally, obesity is a risk factor for the development of MM. The aim of this study was to compare the FA composition of plasma in 60 MM patients and 60 healthy controls. We noted significant differences in the FA profile of plasma from patients with MM when compared to the control group. Increased levels of saturated and n-6 polyunsaturated fatty acids in MM patients suggest that there may be increased endogenous synthesis of these fatty acids, likely due to increased expression of desaturase and elongase. Furthermore, cluster analysis showed differences in the distribution of FA in plasma from MM patients compared to controls. Dietary fat and a deranged endogenous FA metabolism may contribute to cancer-associated inflammation through an abnormal arachidonic acid metabolism, caused by pro-inflammatory derivatives. Our study supports further research on the biochemistry of lipids in patients with MM.
Collapse
Affiliation(s)
| | - Jacek Czepiel
- Department of Infectious Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Czapkiewicz
- Faculty of Management, AGH University of Science and Technology, Krakow, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - William Perucki
- Department of Medicine, John Dempsey Hospital, University of Connecticut, Farmington, CT, USA
| | - Aleksandra Butrym
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University, Wroclaw, Poland; Department of Physiology, Medical University, Wroclaw, Poland
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
40
|
Kang JX, Wan JB, He C. Concise review: Regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells 2014; 32:1092-8. [PMID: 24356924 DOI: 10.1002/stem.1620] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 12/17/2022]
Abstract
Stem cell therapy holds great promise for regenerative medicine and the treatment of numerous diseases. A key issue of stem cell therapy is the control of stem cell fate, but safe and practical methods are limited. Essential fatty acids, namely ω-6 (n-6) and ω-3 (n-3) polyunsaturated fatty acids (PUFA), and their metabolites are critical components of cell structure and function, and could therefore influence stem cell fate. The available evidence demonstrates that n-6 and n-3 PUFA and their metabolites can act through multiple mechanisms to promote the proliferation and differentiation of various stem cell types. Therefore, elucidating the role of PUFA and their metabolites in stem cell fate regulation is both a challenge and an opportunity for stem cell biology as well as stem cell therapy. PUFA-based interventions to create a favorable environment for stem cell proliferation or differentiation may thus be a promising and practical approach to controlling stem cell fate for clinical applications.
Collapse
Affiliation(s)
- Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
41
|
Jurczyszyn A, Czepiel J, Gdula-Argasińska J, Czapkiewicz A, Biesiada G, Dróżdż M, Perucki W, Castillo JJ. Erythrocyte membrane fatty acids in multiple myeloma patients. Leuk Res 2014; 38:1260-5. [PMID: 25192858 DOI: 10.1016/j.leukres.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/09/2014] [Accepted: 08/16/2014] [Indexed: 01/01/2023]
Abstract
Mounting data show that fatty acids (FA) and fatty acid synthase (FAS) function could be potential targets for multiple myeloma (MM) therapy. Our study aimed at comparing the FA composition of erythrocyte membranes of MM patients and healthy controls. MM patients had higher saturated FA and n-6 polyunsaturated FA (PUFA) and lower monounsaturated, n-3 PUFA and trans-FA indices than controls. The n-3/n-6 PUFA ratio was lower in MM patients and there was distinct clustering of variants of individual FA in MM patients. The FA content of erythrocyte membrane could serve as a diagnostic and/or predictive biomarker in MM.
Collapse
Affiliation(s)
| | - Jacek Czepiel
- Department of Infectious Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Czapkiewicz
- Faculty of Management, AGH University of Science and Technology, Krakow, Poland
| | - Grażyna Biesiada
- Department of Infectious Diseases, Jagiellonian University Medical College, Krakow, Poland
| | | | - William Perucki
- Students' Scientific Society, Jagiellonian University Medical College, Krakow, Poland
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
42
|
Abstract
Fatty acids play important functional and protective roles in living systems. This paper reports on the synthesis of a previously unidentified 19 carbon furan-containing fatty acid, 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid) (19Fu-FA), in phospholipids from Rhodobacter sphaeroides. We show that 19Fu-FA accumulation is increased in cells containing mutations that increase the transcriptional response of this bacterium to singlet oxygen ((1)O2), a reactive oxygen species generated by energy transfer from one or more light-excited donors to molecular oxygen. We identify a previously undescribed class of S-adenosylmethionine-dependent methylases that convert a phospholipid 18 carbon cis unsaturated fatty acyl chain to a 19 carbon methylated trans unsaturated fatty acyl chain (19M-UFA). We also identify genes required for the O2-dependent conversion of this 19M-UFA to 19Fu-FA. Finally, we show that the presence of (1)O2 leads to turnover of 19Fu-Fa in vivo. We propose that furan-containing fatty acids like 19Fu-FA can act as a membrane-bound scavenger of (1)O2, which is naturally produced by integral membrane enzymes of the R. sphaeroides photosynthetic apparatus.
Collapse
|
43
|
Yamashita K, Higa M, Kunishita R, Kanazawa K, Tasaki M, Doi A, Yoshifuji A, Ichijo T, Ouchi H, Hirose T. Dihomo-gamma-linolenic acid levels and obesity in patients with type 2 diabetes. Diabetol Int 2014. [DOI: 10.1007/s13340-014-0187-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Voisin S, Almén MS, Moschonis G, Chrousos GP, Manios Y, Schiöth HB. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur J Hum Genet 2014; 23:654-62. [PMID: 25074463 PMCID: PMC4402618 DOI: 10.1038/ejhg.2014.139] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 12/04/2022] Open
Abstract
The type and the amount of dietary fat have a significant influence on the metabolic pathways involved in the development of obesity, metabolic syndrome, diabetes type 2 and cardiovascular diseases. However, it is unknown to what extent this modulation is achieved through DNA methylation. We assessed the effects of cholesterol intake, the proportion of energy intake derived from fat, the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA), the ratio of monounsaturated fatty acids (MUFA) to SFA, and the ratio of MUFA+PUFA to SFA on genome-wide DNA methylation patterns in normal-weight and obese children. We determined the genome-wide methylation profile in the blood of 69 Greek preadolescents (∼10 years old) as well as their dietary intake for two consecutive weekdays and one weekend day. The methylation levels of one CpG island shore and four sites were significantly correlated with total fat intake. The methylation levels of 2 islands, 11 island shores and 16 sites were significantly correlated with PUFA/SFA; of 9 islands, 26 island shores and 158 sites with MUFA/SFA; and of 10 islands, 40 island shores and 130 sites with (MUFA+PUFA)/SFA. We found significant gene enrichment in 34 pathways for PUFA/SFA, including the leptin pathway, and a significant enrichment in 5 pathways for (MUFA+PUFA)/SFA. Our results suggest that specific changes in DNA methylation may have an important role in the mechanisms involved in the physiological responses to different types of dietary fat.
Collapse
Affiliation(s)
- Sarah Voisin
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Markus S Almén
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - George Moschonis
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - George P Chrousos
- First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Choudhary M, Grover K, Javed M. Nutritional Profiles of Urban and Rural Men of Punjab with Regard to Dietary Fat Intake. Ecol Food Nutr 2014; 53:436-52. [DOI: 10.1080/03670244.2013.850428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Jiang M, Guo B, Wan X, Gong Y, Zhang Y, Hu C. Isolation and characterization of the diatom Phaeodactylum Δ5-elongase gene for transgenic LC-PUFA production in Pichia pastoris. Mar Drugs 2014; 12:1317-34. [PMID: 24608969 PMCID: PMC3967212 DOI: 10.3390/md12031317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
The diatom Phaeodactylum tricornutum can accumulate eicosapentaenoic acid (EPA) up to 30% of the total fatty acids. This species has been targeted for isolating gene encoding desaturases and elongases for long-chain polyunsaturated fatty acid (LC-PUFA) metabolic engineering. Here we first report the cloning and characterization of Δ5-elongase gene in P. tricornutum. A full-length cDNA sequence, designated PhtELO5, was shown to contain a 1110 bp open reading frame encoding a 369 amino acid polypeptide. The putative protein contains seven transmembrane regions and two elongase characteristic motifs of FLHXYHH and MYSYY, the latter being typical for microalgal Δ5-elongases. Phylogenetic analysis indicated that PhtELO5 belongs to the ELO5 group, tightly clustered with the counterpart of Thalassiosira pseudonana. Heterologous expression of PhtELO5 in Pichia pastoris confirmed that it encodes a specific Δ5-elongase capable of elongating arachidonic acid and eicosapentaenoic acid. Co-expression of PhtELO5 and IsFAD4 (a ∆4-desaturase from Isochrysis sphaerica) demonstrated that the high-efficiency biosynthetic pathway of docosahexaenoic acid was assembled in the transgenic yeast. Substrate competition revealed that PhtELO5 exhibited higher activity towards n-3 PUFA than n-6 PUFA. It is hypothesized that Phaeodactylum ELO5 may preferentially participate in biosynthesis of transgenic LC-PUFA via a n-3 pathway in the yeast host.
Collapse
Affiliation(s)
- Mulan Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Bing Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yinbo Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Chuanjiong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
47
|
Delmastro-Greenwood M, Freeman BA, Wendell SG. Redox-dependent anti-inflammatory signaling actions of unsaturated fatty acids. Annu Rev Physiol 2013; 76:79-105. [PMID: 24161076 DOI: 10.1146/annurev-physiol-021113-170341] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unsaturated fatty acids are metabolized to reactive products that can act as pro- or anti-inflammatory signaling mediators. Electrophilic fatty acid species, including nitro- and oxo-containing fatty acids, display salutary anti-inflammatory and metabolic actions. Electrophilicity can be conferred by both enzymatic and oxidative reactions, via the homolytic addition of nitrogen dioxide to a double bond or via the formation of α,β-unsaturated carbonyl and epoxide substituents. The endogenous formation of electrophilic fatty acids is significant and influenced by diet, metabolic, and inflammatory reactions. Transcriptional regulatory proteins and enzymes can sense the redox status of the surrounding environment upon electrophilic fatty acid adduction of functionally significant, nucleophilic cysteines. Through this covalent and often reversible posttranslational modification, gene expression and metabolic responses are induced. At low concentrations, the pleiotropic signaling actions that are regulated by these protein targets suggest that some classes of electrophilic lipids may be useful for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Meghan Delmastro-Greenwood
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; , ,
| | | | | |
Collapse
|
48
|
Hussain G, Schmitt F, Loeffler JP, Gonzalez de Aguilar JL. Fatting the brain: a brief of recent research. Front Cell Neurosci 2013; 7:144. [PMID: 24058332 PMCID: PMC3766822 DOI: 10.3389/fncel.2013.00144] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023] Open
Abstract
Fatty acids are of paramount importance to all cells, since they provide energy, function as signaling molecules, and sustain structural integrity of cellular membranes. In the nervous system, where fatty acids are found in huge amounts, they participate in its development and maintenance throughout life. Growing evidence strongly indicates that fatty acids in their own right are also implicated in pathological conditions, including neurodegenerative diseases, mental disorders, stroke, and trauma. In this review, we focus on recent studies that demonstrate the relationships between fatty acids and function and dysfunction of the nervous system. Fatty acids stimulate gene expression and neuronal activity, boost synaptogenesis and neurogenesis, and prevent neuroinflammation and apoptosis. By doing so, they promote brain development, ameliorate cognitive functions, serve as anti-depressants and anti-convulsants, bestow protection against traumatic insults, and enhance repairing processes. On the other hand, unbalance between different fatty acid families or excess of some of them generate deleterious side effects, which limit the translatability of successful results in experimental settings into effective therapeutic strategies for humans. Despite these constraints, there exists realistic evidence to consider that nutritional therapies based on fatty acids can be of benefit to several currently incurable nervous system diseases.
Collapse
Affiliation(s)
- Ghulam Hussain
- UMR_S 1118, Université de Strasbourg Strasbourg, France ; Mécanismes Centraux et Périphériques de la Neurodégénérescence, U1118, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine, Université de Strasbourg Strasbourg, France
| | | | | | | |
Collapse
|
49
|
Inoue K, Kishida K, Hirata A, Funahashi T, Shimomura I. Low serum eicosapentaenoic acid / arachidonic acid ratio in male subjects with visceral obesity. Nutr Metab (Lond) 2013; 10:25. [PMID: 23497138 PMCID: PMC3606329 DOI: 10.1186/1743-7075-10-25] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/09/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Visceral fat accumulation is caused by over-nutrition and physical inactivity. Excess accumulation of visceral fat associates with atherosclerosis. Polyunsaturated fatty acids have an important role in human nutrition, but imbalance of dietary long-chain polyunsaturated fatty acids, especially low eicosapentaenoic acid (EPA) / arachidonic acid (AA) ratio, is associated with increased risk of cardiovascular disease. The present study investigated the correlation between EPA, docosahexaenoic acid (DHA), AA parameters and clinical features in male subjects. FINDINGS The study subjects were 134 Japanese with diabetes, hypertension and/or dyslipidemia who underwent measurement of visceral fat area (eVFA) by the bioelectrical impedance method and serum levels of EPA, DHA and AA. EPA/AA ratio correlated positively with age, and negatively with waist circumference and eVFA. Stepwise regression analysis demonstrated that age and eVFA correlated significantly and independently with serum EPA/AA ratio. Serum EPA/AA ratio, but not serum DHA/AA and (EPA+DHA)/AA ratios, was significantly lower in subjects with eVFA ≥100 cm2, compared to those with eVFA <100 cm2 (p=0.049). Subjects with eVFA ≥100 cm2 were significantly more likely to have the metabolic syndrome and history of cardiovascular diseases, compared to those with eVFA <100 cm2 (p<0.001, p=0.028, respectively). CONCLUSIONS Imbalance of dietary long-chain polyunsaturated fatty acids (low serum EPA/AA ratio) correlated with visceral fat accumulation in male subjects. CLINICAL TRIAL REGISTRATION NUMBER UMIN000002271.
Collapse
Affiliation(s)
- Kana Inoue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Kishida
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Kishida Clinic, 5-6-3, Honmachi, Toyonaka, Osaka 560-0021, Japan
| | - Ayumu Hirata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tohru Funahashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Kastner DW, Van Wagoner DR. Diet and atrial fibrillation: does α-linolenic acid, a plant derived essential fatty acid, have an impact? J Am Heart Assoc 2013; 2:e000030. [PMID: 23525415 PMCID: PMC3603232 DOI: 10.1161/jaha.112.000030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - David R. Van Wagoner
- Cleveland Clinic, Cleveland, OH (D.W.K., D.R.W.)
- Correspondence to: David R. Van Wagoner, PhD, FAHA, FHRS, Cleveland Clinic, 9500 Euclid Avenue, M/S NE‐61, Cleveland, OH 44195. E‐mail:
| |
Collapse
|