1
|
Teng X, Wu B, Liang Z, Zhang L, Yang M, Liu Z, Liang Q, Wang C. Three bioactive compounds from Huangqin decoction ameliorate Irinotecan-induced diarrhea via dual-targeting of Escherichia coli and bacterial β-glucuronidase. Cell Biol Toxicol 2024; 40:88. [PMID: 39422738 PMCID: PMC11489186 DOI: 10.1007/s10565-024-09922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Irinotecan (CPT-11) is a commonly prescribed chemotherapeutic for the treatment of colon cancer. Unfortunately, acute and delayed diarrhea are prominent side effects of CPT-11 use, and this limits its therapeutic potential. The curative effect of Huangqin decoction (HQD) on chemotherapy-induced diarrhea has been proven. This study investigated the efficacy of the components of HQD (baicalein, baicalin, and paeoniflorin) on CPT-11-induced diarrhea and their underlying mechanisms. Baicalein was found to be the most effective component in improving CPT-11-induced enterotoxicity by intestinal permeability test, ELISA, fluorescence co-localization, and IHC. The combination of baicalin, baicalin and paeoniflorin can obtain similar therapeutic effect to that of HQD. Mendelian randomization analysis, 16 s rRNA sequencing, and fluorescence imaging revealed that baicalein and baicalin significantly inhibited β-glucuronidase (β-GUS) activity. Bacterial abundance analysis and scanning electron microscopy showed that baicalein inhibited the proliferation of Escherichia coli by destroying its cell wall. The molecular dynamics and site-directed mutagenesis results revealed the structural basis for the inhibition of β-GUS by baicalein and baicalin. The results above provide a new idea for the development of drug therapy for adjuvant chemotherapy and theoretical guidance for the optimization of molecular structure targeting β-GUS.
Collapse
Affiliation(s)
- Xiaojun Teng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingxin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lisheng Zhang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Maolin Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Acupuncture Building, Guangdong Province, Guangzhou University of Chinese Medicine, Xiaoguwei Street, Panyu District, Guangzhou City, 510006, China.
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 51800, People's Republic of China.
- Acupuncture Building, Guangdong Province, Guangzhou University of Chinese Medicine, Xiaoguwei Street, Panyu District, Guangzhou City, 510006, China.
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Acupuncture Building, Guangdong Province, Guangzhou University of Chinese Medicine, Xiaoguwei Street, Panyu District, Guangzhou City, 510006, China.
| |
Collapse
|
2
|
Khorashadizadeh S, Abbasifar S, Yousefi M, Fayedeh F, Moodi Ghalibaf A. The Role of Microbiome and Probiotics in Chemo-Radiotherapy-Induced Diarrhea: A Narrative Review of the Current Evidence. Cancer Rep (Hoboken) 2024; 7:e70029. [PMID: 39410854 PMCID: PMC11480522 DOI: 10.1002/cnr2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND In this article, we review the most recent research on probiotics effects on diarrhea in both human and animal models of the condition along with the therapeutic potential of these compounds based on their findings. RECENT FINDINGS Nearly 50%-80% of cancer patients experience chemotherapy-induced diarrhea (CID), serious gastrointestinal toxicity of chemotherapeutic and radiation regimens that leads to prolonged hospitalizations, cardiovascular problems, electrolyte imbalances, disruptions in cancer treatment, poor cancer prognosis, and death. CID is typically categorized as osmotic diarrhea. The depletion of colonic crypts and villi by radiotherapy and chemotherapy agents interferes with the absorptive function of the intestine, thereby decreasing the absorption of chloride and releasing water into the intestinal lumen. Probiotic supplements have been found to be able to reverse the intestinal damage caused by chemo-radiation therapy by promoting the growth of crypt and villi and reducing inflammatory pathways. In addition, they support the modulation of immunological and angiogenesis responses in the gut as well as the metabolism of certain digestive enzymes by altering the gut microbiota. CONCLUSION Beyond the benefits of probiotics, additional clinical research is required to clarify the most effective strain combinations and dosages for preventing chemotherapy and radiotherapy diarrhea.
Collapse
Affiliation(s)
| | - Sara Abbasifar
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Mohammad Yousefi
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Farzad Fayedeh
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | | |
Collapse
|
3
|
Awais M, Zubair HM, Nadeem H, Hill JW, Ali J, Saleem A, Asghar R, Khan S, Maqbool T, Akhtar MF, Naveed M, Asif M. Benzimidazole Derivative (N-{4-[2-(4-Methoxyphenyl)-1H-Benzimidazole-1-Sulfonyl] Phenyl} Acetamide) Ameliorates Methotrexate-Induced Intestinal Mucositis by Suppressing Oxidative Stress and Inflammatory Markers in Mice. Inflammation 2024; 47:1185-1203. [PMID: 38289578 DOI: 10.1007/s10753-024-01969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 08/24/2024]
Abstract
Methotrexate (MTX)-induced intestinal mucositis (IM) is a common side effect in cancer treatment that impairs the immune system and gut microbes, resulting in loss of mucosal integrity and gut barrier dysfunction. The quality of life and outcomes of treatment are compromised by IM. The present study was designed to investigate the mucoprotective potential of the benzimidazole derivative N-{4-[2-(4-methoxyphenyl)-1H-benzimidazole-1-sulfonyl] phenyl} acetamide (B8) on MTX-induced IM in mice. IM was induced by a single dose of MTX in mice and assessed by physical manifestations as well as biochemical, oxidative, histological, and inflammatory parameters. B8 (1, 3, 9 mg/kg) significantly reduced diarrhea score, mitigated weight loss, increased feed intake and, survival rate in a dose-dependent manner. Notably, B8 exhibited a mucoprotective effect evident through the mitigation of villus atrophy, crypt hypoplasia, diminished crypt mitotic figures, mucin depletion, and oxidative stress markers (GSH, SOD, MDA, and catalase concentration). Gene expression analysis revealed that B8 downregulated the mRNA expression of tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1β, and nuclear factor-κB (NF-κB) and concurrently upregulated IL-10 expression in contrast to the MTX group. Further, B8 significantly improved the luminal microflora profile by augmenting the growth of Lactobacillus spp. and reducing the number of pathogenic bacteria (E. coli). Additionally, the enzyme-linked immunoassay showed that B8 decreased the levels of pro-inflammatory cytokines. Our findings suggest that B8 had mucoprotective effects against MTX-induced IM and could be used as an adjunct in chemotherapy to deter this side effect.
Collapse
Affiliation(s)
- Muhammad Awais
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Hafiz Muhammad Zubair
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.
- Post-Graduate Medical College, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Jawad Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rabia Asghar
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Samiullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
4
|
Xu S, Lan H, Huang C, Ge X, Zhu J. Mechanisms and emerging strategies for irinotecan-induced diarrhea. Eur J Pharmacol 2024; 974:176614. [PMID: 38677535 DOI: 10.1016/j.ejphar.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Irinotecan (also known as CPT-11) is a topoisomerase I inhibitor first approved for clinical use as an anticancer agent in 1996. Over the past more than two decades, it has been widely used for combination regimens to treat various malignancies, especially in gastrointestinal and lung cancers. However, severe dose-limiting toxicities, especially gastrointestinal toxicity such as late-onset diarrhea, were frequently observed in irinotecan-based therapy, thus largely limiting the clinical application of this agent. Current knowledge regarding the pathogenesis of irinotecan-induced diarrhea is characterized by the complicated metabolism of irinotecan to its active metabolite SN-38 and inactive metabolite SN-38G. A series of enzymes and transporters were involved in these metabolic processes, including UGT1A1 and CYP3A4. Genetic polymorphisms of these metabolizing enzymes were significantly associated with the occurrence of irinotecan-induced diarrhea. Recent discoveries and progress made on the detailed mechanisms enable the identification of potential biomarkers for predicting diarrhea and as such guiding the proper patient selection with a better range of tolerant dosages. In this review, we introduce the metabolic process of irinotecan and describe the pathogenic mechanisms underlying irinotecan-induced diarrhea. Based on the mechanisms, we further outline the potential biomarkers for predicting the severity of diarrhea. Finally, based on the current experimental evidence in preclinical and clinical studies, we discuss and prospect the current and emerging strategies for the prevention of irinotecan-induced diarrhea.
Collapse
Affiliation(s)
- Shengkun Xu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Chengyi Huang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
5
|
Zhao L, Teng M, Shi D, Sun J, Li Y, Zhang Z, Zhu W, Wu F. Adverse impacts of environmentally relevant PFOS alternatives on mice pancreatic tissues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168649. [PMID: 37977398 DOI: 10.1016/j.scitotenv.2023.168649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Perfluorooctane sulfonate (PFOS) alternatives are chemicals that are used to make a range of products. Researchers have found that PFOS alternatives are probably no less toxic than PFOS, which has aroused concern. It has also revealed that the pancreas may be harmed by exposure to PFOS alternatives. However, there is insufficient evidence to demonstrate the toxicity mechanisms of PFOS alternatives. This study demonstrates the adverse effects of three PFOS alternatives on the pancreatic health of mice. After subchronic exposure to PFOS alternatives at environmentally relevant concentrations (800 μg/L perfluorohexanesulfonate, 800 μg/L perfluorobutanesulfonate, and 3 μg/L sodium ρ-perfluorous nonenoxybenzene sulfonate) via drinking water for 6 weeks, toxicity mechanisms were elucidated by examining histopathology, immunity, endoplasmic reticulum stress, 16S rRNA, and short-chain fatty acid targeted metabolomics. Sodium ρ-perfluorous nonenoxybenzene sulfonate significantly increased levels of TNF-α, IL-6, p-PERK, and ATF-4 and decreased the abundance of Akkermansia muciniphila and Lactobacillus reuteri. In addition, the three PFOS alternatives changed the composition of the gut microbiota in mice. Short-chain fatty acids, which are metabolites of the gut microbiota, also significantly decreased. Correlation analysis demonstrates that the alteration of gut microbes is related to the adverse effects on the mice pancreas. Results suggest that the murine pancreas may be toxic endpoints of PFOS alternatives. This study alerts the threats to human health and accelerates the toxicology research of an increasing number of emerging PFOS alternatives.
Collapse
Affiliation(s)
- Lihui Zhao
- College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Di Shi
- Research & Development Affairs Office, Tsinghua University, 100084, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunxia Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zixuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fengchang Wu
- College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Mego M, Danis R, Chovanec J, Jurisova S, Bystricky B, Porsok S, Konkolovsky P, Vaclav V, Wagnerova M, Streško M, Brezinova B, Rečková M, Sutekova D, Pazderova N, Novisedlakova M, Zomborska E, Ciernikova S, Svetlovska D, Drgona L. Randomized double-blind, placebo-controlled multicenter phase III study of prevention of irinotecan-induced diarrhea by a probiotic mixture containing Bifidobacterium BB-12 ®Lactobacillus rhamnosus LGG ® in colorectal cancer patients. Front Oncol 2023; 13:1168654. [PMID: 37601667 PMCID: PMC10438450 DOI: 10.3389/fonc.2023.1168654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Background The incidence of irinotecan-induced diarrhea varies between 60-90%, by which the incidence of severe diarrhea is 20-40%. The objective of this phase III trial was to determine the effectiveness of the probiotic mixture containing Bifidobacterium, BB-12® and Lactobacillus rhamnosus, LGG® in the prophylaxis of irinotecan-induced diarrhea in metastatic colorectal cancer patients due to a reduction in the activity of intestinal beta-D-glucuronidase. Methods From March 2016 to May 2022, a total of 242 patients with colorectal cancer starting a new line of irinotecan-based therapy were registered to the study in 11 cancer centers in Slovakia. Patients were randomized in a ratio 1:1 to probiotic formula vs. placebo that was administered for 6 weeks. Each capsule of Probio-Tec® BG-Vcap-6.5 contained 2.7x109 colony-forming units (CFU) of 2 lyophilized probiotic strains Bifidobacterium, BB-12® (50%) and Lactobacillus rhamnosus GG, LGG® (50%). Results Administration of probiotics compared to placebo was not associated with a significant reduction of grade 3/4 diarrhea (placebo arm 11.8% vs. probiotic arm 7.9%, p=0.38). Neither the overall incidence of diarrhea (46.2% vs. 41.2%, p=0.51) nor the incidence of enterocolitis (3.4% vs. 0.9%, p=0.37) was different in the placebo vs. probiotic arm. Subgroup analysis revealed that patients with colostomy had higher incidence of any diarrhea and grade 3/4 diarrhea in the placebo arm compared to the probiotic arm (48.5% vs. 22.2%, p=0.06 and 15.2% vs. 0%, p=0.06, respectively). Moreover, patients on probiotic arm had significantly better diarrhea-free survival (HR = 0.41, 95%CI 0.18 - 0.95, p=0.05) and needed less loperamide (p=0.01) compared to patients on placebo arm. We did not observe any infection caused by probiotic strains used in this study. Conclusion This study failed to achieve its primary endpoint, and results suggest a lack of benefit of administered probiotic formula for the prevention of irinotecan-induced diarrhea. However, subgroup analysis suggests a possible benefit in patients with colostomy.
Collapse
Affiliation(s)
- Michal Mego
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Radoslav Danis
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jozef Chovanec
- Department of Oncology, St. Jacob Hospital, Bardejov, Slovakia
| | - Silvia Jurisova
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | | | - Stefan Porsok
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | | | - Vladimir Vaclav
- Department of Oncology, University Hospital Milosrdni Bratia, Bratislava, Slovakia
| | - Maria Wagnerova
- Department of Oncology, East Slovakia Comprehensive Cancer Center, Kosice, Slovakia
| | - Marian Streško
- Department of Oncology, Faculty Hospital, Trnava, Trebisov, Slovakia
| | | | - Mária Rečková
- Department of Oncology, Regional Cancer Center, Poprad, Slovakia
| | - Dagmar Sutekova
- Department of Oncology, University Hospital Martin, Martin, Slovakia
| | - Natalia Pazderova
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Mária Novisedlakova
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
- Department of Oncology, University Hospital Milosrdni Bratia, Bratislava, Slovakia
| | - Eva Zomborska
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Sona Ciernikova
- Biomedical Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Svetlovska
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Lubos Drgona
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
7
|
Kamath S, Stringer AM, Prestidge CA, Joyce P. Targeting the gut microbiome to control drug pharmacomicrobiomics: the next frontier in oral drug delivery. Expert Opin Drug Deliv 2023; 20:1315-1331. [PMID: 37405390 DOI: 10.1080/17425247.2023.2233900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION The trillions of microorganisms that comprise the gut microbiome form dynamic bidirectional interactions with orally administered drugs and host health. These relationships can alter all aspects of drug pharmacokinetics and pharmacodynamics (PK/PD); thus, there is a desire to control these interactions to maximize therapeutic efficacy. Attempts to modulate drug-gut microbiome interactions have spurred advancements within the field of 'pharmacomicrobiomics' and are poised to become the next frontier of oral drug delivery. AREAS COVERED This review details the bidirectional interactions that exist between oral drugs and the gut microbiome, with clinically relevant case examples outlining a clear motive for controlling pharmacomicrobiomic interactions. Specific focus is attributed to novel and advanced strategies that have demonstrated success in mediating drug-gut microbiome interactions. EXPERT OPINION Co-administration of gut-active supplements (e.g. pro- and pre-biotics), innovative drug delivery vehicles, and strategic polypharmacy serve as the most promising and clinically viable approaches for controlling pharmacomicrobiomic interactions. Targeting the gut microbiome through these strategies presents new opportunities for improving therapeutic efficacy by precisely mediating PK/PD, while mitigating metabolic disturbances caused by drug-induced gut dysbiosis. However, successfully translating preclinical potential into clinical outcomes relies on overcoming key challenges related to interindividual variability in microbiome composition and study design parameters.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Andrea M Stringer
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Clive A Prestidge
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Ren H, Wu Q, Sun Z, Fang M, Liu J, Luo J. Research progress and treatment of radiation enteritis and gut microbiota. Radiat Oncol J 2023; 41:61-68. [PMID: 37403348 DOI: 10.3857/roj.2023.00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Radiation enteritis is a kind of intestinal radiation injury in patients with pelvic and retroperitoneal malignancies after radiotherapy, and its occurrence and development process are very complicated. At present, studies have confirmed that intestinal microecological imbalance is an important factor in the formation of this disease. Abdominal radiation causes changes in the composition of the flora and a decrease in its diversity, which is mainly manifested by a decrease in beneficial bacterial species such as Lactobacilli and Bifidobacteria. Intestinal dysbacteriosis aggravates radiation enteritis, weakens the function of the intestinal epithelial barrier, and promotes the expression of inflammatory factors, thereby aggravating the occurrence of enteritis. Given the role of the microbiome in radiation enteritis, we suggest that the gut microbiota may be a potential biomarker for the disease. Treatment methods such as probiotics, antibiotics, and fecal microbiota transplantation are ways to correct the microbiota and may be an effective way to prevent and treat radiation enteritis. Based on a review of the relevant literature, this paper reviews the mechanism and treatment of intestinal microbes in radiation enteritis.
Collapse
Affiliation(s)
- Huiwen Ren
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Radiotherapy, Graduate School of Dalian Medical University, Dalian, China
| | - Qi Wu
- Department of Histology and Embryology, Heze Medical College, Heze, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Mingming Fang
- Department of Radiotherapy, Changzhou Fourth People's Hospital, Changzhou, China
| | - Jun Liu
- Department of Radiotherapy, Changzhou Fourth People's Hospital, Changzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
9
|
Luisa Valerio de Mello Braga L, Simão G, Silva Schiebel C, Caroline Dos Santos Maia A, Mulinari Turin de Oliveira N, Barbosa da Luz B, Rita Corso C, Soares Fernandes E, Maria Ferreira D. Rodent models for anticancer toxicity studies: contributions to drug development and future perspectives. Drug Discov Today 2023:103626. [PMID: 37224998 DOI: 10.1016/j.drudis.2023.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Antineoplastic treatment induces a type of gastrointestinal toxicity known as mucositis. Findings in animal models are usually easily reproducible, and standardized treatment regimens are often used, thus supporting translational science. Essential characteristics of mucositis, including intestinal permeability, inflammation, immune and oxidative responses, and tissue repair mechanisms, can be easily investigated in these models. Given the effects of mucositis on the quality of life of patients with cancer, and the importance of experimental models in the development of more effective new therapeutic alternatives, this review discusses progress and current challenges in using experimental models of mucositis in translational pharmacology research. Teaser Experimental models for studying gastrointestinal mucositis have provided a wealth of information improving the understanding of antineoplastic toxicity.
Collapse
Affiliation(s)
- Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Carolina Silva Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Andressa Caroline Dos Santos Maia
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Daniele Maria Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
10
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
11
|
Domingues C, Cabral C, Jarak I, Veiga F, Dourado M, Figueiras A. The Debate between the Human Microbiota and Immune System in Treating Aerodigestive and Digestive Tract Cancers: A Review. Vaccines (Basel) 2023; 11:vaccines11030492. [PMID: 36992076 DOI: 10.3390/vaccines11030492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The human microbiota comprises a group of microorganisms co-existing in the human body. Unbalanced microbiota homeostasis may impact metabolic and immune system regulation, shrinking the edge between health and disease. Recently, the microbiota has been considered a prominent extrinsic/intrinsic element of cancer development and a promising milestone in the modulation of conventional cancer treatments. Particularly, the oral cavity represents a yin-and-yang target site for microorganisms that can promote human health or contribute to oral cancer development, such as Fusobacterium nucleatum. Moreover, Helicobacter pylori has also been implicated in esophageal and stomach cancers, and decreased butyrate-producing bacteria, such as Lachnospiraceae spp. and Ruminococcaceae, have demonstrated a protective role in the development of colorectal cancer. Interestingly, prebiotics, e.g., polyphenols, probiotics (Faecalibacterium, Bifidobacterium, Lactobacillus, and Burkholderia), postbiotics (inosine, butyrate, and propionate), and innovative nanomedicines can modulate antitumor immunity, circumventing resistance to conventional treatments and could complement existing therapies. Therefore, this manuscript delivers a holistic perspective on the interaction between human microbiota and cancer development and treatment, particularly in aerodigestive and digestive cancers, focusing on applying prebiotics, probiotics, and nanomedicines to overcome some challenges in treating cancer.
Collapse
Affiliation(s)
- Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cristiana Cabral
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
12
|
Coelho-Rocha ND, de Jesus LCL, Barroso FAL, da Silva TF, Ferreira E, Gonçalves JE, Dos Santos Martins F, de Oliveira Carvalho RD, Barh D, Azevedo VADC. Evaluation of Probiotic Properties of Novel Brazilian Lactiplantibacillus plantarum Strains. Probiotics Antimicrob Proteins 2023; 15:160-174. [PMID: 36028786 DOI: 10.1007/s12602-022-09978-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/20/2023]
Abstract
Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.
Collapse
Affiliation(s)
- Nina Dias Coelho-Rocha
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Enio Ferreira
- Department of General Pathology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - José Eduardo Gonçalves
- Department of Pharmaceutic Products, Pharmacy Faculty, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Flaviano Dos Santos Martins
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), West Bengal, Nonakuri, Purba Medinipur, 721172, India
| | - Vasco Ariston de Carvalho Azevedo
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
13
|
Mohammed AI, Celentano A, Paolini R, Low JT, McCullough MJ, O' Reilly LA, Cirillo N. Characterization of a novel dual murine model of chemotherapy-induced oral and intestinal mucositis. Sci Rep 2023; 13:1396. [PMID: 36697446 PMCID: PMC9876945 DOI: 10.1038/s41598-023-28486-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Oral and intestinal mucositis are debilitating inflammatory diseases observed in cancer patients undergoing chemo-radiotherapy. These are devastating clinical conditions which often lead to treatment disruption affecting underlying malignancy management. Although alimentary tract mucositis involves the entire gastrointestinal tract, oral and intestinal mucositis are often studied independently utilizing distinct organ-specific pre-clinical models. This approach has however hindered the development of potentially effective whole-patient treatment strategies. We now characterize a murine model of alimentary tract mucositis using 5-Fluorouracil (5-FU). Mice were given 5-FU intravenously (50 mg/kg) or saline every 48 h for 2 weeks. Post initial injection, mice were monitored clinically for weight loss and diarrhea. The incidence and extent of oral mucositis was assessed macroscopically. Microscopical and histomorphometric analyses of the tongue and intestinal tissues were conducted at 3 interim time points during the experimental period. Repeated 5-FU treatment caused severe oral and intestinal atrophy, including morphological damage, accompanied by body weight loss and mild to moderate diarrhea in up to 77.8% of mice. Oral mucositis was clinically evident throughout the observation period in 88.98% of mice. Toluidine blue staining of the tongue revealed that the ulcer size peaked at day-14. In summary, we have developed a model reproducing the clinical and histologic features of both oral and intestinal mucositis, which may represent a useful in vivo pre-clinical model for the study of chemotherapy-induced alimentary tract mucositis and the development of preventative therapies.
Collapse
Affiliation(s)
- Ali I Mohammed
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia. .,College of Dentistry, The University of Tikrit, Tikrit, Iraq.
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Lorraine A O' Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia.
| |
Collapse
|
14
|
Nobre L, Fernandes C, Florêncio K, Alencar N, Wong D, Lima-Júnior R. Could paraprobiotics be a safer alternative to probiotics for managing cancer chemotherapy-induced gastrointestinal toxicities? Braz J Med Biol Res 2023; 55:e12522. [PMID: 36651453 PMCID: PMC9843735 DOI: 10.1590/1414-431x2022e12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 01/18/2023] Open
Abstract
Clinical oncology has shown outstanding progress improving patient survival due to the incorporation of new drugs. However, treatment success may be reduced by the emergency of dose-limiting side effects, such as intestinal mucositis and diarrhea. Mucositis and diarrhea management is symptomatic, and there is no preventive therapy. Bacterial and fungal-based compounds have been suggested as an alternative for preventing the development of diarrhea in cancer patients. Using probiotics is safe and effective in immunocompetent individuals, but concerns remain during immunosuppressive conditions. Paraprobiotics, formulations composed of non-viable microorganisms, have been proposed to overcome such limitation. The present literature review discusses current evidence regarding the possible use of paraprobiotics as an alternative to probiotics to prevent gastrointestinal toxicity of cancer chemotherapy.
Collapse
Affiliation(s)
- L.M.S. Nobre
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - C. Fernandes
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - K.G.D. Florêncio
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - N.M.N. Alencar
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D.V.T. Wong
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.C.P. Lima-Júnior
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
15
|
Duan X, Cai H, Hu T, Lin L, Zeng L, Wang H, Cao L, Li X. Ginsenoside Rg3 treats acute radiation proctitis through the TLR4/MyD88/NF-κB pathway and regulation of intestinal flora. Front Cell Infect Microbiol 2023; 12:1028576. [PMID: 36683687 PMCID: PMC9853003 DOI: 10.3389/fcimb.2022.1028576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Objectives This study aimed to investigate the protective effect of ginsenoside Rg3 (GRg3) against acute radiation proctitis (ARP) in rats. Methods Wistar rats were randomly divided into control, model, dexamethasone-positive, GRg3 low-dose, GRg3 medium-dose, and GRg3 high-dose groups. The ARP rat model was established by a single 22-Gy irradiation of 6 MV) X-rays. The distribution and function of intestinal flora were detected using 16S rRNA high-throughput sequencing, rectal tissue was observed by hematoxylin and eosin (H&E) staining, the expression of interleukin 1β (IL-1β) and IL-10 inflammatory factors was detected by ELISA, and mRNA and protein expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were detected by RT-qPCR and Western blotting, respectively. Results GRg3 improved the symptoms of ARP in rats in a dose-dependent manner. The species distribution of intestinal flora in GRg3 rats was significantly different from that in ARP rats. These differences were more significant in the high-dose group, where the numbers of Ruminococcus, Lactobacillus, and other beneficial bacteria were significantly increased, whereas those of Escherichia, Alloprevotella, and other harmful bacteria were decreased. In addition, GRg3 was closely related to amino acid metabolism. After GRg3 treatment, the mRNA and protein expression of TLR4, MyD88, and NF-κB in rectal tissue was significantly down-regulated, and the level of downstream inflammatory factor IL-1β decreased, whereas that of IL-10 increased. Conclusion Our study indicated GRg3 as a new compound for the treatment of ARP by inhibiting the TLR4/MyD88/NF-κB pathway, down-regulating the expression of proinflammatory factors, thus effectively regulating intestinal flora and reducing inflammatory reactions.
Collapse
Affiliation(s)
- Xiaoyu Duan
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Hongyi Cai
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, China
| | - Tingting Hu
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, China
| | - Lili Lin
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Lu Zeng
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Huixia Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Lei Cao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xuxia Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| |
Collapse
|
16
|
Interaction between gut microbiota and tumour chemotherapy. Clin Transl Oncol 2022; 24:2330-2341. [DOI: 10.1007/s12094-022-02919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
|
17
|
Effects of coronavirus disease 19 on the gastrointestinal tract and the potential impact on gastrointestinal toxicities during cancer treatment. Curr Opin Support Palliat Care 2022; 16:168-173. [DOI: 10.1097/spc.0000000000000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kaliannan K, Donnell SO, Murphy K, Stanton C, Kang C, Wang B, Li XY, Bhan AK, Kang JX. Decreased Tissue Omega-6/Omega-3 Fatty Acid Ratio Prevents Chemotherapy-Induced Gastrointestinal Toxicity Associated with Alterations of Gut Microbiome. Int J Mol Sci 2022; 23:5332. [PMID: 35628140 PMCID: PMC9140600 DOI: 10.3390/ijms23105332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal toxicity (GIT) is a debilitating side effect of Irinotecan (CPT-11) and limits its clinical utility. Gut dysbiosis has been shown to mediate this side effect of CPT-11 by increasing gut bacterial β-glucuronidase (GUSB) activity and impairing the intestinal mucosal barrier (IMB). We have recently shown the opposing effects of omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) on the gut microbiome. We hypothesized that elevated levels of tissue n-3 PUFA with a decreased n-6/n-3 PUFA ratio would reduce CPT-11-induced GIT and associated changes in the gut microbiome. Using a unique transgenic mouse (FAT-1) model combined with dietary supplementation experiments, we demonstrate that an elevated tissue n-3 PUFA status with a decreased n-6/n-3 PUFA ratio significantly reduces CPT-11-induced weight loss, bloody diarrhea, gut pathological changes, and mortality. Gut microbiome analysis by 16S rRNA gene sequencing and QIIME2 revealed that improvements in GIT were associated with the reduction in the CPT-11-induced increase in both GUSB-producing bacteria (e.g., Enterobacteriaceae) and GUSB enzyme activity, decrease in IMB-maintaining bacteria (e.g., Bifidobacterium), IMB dysfunction and systemic endotoxemia. These results uncover a host-microbiome interaction approach to the management of drug-induced gut toxicity. The prevention of CPT-11-induced gut microbiome changes by decreasing the tissue n-6/n-3 PUFA ratio could be a novel strategy to prevent chemotherapy-induced GIT.
Collapse
Affiliation(s)
- Kanakaraju Kaliannan
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| | - Shane O. Donnell
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.O.D.); (C.S.)
- Teagasc Moorepark Food Research Centre, Fermoy, P61 C996 Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Kiera Murphy
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Catherine Stanton
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.O.D.); (C.S.)
- Teagasc Moorepark Food Research Centre, Fermoy, P61 C996 Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Chao Kang
- Department of Nutrition, The General Hospital of Western Theater Command, Chengdu 610000, China;
| | - Bin Wang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| | - Xiang-Yong Li
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| | - Atul K. Bhan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| |
Collapse
|
19
|
Nobre LMS, da Silva Lopes MH, Geraix J, Cajado AG, Silva JMR, Ribeiro LR, Freire RS, Cavalcante DIM, Wong DVT, Alves APNN, Lima-Júnior RCP. Paraprobiotic Enterococcus faecalis EC-12 prevents the development of irinotecan-induced intestinal mucositis in mice. Life Sci 2022; 296:120445. [PMID: 35245522 DOI: 10.1016/j.lfs.2022.120445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 12/17/2022]
Abstract
AIMS This study tested the protective effect of purified paraprobiotic Enterococcus faecalis (EC-12) and an E. faecalis-based formulation (Med LanS) on irinotecan-induced intestinal mucositis murine model. MAIN METHODS C57BL/6 male mice received saline, irinotecan (75 mg/Kg, i.p.), EC-12 (0.3, 1, or 3 × 107 CFU/Kg, p.o.) + irinotecan or Med Lan-S (3 × 107 CFU/Kg, p.o.) + irinotecan. Body mass variation was assessed daily, and blood samples were collected for evaluating bacteremia and leukocyte count. The ileum was harvested for myeloperoxidase assay, histopathology, quantitative PCR, and immunofluorescence for macrophages (F4/80), TLR4, and IL-18 binding protein (IL-18BP). KEY FINDINGS The best therapeutic strategy was EC-12 administration at 3 × 107 CFU/Kg, starting 1 week before irinotecan. EC-12 and Med Lan-S did not prevent the irinotecan-induced body mass loss or leukopenia but attenuated the neutrophil infiltration in the intestine and increased the villus/crypt ratio (P < 0.05). Additionally, EC-12 and Med Lan-S reduced the mRNA expression of Cldn-2, Ocln, and Tlr4 versus the irinotecan group (P < 0.05). Irinotecan also augmented the expression of Il-18, IL-18BP, the immunofluorescence of F4/80, and TLR4, while only EC-12 prevented the expression of all these markers. Remarkably, EC-12 and Med Lan inhibited the irinotecan-induced bacterial translocation to the blood. SIGNIFICANCE Paraprobiotic E. faecalis EC-12 prevents the development of intestinal mucositis by downregulating the inflammatory response. Med Lan-S also protects from mucositis. Possibly, the complexity of the formulation accounts for an innate immune-driven protective mechanism.
Collapse
Affiliation(s)
- Lívia Maria Soares Nobre
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Marina Helena da Silva Lopes
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Juliana Geraix
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Aurilene Gomes Cajado
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Jussara Matyelle Rodrigues Silva
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Lyanna Rodrigues Ribeiro
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | - Diane Isabelle Magno Cavalcante
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Deysi Viviana Tenazoa Wong
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Roberto César Pereira Lima-Júnior
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil.
| |
Collapse
|
20
|
Bian Y, Xie F, Han J, Ding Y. Nutritional evaluation study based on NRS 2002, OPNI, and their combined use in patients with adverse drug reactions after chemotherapy: a cross-sectional study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:180. [PMID: 35280409 PMCID: PMC8908172 DOI: 10.21037/atm-22-256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Background It is important to assess the nutritional status of patients who have experienced adverse drug reactions (ADRs) after chemotherapy. We aimed to explore the nutritional status of patients who developed ADRs after chemotherapy, using the Nutritional Risk Screening 2002 (NRS 2002) tool, the Onodera Prognostic Nutrition Index (OPNI), and their combined application. Methods NRS 2002 screening and OPNI calculation for patients before chemotherapy. Patients with ADRs after chemotherapy were grouped according to the NRS 2002, OPNI, and combined scores from both assessments. The types of ADRs were classified according to the National adverse drug reaction monitoring system (http://www.adrs.org.cn/). The impact of nutritional risk on the classification and types of ADRs in cancer chemotherapy patients was analyzed. Logistic regression was used to analyze the key influencing factors of gastrointestinal damage and bone marrow suppression. the consistency between the NRS 2002, OPNI, and their combined application analyzed. Results The difference in body mass index (BMI) scores between the OPNI (P=0.041) and NRS 2002 groups was statistically significant (P=0.051). The difference in ADR type in the OPNI subgroups (P=0.04) was statistically significant. It showed that the proportion of new and severe ADRs in the low OPNI group (47.14%) was significantly higher than that in the high OPNI group (27.13%). The differences in digestive tract-associated ADRs were statistically significant among the OPNI groups (P=0.004), NRS 2002 groups (P=0.012), and combined measures groups (P=0.000), as were the differences in myelosuppressive-type ADRs in the OPNI groups (P=0.035), NRS 2002 groups (P=0.000), and combined measures groups (P=0.000). Logistic regression analysis showed that BMI was the key influencing factor for digestive tract-associated ADRs (95% CI: 1.267, 95% CI: 1.022–1.570, P=0.031) and myelosuppressive-type ADRs (95% CI: 1.213, 95% CI: 1.020–1.443, P=0.029). It had good consistency with the combined measures of nutritional risk (Kappa value =0.675). Conclusions Patients with severe ADRs after chemotherapy showed low OPNI values, high NRS 2002 scores, and malnutrition. These patients also had a significantly increased incidence of digestive tract and myelosuppressive-type ADRs with BMI as the key influencing factor. The combined assessments showed good consistency with the NRS 2002 scores.
Collapse
Affiliation(s)
- Yun Bian
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Fen Xie
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jianbo Han
- Department of Neurosurgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Yongjuan Ding
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Al-Khrashi LA, Badr AM, Al-Amin MA, Mahran YF. Thymol ameliorates 5-fluorouracil-induced intestinal mucositis: Evidence of down-regulatory effect on TGF-β/MAPK pathways through NF-κB. J Biochem Mol Toxicol 2022; 36:e22932. [PMID: 34665902 DOI: 10.1002/jbt.22932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
5-Fluorouracil (5-FU) is a front-line cytotoxic therapy. However, intestinal mucositis is a well-known adverse event of 5-FU, which limits its therapeutic use. Indeed, thymol, which is a monoterpene component of the essential oil derived from thymus, has a potential anti-inflammatory and immunomodulatory activity. Therefore, this study aimed to investigate the potential chemoprotective effect of thymol against 5-FU-induced intestinal mucositis. Rats were either exposed to two doses of 5-FU (150 mg/kg, ip) and/or treated with thymol (60 or 120 mg/kg). Oxidative stress and inflammatory markers, as well as pathological changes, were assessed. 5-FU-induced severe intestinal damages as were evidenced by histopathological changes as well as oxidative and inflammatory responses. Thymol pretreatment inhibited 5-FU-induced oxidative stress by reducing lipid peroxidation and increasing intestinal levels of antioxidant systems. Moreover, inflammatory response markers, such as interleukin-6, prostaglandin E2, and COX-2 were also improved. The immunoblotting analysis also showed that thymol significantly inhibited the 5-FU-induced expression of nuclear factor-κB, tumor necrosis factor-α, and transforming growth factor β-1 (TGF-β1), in addition to the suppression of p38 and phosphorylated c-Jun N-terminal kinases (p-JNK) mitogen-activated protein kinase proteins' expressions. Our study is the first to demonstrate the promising protective effect of thymol against 5-FU-induced intestinal mucositis through inhibition of oxidative, inflammatory pathways, and suppression of TGF-β/p38/p-JNK signaling.
Collapse
Affiliation(s)
- Layla A Al-Khrashi
- Department of Pharmacology and Toxicology, College of Pharmacy, KSU, Riyadh, Saudi Arabia
| | - Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, KSU, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha A Al-Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, KSU, Riyadh, Saudi Arabia
| | - Yasmen F Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
22
|
To study the contributing factors and outcomes of Clostridioides difficile infection in patients with solid tumors. Heliyon 2021; 7:e08450. [PMID: 34926847 PMCID: PMC8646976 DOI: 10.1016/j.heliyon.2021.e08450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/18/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Background Clostridioides difficile infection (CDI) is a considerable healthcare burden, and now identified as the leading cause of acquired diarrheal illness in patients receiving antibiotics. Patients with malignancies are more prone to acquire CDI, owing to their frequent exposure to risk factors. Objective This study aims to investigate the factors affecting the outcome of Clostridioides Difficile Infection in patients with solid tumors at our community healthcare center. Methods This is a retrospective study that included a total of 59 patients with solid tumors who were hospitalized for Clostridioides difficile infection. Results The median age of the study population was 79 years with 39 males and 20 females. The patients had a diagnosis of a malignancy involving the following sites: prostate (25), lung (19), colon (7), bladder (4), breast (3), and renal (1). There were 52 cases of first time and 7 cases of recurrent CDI admissions. 40 patients were detected to have CDI at presentation while 19 patients were diagnosed with CDI after admission. CDI was categorized as follows: non-severe (29), severe (28), and very severe (2). There were 33 patients on chemotherapy and 20 patients undergoing radiotherapy. Twenty-seven patients had a recent history of cancer care-related procedures or interventions. Twenty-nine patients were from either a rehabilitation center or a long-term nursing care facility. There were 39 recent hospitalizations with 29 patients receiving antibiotics. Almost half of the patients were on proton pump inhibitors (29) and 12 were on steroids (20.3%) at the time of developing CDI. Patients with a high-risk qSOFA score of 2 or more (p-value = 0.008) or a high white blood cell count of >15 × 109/L (p-value = 0.016) at the time of admission were found to have higher in-hospital mortality. Critical care data suggested that 9 patients required intensive care, 7 patients required vasopressor support, and 6 needed mechanical ventilation. Patients were treated with either vancomycin alone (13), or metronidazole alone (25), or combination therapy with vancomycin + metronidazole (21). The median duration of hospital stay was 6 days with 11 fatalities (18.64%). Conclusions CDI causes significant morbidity in patients with malignancies. A high qSOFA score and leukocytosis are significantly associated with high morbidity and thus should be used to prioritize and intensify inpatient care of these patients.
Collapse
|
23
|
Savassi B, Cordeiro BF, Silva SH, Oliveira ER, Belo G, Figueiroa AG, Alves Queiroz MI, Faria AMC, Alves J, da Silva TF, Campos GM, Esmerino EA, Rocha RS, Freitas MQ, Silva MC, Cruz AG, Vital KD, Fernandes SO, Cardoso VN, Acurcio LB, Jan G, Le Loir Y, Gala-Garcia A, do Carmo FLR, Azevedo V. Lyophilized Symbiotic Mitigates Mucositis Induced by 5-Fluorouracil. Front Pharmacol 2021; 12:755871. [PMID: 34955828 PMCID: PMC8703075 DOI: 10.3389/fphar.2021.755871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Mucositis is an adverse effect of cancer chemotherapies using 5-Fluorouracil (5-FU). It is characterized by mucosal inflammation, pain, diarrhea, and weight loss. Some studies reported promising healing effects of probiotic strains, when associated with prebiotics, as adjuvant treatment of mucositis. We developed a lyophilized symbiotic product, containing skimmed milk, supplemented with whey protein isolate (WPI) and with fructooligosaccharides (FOS), and fermented by Lactobacillus casei BL23, Lactiplantibacillus plantarum B7, and Lacticaseibacillus rhamnosus B1. In a mice 5-FU mucositis model, this symbiotic lyophilized formulation was able to reduce weight loss and intestinal permeability. This last was determined in vivo by quantifying blood radioactivity after oral administration of 99mTc-DTPA. Finally, histological damages caused by 5-FU-induced mucositis were monitored. Consumption of the symbiotic formulation caused a reduced score of inflammation in the duodenum, ileum, and colon. In addition, it decreased levels of pro-inflammatory cytokines IL-1β, IL-6, IL-17, and TNF-α in the mice ileum. The symbiotic product developed in this work thus represents a promising adjuvant treatment of mucositis.
Collapse
Affiliation(s)
- Bruna Savassi
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bárbara F. Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H. Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emiliano R. Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovanna Belo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - Ana Maria Caetano Faria
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Alves
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Erick A. Esmerino
- Faculdade de Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Ramon S. Rocha
- Faculdade de Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
- Departamento de Alimentos, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Instituto Federal de Educação, Rio de Janeiro, Brazil
| | - Monica Q. Freitas
- Faculdade de Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcia C. Silva
- Departamento de Alimentos, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Instituto Federal de Educação, Rio de Janeiro, Brazil
| | - Adriano G. Cruz
- Departamento de Alimentos, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Instituto Federal de Educação, Rio de Janeiro, Brazil
| | - Kátia Duarte Vital
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Simone O.A. Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Valbert N. Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Borges Acurcio
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yves Le Loir
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Alfonso Gala-Garcia
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Faculdade de Odontologia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Fillipe Luiz R. do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
24
|
Yue B, Gao R, Wang Z, Dou W. Microbiota-Host-Irinotecan Axis: A New Insight Toward Irinotecan Chemotherapy. Front Cell Infect Microbiol 2021; 11:710945. [PMID: 34722328 PMCID: PMC8553258 DOI: 10.3389/fcimb.2021.710945] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Irinotecan (CPT11) and its active metabolite ethyl-10-hydroxy-camptothecin (SN38) are broad-spectrum cytotoxic anticancer agents. Both cause cell death in rapidly dividing cells (e.g., cancer cells, epithelial cells, hematopoietic cells) and commensal bacteria. Therefore, CPT11 can induce a series of toxic side-effects, of which the most conspicuous is gastrointestinal toxicity (nausea, vomiting, diarrhea). Studies have shown that the gut microbiota modulates the host response to chemotherapeutic drugs. Targeting the gut microbiota influences the efficacy and toxicity of CPT11 chemotherapy through three key mechanisms: microbial ecocline, catalysis of microbial enzymes, and immunoregulation. This review summarizes and explores how the gut microbiota participates in CPT11 metabolism and mediates host immune dynamics to affect the toxicity and efficacy of CPT11 chemotherapy, thus introducing a new concept that is called "microbiota-host-irinotecan axis". Also, we emphasize the utilization of bacterial β-glucuronidase-specific inhibitor, dietary interventions, probiotics and strain-engineered interventions as emergent microbiota-targeting strategies for the purpose of improving CPT11 chemotherapy efficiency and alleviating toxicity.
Collapse
Affiliation(s)
- Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Ruiyang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
25
|
Zhang M, Liu D, Zhou H, Liu X, Li X, Cheng Y, Gao B, Chen J. Intestinal flora characteristics of advanced non-small cell lung cancer in China and their role in chemotherapy based on metagenomics: A prospective exploratory cohort study. Thorac Cancer 2021; 12:3293-3303. [PMID: 34693651 PMCID: PMC8671906 DOI: 10.1111/1759-7714.14199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer has the highest mortality rate among malignant tumors, with non-small cell lung cancer (NSCLC) being the most common type. As the main component of the human microflora, the intestinal flora interacts with the human body to affect immunity, metabolism, and the formation of diseases. METHODS Forty-five patients with advanced NSCLC who received platinum-containing dual-drug chemotherapy were enrolled in a prospective exploratory cohort study. The intestinal flora was dynamically collected at baseline and after two chemotherapy cycles. Next-generation sequencing and metagenomics were then used to analyze the species and function of the intestinal flora at all levels. RESULTS Significant differences in the intestinal flora of patients with NSCLC were found according to sex and age. At the family level, the abundances of Streptococcaceae, Lactobacillaceae, and Leuconostocaceae after platinum-containing dual-drug chemotherapy were significantly higher compared to those before chemotherapy. At the family level, patients with chemotherapy-induced gastrointestinal reactions had a significantly higher abundance of Leuconostocaceae than those without gastrointestinal responses. Meanwhile, patients with gastrointestinal reactions had higher metabolism, human diseases, cellular processes, and environmental information processing than those who did not. At the genus level, responders had higher abundances of Bacteroides compared to nonresponders. Moreover, nonresponders had higher levels of the six major metabolic pathways compared to responders. CONCLUSIONS The intestinal flora of Chinese patients with advanced NSCLC differed according to sex and age. Moreover, significant differences in the intestinal flora were noted after chemotherapy, which could be associated with chemotherapy-induced gastrointestinal reactions and the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Min Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dan Liu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Huan Zhou
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiangjun Liu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiuhua Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ye Cheng
- Department of Oncology, The Third Hospital of Dalian Medical University, Dalian, China
| | - Bing Gao
- Department of Oncology, The Third Hospital of Dalian Medical University, Dalian, China
| | - Jun Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Zhao G, Williams J, Washington MK, Yang Y, Long J, Townsend SD, Yan F. 2'-Fucosyllactose Ameliorates Chemotherapy-Induced Intestinal Mucositis by Protecting Intestinal Epithelial Cells Against Apoptosis. Cell Mol Gastroenterol Hepatol 2021; 13:441-457. [PMID: 34607083 PMCID: PMC8688723 DOI: 10.1016/j.jcmgh.2021.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Intestinal mucositis, a severe complication of antineoplastic therapeutics, is characterized by mucosal injury and inflammation in the small intestine. Therapies for the prevention and treatment of this disease are needed. We investigated whether 2'-fucosyllactose (2'-FL), an abundant oligosaccharide in human milk, protects intestinal integrity and ameliorates intestinal mucositis. METHODS A mouse small intestinal epithelial (MSIE) cell line, mouse enteroid cultures, and human gastrointestinal tumor cell lines (AGS and HT29) were co-treated with the chemotherapy agent 5-fluorouracil (5-FU) and 2'-FL. Mice were injected intraperitoneally with 5-FU to induce intestinal mucositis. 2'-FL was administered in the drinking water to mice before (pretreatment) or concurrently with 5-FU injection. Body weight and pathologic changes were analyzed. RESULTS 2'-FL alleviated 5-FU inhibition of cell growth in MSIE cells, but not in AGS and HT29 cells. The 5-FU-induced apoptosis in MSIE cells and enteroids was suppressed by 2'-FL. Compared with 5-FU treatment alone, 2'-FL pretreatment protected against body weight loss, and ameliorated inflammation scores, proinflammatory cytokine production, shortening of villi, epithelial cell apoptosis, goblet cell loss, and tight junctional complex disruption in the small intestine. 2'-FL concurrent treatment had less of an effect on intestinal mucositis than 2'-FL pretreatment. Interestingly, no effect of 2'-FL was observed on 5-FU-induced S-phase arrest in MSIE, AGS, and HT29 cells. Neither pretreatment nor concurrent treatment with 2'-FL affected 5-FU-induced inhibition of proliferation in MSIE cells. CONCLUSIONS This study shows a novel direct effect of 2'-FL in protecting small intestinal epithelial cells against apoptosis stimulated by 5-FU, which may contribute to prevention of 5-FU-induced intestinal mucositis.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Pediatrics, Nashville, Tennessee
| | | | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee
| | - Yaohua Yang
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jirong Long
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Fang Yan
- Department of Pediatrics, Nashville, Tennessee,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee,Correspondence Address correspondence to: Fang Yan, MD, PhD, Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, MRB IV, Room 1035, Nashville, Tennessee 37232-0696. fax: (615) 343-5323.
| |
Collapse
|
27
|
Wei L, Wen XS, Xian CJ. Chemotherapy-Induced Intestinal Microbiota Dysbiosis Impairs Mucosal Homeostasis by Modulating Toll-like Receptor Signaling Pathways. Int J Mol Sci 2021; 22:ijms22179474. [PMID: 34502383 PMCID: PMC8431669 DOI: 10.3390/ijms22179474] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced intestinal mucositis, a painful debilitating condition affecting up to 40–100% of patients undergoing chemotherapy, can reduce the patients’ quality of life, add health care costs and even postpone cancer treatment. In recent years, the relationships between intestinal microbiota dysbiosis and mucositis have drawn much attention in mucositis research. Chemotherapy can shape intestinal microbiota, which, in turn, can aggravate the mucositis through toll-like receptor (TLR) signaling pathways, leading to an increased expression of inflammatory mediators and elevated epithelial cell apoptosis but decreased epithelial cell differentiation and mucosal regeneration. This review summarizes relevant studies related to the relationships of mucositis with chemotherapy regimens, microbiota, TLRs, inflammatory mediators, and intestinal homeostasis, aiming to explore how gut microbiota affects the pathogenesis of mucositis and provides potential new strategies for mucositis alleviation and treatment and development of new therapies.
Collapse
Affiliation(s)
- Ling Wei
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Xue-Sen Wen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| | - Cory J. Xian
- UniSA Clinical & Health Science, City West Campus, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| |
Collapse
|
28
|
Fernandes A, Oliveira A, Soares R, Barata P. The Effects of Ionizing Radiation on Gut Microbiota, a Systematic Review. Nutrients 2021; 13:3025. [PMID: 34578902 PMCID: PMC8465723 DOI: 10.3390/nu13093025] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human gut microbiota is defined as the microorganisms that collectively inhabit the intestinal tract. Its composition is relatively stable; however, an imbalance can be precipitated by various factors and is known to be associated with various diseases. Humans are daily exposed to ionizing radiation from ambient and medical procedures, and gastrointestinal side effects are not rare. METHODS A systematic search of PubMed, EMBASE, and Cochrane Library databases was conducted. Primary outcomes were changes in composition, richness, and diversity of the gut microbiota after ionizing radiation exposure. Standard methodological procedures expected by Cochrane were used. RESULTS A total of 2929 nonduplicated records were identified, and based on the inclusion criteria, 11 studies were considered. Studies were heterogeneous, with differences in population and outcomes. Overall, we found evidence for an association between ionizing radiation exposure and dysbiosis: reduction in microbiota diversity and richness, increase in pathogenic bacteria abundance (Proteobacteria and Fusobacteria), and decrease in beneficial bacteria (Faecalibacterium and Bifidobacterium). CONCLUSIONS This review highlights the importance of considering the influence of ionizing radiation exposure on gut microbiota, especially when considering the side effects of abdominal and pelvic radiotherapy. Better knowledge of these effects, with larger population studies, is needed.
Collapse
Affiliation(s)
- Ana Fernandes
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal;
| | - Ana Oliveira
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal;
| | - Raquel Soares
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal;
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Pedro Barata
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Pharmaceutical Science, Faculdade de Ciências da Saúde da Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| |
Collapse
|
29
|
Miknevicius P, Zulpaite R, Leber B, Strupas K, Stiegler P, Schemmer P. The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies. Int J Mol Sci 2021; 22:9347. [PMID: 34502251 PMCID: PMC8430988 DOI: 10.3390/ijms22179347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most commonly diagnosed cancer in females (incidence 16.4/10,000) and the third in males (incidence 23.4/10,000) worldwide. Surgery, chemotherapy (CTx), radiation therapy (RTx), or a combined treatment of those are the current treatment modalities for primary CRC. Chemotherapeutic drug-induced gastrointestinal (GIT) toxicity mainly presents as mucositis and diarrhea. Preclinical studies revealed that probiotic supplementation helps prevent CTx-induced side effects by reducing oxidative stress and proinflammatory cytokine production and promoting crypt cell proliferation. Moreover, probiotics showed significant results in preventing the loss of body weight (BW) and reducing diarrhea. However, further clinical studies are needed to elucidate the exact doses and most promising combination of strains to reduce or prevent chemotherapy-induced side effects. The aim of this review is to overview currently available literature on the impact of probiotics on CTx-induced side effects in animal studies concerning CRC treatment and discuss the potential mechanisms based on experimental studies' outcomes.
Collapse
Affiliation(s)
- Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| |
Collapse
|
30
|
Jian Y, Zhang D, Liu M, Wang Y, Xu ZX. The Impact of Gut Microbiota on Radiation-Induced Enteritis. Front Cell Infect Microbiol 2021; 11:586392. [PMID: 34395308 PMCID: PMC8358303 DOI: 10.3389/fcimb.2021.586392] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is an important treatment for abdominal tumors. A critical side effect for this therapy is enteritis. In this review, we aim to summarize recent findings in radiation enteritis, in particular the role of gut microbiota dysbiosis in the development and therapy of the disease. Gut microbiota dysbiosis plays an important role in the occurrence of various diseases, such as radiation enteritis. Abdominal radiation results in changes in the composition of microbiota and reduces its diversity, which is mainly reflected in the decrease of Lactobacillus spp. and Bifidobacterium spp. and increase of Escherichia coli and Staphylococcus spp. Gut microbiota dysbiosis aggravates radiation enteritis, weakens intestinal epithelial barrier function, and promotes inflammatory factor expression. Pathogenic Escherichia coli induce the rearrangement and redistribution of claudin-1, occludin, and ZO-1 in tight junctions, a critical component in intestinal epithelial barrier. In view of the role that microbiome plays in radiation enteritis, we believe that intestinal flora could be a potential biomarker for the disease. Correction of microbiome by application of probiotics, fecal microbiota transplantation (FMT), and antibiotics could be an effective method for the prevention and treatment of radiation-induced enteritis.
Collapse
Affiliation(s)
- Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.,School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
31
|
Immune Modulation Effects of Lactobacillus casei Variety rhamnosus on Enterocytes and Intestinal Stem Cells in a 5-FU-Induced Mucositis Mouse Model. Gastroenterol Res Pract 2021; 2021:3068393. [PMID: 33564301 PMCID: PMC7850847 DOI: 10.1155/2021/3068393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/10/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background Intestinal mucositis remains one of the most deleterious side effects in cancer patients undergoing chemotherapy. We hypothesize that the probiotics could preserve gut ecology, ameliorate inflammation, and protect epithelia via immune modulations of enterocytes and intestinal stem cells. Our aim is to characterize these changes and the safety of probiotics via a 5-fluorouracil- (5-FU-) induced intestinal mucositis mouse model. Methods 5-FU-injected BALB/c mice were either orally administrated with saline or probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35). Diarrhea scores, serum proinflammatory cytokines, and T-cell subtypes were assessed. Immunostaining analyses for the proliferation of intestinal stem cells CD44 and Ki67 were processed. Samples of blood and internal organs were investigated for bacterial translocation. Results Diarrhea was attenuated after oral Lcr35 administration. Serum proinflammatory cytokines were significantly increased in the 5-FU group and were reversed by Lcr35. A tremendous rise of the CD3+/CD8+ count and a significant decrease of CD3+CD4+/CD3+CD8+ ratios were found in the 5-FU group and were both reversed by Lcr35. 5-FU significantly stimulated the expression of CD44 stem cells, and the expression was restored by Lcr35. 5-FU could increase the number of Ki67 proliferative cells. No bacterial translocation was found in this study. Conclusions Our results showed that 5-FU caused intestinal inflammation mainly via Th1 and Th17 responses. 5-FU could stimulate stem cells and proliferation cells in a mouse model. We demonstrate chemotherapy could decrease immune competence. Probiotics were shown to modulate the immune response. This is the first study to analyze the immune modulation effects and safety of Lactobacillus strain on enterocytes and intestinal stem cells in a mouse model.
Collapse
|
32
|
Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy. Oncotarget 2019; 10:7198-7219. [PMID: 31921383 PMCID: PMC6944450 DOI: 10.18632/oncotarget.27319] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Propionibacterium freudenreichii CIRM-BIA 129 (P. freudenreichii wild type, WT) is a probiotic bacterium, which exerts immunomodulatory effects. This strain possesses extractable surface proteins, including SlpB, which are involved in anti-inflammatory effect and in adhesion to epithelial cells. We decided to investigate the impact of slpB gene mutation on immunomodulation in vitro and in vivo. In an in vitro assay, P. freudenreichii WT reduced expression of IL-8 (p<0.0001) and TNF-α (p<0.0001) cytokines in LPS-stimulated HT-29 cells. P. freudenreichii ΔslpB, lacking the SlpB protein, failed to do so. Subsequently, both strains were investigated in vivo in a 5-FU-induced mucositis mice model. Mucositis is a common side effect of cytotoxic chemotherapy with 5-FU, characterized by mucosal injury, inflammation, diarrhea, and weight loss. The WT strain prevented weight loss, reduced inflammation and consequently histopathological scores. Furthermore, it regulated key markers, including Claudin-1 (cld1, p<0.0005) and IL-17a (Il17a, p<0.0001) genes, as well as IL-12 (p<0.0001) and IL-1β (p<0.0429) cytokines levels. Mutant strain displayed opposite regulatory effect on cld1 expression and on IL-12 levels. This work emphasizes the importance of SlpB in P. freudenreichii ability to reduce mucositis inflammation. It opens perspectives for the development of probiotic products to decrease side effects of chemotherapy using GRAS bacteria with immunomodulatory surface protein properties.
Collapse
|
33
|
Ali J, Khan AU, Shah FA, Ali H, Islam SU, Kim YS, Khan S. Mucoprotective effects of Saikosaponin-A in 5-fluorouracil-induced intestinal mucositis in mice model. Life Sci 2019; 239:116888. [DOI: 10.1016/j.lfs.2019.116888] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023]
|
34
|
Guo JW, Wu XN, Cheng RY, Shen X, Cheng G, Yu LX, Li M, He F. Oral administration of vancomycin to neonatal mice could alter their immunity and allergic sensibility late in adulthood. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2019; 38:129-139. [PMID: 31763116 PMCID: PMC6856516 DOI: 10.12938/bmfh.19-008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 11/28/2022]
Abstract
The prevalence of allergy has increased over the past decades, and this may be attributed in part to the intestinal microbiota dysfunction caused by antibiotics during early life. In this
study, we evaluated how vancomycin could impair the intestinal microbiota during early life and then, consequently, alter susceptibilities to allergic diseases and related immunity in late
adulthood. BALB/c (n=54) neonatal mice were used in this study. Mice in the vancomycin group were orally administered vancomycin for 21 days, while those in the allergy and control groups
were perfused with the same volume of saline solution. Then, mice in the allergy and vancomycin groups were immunized with intraperitoneal ovalbumin with alum. At postnatal day 21,
vancomycin significantly alter the fecal microbiota, with lower Bacteroidetes and Firmicutes counts and higher Proteobacteria counts. At
postnatal day 56, the Bacteroidetes count was still significantly lower in vancomycin-treated mice. The serum IgE level in the control group was significantly lower than
that in the vancomycin and allergy groups. The serum interleukin (IL)-6 level and the IL-4/interferon (IFN)-γ values were significantly higher in the vancomycin-treated mice, but the serum
IL-17A level was lower than that in the control group. These results indicate that modifications of the intestinal microbiota composition during early life may be, at least in part, the key
mechanism underlying the effect of vancomycin that influences the immune function of host animals in the adult stages.
Collapse
Affiliation(s)
- Jia Wen Guo
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Xiao Na Wu
- West China Second Hospital, Sichuan University/West China Women's and Children's Hospital, 610041 Chengdu, Sichuan, China
| | - Ru Yue Cheng
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Xi Shen
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Guo Cheng
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Lan Xiu Yu
- Green's Bioengineering (Shenzhen) Co., Ltd., 518105 Shenzhen, Guangdong, China
| | - Ming Li
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Fang He
- West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, 610041 Chengdu, Sichuan, China
| |
Collapse
|
35
|
Abstract
Twenty-five years ago, the cytotoxic drug irinotecan (IRT) was first approved in Japan for the treatment of cancer. For more than two decades, the IRT prodrug has largely contributed to the treatment of solid tumors worldwide. Nowadays, this camptothecin derivative targeting topoisomerase 1 remains largely used in combination regimen, like FOLFIRI and FOLFIRINOX, to treat metastatic or advanced solid tumors, such as colon, gastric and pancreatic cancers and others. This review highlights recent discoveries in the field of IRT and its derivatives, including analogues of the active metabolite SN38 (such as FL118), the recently approved liposomal form Nal-IRI and SN38-based immuno-conjugates currently in development (such as sacituzumab govitecan). New information about the IRT mechanism of action are presented, including the discovery of a new protein target, the single-stranded DNA-binding protein FUBP1. Significant progress has been made also to better understand and manage the main limiting toxicities of IRT, chiefly neutropenia and diarrhea. The role of drug-induced inflammation and dysbiosis is underlined and strategies to limit the intestinal toxicity of IRT are discussed (use of β-glucuronidase inhibitors, plant extracts, probiotics). The detailed knowledge of the metabolism of IRT has enabled the identification of potential biomarkers to guide patient selection and to limit drug-induced toxicities, but no robust IRT-specific therapeutic biomarker has been approved yet. IRT is a versatile chemotherapeutic agent which combines well with a variety of anticancer drugs. It offers a large range of drug combinations with cytotoxic agents, targeted products and immuno-active biotherapeutics, to treat a variety of advanced solid carcinoma, sarcoma and cancers with progressive central nervous system diseases. A quarter of century after its first launch, IRT remains an essential anticancer drug, largely prescribed, useful to many patients and scientifically inspiring.
Collapse
|
36
|
Bhandari S, Pandey RK, Dahal S, Shahreyar M, Dhakal B, Jha P, Venkatesan T, Saeian K. Risk, Outcomes, and Predictors of Clostridium difficile Infection in Lymphoma: A Nationwide Study. South Med J 2019; 111:628-633. [PMID: 30285271 DOI: 10.14423/smj.0000000000000872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The risk of Clostridium difficile infection (CDI) has not been well studied in patients with lymphoma. We thus sought to determine the risk of CDI in hospitalizations with lymphoma along with its trend, outcomes, and predictors using a large database. METHODS Hospital discharge data from the Nationwide Inpatient Sample (NIS) from 2007 to 2011 were used for the study. Using the International Classification of Diseases, Ninth Revision, Clinical Modification codes, all adult patients aged 18 years or older having a primary diagnosis of lymphoma were queried for the presence of CDI as any of the secondary diagnoses. The risk of CDI in lymphoma and its yearly trend were assessed. We performed multivariate logistic regression to determine the independent risk factors of CDI in lymphoma. Furthermore, we studied mortality and other adverse outcomes of CDI in patients with lymphoma. RESULTS There were 236,312 discharges (weighted) with the primary diagnosis of lymphoma. CDI was present in 2.13% of patients with lymphoma versus 0.8% in the nonlymphoma group (P < 0.001). On multivariate analysis, the significant predictors of CDI in lymphoma were presence of infection (odds ratio [OR] 3.1, 95% confidence interval [CI] 2.7-3.6), stem cell transplant (OR 2.7, 95% CI 2.3-3.4), graft-versus-host disease (OR 1.9, 95% CI 1.4-2.8), race (Asian vs white, OR 1.6, 95% CI 1.1-2.4), chemotherapy (OR 1.6, 95% CI 1.4-1.8), gastrointestinal surgery (OR 1.4, 95% CI 1.2-1.7), and Charlson Comorbidity Index (CCI) (CCI of 2 vs 0-1: OR 1.2, 95% CI 1.1-1.4; CCI of 3 vs 0-1: OR 1.3, 95% CI 1.03-1.6). CDI in lymphoma was associated with worse hospital outcomes such as increased mortality (17% vs 8%), increased length of stay (23.6 vs 9.9 days), mean total hospital charges ($197,015 vs $79,392), rate of intubation (13% vs 4% vs 13%), and rate of total parenteral nutrition (11% vs 3%). CONCLUSIONS Hospitalization with lymphoma was associated with an increased risk of CDI. The significant predictors for CDI in lymphoma were infection, stem cell transplant, graft-versus-host disease, race, chemotherapy, gastrointestinal surgery, and Charlson Comorbidity Index. CDI in lymphoma was associated with increased mortality and other adverse outcomes warranting a need of more vigilance for CDI in patients with lymphoma.
Collapse
Affiliation(s)
- Sanjay Bhandari
- From the Divisions of General Internal Medicine, Hematology and Oncology, and Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, and the Department of Internal Medicine, Interfaith Medical Center, Brooklyn, New York
| | - Ramesh Kumar Pandey
- From the Divisions of General Internal Medicine, Hematology and Oncology, and Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, and the Department of Internal Medicine, Interfaith Medical Center, Brooklyn, New York
| | - Sumit Dahal
- From the Divisions of General Internal Medicine, Hematology and Oncology, and Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, and the Department of Internal Medicine, Interfaith Medical Center, Brooklyn, New York
| | - Muhammad Shahreyar
- From the Divisions of General Internal Medicine, Hematology and Oncology, and Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, and the Department of Internal Medicine, Interfaith Medical Center, Brooklyn, New York
| | - Binod Dhakal
- From the Divisions of General Internal Medicine, Hematology and Oncology, and Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, and the Department of Internal Medicine, Interfaith Medical Center, Brooklyn, New York
| | - Pinky Jha
- From the Divisions of General Internal Medicine, Hematology and Oncology, and Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, and the Department of Internal Medicine, Interfaith Medical Center, Brooklyn, New York
| | - Thangam Venkatesan
- From the Divisions of General Internal Medicine, Hematology and Oncology, and Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, and the Department of Internal Medicine, Interfaith Medical Center, Brooklyn, New York
| | - Kia Saeian
- From the Divisions of General Internal Medicine, Hematology and Oncology, and Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, and the Department of Internal Medicine, Interfaith Medical Center, Brooklyn, New York
| |
Collapse
|
37
|
Editorial: Knowledge of gastrointestinal toxicity mechanisms is paving the way for improved assessment and management of patient supportive care. Curr Opin Support Palliat Care 2019; 13:111-113. [PMID: 30883402 DOI: 10.1097/spc.0000000000000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Niu J, Xie JJ, Guo TY, Fang HH, Zhang YM, Liao SY, Xie SW, Liu YJ, Tian LX. Comparison and Evaluation of Four Species of Macro-Algaes as Dietary Ingredients in Litopenaeus vannamei Under Normal Rearing and WSSV Challenge Conditions: Effect on Growth, Immune Response, and Intestinal Microbiota. Front Physiol 2019; 9:1880. [PMID: 30687110 PMCID: PMC6333665 DOI: 10.3389/fphys.2018.01880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
The study was conducted to compare and evaluate effects of four different macro-algaes on growth, immune response, and intestinal microbiota of Litopenaeus vannamei. In the rearing trial 1, shrimp were fed five diets containing four sources of macro-algaes for 8 weeks, named D1 (without macro-algae), D2 (Porphyra haitanensis), D3 (Undaria pinnatifida), D4 (Saccharina japonica), and D5 (Gracilaria lemaneiformis), respectively. Growth performance of shrimp in D5 diet was significantly higher than that of shrimp fed the control and D4 diet (P < 0.05); however, there is no significant difference among D2, D3, and D5 diets (P > 0.05). Apparent digestibility coefficients of dry matter from the D2, D3, and D5 diets were significantly higher than that from the control and D4 diets (P < 0.05). Supplementary macro-algaes enhanced hepatopancreas immunity through positively increasing total antioxidant status (TAS) and prophenoloxidase activity (ProPO), as well as up-regulating the hepatopancreas RNA expression of ProPO and IκBα and down-regulating the expression of transforming growth factor β. Furthermore, dietary macro-algaes modified intestinal microbiota of L. vannamei, boosting the relative abundance of beneficial bacterial such as Bacteroidetes, Firmicutes, and Bacillaceae, and decreasing those detrimental bacterial such as Gammaproteobacteria and Vibrionaceae. In the white spot syndrome virus (WSSV) challenge trial, shrimps were injected for 6-day after the rearing trial. On the fourth day, shrimp death started to occur, and the mortality in D2, D3, and D5 diets was significantly lower than that in control and SJ diets during 4-6 challenged days (P < 0.05). Dietary macro-algaes ameliorated hepatopancreas damage in L. vannamei by increasing TAS and ProPO activities and decreasing SOD activity, inhibiting the lipid peroxidation (malondialdehyde), as well as regulating the immune-related genes expression. Taken together, dietary macro-algaes availably relieved enterohepatic oxidative damage by improving antioxidant ability and immunity and regulated intestinal microbiota in L. vannamei. These results indicated that G. lemaneiformis is the most suitable macro-algae and then followed by U. pinnatifida and P. haitanensis as the feed ingredient for L. vannamei.
Collapse
Affiliation(s)
- Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jun Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian-Yu Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao-Hang Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan-Mei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Yu Liao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Wei Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Jian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Xia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Diadzein ameliorates 5-fluorouracil-induced intestinal mucositis by suppressing oxidative stress and inflammatory mediators in rodents. Eur J Pharmacol 2019; 843:292-306. [DOI: 10.1016/j.ejphar.2018.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
|
40
|
Cordeiro BF, Oliveira ER, da Silva SH, Savassi BM, Acurcio LB, Lemos L, Alves JDL, Carvalho Assis H, Vieira AT, Faria AMC, Ferreira E, Le Loir Y, Jan G, Goulart LR, Azevedo V, Carvalho RDDO, do Carmo FLR. Whey Protein Isolate-Supplemented Beverage, Fermented by Lactobacillus casei BL23 and Propionibacterium freudenreichii 138, in the Prevention of Mucositis in Mice. Front Microbiol 2018; 9:2035. [PMID: 30258413 PMCID: PMC6143704 DOI: 10.3389/fmicb.2018.02035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a clinically important gastrointestinal inflammatory infirmity, generated by antineoplastic drugs cytotoxic effects. The inflammatory process caused by this disease frequently leads to derangements in the alimentary tract and great malaise for the patient. Novel strategies are necessary for its prevention or treatment, as currently available treatments of mucositis have several limitations in relieving its symptoms. In this context, several research groups have investigated the use of probiotic bacteria, and in particular dairy bacterial strains. Compelling evidences reveal that milk fermented by certain probiotic bacteria has the capacity to ameliorate intestinal inflammatory disorders. In addition, innovative probiotic delivery strategies, based on probiotics incorporation into protective matrices, such as whey proteins, were able to increase the therapeutic effect of probiotic strains by providing extra protection for bacteria against environmental stresses. Therefore, in this study, we evaluated the role of the whey protein isolate (WPI), when added to skim milk fermented by Lactobacillus casei BL23 (L. casei BL23) or by Propionibacterium freudenreichii CIRM-BIA138 (P. freudenreichii 138), as a protective matrix against in vitro stress challenges. In addition, we investigated the therapeutic effect of these fermented beverages in a murine model of mucositis induced by 5-Fluorouracil (5-FU). Our results demonstrated that milk supplementation with 30% (w/v) of WPI increases the survival rate of both strains when challenged with acid, bile salts, high temperature and cold storage stresses, compared to fermented skim milk without the addition of WPI. Moreover, treatment with the probiotic beverages prevented weight loss and intestinal damages in mice receiving 5-FU. We conclude that the presence of WPI maximizes the anti-inflammatory effects of L. casei BL23, but not for P. freudenreichii 138, suggesting that whey protein enhancement of probiotic activity might be strain-dependent.
Collapse
Affiliation(s)
- Bárbara F. Cordeiro
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Emiliano R. Oliveira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Sara H. da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Bruna M. Savassi
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Leonardo B. Acurcio
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Luisa Lemos
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Juliana de L. Alves
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Helder Carvalho Assis
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Angélica T. Vieira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Ana M. C. Faria
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Enio Ferreira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | | | - Gwénaël Jan
- STLO, INRA, Agrocampus Ouest, Rennes, France
| | - Luiz R. Goulart
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Rodrigo D. de O. Carvalho
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Fillipe L. R. do Carmo
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
- STLO, INRA, Agrocampus Ouest, Rennes, France
| |
Collapse
|
41
|
Vanlancker E, Vanhoecke B, Stringer A, Van de Wiele T. 5-Fluorouracil and irinotecan (SN-38) have limited impact on colon microbial functionality and composition in vitro. PeerJ 2017; 5:e4017. [PMID: 29158969 PMCID: PMC5694655 DOI: 10.7717/peerj.4017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal mucositis is a debilitating side effect of chemotherapy treatment, with currently no treatment available. As changes in microbial composition have been reported upon chemotherapy treatment in vivo, it is thought that gut microbiota dysbiosis contribute to the mucositis etiology. Yet it is not known whether chemotherapeutics directly cause microbial dysbiosis, thereby increasing mucositis risk, or whether the chemotherapeutic subjected host environment disturbs the microbiome thereby aggravating the disease. To address this question, we used the M-SHIME®, an in vitro mucosal simulator of the human intestinal microbial ecosystem, as an experimental setup that excludes the host factor. The direct impact of two chemotherapeutics, 5-fluorouracil (5-FU) and SN-38 (active metabolite of irinotecan), on the luminal and mucosal gut microbiota from several human donors was investigated through monitoring fermentation activity and next generation sequencing. At a dose of 10 µM in the mucosal environment, 5-FU impacted the functionality and composition of the colon microbiota to a minor extent. Similarly, a daily dose of 10 µM SN-38 in the luminal environment did not cause significant changes in the functionality or microbiome composition. As our mucosal model does not include a host-compartment, our findings strongly indicate that a putative microbial contribution to mucositis is initially triggered by an altered host environment upon chemotherapy.
Collapse
Affiliation(s)
- Eline Vanlancker
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Barbara Vanhoecke
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Andrea Stringer
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| |
Collapse
|
42
|
Wodzinski A. Potential Benefits of Oral Cryotherapy for Chemotherapy-Induced Mucositis. Clin J Oncol Nurs 2017; 20:462-5. [PMID: 27668364 DOI: 10.1188/16.cjon.462-465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucositis is a common side effect of cancer therapies that causes painful, erythematous lesions to develop in the gastrointestinal tract. These lesions can lead to malnutrition, increased risk for serious infection, prolonged hospital stays, and reduced quality of life. Oral cryotherapy, or the use of ice chips to cool the mucous membranes during bolus chemotherapy infusions (e.g., 5-fluorouracil [Adrucil®] and melphalan [Alkeran®]), is the most readily accessible and cost-effective intervention available. Although many factors may contribute to the development of mucositis during cancer treatment, studies have found a reduction in the incidence and the severity of mucositis with the use of oral cryotherapy.
Collapse
|
43
|
Kuchay RAH. A review of complementary therapies for chemotherapy induced gastrointestinal mucositis. Drug Discov Ther 2017; 10:292-299. [PMID: 27746417 DOI: 10.5582/ddt.2016.01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Administration of chemotherapy often leads to gastrointestinal mucositis (GIM). GIM manifests as nausea, abdominal pain and diarrhoea in recipients of chemotherapy. GIM is a major complication occurring in approximately 80% of patients receiving 5-flurouracil treatment. These side-effects may become so severe that significant dose reductions are required, ultimately affecting treatment efficacy and patient survival. Complementary and alternative medicine (CAM) is a growing area of public interest. This review will provide an overview of current knowledge of complementary medicinal therapies for chemotherapy induced GIM. An understanding of this evolving literature is useful in discussing these therapies with patients who are considering using them.
Collapse
|
44
|
Neemann K, Freifeld A. Clostridium difficile–Associated Diarrhea in the Oncology Patient. J Oncol Pract 2017; 13:25-30. [DOI: 10.1200/jop.2016.018614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the most common cause of nosocomial diarrhea, resulting in significant morbidity and mortality in hospitalized patients. Oncology patients are particularly at risk of this infection secondary to frequent exposure to known risk factors. In a population in which diarrhea is a common adverse effect of chemotherapeutic regimens, diagnosis can be challenging secondary to current limitations in testing to differentiate between colonization and active infection. Although several currently available antimicrobial therapies achieve resolution of symptoms in this population, further research is needed to determine which agent least affects the host intestinal microbiota, especially in times of neutropenia and mucosal barrier injury. The purpose of this article is to review the current literature on the epidemiology, pathogenesis, and management of C difficile–associated diarrhea in the oncology population.
Collapse
Affiliation(s)
- Kari Neemann
- University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
45
|
McQuade RM, Stojanovska V, Abalo R, Bornstein JC, Nurgali K. Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments. Front Pharmacol 2016; 7:414. [PMID: 27857691 PMCID: PMC5093116 DOI: 10.3389/fphar.2016.00414] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy are a debilitating and often overlooked clinical hurdle in cancer management. Chemotherapy-induced constipation (CIC) and Diarrhea (CID) present a constant challenge in the efficient and tolerable treatment of cancer and are amongst the primary contributors to dose reductions, delays and cessation of treatment. Although prevalence of CIC is hard to estimate, it is believed to affect approximately 16% of cancer patients, whilst incidence of CID has been estimated to be as high as 80%. Despite this, the underlying mechanisms of both CID and CIC remain unclear, but are believed to result from a combination of intersecting mechanisms including inflammation, secretory dysfunctions, GI dysmotility and alterations in GI innervation. Current treatments for CIC and CID aim to reduce the severity of symptoms rather than combating the pathophysiological mechanisms of dysfunction, and often result in worsening of already chronic GI symptoms or trigger the onset of a plethora of other side-effects including respiratory depression, uneven heartbeat, seizures, and neurotoxicity. Emerging treatments including those targeting the enteric nervous system present promising avenues to alleviate CID and CIC. Identification of potential targets for novel therapies to alleviate chemotherapy-induced toxicity is essential to improve clinical outcomes and quality of life amongst cancer sufferers.
Collapse
Affiliation(s)
- Rachel M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Universidad Rey Juan CarlosMadrid, Spain; Grupo de Excelencia Investigadora URJC, Banco de Santander Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosMadrid, Spain; Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Melbourne VIC, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| |
Collapse
|
46
|
Barros PAVD, Generoso SDV, Andrade MER, da Gama MAS, Lopes FCF, de Sales e Souza ÉL, Martins FDS, Miranda SEM, Fernandes SOA, Cardoso VN. Effect of Conjugated Linoleic Acid-enriched Butter After 24 hours of Intestinal Mucositis Induction. Nutr Cancer 2016; 69:168-175. [DOI: 10.1080/01635581.2016.1225100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Wardill HR, Mander KA, Van Sebille YZA, Gibson RJ, Logan RM, Bowen JM, Sonis ST. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. Int J Cancer 2016; 139:2635-2645. [PMID: 27367824 DOI: 10.1002/ijc.30252] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity.
Collapse
Affiliation(s)
- Hannah R Wardill
- School of Medicine, University of Adelaide, South Australia. .,Centre for Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia.
| | - Kimberley A Mander
- School of Medicine, University of Adelaide, South Australia.,Adelaide Centre for Neuroscience Research and Discipline of Anatomy and Pathology, University of Adelaide, Adelaide, South Australia
| | | | - Rachel J Gibson
- Division of Health Sciences, University of South Australia, Australia
| | - Richard M Logan
- School of Dentistry, University of Adelaide, Adelaide, South Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, South Australia
| | - Stephen T Sonis
- Brigham and Women's Hospital, Boston, MA.,Biomodels, LLC, Watertown, MA
| |
Collapse
|
48
|
Tang Y, Wu Y, Huang Z, Dong W, Deng Y, Wang F, Li M, Yuan J. Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil-induced intestinal mucositis and dysbiosis in rats. Nutrition 2016; 33:96-104. [PMID: 27427511 DOI: 10.1016/j.nut.2016.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The use of probiotics to alleviate chemotherapy-induced intestinal mucositis is supported by clinical consensus. However, no studies to date, to our knowledge, have systematically analyzed the effects of a probiotic mixture on chemotherapy-induced mucositis or assessed changes in the intestinal microbiota after probiotic treatment. The aim of this study was to report the effects of a probiotic mixture, DM#1, on intestinal mucositis and dysbiosis of rats treated with 5-fluorouracil (5-FU). METHODS Twenty-eight male Sprague Dawley rats weighing 180 to 220 g were randomly divided into four groups: control, 5-FU, probiotic high (PH), and probiotic low (PL). Except for the control group, all other groups received intraperitoneal injections of 5-FU for 5 d, and the PH and PL groups received DM#1 intragastrically (1 × 109 or 1 × 108 colony-forming units/kg, respectively) for 8 d. One day after the last administration, rats were sacrificed and the ilea were removed for histopathologic assessment and evaluation of permeability, myeloperoxidase activity, levels of cytokines (interleukin [IL]-4, IL-6, tumor necrosis factor [TNF]-α), and mRNA of toll-like receptors (TLR; TLR2, TLR4, and TLR9). Additionally, intestinal microbiota profiles were analyzed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis and quantitative real-time PCR. RESULTS Treatment with DM#1 ameliorated 5-FU-induced intestinal mucosal injury in rats, possibly by reducing proinflammatory cytokine levels and neutrophil infiltration. The increased intestinal permeability caused by 5-FU was ameliorated. These results were closely associated with the reestablishment of intestinal microbial homeostasis and alteration of the TLR2/TLR4 signaling pathway. CONCLUSIONS Administration of the probiotic mixture DM#1 ameliorated 5-FU-induced intestinal mucositis and dysbiosis in rats.
Collapse
Affiliation(s)
- Yan Tang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yingtao Wu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ziyi Huang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Weiwei Dong
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ying Deng
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Fengjiao Wang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Jieli Yuan
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
49
|
Vasconcelos RM, Sanfilippo N, Paster BJ, Kerr AR, Li Y, Ramalho L, Queiroz EL, Smith B, Sonis ST, Corby PM. Host-Microbiome Cross-talk in Oral Mucositis. J Dent Res 2016; 95:725-33. [PMID: 27053118 DOI: 10.1177/0022034516641890] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oral mucositis (OM) is among the most common, painful, and debilitating toxicities of cancer regimen-related treatment, resulting in the formation of ulcers, which are susceptible to increased colonization of microorganisms. Novel discoveries in OM have focused on understanding the host-microbial interactions, because current pathways have shown that major virulence factors from microorganisms have the potential to contribute to the development of OM and may even prolong the existence of already established ulcerations, affecting tissue healing. Additional comprehensive and disciplined clinical investigation is needed to carefully characterize the relationship between the clinical trajectory of OM, the local levels of inflammatory changes (both clinical and molecular), and the ebb and flow of the oral microbiota. Answering such questions will increase our knowledge of the mechanisms engaged by the oral immune system in response to mucositis, facilitating their translation into novel therapeutic approaches. In doing so, directed clinical strategies can be developed that specifically target those times and tissues that are most susceptible to intervention.
Collapse
Affiliation(s)
- R M Vasconcelos
- School of Medicine, New York University, New York, NY, USA College of Dentistry, New York University, New York, NY, USA Faculdade de Odontologia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - N Sanfilippo
- School of Medicine, New York University, New York, NY, USA New York University Perlmutter Cancer Center, New York, NY, USA
| | - B J Paster
- The Forsyth Institute, Cambridge, MA, USA Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - A R Kerr
- College of Dentistry, New York University, New York, NY, USA
| | - Y Li
- College of Dentistry, New York University, New York, NY, USA
| | - L Ramalho
- Faculdade de Odontologia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - E L Queiroz
- College of Dentistry, New York University, New York, NY, USA
| | - B Smith
- School of Medicine, New York University, New York, NY, USA New York University Perlmutter Cancer Center, New York, NY, USA
| | - S T Sonis
- Biomodels, LLC, Watertown, MA, USA Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - P M Corby
- School of Medicine, New York University, New York, NY, USA College of Dentistry, New York University, New York, NY, USA
| |
Collapse
|
50
|
Ren G, Yu M, Li K, Hu Y, Wang Y, Xu X, Qu J. Seleno-lentinan prevents chronic pancreatitis development and modulates gut microbiota in mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|